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● Introduction.
● Machine Learning (ML).
● Acceleration of machine learning inference.

○ The general workflow.
● High-Level Synthesis for machine learning (hls4ml).
● Acceleration of ML-based applications.

○ Pulse Shape Discrimination for Water Cherenkov Detectors.
○ PYNQ-Z1 implementation.
○ Image classification based on CNN.
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Machine Learning and System On Chip
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Machine Learning

- In a classifier, an input is mapped into a specific class.
- Supervised training step to recognize patterns: the network compares its actual output with the 

desired output. The difference between these two values is adjusted with backpropagation. 
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Machine Learning
Artificial Neural Network

An Artificial Neural Network (ANN) is composed of neuron (or node) interconnections arranged in 
different layers.
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Machine Learning
Multi-Layer Perceptron (MLP) architecture
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Machine Learning
Convolutional Neural Networks (CNN) architecture
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Acceleration of ML Inference
Considerations to map inference into FPGAs
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The general workflow
Deploy ML-based application on embedded systems
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The general workflow
Considerations to map inference into FPGAs

- Low-precision arithmetic to reduce power consumption and increase throughput.

- Reduce memory footprint
-  ML models can be deployed into on-chip memory, avoiding DDR access and bottlenecks.

- Model compression techniques [1]

 



The general workflow
Ensemble of compression techniques.
 
Exploration of the interplay between:

- Pruning [3] aims to reduce the number of operations by removing neurons and 
connections, and quantization [4] reduces the memory and computational complexity by 
selecting the number of bits to represent the weights and bias. 

- Knowledge distillation transfers the knowledge (or "dark knowledge" according to Hinton 
[2]) from a teacher network (a single large model or an ensemble of models) to a smaller 
and faster target network (distilled or student) that is able to mimic the teacher's 
behaviour, being computationally less expensive.
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Acceleration of ML Inference
Considerations to map inference into FPGAs

- Model Compression: Pruning
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Acceleration of ML Inference
Considerations to map inference into FPGAs

- Model Compression: Knowledge Distillation

 



The general workflow
Ensemble of compression techniques.
 

- Pruning and quantization are orthogonal to distillation, helping to achieve a better 
performance, reducing the size of the model with minimum loss of accuracy.

- Quantization and pruning (train from scratch and pre-trained model)

- Knowledge distillation (train from scratch)
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The general workflow
Deploy ML-based application on embedded systems
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for machine learning
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High-Level Synthesis for machine learning (hls4ml)

- Package for ML inference on SoC-FPGAs using HLS. (Duarte et. al)
   

- "Fast inference of deep neural networks (DNN) in FPGAs for particle physics" Duarte et al.[5] 
    

- GitHub: https://github.com/fastmachinelearning/hls4ml-tutorial

- https://fastmachinelearning.org/hls4ml/

 



Multidisciplinary  Laboratory

Trieste - Italy

High-Level Synthesis for ML (hls4ml)
Design flow

 

From [5] 
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High-Level Synthesis for ML (hls4ml)

Features:

- HLS to create IP Core.
- Keras, TensorFlow, Pytorch.
- On-chip data structures. 
- Quantization through ap_fixed data type in HLS. 

- typedef ap_ufixed<10,8> din (A 10-bit input: 8-bit integer value with 2 decimal places)

- Trade-off between resource utilization and latency/throughput. 
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High-Level Synthesis for ML (hls4ml)

Features:

- Pipelining to speed up the process by accepting new inputs after an initiation interval.
- Size/Compression 
- Precision
- Dataflow/Resource Reuse
- Quantization-aware training: 

- Qkeras 

 

Reuse factor [5]
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High-Level Synthesis for ML (hls4ml)

Features - Profiling

- Profiling to adjust precision 
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High-Level Synthesis for ML (hls4ml)
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High-Level Synthesis for ML (hls4ml)
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High-Level Synthesis for ML (hls4ml)
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High-Level Synthesis for ML (hls4ml)

Network description generated inside HLS project
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High-Level Synthesis for ML (hls4ml)

Qkeras for quantization-aware training

 



Acceleration of 
ML-based 

applications



Pulse shape 
discrimination for water 

Cherenkov detectors 
(WCD)



Multidisciplinary  Laboratory

Trieste - Italy

 

Pulse shape discrimination for WCD
Experimental Setup

- Molina, R.S. et al. 2022. “Compression of NN-Based Pulse-Shape Discriminators in Front-End Electronics for Particle Detection”. In: Saponara, S., De Gloria, A. (eds) Applications in 
Electronics Pervading Industry, Environment and Society. ApplePies 2021. Lecture Notes in Electrical Engineering, vol 866. Springer, Cham.
- Garcia, L. G.; Molina, R.S. ;, Crespo, M. L.; Carrato S.; Ramponi, G.; Cicuttin, A.; Morales, I. R., Perez, H. “Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors 
Based on FPGA/SoC”. In: Electronics. 2021; 10(3):224. 



Pulse shape discrimination for WCD
Experimental Setup

- Data acquisition systems (DAQ) based on FPGAs and System-on-Chip (SoC) are often used 
in experimental physics. 

- Water Cherenkov detectors (WCD) consist of a pure water tank used as a scintillator 
material coupled to a photomultiplier tube, which is connected to a high-voltage power 
supply and to an analog front-end. 

- Water Cherenkov detector (WCD) at the Escuela de Ciencias Físicas y Matemáticas -  
Universidad de San Carlos de Guatemala (ECFM-USAC).

- Signal classification of the incoming signal (raw data - 30 samples).
- Pulse shape discrimination based on MLP architecture. 
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Pulse shape discrimination for WCD
Multi-class classification
Different types of signals - Class 0 and 1
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Pulse shape discrimination for WCD
Multi-class classification
Different types of signals - Class 2 and 3
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Pulse shape discrimination for WCD
Multi-class classification
MLP model through an ensemble of compression techniques: distillation, quantization, and pruning.
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Pulse shape discrimination for WCD
Multi-class classification
Confusion Matrix before (left) and after (right) compression 
Total params reduction: From 31,514 to 984 
Overall accuracy: From 99.4% to 97%
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Pulse shape discrimination for WCD
Define the SoC architecture
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Pulse shape discrimination for WCD
Metrics

HLS reports - Clock @5ns

 

Latