
Computing Just Right:
Application-Specific Arithmetic
with FloPoCo

e

x

√
x2+

y2+
z2

πx

sin
e x+

y

n∑
i=
0

x i

√
x log x

Florent de Dinechin

S. Banescu, L. Besème, N. Bonfante, N. Brunie,
M. Christ, S. Collange, O. Desrentes, J. Detrey,
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What’s nice with arithmetic operators

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

▶ (even DSP filters are defined by a transfer function)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))
Let’s use the same approach for fixed-point operators, and non-standard ones

→ Clean mathematic definition, even for floating-point arithmetic

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

And also, operators are small, no FPGA I/O problem, etc...
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Here should come a demo

FloPoCo is freely available from

http://flopoco.org/

Stable version 4.1.2: more operators

git master version (will be 5.0): cleaner code, fewer operators

used in these slides (mostly)
several interface differences

Command line syntax

a sequence of operator specifications

each with many parameters

operator parameters (mandatory and optional)
global optional parameters: target frequency, target hardware, ...

Output: synthesizable VHDL.
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First something classical

A single precision floating-point adder
(8-bit exponent and 23-bit mantissa)

./flopoco FPAdd wE=8 wF=23

Final report:

|---Entity FPAdder_8_23_uid2_RightShifter

|---Entity IntAdder_27_f400_uid7

|---Entity LZCShifter_28_to_28_counting_32_uid14

|---Entity IntAdder_34_f400_uid17

Entity FPAdder_8_23_uid2

Output file: flopoco.vhdl

To probe further:
./flopoco FPAdd wE=11 wF=51

double precision
./flopoco FPAdd wE=9 wF=36

just right for you
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Actually there are two variants

To get a larger but shorter-latency architectural variant:
./flopoco FPAdd wE=8 wF=23 dualpath=true

Here, dualpath is an optional performance option.
(different VHDL, same function)
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Classical floating-point, continued

A complete single-precision FPU in a single VHDL file:
./flopoco FPAdd wE=8 wF=23 FPMult wE=8 wF=23 FPDiv wE=8 wF=23 FPSqrt wE=8

wF=23

Final report:

|---Entity FPAdder_8_23_uid2_RightShifter

|---Entity IntAdder_27_f400_uid7

|---Entity LZCShifter_28_to_28_counting_32_uid14

|---Entity IntAdder_34_f400_uid17

Entity FPAdder_8_23_uid2

Entity Compressor_2_2

Entity Compressor_3_2

| |---Entity IntAdder_49_f400_uid39

|---Entity IntMultiplier_UsingDSP_24_24_48_unsigned_uid26

|---Entity IntAdder_33_f400_uid47

Entity FPMultiplier_8_23_8_23_8_23_uid24

Entity FPDiv_8_23

Entity FPSqrt_8_23

Output file: flopoco.vhdl
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Damn lies

It was not a classical single-precision FPU

s exn E F

1 2 wE wF

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

exponent size wE and mantissa size wF can take arbitrary values

0, ∞ and NaN flagged in 2 explicit exception bits: exn

not as special exponent values
(as a consequence, two more exponent values available in FloPoCo)

subnormal numbers are not supported

Adding 1 more exponent bit provides them all, and is much more area-efficient
However we lose a-b==0 ⇐⇒ a==b

▶ HLS compiler writers, beware!

Conversions operators from/to IEEE floating point available

F. de Dinechin Computing Just Right: Application-specific arithmetic 11



Damn lies

It was not a classical single-precision FPU

s exn E F

1 2 wE wF

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

exponent size wE and mantissa size wF can take arbitrary values

0, ∞ and NaN flagged in 2 explicit exception bits: exn

not as special exponent values
(as a consequence, two more exponent values available in FloPoCo)

subnormal numbers are not supported

Adding 1 more exponent bit provides them all, and is much more area-efficient
However we lose a-b==0 ⇐⇒ a==b

▶ HLS compiler writers, beware!

Conversions operators from/to IEEE floating point available

F. de Dinechin Computing Just Right: Application-specific arithmetic 11



Damn lies

It was not a classical single-precision FPU

s exn E F

1 2 wE wF

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

exponent size wE and mantissa size wF can take arbitrary values

0, ∞ and NaN flagged in 2 explicit exception bits: exn

not as special exponent values
(as a consequence, two more exponent values available in FloPoCo)

subnormal numbers are not supported

Adding 1 more exponent bit provides them all, and is much more area-efficient
However we lose a-b==0 ⇐⇒ a==b

▶ HLS compiler writers, beware!

Conversions operators from/to IEEE floating point available
F. de Dinechin Computing Just Right: Application-specific arithmetic 11



Number formats in FloPoCo

Integers and fixed-point numbers

The previous floating-point format

A few operators for IEEE floating-point format

A few operators for posits

Logarithm Number System (LNS) in older versions

One Obscure Branch contains decimal arithmetic

no Residue Number System (RNS) and other modular arithmetic – waiting for them

... Plus good old binary fixed-point (integer) for quite a few operators
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Fixed-point format

Parameters for an unsigned (positive) fixed-point format

25 2−4bit weights

-4-3-2-1012345bit position = ℓm =

X =
m∑
i=ℓ

2ixi

m is the Most Significant Bit position, and determines the range

ℓ is the Least Significant Bit position, and determines the precision

Parameters for a fixed-point format in two’s complement

−25 2−4bit weights
s

-4-3-2-1012345bit position = ℓm =

X = −2mxm +
m−1∑
i=ℓ

2ixi

Integers have ℓ = 0,m > 0.
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Typical interface to a fixed-point FloPoCo operator

architecture
generator

function f on interval [0, 1)

input precision ℓin

output precision ℓout

mout

.vhdl

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24

msbOut=3 d=3

× + × + × +
σ2 σ1

C0C1C2C3

Polynomial Coefficient Table

X

A

address

α

w

Z

w − α
Z̃3 Z̃2

Z̃1 = Z

p̃(x)

fi
n
a
l
ro
u
n
d

Y
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Computing Just Right makes interfaces simpler

Never output bits that do not hold useful information:

Output precision (ℓout) specifies operator accuracy

No need to compute more accurately than 2ℓout : we couldn’t output it

No sense in computing less accurately than 2ℓout :
we don’t want to output garbage bits

Correct rounding (IEEE-754): the best we can do with machine numbers

Operator specification: return the number Y closest to the exact result f (X )

R
2ℓout

f (X ) Y f (X )

The difference between the computed value Y and f (X ) will be at most 2ℓout−1 .
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It would be too simple, people would complain

Sometimes correct rounding is to expensive to implement, or just impossible to guarantee...

Faithful rounding: the next best thing

R

f (X )

A B

f (X )

C

Two equivalent specifications:

The output Y of the operator may be one of the two numbers surrounding f (X ).
When f (X ) is a machine number, then Y = f (X ).

The difference between the output value Y and f (x) is strictly smaller than 2ℓout .

Slightly less accurate than correct rounding, but still:

if you add one bit to the output, you double the accuracy.
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Binary for theoretical physicists

210 ≈ 103 (kBytes are actually 1024 bytes).

Another point of view : 10 log10(2) ≈ 3

In other words, 1 bit ≈ 3 dB

I don’t count signal/noise ratio in dB, I count accuracy in bits.
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Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

Remark: automatic pipeline framework improved from version 4 to (future) version 5, but
all the operators need to be ported.
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Examples of pipeline

./flopoco frequency=400 FPAdd wE=8 wF=23

Final report:

|---Entity FPAdder_8_23_uid2_RightShifter

| Pipeline depth = 1

|---Entity IntAdder_27_f400_uid7

| Pipeline depth = 1

|---Entity LZCShifter_28_to_28_counting_32_uid14

| Pipeline depth = 4

|---Entity IntAdder_34_f400_uid17

| Pipeline depth = 1

Entity FPAdder_8_23_uid2

Pipeline depth = 9

./flopoco frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 4
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Of course the frequency depends on the target FPGA

./flopoco target=Zynq7000 frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 5

./flopoco target=VirtexUltrascalePlus frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 1

Altera and Xilinx targets supported in the stable branch (at various levels of accuracy, in
various versions): Spartan3, Zynq7000, Virtex4, Virtex5, Virtex6, Kintex7,
VirtexUltrascalePlus, StratixII, StratixIII, StratixIV, StratixV, CycloneII, CycloneIII,
CycloneIV, CycloneV.
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Frequency-directed pipelining in practice

We do our best but we know it’s hopeless

The actual frequency obtained will depend on the whole application (placement, routing
pressure etc)...

best-effort philosophy,

aiming to be accurate to 10% for an operator synthesized alone

asking a higher frequency provides a deeper pipeline

And a big TODO: VLSI targets.
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Also match the architecture to the target FPGA

Compare the VHDL produced with FloPoCo 4.1.2 for
flopoco target=Virtex4 IntConstDiv wIn=16 d=3

flopoco target=Virtex6 IntConstDiv wIn=16 d=3

LUT LUTLUTLUT

q0q1q2q3
2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

Architecture specificities

LUTs

DSP blocks

memory blocks
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Non-standard operators

Correctly rounded divider by 3:
flopoco FPConstDiv wE=8 wF=23 d=3

Floating-point exponential:
flopoco FPExp wE=8 wF=23

Multiplication of a 32-bit signed integer by the constant 1234567 (two algorithms, your
mileage may vary):
flopoco IntIntKCM

flopoco IntConstMult

Full list in the documentation, or by typing just
flopoco

Sorry for the sometimes incomplete or inconsistent interface.
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Don’t trust us

TestBench generates a test bench for the operator preceding it on the command line

flopoco FPExp wE=8 wF=23 TestBench n=10000

generates 10000 random tests

flopoco IntConstDiv wIn=16 d=3 TestBench

generates an exhaustive test

Specification-based test bench generation

Not by simulation of the generated architecture!

Helper functions for encoding/decoding FP format, if you want to check the testbench...

fp2bin 9 36 3.1415926

bin2fp 9 36 010100000000100100100001111110110100110100010011
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Generic generator of fixed-point functions

architecture
generator

function f

input interval I

input format

output format
.vhdl
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The sine function

x

1

-1

ππ

2

Input format is in fixed point

Arbitrary choice in FloPoCo: the input domain will be [0, 1) or [−1, 1).

sin(x) on [−1, 1) sin(πx) on [−1, 1) sin(
π

2
x) on [0, 1)

x x

x
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Discretization issues

Inputs and outputs in [0, 1) (4-bit fixed-point) :

x

f (x)

0/16
1/16
2/16
3/16
4/16
5/16
6/16
7/16
8/16
9/16

10/16
11/16
12/16
13/16
14/16
15/16

16/16 = 1

0
16

1
16

2
16

3
16

4
16

5
16

6
16

7
16

8
16

9
16

10
16

11
16

12
16

13
16

14
16

15
16
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Possible fixes for corner-case discretization issues

x

f (x)

x

f (x)

x

f (x)

Using 1 bit more saturating Scaling by 15
16
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FixFunctionByTable

flopoco FixFunctionByTable f="sin(pi/2*x)" signedIn=0 lsbIn=-6 lsbOut=-6

Input

-6-5-4-3-2-1bit position = ℓm =

2−1 2−6bit weights

Output

s

-6-5-4-3-2-10bit position = ℓm =

−20 2−6bit weights

Go check in the VHDL which solution is used...
(Hint: remember that msbOut is computed.)
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FixFunctionByTable, fixed

flopoco FixFunctionByTable f="63/64*sin(pi/2*x)" signedIn=0 lsbIn=-6 lsbOut=-6

Go check the VHDL...
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Tables can hold functions that are arbitrarily ugly

sin(
π

2x
) on [0, 1)

x

f (x)

flopoco FixFunctionByTable f="sin(pi/2/x)" signedIn=0 lsbIn=-16 lsbOut=-16
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Tables scaling

The previous example was a 16-bit in, 16-bit out.

(you just added 64 KLOC to your project)

Practical sizes

The generated VHDL: 2−lsbIn lines of lsbOut bits each

LUT cost: 2−lsbIn−6 × lsbOut

A table of 26 × 6 bits costs exactly 6 LUTs.

X =

/6

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

/6

Y =

A 20 Kb dual-port BlockRAM can hold two tables of 210 × 10 bits.

Beyond that, tables don’t scale well.
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FixFunctionByMultipartiteTable for 12 to 24 bits

X =

T2 T1 T0

+

4 8 5

ỹout

g = 2

+
+

=
truncated to

T2

T1

T0

Y
ỹout

0
0
64

128
192
256
320
384
448
512
576
640
704
768
832
896
960

1,024

T2

0 64 128 192 256
0

32

64

96

128

160

192

224

256

result R

0 64 128 192 256
0

T1

0 64 128 192 256
0T0

rule of thumb: cost grows as 2p/2 × p instead of 2p × p
but requires the function to be continuous, derivable, and even monotonic
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One more trick: symmetry

stored values

values computed

by symmetry

++++

++++ Ti

We exploit symmetry to trade one table input bit for two rows of XOR gates...
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And above 16 bits...

A generic piecewise polynomial approximation method: FixFunctionByPiecewisePoly

requires higher-order derivability, but scales to 64 bits.

One more parameter: the degree of the polynomials, trades-off memory and
multipliers

× + × + × +
σ2 σ1

a0a1a2a3

Polynomial Coefficient Table

xin

i

address

α

w

xw − α
x̃3 x̃2

x̃3 = x

p̃(x)

fi
n
a
l
ro
u
n
d

y

All these function evaluation methods have the same interface, you can swap one for
another.
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Example: multiplication and division by
constants

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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Multiplication by a constant, first method

FPGA-specific LUT-based methods

Write x in radix 2α: x =
n∑

i=0

2αixi with 0 ≤ xi < 2α

Ex: good old hexadecimal is α = 4 : X = x0x1x2x3x4x5x6x7x8x9x10x11

α bits

then Cx =
n∑

i=0

2αi (Cxi )

and tabulate the products Cxi in α-input LUTs

(also works if C is a real number like, say, 1/ log(2))

Extremely efficient for small n (input size) on LUT-based FPGAs.
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An architecture for 6-input LUTs

X = x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17

α bits

+

Look-Up Table

X0

/α

/α+ wC

CX0

Look-Up Table

X1

/α

/α+ wC

CX1

α

Look-Up Table

X2

/α

/α+ wC

CX2

2α

/

wC + wX
CX
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Multiplication by a constant, second method

Shift-and-add methods for integer constants

17x = 16x + x = (x ≪ 4) + x

15x = 16x − x (Booth recoding)

7697x = 15x ≪ 9 + 17x (open problem here)

very good recent ILP-based heuristics

In FPGAs, take into account the size of each addition

(demo?)

Extremely efficient for some constants such as 17.

FloPoCo offers both methods (and the exponential uses both).
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Floating-point multiplication by a rational constant

Motivation

divisions by 3 and by 9 in stencil applications

1/3 = 0.0101010101010101010101010101010 · · ·
1/9 = 0.000111000111000111000111000111 · · ·

Two specificities

The binary representation of the constant is periodic
−→ specific optimisation of the shift-and-add approach

Precision required for correct rounding

F. de Dinechin Computing Just Right: Application-specific arithmetic 41



Floating-point multiplication by a rational constant

Motivation

divisions by 3 and by 9 in stencil applications

1/3 = 0.0101010101010101010101010101010 · · ·
1/9 = 0.000111000111000111000111000111 · · ·

Two specificities

The binary representation of the constant is periodic
−→ specific optimisation of the shift-and-add approach

Precision required for correct rounding

F. de Dinechin Computing Just Right: Application-specific arithmetic 41



Computing periodicity

A lemma adapted from 19th century number theory

Let a/b be an irreductible rational such that

a < b

2 divides neither a nor b (powers of two are a matter of exponent)

Then

a/b has a purely periodic binary representation

The period size s is the multiplicative order of 2 modulo b

(the smallest integer such that 2s mod b = 1)

The periodic pattern is the integer p = ⌊2sa/b⌋

Example: 1/9

b = 9; period size is s = 6 because 26 mod 9 = 1.
The periodic pattern is ⌊1× 26/9⌋ = 7, which we write on 6 bits 000111, and we
obtain that 1/9 = 0.(0001112)

∞ .
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Optimal architecture for precision pc

x

n

π3 = x × p p p p p p p p

π0 = x × p

π1 = x × p p

π2 = x × p p p p

x × p p p p p p p p p p

n + 2s

n + s

n + 4s

n + 8s

n + 10s

×p

≪ s

≪ 2s

≪ 4s
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Correct rounding of a floating-point x by a rational a/b

A lemma adapted from the exclusion lemma of FP division

Correct rounding on n bits needs n + 1 + ⌈log2 b⌉ bits of the constant

In practice, it is for free if b is small.
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This work was motivated by divisions by 3 and by 9

constant p
This work previous SotA
pc #FA pc #FA depth

1/3 24 32 118 27 190 4
53 64 317 56 368 5

p = 012 113 128 792 116 1026 6

1/9 24 30 132 29 131 5
53 60 356 58 408 6

p = 0001112 113 120 885 118 1116 7
(The precisions chosen here are those of the IEEE754-2008 formats)

... But the FloPoCo code manages arbitrary a/b (including a > b).
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And now for something completely different

Instead of specializing multiplication, let us try and specialize division.
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Anybody here remembers how we compute divisions?

7 7 6

1 7

2 6

2

2 5 8

3

iteration body: Euclidean division of a 2-digit decimal number by 3
The first digit is a remainder from previous iteration:
its value is 0, 1 or 2
Possible implementation as a look-up table that, for each value from 00 to 29, gives
the quotient and the remainder of its division by 3.
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The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0
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The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

20 5

3F 2 D
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The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

2

020 5

3F 2 D
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The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

D2

020 5

3F 2 D
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The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

F

0

D2

020 5

3F 2 D
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And now for some mathematical obfuscation

procedure ConstantDiv(x , d)
rk ← 0
for i = k − 1 down to 0 do

yi ← xi + 2αri+1 (this + is a concatenation)
(qi , ri )← (⌊yi/d⌋, yi mod d) (read from a table)

end for
return q =

∑k
i=0 qi .2

−αi , r0
end procedure

Each iteration

consumes α bits of x , and a remainder of size γ = ⌈log2 d⌉
produces α bits of q, and a remainder of size γ

implemented as a table with α+ γ bits in, α+ γ bits out
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At this point nobody wants to see the proof

(if you’re convinced the decimal version works...)

prove that we indeed compute the Euclidean division

prove that the result is indeed a radix-2α number
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Sequential implementation

LUT

clk

reset

α

α

xi

γγ

qi

ri+1 ri
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Unrolled implementation

LUT LUTLUTLUT

q0q1q2q3
2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0
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Logic-based version

LUT LUTLUTLUT

q0q1q2q3
2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

For instance, assuming a 6-input LUTs (e.g. LUT6)

A 6-bit in, 6-bit out consumes 6 LUT6

Size of remainder is γ = log2 d

If d < 25, very efficient architecture: α = 6− γ

The smaller d , the better

Easy to pipeline (one register behind each LUT)
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Dual-port RAM-based version?

For larger d?

LUT LUTLUT LUT

x3 x2 x1 x0

q0q1q2q3 r

(not really studied, waiting for the demand)
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Synthesis results on Virtex-5
for combinatorial Euclidean division

n = 32 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 47 (6*8=48) 7.14ns
d = 5 (α = 3) 60 (6*11=66) 6.79ns
d = 7 (α = 3) 60 (6*11=66) 7.30ns

n = 64 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 95 (6*16=96) 14.8ns
d = 5 (α = 3) 125 (6*22=132) 13.8ns
d = 7 (α = 3) 125 (6*22=132) 15.0ns

Logic optimizer even finds something to chew: don’t care lines in the tables.
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Synthesis results on Virtex-5
for pipelined Euclidean division by 3

n = 32 bits
FF + LUT6 performance

33 Reg + 47 LUT 1 cycle @ 230 MHz
58 Reg + 62 LUT 2 cycles @ 410 MHz
68 Reg + 72 LUT 3 cycles @ 527 MHz

n = 64 bits
FF + LUT6 performance

122 Reg + 112 LUT 2 cycles @217 MHz
168 Reg + 198 LUT 5 cycles @ 410 MHz
172 Reg + 188 LUT 7 cycles @ 527 MHz
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Floating-point version is cheap, too

01

m < d ′?

+1 h

div by d

1

me

−s − 1
ovftz

Exn

e m

≪ s ≪ s + 1

ξ

ξ

pre-normalisation and pre-rounding:⌊
2s+ϵm

d

⌉
=

⌊
2s+ϵm

d
+

1

2

⌋
=

⌊
2s+ϵm + d/2

d

⌋
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Synthesis results on Virtex-5
for pipelined floating-point division by 3

single precision

FF + LUT6 performance

35 Reg + 69 LUT 1 cycle @ 217 MHz
105 Reg + 83 LUT 3 cycles @ 411 MHz

standard correctly rounded divider
1122 Reg + 945 LUT 17 cycles @ 290 MHz

double precision

FF + LUT6 performance

122 Reg + 166 LUT 2 cycles @ 217 MHz
245 Reg + 250 LUT 6 cycles @ 410 MHz

using shift-and-add
282 Reg + 470 LUT 5 cycles @ 307 MHz

F. de Dinechin Computing Just Right: Application-specific arithmetic 58



Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

(three years later, Ugurdag et al spent more time on a parallel version)
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My personal record

Two weeks from the first intuition of the algorithm
to complete pipelined FloPoCo implementation + paper submission.

Implementation time

10 minutes to obtain a testbench generator

1/2 day for the integer Euclidean division

20 mn for its flexible pipeline

1/2 day for the FP divider by 3

and again 20 mn

This was advertising for the FloPoCo framework.
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Example: FIR filters
Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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Finite Impulse Response filters

y(t) =
N−1∑
i=0

bix(t − i)

the bi are potentially real numbers (or almost: Matlab numbers)

the x(t) and y(t) are discrete, fixed-point, low-precision signals
(the lower, the cheaper)
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FIR filters, architectural view (abstract)

y(t) =
N−1∑
i=0

bix(t − i)

Abtract architecture

x(t)

b0 b1 b2 b3

x(t − 1)

+

x(t − 2)

+

x(t − 3)

+
y(t)
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FIR filters, arithmetic view

y(t) =
N−1∑
i=0

bix(t − i)

b0 = .00001001111111010001010101101...
b1 = .00101110110001000101001110000...
b2 = .11000001011011010001001100101...
b3 = .00110101000001001110111001111...

b0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+b1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+b2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+b3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

y = yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy...

The bi are reals, therefore the exact result y may be an irrational.
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FIR filters, arithmetic view

y(t) =
N−1∑
i=0

bix(t − i)

b0 = .00001001111111010001010101101...
b1 = .001011101100010001010011
b2 = .110000010110110100010011
b3 = .001101010000010011101110

b0x0 xxxxxxxxxxxxxxxxxxxx
+b1x1 xxxxxxxxxxxxxxxxxxxxxx
+b2x2 xxxxxxxxxxxxxxxxxxxxxxxx
+b3x3 xxxxxxxxxxxxxxxxxxxxxx

y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p

Naive approach: round the bi and the products to the target precision.
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FIR filters, arithmetic view

y(t) =
N−1∑
i=0

bix(t − i)

b0 = .00001001111111010001010101101...
b1 = .001011101100010001010011
b2 = .110000010110110100010011
b3 = .001101010000010011101110

b0x0 xxxxxxxxxxxxxxxxxxxx
+b1x1 xxxxxxxxxxxxxxxxxxxxxx
+b2x2 xxxxxxxxxxxxxxxxxxxxxxxx
+b3x3 xxxxxxxxxxxxxxxxxxxxxx

y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p

... but the accumulation of rounding errors makes the result inaccurate
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FIR filters, arithmetic view

y(t) =
N−1∑
i=0

bix(t − i)

b0 = .00001001111111010001010101101...
b1 = .00101110110001000101001110000...
b2 = .11000001011011010001001100101...
b3 = .00110101000001001110111001111...

b0x0 xxxxxxxxxxxxxxxxxxxxxxx
+b1x1 xxxxxxxxxxxxxxxxxxxxxxxxx
+b2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxx
+b3x3 xxxxxxxxxxxxxxxxxxxxxxxxx

= zzzzzzzzzzzzzzzzzzzzzzzzzzzz
y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p 2−p−g

Proposed approach: last-bit-accurate architecture
with respect to the exact result
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Really a matter of interface

Functional spec. Performance spec.

FIR
architecture
generator

real coeff. (bi )0≤i<N

input fixed-point format

output precision p
FPGA frequency

.vhdl

Output precision defines accuracy of the architecture

Accuracy defines the optimal precisions to be used internally

No point in computing more, no point in computing less
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Example of the accuracy/cost tradeoff

8-tap, 12 bit Root-Raised Cosine FIR filters

Naive, p = 12 5.9 ns, 444 LUT ϵ > 2−9

y−12y−11y−10y−9y−8y−7y−6y−5y−4y−3y−2y−1y0y1

Proposed, p = 12 4.4 ns, 564 LUT ϵ < 2−12

y−12y−11y−10y−9y−8y−7y−6y−5y−4y−3y−2y−1y0y1

Proposed, p = 9 4.12 ns, 380 LUT ϵ < 2−9

y−9y−8y−7y−6y−5y−4y−3y−2y−1y0y1

F. de Dinechin Computing Just Right: Application-specific arithmetic 66



Demo

e

x

√
x2+

y2+
z2

πx

sin
e x+

y

n∑
i=
0

x i
√
x log x

Coefficients entered as math. formulae

FPGA-specific optimizations

Frequency-directed pipeline

Test-driven design

... and all the other operators
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Compute Just Right: Determining msbo
a0 = .00001001111111010001010101101...
a1 = .00101110110001000101001110000...
a2 = .11000001011011010001001100101...
a3 = .00110101000001001110111001111...

a0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+a1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

y = yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy...

The MSB of aixi
xi bounded (fixed-point number)
ai known

msbaixi = ⌈log2(|ai |valmax(xi ))⌉
The MSB of the sum

aixi bounded

msbo = msby = ⌈log2(
N−1∑
i=0

|ai |valmax(xi ))⌉
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Compute Just Right: Determining the LSB
a0 = .00001001111111010001010101101...
a1 = .00101110110001000101001110000...
a2 = .11000001011011010001001100101...
a3 = .00110101000001001110111001111...

a0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+a1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p

Supose we use perfect multipliers: εmult < 2−p−1

sum error:

Need for larger intermediary precision

g guard bits
such that errors accumulate in the guard bits

=⇒ g = ⌈log2(N)⌉
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Compute Just Right: Determining the LSB
a0 = .00001001111111010001010101101...
a1 = .00101110110001000101001110000...
a2 = .11000001011011010001001100101...
a3 = .00110101000001001110111001111...

a0x0 xxxxxxxxxxxxxxxxxxxxxxxxx...
+a1x1 xxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a2x2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
+a3x3 xxxxxxxxxxxxxxxxxxxxxxxxxxx...

= zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...
y = yyyyyyyyyyyyyyyyyyyyyyyyy

2−p 2−p−g

Supose we use perfect multipliers: εmult < 2−p−1

sum error: εytotal =
N∑
i=0

εmult + εfinal rounding < N · 2−p−g−1 + 2−p−1

Need for larger intermediary precision

g guard bits
such that errors accumulate in the guard bits

=⇒ g = ⌈log2(N)⌉
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Perfect constant multipliers in an FPGA

b1 b2 b3 b4 b5 b6

LUT

/
α(= 6)

xi =

aixi

/

basic FPGA computing element: look-up table (LUT)

tabulate all the 2α values of aixi
... correctly rounded to the output precision

perfect fit for small sizes:
α-input LUT + α-bit input =⇒ 1 LUT/output bit

but doesn’t scale:
2 LUT/output bit for (α+ 1)-bit inputs,. . .
2k LUT/output bit for (α+ k)-bit inputs
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KCM multipliers by real constants

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

di1 di2 di3

xi =
n∑

k=1

2−kαdik where dik ∈ {0, ..., 2α − 1}

=⇒ aixi =
n∑

k=1

2−kαaidik

Each aidik tabulated, 1 LUT/output bit
How many output bits?

aixi = aidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

+ 2−αaidi2 xxxxxxxxxxxxxxxxxxxx...

+ 2−2αaidi3 xxxxxxxxxxxxxx...

2−p−gα bitsα bits
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KCM multipliers by real constants

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

Ti1 : ◦p(ai × di1)

di1

Ti2

di2

Ti3

di3

+

/aidi1 /aidi2 /aidi3

/

p̃i ≈ aixi
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Summing it all up

y =
N−1∑
i=0

aixi

=
N−1∑
i=0

n∑
k=1

2−kαaidik

each aidik is a perfect multiplier
therefore g = ⌈log2(N · n)⌉

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/p

y
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Summing it all up

y =
N−1∑
i=0

aixi =
N−1∑
i=0

n∑
k=1

2−kαaidik

each aidik is a perfect multiplier
therefore g = ⌈log2(N · n)⌉

Bit-heap based
pipelined summation architecture

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/p

y
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Summing it all up

Bit-heaps (generalization of bit arrays) in FloPoCo
(see FPL 2013 article)

8-tap, 12-bit FIR filters

Half-Sine Root-Raised Cosine
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Work in progress

Extension to IIRs done last year (with Paris VI and ENS-Lyon)

infinite accumulation of rounding errors: how many guard bits?
link with a trusted library computing the worst-case peak gain of a filter

Address the combinatorics of filter realizations (with Paris VI)

Filter approximation from frequency response (with ENS-Lyon)

Remez with an arithmetic focus

F. de Dinechin Computing Just Right: Application-specific arithmetic 75



Example: IIR filters
Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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Once upon a time in the green pastures of pure mathematics

... there lived a handsome filter named H
Hu(k) y(k)

H was linear and time-invariant.
He was born in the distant Frequency Domain from a frequency specification, which the
Matlab fairies had transformed into a transfer function:

H(z) =

nb∑
i=0

biz
−i

1 +
na∑
i=1

aiz
−i

, ∀z ∈ C.

whose coefficients (ai ) and (bi ) were real numbers1.

1This is a fairy tale, everybody knows Matlab does not compute with real numbers.
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And so H converged beautifully

using its evaluation formula in the time domain

y(k) =

nb∑
i=0

biu(k − i)−
na∑
i=1

aiy(k − i)

as long as H remained safely linear and its poles safely within the unit circle.

u(k)

b0 b1 b2 b3

u(k − 1)

+

u(k − 2)

+

u(k − 3)

+ y(k)

a1

+
-

y(k − 1)

a2

+
-

y(k − 2)

a3

+
-

y(k − 3)

But the fairies had warned H:

Don’t let your poles come close to the unit circle! And above all, remain linear!
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But one day, H decided to travel far from home

Our hero decided to visit the land of Digital Circuits, a rough and arid country where ony
binary fixed-point numbers could live.

−27 2−8bit weights

H thought he could feed on them, for a fixed-point number is also a real number.

But H also had to round his outputs, and this transformed him into a vile monster with a
tilde.

Hu(k) y(k) H̃u(k) /
(0, ℓX )

ỹout(k)/
(mR , ℓout)
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Why fixed-point numbers are toxic for LTI filters

To become a Digital Circuit, an LTI filter had to be cursed with time-domain rounding

u(k)
(m, ℓ)

b0

u(k − 1)

b1

+

u(k − 2)

b2

+

a2

+

ỹ(k − 2)

−

a1

+

ỹ(k − 1)

−

.

y(k)

y(k)

on its output

and on its feedback loops if it was recursive
for without rounding, a product has more bits than each of its arguments.

For performance, it was not uncommon to see time-domain rouding warts
all over the innards of a circuit...
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In the land of Digital Circuits, H forgot the fairies’ advice!

u(k)

(m, ℓ)

×b0
round

u(k − 1)

×b1
round

+

u(k − 2)

×b2
round

+

×a2
round

+

ỹ(k − 2)

−

×a1
round

+

ỹ(k − 1)

−

(m′, ℓext)

ỹ(k)

ro
u
n
d ỹout(k)

(m′, ℓ′)

H

u(k)
(m, ℓ)

y(k)
(m′, ℓ′)

Time-domain rounding is not linear, and for this reason
H was cut from his transfer function heritage!

Sometimes he would become an unstable digital circuit, in a way difficult to predict.
Sometimes he would even become a zombie with limit cycle oscillations,

howling in the night even when fed with a null signal.
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So H was crying, alone and forgotten

... when the good old witch FloPoCo heard his complaint.
Looking at him, she said:
you’re not that evil, you are just poorly specified.
And in a whip of her magical TikZ cursor, she designed him a new interface:

LTI Filter
architecture
generator

(ai )1≤i<na , (bi )0≤i<nb

input format (1, ℓX )

output accuracy ℓout
FPGA frequency

.vhdl

Functional spec. Performance spec.

These ai and bi were reals! The very real coefficients!
H suddenly felt much lighter.

But... but...

F. de Dinechin Computing Just Right: Application-specific arithmetic 82



So H was crying, alone and forgotten

... when the good old witch FloPoCo heard his complaint.
Looking at him, she said:
you’re not that evil, you are just poorly specified.

And in a whip of her magical TikZ cursor, she designed him a new interface:

LTI Filter
architecture
generator

(ai )1≤i<na , (bi )0≤i<nb

input format (1, ℓX )

output accuracy ℓout
FPGA frequency

.vhdl

Functional spec. Performance spec.

These ai and bi were reals! The very real coefficients!
H suddenly felt much lighter.

But... but...

F. de Dinechin Computing Just Right: Application-specific arithmetic 82



So H was crying, alone and forgotten

... when the good old witch FloPoCo heard his complaint.
Looking at him, she said:
you’re not that evil, you are just poorly specified.
And in a whip of her magical TikZ cursor, she designed him a new interface:

LTI Filter
architecture
generator

(ai )1≤i<na , (bi )0≤i<nb

input format (1, ℓX )

output accuracy ℓout
FPGA frequency

.vhdl

Functional spec. Performance spec.

These ai and bi were reals! The very real coefficients!
H suddenly felt much lighter.

But... but...

F. de Dinechin Computing Just Right: Application-specific arithmetic 82



So H was crying, alone and forgotten

... when the good old witch FloPoCo heard his complaint.
Looking at him, she said:
you’re not that evil, you are just poorly specified.
And in a whip of her magical TikZ cursor, she designed him a new interface:

LTI Filter
architecture
generator

(ai )1≤i<na , (bi )0≤i<nb

input format (1, ℓX )

output accuracy ℓout
FPGA frequency

.vhdl

Functional spec. Performance spec.

These ai and bi were reals! The very real coefficients!
H suddenly felt much lighter.

But... but...

F. de Dinechin Computing Just Right: Application-specific arithmetic 82



So H was crying, alone and forgotten

... when the good old witch FloPoCo heard his complaint.
Looking at him, she said:
you’re not that evil, you are just poorly specified.
And in a whip of her magical TikZ cursor, she designed him a new interface:

LTI Filter
architecture
generator

(ai )1≤i<na , (bi )0≤i<nb

input format (1, ℓX )

output accuracy ℓout
FPGA frequency

.vhdl

Functional spec. Performance spec.

These ai and bi were reals! The very real coefficients!
H suddenly felt much lighter.

But... but...
F. de Dinechin Computing Just Right: Application-specific arithmetic 82



But you forgot to provide me a mR , cried H

No, said FloPoCo, for I have, somewhere in my library, a spell that can compute it out of
your coefficients.

(wait a moment, where is it? It was written by poor princess Anastasia
Volkova during her captivity in the caves of the mighty sorcerers Lauter and Hilaire...)
(I hope it still compiles...) Ha, here you go:

Definition: Worst-Case Peak Gain ⟨⟨H⟩⟩ of a filter H

⟨⟨H⟩⟩ = max
||u||∞=1

||y ||∞

where ||u||∞ is defined as ||u||∞ = max
k
|u(k)|.

Then of course,

mR = ⌈log2 ⟨⟨H⟩⟩⌉ .
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But how will this save me from diverging? cried H

Remember: you are H, answered the good witch
and H doesn’t diverge in the pure mathematical world

Let me cast this spell on your architecture:

H̃ shall return a result that is that of H, rounded only once.

Then, your alter ego H̃ won’t diverge.

H round/
(0, ℓX )

u(k)
y(k)

/
(mR , ℓout)

ỹ(k)

And FloPoCo invoked his two most crafted gremlins, Istoan and de Dinechin, to code this
spell, with the help of Princess Anastasia who had managed to escape her tormentors.
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Actual architecture

SOPC

u(k)
(0, ℓX )

b0 b1 b2 b3

u(k − 1)

+

u(k − 2)

+

u(k − 3)

+
final
round(mR , ℓext)

ỹout(k)

(mR , ℓout)

a1

+
-

ỹ(k − 1)

a2

+
-

ỹ(k − 2)

a3

+
-

ỹ(k − 3)

Another point of view:
When ℓext → −∞ (which means: as the internal accuracy increase),
at some point the computation shall become accurate enough for H̃ to converge.
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Amplification of errors on the feedback loop

Here should come 3 pages of runes which end in the following figure:

H
u(k)

y(k)

Hδ

δr(k)

δt(k)

+
ỹ(k)

+
ỹout(k)

δf(k)H̃
δr is the sum of all rounding errors

δr(k) = ỹ(k)−

(
nb∑
i=0

biu(k − i)−
na∑
i=1

ai ỹ(k − i)

)
Hδ is the virtual filter that captures the error amplification on the feedback loop:

δt = ⟨⟨Hδ⟩⟩ δr .
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Errors are captured, let us chain them in the basement

H
u(k) y(k)

Hδ

δr(k) δt(k)
+

ỹ(k)
+

ỹout(k)

δf(k)
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Rounding errors depend on the architecture

Example: An architecture optimized for LUT-based FPGAs:

Split an input x into D chunks of α bits (e.g. α = 4: hexadecimal).

x =
D∑

k=1

2−kαdk where dk ∈ {0, ..., 2α − 1}

Then cx becomes

cx =
D∑

k=1

2−kαcdk

Tabulate each cdk sub-product in an α-input table indexed by dk

t̃1 ≈ cd1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

t̃2 ≈ cd2 xxxxxxxxxxxxxxxxxxxx...

t̃3 ≈ cd3 xxxxxxxxxxxxxx...

2ℓr−gα bits α bits

Remark: c is a real number here, no need to quantize it!
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A LUT-based architecture

x = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

T1 : ◦ℓr (c × d1)

d1

T2

d2

T3

d3

+
/qi + g

t̃i1
/q − α+ g

t̃2
/q − 2α+ g

t̃3

/qi + g

p̃i ≈ cixi

The error is proportional to 2−g , so can made as small as needed by increasing g .
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Overall architecture

Bit-heap based
summation architecture

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/
(mR , ℓext)

y

SOPC

u(k) /
(0, ℓX )

b0 b1 b2 b3

u(k − 1)

+

u(k − 2)

+

u(k − 3)

+
final
round

/
(mR , ℓext)̃

y(k)
/

(mR , ℓout)
ỹout(k)

a1

+
-

ỹ(k − 1)

a2

+
-

ỹ(k − 2)

a3

+
-

ỹ(k − 3)
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You’re not evil, you’re just poorly specified

LTI Filter
architecture
generator

(ai )1≤i<na , (bi )0≤i<nb

input format (1, ℓX )

output accuracy ℓout
FPGA frequency

.vhdl

Functional spec. Performance spec.

ai and bi : real numbers
high-precision numbers from Matlab
mathematical formulae such as sin(3*pi/8)

ℓX and ℓout: integers denoting the weight of the least significant bits of the input and
of the result.

Computing just right (TM)

ℓout specifies output precision, but also output accuracy.
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A demo?

A small Butterworth filter
./flopoco generateFigures=1 FixIIR

coeffb="0x1.7bdf4656ab602p-9:0x1.1ce774c100882p-7:0x1.1ce774c100882p-7:0x1.7bdf4656ab602p-9"

coeffa="-0x1.2fe25628eb285p+1:0x1.edea40cd1955ep+0:-0x1.106c2ec3d0af8p-1"

lsbIn=-12 lsbOut=-12

TestBench n=10000

a radar filter submitted to Thibault a few years ago, with poles really close to 1
./flopoco generateFigures=1 FixIIR

coeffb="0x1.89ff611d6f472p-13:-0x1.2778afe6e1ac0p-11:0x1.89f1af73859fap-12:

0x1.89f1af73859fap-12:-0x1.2778afe6e1ac0p-11:0x1.89ff611d6f472p-13"

coeffa="-0x1.3f4f52485fe49p+2:0x1.3e9f8e35c8ca8p+3:-0x1.3df0b27610157p+3:

0x1.3d42bdb9d2329p+2:-0x1.fa89178710a2bp-1"

lsbIn=-12 lsbOut=-12

TestBench n=10000
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Bit heaps for some 12-bit Butterworth filters

Order 4, g = 4 Order 20, g = 7
because − log2 ⟨⟨Hδ⟩⟩ = 3 because − log2 ⟨⟨Hδ⟩⟩ = 19

Sometimes I wonder if this is the right arithmetic for this problem.
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Everybody lived happily ever after...

A point of view on filter design that is universal

don’t compute useless bits: output format specifies output accuracy
complete error analysis (coefficient quantization + architectural rounding errors)
error amplification captured by a safe implementation of the WCPG

Also a magical cure for a few other filter diseases

If you input a 0 signal, the output converges to 0 (± 1 unit in the last place)

A finely tuned implementation that uses FPGA-specific arithmetic
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... And they had a lot of children

This is just a basic block on the way to more interesting filter structures.

implementation space: state space, SIF

clean rule of the game: enables comparison of functionally equivalent architectures

(to be continued)

Try me in FloPoCo v. 4.1.3 or later

Read more on HAL or in IEEETC
Towards Hardware IIR Filters Computing Just Right: Direct Form I Case Study
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Later, they visited the Frequency Domain Fairies

... with two presents to help them design circuits that obey a frequency specification:

Definitive Curse 1

A digital circuit C is said to be faithful to a stable LTI filter H
iff the numerical difference between the fixed-point output ỹout(k) of C

and the exact result y(k) of H
does not exceed one unit in the last place of ỹout(k).

Definitive Curse 2

A Digital Circuit C is said to be faithful to a frequency specification
iff there exists a stable LTI filter H such that

1/ H respects the frequency specification, and
2/ C is faithful to H.
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Example: Multimodal sound synthesis
(WIP)

Intro: arithmetic operators
FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters
Example: IIR filters
Example: Multimodal sound synthesis (WIP)
Example: Low-precision logarithmic neuron
Example: floating-point exponential
Error analysis for dummies (and other proof assistants)
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap
Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 97



Big picture

The part that I don’t understand:

finite element decomposition of a noisy object (e.g. a bell)

physics simulation to get its resonnant frequencies with their attenuations

The part that I more or less understand:

build a biquad filter for each frequency

sum them all together to simulate the sound of the noisy object
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The big picture in picture

x(k)

a11a12

Σ⊕ ⊖ ⊖⊖

yi (k)

x(k) o(k)Σ

g1biquad1
y1(k) z1(k)

g2biquad2
y2(k) z2(k)

biquadn gn
yn(k) zn(k)

. .

. .

. .

. .

. .
b0 = 1
b1 = 0
b2 = −1
ω = 2πf /s
r = 0.0011/(s×t60)

a1 = −2r cos(ω)
a2 = r 2

https://ccrma.stanford.edu/~jos/filters/Decay_Time_Q_Periods.html
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Resonating filters with slow decay time have high WCPGs

From the bell model in the FAUST distribution:

i a1 a2 ⟨⟨H⟩⟩i ⟨⟨Hδ⟩⟩i
0 -1.99510896 0.999985754 1.79e5 1.29e6
1 -1.99504113 0.999985695 1.79e5 1.27e6
2 -1.98264325 0.999980509 1.31e5 4.98e5
... ... ... ... ...
25 -1.85236752 0.999858916 1.81e4 2.40e4
... ... ... ... ...
47 -1.42887342 0.7367661 9.78 8.59
48 -0.351596594 0.0449641831 2.71 1.45

For a bell actioned with a hammer, do we need to consider WCPG?

... and for a violin string?

Audible zombies when using low precisions.
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And the work in progress is

To build a FloPoCo operator that builds the hardware for all this.
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Example: Low-precision logarithmic neuron
Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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Perceptron artificial neuron model

∑
B×W1X1

×W2X2

...

×WnXn

σ
A

X: input vector, W: weight vector, B: bias, σ: activation function
Output A of the neuron defined by:

A = σ(W · X+ B)
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What precision should a neuron use?

Current consensus

8-bit integers are good enough for weights and activations

(if higher precision is used for internal computations)

1-bit representations (binary and ternary networks)

require more layer and specific training
entail loss of application-level accuracy

Is there some space in between?

data on 3 to 6 bits ?

(incidentally, this would be a very good match to
LUT-based FPGAs)

K. Usher, ”The Dwarf in the Dirt”,

Bones, 2009

Proposed approach: use ad-hoc logarithmic formats
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Logarithmic Number System

Instead of encoding a real value X , encode its logarithm.
Unfortunately log(X ) is only defined for X > 0. To represent X ∈ R, we will need

a sign bit sx for the sign of X ,

LX ≈ log(|X |) encoded in some signed fixed point format

itself signed: LX ≥ 0⇐⇒ X ≥ 1

a ”is-zero” bit zx (or a special encoding of X = 0 in one of the values of LX )

lgX = (sX , zX , LX ) = x−2x−1x0x1x2sX zX

binary weight2−22−1202122

“A kind of floating-point where you only have the exponent, and it is fractional”
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The MSB and LSB of a LNS representation

(m, ℓ) = (2,−2) LX = x−2x−1x0x1x2

0 1

Adding one bit to the LSB doubles the number of representable values, with the same range.

(m, ℓ) = (2,−3) LX = x−3x−2x−1x0x1x2

0 1

Adding one bit to the MSB increases the range, and also reduces the gap around zero.

(m, ℓ) = (3,−2) LX = x−2x−1x0x1x2x3

0 1
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LNS arithmetic

Multiplication turns into addition

log(X ×W ) = log(X ) + log(W )

And it is exact! (fixed-point addition may overflow, but no rounding)

Division and square root similarly cheap (no use here)

Addition turns into a nightmare

log(X + Y ) = log

(
X ×

(
1 +

Y

X

))
= log(X ) + log

(
1 + blog(Y )−log(X )

)
one subtraction to compute Z = log(Y )− log(X )
evaluation of the ugly function log

(
1 + bZ

)
another addition
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Reference ad-hoc linear domain implementation

We unroll a neuron:

B +
∑
i

(Wi × Xi )

(it unlocks some
optimizations in the

∑
box)

∑B

Sin

bias

activation

Sout

X ′
j

×

XN WN

×

X1 W1

• • • • •
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Proposed design

logarithmic data
linear data

∑B

Sin

bias

activation + log

Sout
sfix(2, ℓ′)

LX
′
j

ufix(m, ℓ)

b−x

+

LXN LWN

sWN

b−x

+

LX 1 LW 1

sW 1

ufix(m, ℓ) ufix(m, ℓ)

ufix(m + 1, ℓ)

sfix(1, ℓ′)

• • • • •
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Key ideas

Leverage LNS to replace × by +

Dodge the complexity of accumulating in LNS

Parametric design to experiment with application-level accuracy

Merge linear to log conversion with activation function table

Leverage FPGA LUT architecture to tabulate ugly functions
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Cost of tabulating b−x (or any function) in an FPGA

The FPGA basic logic element:
an α-input Look-Up Table

LUT
α 1

universal logic gate
(any truth table of α bits)

α ∈ {4, 5, 6} these days,
depending on vendor and generation

Therefore, a table
of α in bits and w out bits
costs w FPGA LUTs:

α bits

x0x1x2x3x4x5X =

α

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

b−X ≈
w bits

Input size α is FPGA soft spot! For input sizes larger than α, cost grows exponentially.
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universal logic gate
(any truth table of α bits)

α ∈ {4, 5, 6} these days,
depending on vendor and generation

Therefore, a table
of α in bits and w out bits
costs w FPGA LUTs:

α bits

x0x1x2x3x4x5X =

α

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

b−X ≈
w bits

Input size α is FPGA soft spot! For input sizes larger than α, cost grows exponentially.
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Other advantages of plain tabulation

As accurate as your output format allows

no approximation error
one single rounding error

Output size can be larger than input size

cost grows only linearly with output size
this is what enables accurate summation

It works for any function

2−X b−X activation + log

No reason why 2 should be the best b
Activation: Gaussian ReLU or sigmoid for the same cost

Oh, and it is simple to program and use.

Only condition: keep our data format really, really small!
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Weight distribution observations

Looks like a normal distribution

|W | ≤ 1

|X | ≤ 1 ?
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Every bit matters, in particular sign bits

If |X | ≤ 1 =⇒ log(|X |) ≤ 0

We can decide that LX = ⌊− log(|X |)⌉ instead of LX = ⌊log(|X |)⌉
encoding LX as an unsigned fixed-point number effectively saves 1 bit !

How to ensure X ≤ 1 and W ≤ 1 ?

For the weights: it is OK without retraining (saturate the few large values to 1)
For the activations: just use ReLU1 (or any function that maxes at 1)
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Every bit matters, and activation functions may help

ReLU

−4 −2 0 2 4

0

2

4

ReLU1

−4 −2 0 2 4

0

2

4

Now X ≤ 1!
Also X ≥ 0, we can drop sX as well
Now lgX = (zX , LX ) and

lgW = (sW , zW , LW )
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Every bit matters, in particular zero bits

Now lgX = (zX , LX ) and
lgW = (sW , zW , LW )

What happens if we drop those bits zX and zW ?

0 is no longer representable

It should be very very bad, as zero is the most common value
both for weights and activations.

Yet another trick

Let us call Z the largest possible value of LX
(which corresponds to the smallest representable value of X = 2−LX ).

If Z is rounded to 0 by the b−X block, then the same holds for Z + LW , ∀LW
Then Z effectively represents a zero activation.
(the same holds for weights)

So we do not care that we cannot represent zero, and we can drop both zero bits.
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Summary of “every bit matters”: lgX and lgW

Logarithmic representation for inputs and product (here for MSB m = 2 and LSB ℓ = −1)

lgW = −⌊logb |W |⌉ = w−1w0w1w2 sW

lgX = −⌊logb X ⌉ = x−1x0x1x2

lgP = −⌊logb |P|⌉ = p−1p0p1p2p3 sW

binary weight 2−120212223
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Back to the design

∑B

Sin

bias

activation + log

Sout
sfix(2, ℓ′)

LX
′
j

ufix(m, ℓ)

b−x

+

LXN LWN

sWN

b−x

+

LX 1 LW 1

sW 1

ufix(m, ℓ) ufix(m, ℓ)

ufix(m + 1, ℓ)

sfix(1, ℓ′)

• • • • •
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Simulation setup

pytorch to evaluate the classification accuracy

FloPoCo to describe the architecture

Vivado to synthesize our design and evaluate the area

Exhaustive exploration of the design space for MNIST,
then targetted experiments on a larger CIFAR10.
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Accuracy experiments on MNIST

Training standard (784, 300, 100, 10) MLP in full precision with pytorch:
98.03% accuracy on test set

Conversion to LNS and evaluate accuracy on the test set again
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Accuracy experiments on MNIST
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Accuracy experiments on MNIST

F. de Dinechin Computing Just Right: Application-specific arithmetic 120



Cost of the MNIST architecture

As expected, exponential in ℓ, linear in ℓ′
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CIFAR10

Take a pre-trained network, and convert it to LNS
VGG-like network layer architecture:

layer index layer type

(1) LNSConv(3, 128) + ReLU1()
(2) LNSConv(128, 128) + ReLU1()
(3) MaxPool2d(2, 2)
(4) LNSConv(128, 256) + ReLU1()
(5) LNSConv(256, 256) + ReLU1()
(6) MaxPool2d(2, 2)
(7) LNSConv(256, 512) + ReLU1()
(8) LNSConv(512, 512) + ReLU1()
(9) MaxPool2d(2, 2)

(10) LNSConv(512, 1024) + ReLU1()
(11) MaxPool2d(2, 2)
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Results are similar for CIFAR 10

Accuracy and synthesis results for parallel neurons

benchmark parameters accuracy ratio LUT cost latency
(m, ℓ), (1, ℓ′)

MNIST (2, -1), (1, -6) 99.6 12491 10.3ns
MNIST (2, -1), (1, -7) 99.8 13790 10.9ns
MNIST 6-bit linear 99.9 36658 10.2ns

CIFAR10 6-bit linear 96.9 51910 13.0ns
CIFAR10 (3, -1), (1, -10) 97.5 30632 12.8ns
CIFAR10 (2, -2), (1, -10)∗ 98.5 28652 12.4ns
CIFAR10 8-bit linear 99.8 83522 13.4ns

∗ LX on 5 bits, LW on 6 bits, LP on 7 bits, summation of 12-bit terms.
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Conclusion

Very small logarithmic encoding works for the weights and activations :

more accurate than standard linear quantization with identical bit-width

smaller on FPGA than standard linear implementation of similar accuracy

All this was without any form of retraining.

Retraining can only improve accuracy and/or save a few more bits.

All this was in base 2

There is absolutely no reason to think that it is the best base.
Another base, another range/accuracy trade-off for the same format.

b = 2

0 1

b = 3

0 1
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Example: floating-point exponential
Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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First, a math proficiency test

Three identities to remember from our happy school days

2X = eX log(2) (1)

eA+B = eA × eB (2)

eZ ≈ 1 + Z +
Z 2

2
if Z is small (3)
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unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

We want to obtain eX as

eX = 2E · 1.F

F. de Dinechin Computing Just Right: Application-specific arithmetic 127



unpack

X
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|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio
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We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉
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unpack

X

shift to fixed point

1.FXEX
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×(− log(2)) negate
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Y

eA eZ − Z − 1

+

×

+

normalize-round-pack
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|Xfix|
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We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉
then

Y ≈ X − E × log 2.
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unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate
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Y
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normalize-round-pack
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|Xfix|
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Ztrunc
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We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉
then

Y ≈ X − E × log 2.

Now

eX = eE log 2+Y

= eE log 2 · eY

= 2E · eY
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unpack

X

shift to fixed point

1.FXEX
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×(− log(2)) negate
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+
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We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).
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unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate
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normalize-round-pack
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We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).
Split Y :

Y = A Z
−1 −k −wF − g

i.e. write

Y = A+ Z with Z < 2−k
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unpack

X

shift to fixed point
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We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).
Split Y :

Y = A Z
−1 −k −wF − g

i.e. write

Y = A+ Z with Z < 2−k

so
eY = eA × eZ
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unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Tabulate eA in a ROM
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unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ : Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2
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X

shift to fixed point

1.FXEX
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ : Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Notice that eZ − 1− Z ≈ Z 2/2 < 2−2k
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ : Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Notice that eZ − 1− Z ≈ Z 2/2 < 2−2k

Evaluate eZ − Z − 1 somewhow
(out of Z truncated to its higher bits only)
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ : Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Notice that eZ − 1− Z ≈ Z 2/2 < 2−2k

Evaluate eZ − Z − 1 somewhow
(out of Z truncated to its higher bits only)

then add Z to obtain eZ − 1
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unpack

X

shift to fixed point

1.FXEX
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Also notice that

eZ = 1.

k−1 zeroes︷ ︸︸ ︷
000...000 zzzz

Evaluate eA × eZ as

eA + eA × (eZ − 1)
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Also notice that

eZ = 1.

k−1 zeroes︷ ︸︸ ︷
000...000 zzzz

Evaluate eA × eZ as

eA + eA × (eZ − 1)

(before the product, truncate eA to precision
of eZ − 1)
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

And that’s it, we have E and eY
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

And that’s it, we have E and eY

(using only fixed-point computations)
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unpack

X
flp(wE ,wF )

shift to fixed point
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flp(wE ,wF )

We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

And that’s it, we have E and eY

(using only fixed-point computations)
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Single-precision magic
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Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)
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Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin Computing Just Right: Application-specific arithmetic 128



Single-precision magic

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)
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Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)
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Single-precision magic

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)
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Error analysis for dummies
(and other proof assistants)

Intro: arithmetic operators
FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters
Example: IIR filters
Example: Multimodal sound synthesis (WIP)
Example: Low-precision logarithmic neuron
Example: floating-point exponential
Error analysis for dummies (and other proof assistants)
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap
Conclusion
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Computing just right

“Error analysis” used to be the kind of things you do to ensure the operator works.

This is sooooo nineties.
Here, error analysis is for optimization.
(the fact that the operators work is an appreciable bonus)

F. de Dinechin Computing Just Right: Application-specific arithmetic 130



Computing just right

“Error analysis” used to be the kind of things you do to ensure the operator works.
This is sooooo nineties.
Here, error analysis is for optimization.
(the fact that the operators work is an appreciable bonus)

F. de Dinechin Computing Just Right: Application-specific arithmetic 130



Error analysis method in my early papers: handwaving

The typical error analysis used to look like this:

“This term contributes at most 1 ulp (unit in the last place) to the overall error”

“This operation contributes at most one half-ulp to the error”

...

“Altogether we have 6 ulps of error”

“so if we add ⌈log2(6)⌉ bits to all the datapath, it should be accurate enough.
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And then I saw the light

G. Melquiond, the creator of Gappa (the proof assistant for the rest of us)

An error is a difference between a less accurate value and a more accurate value.

For instance, to bound some error, first write it δAC = A− C , then

look for some intermediate value B (more accurate than A but less accurate than C )

write A− C = A− B + B − C (4)

or δAC = δAB + δBC

By triangular inequality,
|δAC | ≤ |δAB |+ |δBC |

Therefore, the error bounds (noted δ = max |δ| ) verify

δAC = δAB + δBC (5)

A divide-and-conquer method, to use when approximations and rounding errors pile up...
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A big mess of rounding errors piled over approximation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

δtotal = M − eY

= M − eAeZ since Y = A+ Z exactly

= M−TeZ +

||
(T − eA)eZ

||
δT

Now we can bound this first source of error:

|δT | = |T − eA| · |eZ |
< 2−wF−g · (1 + 2−k+1) (6)

Keep it parametric!
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A big mess of rounding errors piled over approximation
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That was the first step

P

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate
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eA eZ − Z − 1
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|Xfix|

|E |
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Ztrunc

CTtrunc
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M ≈ eY

excep
tio

n
b
its uo
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δtotal = M − TeZ + δT

Where can we go from here?

Last addition is exact (that’s fixed-point for you) so
M = T + P, hence :

M − TeZ = T + P − TeZ

= T + + TtruncC − TeZ

||
δP

The bound on δP depends on the technology used for
the multiplier (at most δP = 2−wF−g )
anyway it is under control
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More of the same

unpack
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shift to fixed point
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tio
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its uo

R

δtotal = T + TtruncC − TeZ + δT + δP

Where can we go from here?

This Ttrunc is annoying, so let’s get it out of the way

T + TtruncC − TeZ = T + TtruncC − TC︸ ︷︷ ︸+TC − TeZ

||
(Ttrunc − T )C

||
δTtrunc

Ttrunc − T < 2−wF−g+k , then we need a bound on C ;
C ≈ eZ − 1 so Taylor is our friend again
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You’ll get your lunch only after I get to an approximation error
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δtotal = T + TC − TeZ + δT + δP + δTtrunc

Where can we go from here?

C = H + Z exactly (fixed-point additions are exact)

T + TC − TeZ = T · (1 + H + Z − eZ )

= T · (H − h(Z )) with h(Z ) = eZ − Z − 1

= T · (H−h(Ztrunc) + h(Ztrunc)− h(Z ))

= T · (H − h(Ztrunc))︸ ︷︷ ︸+T · (h(Ztrunc)− h(Z ))︸ ︷︷ ︸
||
δH

||
δZtrunc

δH includes the approximation error H − h(Ztrunc)
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Finally, scientific precision sabotaging

δtotal = δT + δP + δTtrunc + δH + δZtrunc

hence

δtotal = δT + δP + δTtrunc + δH + δZtrunc

If any of these terms is much smaller than the others, useless bits are being computed

I’ll hack at the hardware to make this error worse!

by moving a parameter up or down,
maybe adding a truncation somewhere...

Oh, yes, I will also make sure that δtotal is small enough to guarantee last-bit accuracy.
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Take away messages

Error analysis for performance, not only for accuracy

Straightforward engineering based on additions and multiplications

Strict and accurate worst-case analysis (amenable to formal proof)

Perfectly captures how an early rounding error is amplified in the algorithm

And for you floating-point people, there exists a relative-error version

If A approximates B and B approximates C, then

A− C

C
=

A− B

B
+

B − C

C
+

A− B

B
× B − C

C
(7)

or

εAC = εAB + εBC + εAB · εBC
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Example: fixed-point sine/cosine
Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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Introduction

Sine and cosine functions
fundamental in signal processing and signal processing applications like FFT,
modulation/demodulation, frequency synthesizers, ...

How to compute them ? In this work:
1. the classical CORDIC algorithm, based on additions and shifts
2. a method based on tables and multipliers, suited for modern FPGAs
3. a generic polynomial approximation

Which is best on FPGAs?

What is the cost of w bits of sine and cosine?
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Which method is best on FPGAs?

A fair comparison of methods computing sine and cosine:

same specification (the best possible one)

Fixed-point inputs and outputs
compute sin(πx) and cos(πx) for x ∈ [−1, 1)
Faithful rounding:
all the produced bits are useful, no wasted
resources

same effort (the best possible one)

open-source implementations in FloPoCo
state-of-the-art?

Computing just one, or both?

some applications need both sine and cosine (e.g. rotation)

some methods compute both
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Textbook Stuff

Decomposition of the exponential in two
exponentials

e i(a+b) = e ia × e ib

From complex to real

e iφ = cos(φ) + i sin(φ)

Decompose a rotation in smaller sub-rotations{
sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
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Argument Reduction

based on the 3 MSBs of the input angle
x

s - sign
q - quadrant
o - octant

remaining argument y ∈ [0, 1/4)

y ′ =

{
1
4 − y if o = 1
y otherwise.

compute cos(πy ′) and sin(πy ′)

reconstruction:

000

001010

011

100

101 110

111

sqo Reconstruction

000

{
sin(πx) = sin(πy ′)
cos(πx) = cos(πy ′)

001

{
sin(πx) = cos(πy ′)
cos(πx) = sin(πy ′)

010

{
sin(πx) = cos(πy ′)
cos(πx) = − sin(πy ′)

011

{
sin(πx) = sin(πy ′)
cos(πx) = − cos(πy ′)
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CORDIC Architecture


c0 = 1

Πn
i=1

√
1+2−i

s0 = 0
α0 = y (the reduced argument)


di = +1 if αi > 0, otherwise − 1

ci+1 = ci − 2−idi si
si+1 = si + 2−idici
αi+1 = αi − di arctan(2

−i )
cn→inf = cos(y)
sn→inf = sin(y)
αn→inf = 0

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1
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CORDIC Improvements

Reduced α-Datapath

αi < 2−i

decrement the α-datapath
by 1 bit per iteration

benefits

saves space
saves latency

α2

c0 s0 z0

>>0 >>0 α0

c1 s1 z1

>>1 >>1 α1

c2 s2 z2

>>2 >>2

cn−1 sn−1 zn−1

xn yn zn

>>n−1 αn−1>>n−1

d0

d1

d2

dn−1
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CORDIC Improvements

Reduced Iterations

stop iterations when they can be
replaced by a single rotation, with
enough accuracy{

sin(α) ≃ α
cos(α) ≃ 1

half the iterations replaced by{
xi+1 = xi + α · yi
yi+1 = yi − α · xi

only 2 multiplications

2 DSPs for up to 32 bits
truncated multiplications for larger sizes

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1
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CORDIC Improvements

Reduced Iterations

stop iterations when they can be
replaced by a single rotation, with
enough accuracy{

sin(α) ≃ α
cos(α) ≃ 1

half the iterations replaced by{
xi+1 = xi + α · yi
yi+1 = yi − α · xi

only 2 multiplications

2 DSPs for up to 32 bits
truncated multiplications for larger sizes xn yn zn

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn/2+1 sn/2+1

d0

d1

d2
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CORDIC Error Analysis

Goal: last-bit accuracy of the result

the result is within 1ulp of the mathematical
result

ulp = weight of least significant bit

Intermediate precision

approximations and roundings
→ computations on w+g bits internally

guard bits g

Error budget: total of 1ulp
1
2ulp for the final rounding error

1
4ulp for the method error

1
4ulp for the rounding errors

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1
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CORDIC Error Analysis (1)

Analysis: method error (εmethod)

εmethod of the order of the value of αfinal

αfinal can be bounded numerically

→ number of iterations:
smallest number for which εmethod < 2−w−2

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1
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CORDIC Error Analysis (2)

Analysis: rounding errors (εround)
on the α datapath

correct rounding of arctan(2−i )
error bounded by 2−w−g−1

total error on the α-datapath:
nb iter × 2−w−g−1

on the sin() and cos() datapath

for each shift operation, error bounded by
2−w−g

total error larger than on the α-datapath

must be smaller than 2−w−2:
ε× 2−w−g < 2−w−2

this gives g

εmethod + εround < 2−w−1

Final rounding of sin and cos has error of the
order 2−w−1

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1
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CORDIC Error Analysis (2)
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total error larger than on the α-datapath
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this gives g

εmethod + εround < 2−w−1

Final rounding of sin and cos has error of the
order 2−w−1

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1
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d1

d2
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Table- and DSP-based method

Algorithm

angle split: y (the reduced angle) = t + yred
t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred) using a Taylor
polynomial approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and cos(πy)
using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)
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Table- and DSP-based method: Details

approximating y ′ = 1
4 − yred as ¬yred

choose a such that z4

24 ≤ 2−w−g

so that a degree-3 Taylor polynomial may be used
means that 4(a+ 2)− 2 ≥ w + g

truncated multiplications

constant multiplication by π

z2/2

computed using a squarer

z3/6

read from a table for small precisions
computed with a dedicated architecture for larger
precisions (based on a bit heap and divider by 3,
see paper)

T T

T

T T
T

T
TZ
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Table- and DSP-based method: Error Analysis

Error Analysis
1
2ulp lost per table

1ulp per truncation and truncated
multiplier/squarer

1ulp for computing 1
4 − yred (as ¬yred)

total of 15ulp, independent of the input
width

→ gives g=4

T T

T

T T
T

T
TZ
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Polynomial-based method

using existing software (more details in
the reference)

based on polynomial approximation

computes only one of the functions,
depending on an input

T

T

mult.
trunc.

mult.
trunc.

y

D

ROM
Coef.

A

a0

an−1

an

ỹ2

y

+

i

ỹ1

+

R

round
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Results – 16−bit Precision
Approach latency frequency Reg. + LUTs BRAM DSP

CORDIC 18 478 969 + 1131 0 0
CORDIC 14 277 776 + 1086 0 0
CORDIC 7 194 418 + 1099 0 0
CORDIC 3 97 262 + 1221 0 0

Red. CORDIC 16 273 657 + 761 0 2
Red. CORDIC 13 368 625 + 719 0 2
Red. CORDIC 7 238 327 + 695 0 2
Red. CORDIC 4 238 106 + 713 0 2

SinAndCos 4 298 107 + 297 0 5
SinAndCos 3 114 168 + 650 0 2

SinOrCos (d=2) 9 251 136 + 183 1 2
SinOrCos (d=2) 5 115.3 87 + 164 1 2

Synthesis Results on Virtex5 FPGA, Using ISE 12.1
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Results – Highest Frequency

Approach latency frequency Reg. + LUTs BRAM DSP

precision = 16 bits

CORDIC 18 478 969 + 1131 0 0

Red. CORDIC 13 368 625 + 719 0 2

SinAndCos 4 298 107 + 297 0 5

SinOrCos (d=2) 9 251 136 + 183 1 2

precision = 24 bits

CORDIC 28 439.9 1996 + 2144 0 0

Red. CORDIC 20 273.4 1401 + 1446 0 4

SinAndCos 5 262 197 + 441 3 7

SinOrCos (d=2) 9 251 202 + 279 2 2

precision = 32 bits

CORDIC 37 403.5 3495 + 3591 0 0

Red. CORDIC 24 256.8 2160 + 2234 0 4

SinAndCos 10 253 535 + 789 3 9

SinOrCos (d=3) 14 251 444 + 536 4 5

precision = 40 bits

CORDIC 45 375 5070 + 5289 0 0

Red. CORDIC 37 252 3695 + 3768 0 8

SinAndCos (bit heap) 11 266 895 + 1644 3 12
SinAndCos (table z3/6) 8 232 500 + 949 4 12

SinOrCos (d=3) 15 251 628 +725 4 8

precision = 48 bits

SinAndCos (bit heap) 13 232 1322 + 2369 12 17

SinOrCos 15 250 734 + 879 17 10
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Results – Options for Z 3

6

Approach latency frequency Reg. + LUTs BRAM DSP

precision = 40 bits

CORDIC 45 375 5070 + 5289 0 0
CORDIC 25 149 2948 + 5245 0 0

Red. CORDIC 37 252 3695 + 3768 0 8
Red. CORDIC 9 123 931 + 3339 0 8

SinAndCos (bit heap) 11 266 895 + 1644 3 12
SinAndCos (table z3/6) 8 232 500 + 949 4 12
SinAndCos (bit heap) 4 154 612 + 2826 0 12
SinAndCos (table z3/6) 4 156 395 + 2268 2 12

SinOrCos (d=3) 15 251 628 +725 4 8
SinOrCos (d=3) 9 132 376 +675 4 8

precision = 48 bits

SinAndCos (bit heap) 13 232 1322 + 2369 12 17
SinAndCos (bit heap) 6 132 972 + 2133 12 17

SinOrCos 15 250 734 + 879 17 10
SinOrCos 9 124 431 + 823 17 10
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Conclusions

A wide range of open-source accurate implementations
CORDIC implementation on par with vendor-provided solutions
some tuning still needed on DSP-based methods

SinAndCos method overall best

Little point in using unrolled CORDIC for FPGAs

Approach latency area

CORDIC 16 bits 30.3 ns 1034 LUTs
SinAndCos 16 bits 15.0 ns 1211 LUTs

CORDIC 24 bits 44.6 ns 2079 LUTs
SinAndCos 24 bits 17.0 ns 2183 LUTs

CORDIC 32 bits 62.1 ns 3513 LUTs
SinAndCos 32 bits 19.4 ns 3539 LUTs

Synthesis results for logic-only implementations

What is the cost of computing w bits of sine/cosine?
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Example: floating-point sums and sums of
products

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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Floating-point accumulation

Summing a large number of floating-point terms fast and accurately

Crucial for:

Scientific computations:
dot-product, matrix-vector product, matrix-matrix product
numerical integration

Financial simulations:
Monte-Carlo simulations

...
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Floating-Point(FP) numbers

normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

e gives the dynamic range

IEEE-754 FP double precision, emin=-1022 and emax = 1023

number of bits of f gives the precision p

IEEE-754 FP double precision, p=52
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Floating-Point(FP) numbers

normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

Graphical representation:

1 we wf

es f

asdsad
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Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 0 0 1 1 1 0 1 0 0 0 0 0 01

0 0 0 0 01 1 0 00 x0

0 1001 0 0 0 0 00 1 1 1x1

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625
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0 1001 0 0 0 0 00 1 1 1x1

0 0 0 0 01 1 11+ x1

0010 0 001 0

0 0 0 0 01 1 11x1

acc

00 0 0 01011101 0 00010111001001

Shifted significand

Accuracy:
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Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

100110000 1 0 1 0 0x2

1 0 0 0 1 1 0 0 1+ x2

1 1 1 1 100 000

1111 00000x2

acc

111111 00 0 0 0 000 111110 1 0 0 0 0 01 0

Shifted significand

Accuracy:
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FP Acc = 50.125
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Addend

=

Floating−point accumulator
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0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2
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Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

F. de Dinechin Computing Just Right: Application-specific arithmetic 161



Accumulation
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Addend
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Accuracy:
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Accumulation

Infinitely accurate fixed−point accumulator

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

01 0 1 0 1 1 1 1+ x3
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1 1 0 1 0 0 1 0 0+ x4

1 1 0 1 0 0 1 0 0

110 1110 11

x4

acc

11 1 10110100010011 100010011 1 0000

Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625
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01 0 1 0 1 1 1 1+ x3
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1 1 0 1 0 0 1 0 0

110 1110 11

x4

acc
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Finite accuracy fixed−point accumulator

Shifted significand

Accuracy:
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Accumulation

Addend

=

Floating−point accumulator

0 0 0 0 01 1 0 00 x0

0 0 0 0 01 1 11+ x1

1 0 0 0 1 1 0 0 1+ x2

01 0 1 0 1 1 1 1+ x3

1 1 0 1 0 0 1 0 0+ x4

0 1 0 1 0 10 1 01 0 1 00x5

Finite accuracy fixed−point accumulator

0011101 01+ x5

1 1 0 0 01 0 0 1

1 10 1 1 0 0 1 0x5

acc

010111001100010011 100010010 1 0 1 00

Shifted significand

Accuracy:
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Accumulation

Addend

=
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1 1 0 1 0 0 1 0 0+ x4

0 1 0 1 0 10 1 01 0 1 00x5

Finite accuracy fixed−point accumulator

0011101 01+ x5
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1 10 1 1 0 0 1 0x5

acc
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Shifted significand

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625
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Closer look

Accumulator based on combinatorial floating-point adder

very low frequency

must pipeline for larger frequency
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Closer look

k

number
of loop
pipeline

levels

Accumulator based on pipelined floating-point adder

loop’s critical path contains 2 shifters

shifters are deeply pipelined

produces k accumulation results

these results have to be added somehow

adder tree
multiplexing mechanism on accumulation loop
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Closer look

Accumulator based on proposed long accumulator

no shifts on the loop’s critical path

returns the result of the accumulation in fixed point

the alignment shifter pipeline depth does not concern the result
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Accumulator Architecture

L
o
n
g
A
c
c

wA

shift value

mantissa

carry in

MaxMSBX − LSBA + 1

MaxMSBX

exponent

wE wF

sign

fixed-point sum

registers

Input Shifter

1’s complement

the sum is kept as a large fixed-point number

one alignment shift (size depends on MaxMSBX and LSBA)

the loop’s critical path contains a fixed-point addition

fixed-point addition is fast on current FPGAs
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Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: ⌊widthaccumulator/k⌋ registers

shifters can be arbitrarily pipelined for a given frequency
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We advocate:

An application tailored fixed-point accumulator
for floating-point inputs

Ensuring that:

1. accumulator significand never needs to be shifted

2. it never overflows

3. provides a result as accurate as the application requires
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Accumulator Parameters

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.
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Accumulator Parameters

LSBAMaxMSBXMSBA

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.
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Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n
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Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA
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Post-normalization unit, or not

L
o
n
g
A
c
c
2
F
P

mantissa signexponent

fixed-point sum

w ′F

wA

w ′E

carry propagation

LZC + shifter

2’s complement

converts fixed-point accumulator format to floating-point

pipelined unit may be shared by several accumulators

less useful:

many applications do not need the running sum
better to do conversion in software, use FPGA to accelerate the computation
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Performance results
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Performance results
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Relative error results
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FPAdder LongAcc

Accumulation of FP(wE = 7,wF = 16) in unif. [0,1]

LongAcc (MSBA = 20, LSBA = −11)
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Accurate Sum-of-Products

Ideea

Accumulate exact results of all multiplications

1. Use exact multipliers:

return all the bits of the exact product
contain no rounding logic
are cheaper to build

2. Feed the accumulator with exact multiplication results

Cost: Input shifter of accumulator is twice as large
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Operator Performance
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Operator Performance
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The universal bit heap
Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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Introduction and motivation

So much VHDL to write, so few slaves to write it

FPGA arithmetic the way it should be:

An infinite number of application-specific operators

Each heavily parameterized (bit-size, performance, etc)

Portable to any FPGA, and even ASIC

How to ensure performance across all this range?

object-oriented abstraction of vendor-specific features

... not enough
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Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.
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Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target
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Operations as bit heaps

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV
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Weighted bits

Integers or real numbers represented in binary fixed-point

X =
imax∑

i=imin

2ixi

2i : “weight” =⇒ X “sum of weighted bits”

Representation as a dot diagrams

x0x1x2x3x4x5x6x7

weight 2021222324252627
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Integer or fixed-point

Example: 42 written in binary

01010100

weight 2021222324252627

Example: 17.42 written in binary

111010110001

weight 2−72−62−52−42−32−22−12021222324
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The historical bit heap

XY = (
∑imax

i=imin
2ixi )× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)
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A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)
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Beyond product

A+

XY =
∑
i ,j

2i+jxiyj

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality (inside operators, and between operators)

focus on true timing information (e.g. critical path delay of each weighted bit)

A global optimization instead of several local ones (and solved by ILP)
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Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps
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When you have a good hammer,
you see nails everywhere

A sine/cosine architecture (HEART 2013)

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ
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When you have a good hammer,
you see nails everywhere

A sine/cosine architecture (HEART 2013) with 5 bit heaps

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ
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A bit heap for Z − Z 3/6 in the previous architecture

Full bit heap

w=16 bits

Bit heap truncated just right
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The constant vector

Quite often you need to add a constant to a bit heap:

Rounding bit

Constant coefficient

Sign extension for two’s complement (generalizating a classical multiplier trick)

To replicate bit s from weight p to weight q

add s at weight p.

then add 2q − 2p to the constant bit vector
(a string of 1’s stretching from bit p to bit q)

This performs the sign extension both when s = 0 and s = 1.

All these constants may be pre-added, and only their sum added to the bit heap.
Managing signed number costs at most one line in the bit heap.
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Generating an architecture

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV
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Architecture computing the value of a bit heap

Elementary case 1: the compressor

A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

archetype: the full adder is a 3 to 2 compressor

on a recent FPGA: a 6 to 3 compressor
tabulated in 3 6-input LUTs.

survey and refs in the FPL 2013 paper, see also papers by M. Kumm.

Elementary case 2: the adder

An adder replaces two n-bit lines, and a carry
by a line of n + 1 bits
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Architecture computing the value of a bit heap

1. Compression
Tile the bit heap with compressors

▶ use as many compressors in parallel as possible
▶ this produces a new, smaller bit heap
▶ ... in one LUT delay

Start again on the compressed bit heap

Stop when bit heap height equal to two

2. Final fast addition

add the remaining two lines

Both steps can be done in log n time and n log n area
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Bit heaps and DSP blocks

Elementary case: the DSP block?

Xilinx DSP blocks compute A+ XY (48+18x25)

Altera DSP blocks compute XY (36x36)
or AB± CD (18x18+18x18) or ...

Really different architectures here

Exemple: 53-bit truncated multiplier

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

Virtex-5

D(0)(0)

D(-1)(1)

D(1)(-1)

Stratix IV
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Reconciling bit heaps and DSP blocks

Instanciating DSP blocks is part of the compression

merge operands from various sources in a DSP

unused DSP adders may remove random bits from the heap

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

Virtex-5

D(0)(0)

D(-1)(1)

D(1)(-1)

Stratix IV

Many more details in the paper.
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Current status

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV
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So, does it work?

Benefits in terms of software engineering

Reduction of FloPoCo code size

Fewer obscure bugs hidden in obscure operators

(I didn’t say fewer bugs)

Benefits in terms of performance thanks to operator fusion

Already a few examples

complex product, KCM multipliers, FIR and IIR filters, ...

Still work in progress

M. Kumm replaced initial heuristics with ILP-based optimal algorithms
fuse in all the integer adder variants, rework the polynomial evaluator, ...

Progress in the BitHeap class benefits to many operators
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Generate VHDL, test bench,
and nice clickable SVG graphics

before first compression

0 1.653 ns

0 1.773 ns

1 1.061 ns

1 1.204 ns

before 3-bit height additions

before final addition
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Future work, from short-term to hopeless

Adapt all the remaining operators to take advantage of bit heaps

Improve the compression heuristics
done, thanks to Martin Kumm

Automate some of the algebraic optimisations done by hand so far

Answer open questions like:

How many bits must flip to compute 16 bits of sin(x)?
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Conclusion
Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion
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Computing just right

In a processor

the choice is between

an integer SUV, or

a floating-point SUV.

In an FPGA

If all I need is a bicycle, I have the possibility to build a bicycle

(and I’m usually faster to destination)

Save routing! Save power! Don’t move useless bits around!
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Busy until retirement (1)

An almost virgin land

Most of the arithmetic literature addresses the construction of SUVs.
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Busy until retirement (2)

Designing the flexible parameters was only half of the problem...

(the easy half)

The difficult half is: how to use them?

What precision is required at what point of a computation
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Thanks for your attention

The following people contributed to FloPoCo:

S. Banescu, L. Besème, N. Bonfante, N. Brunie,
M. Christ, S. Collange, O. Desrentes, J. Detrey,
P. Echeverŕıa, F. Ferrandi, L. Forget, M. Grad,
K. Illyes, M. Istoan, M. Joldes, J. Kappauf, C. Klein,
M. Kleinlein, M. Kumm, D. Mastrandrea, K. Moeller,
B. Pasca, B. Popa, X. Pujol, G. Sergent, D. Thomas,
R. Tudoran, A. Vasquez, A. Volkova.
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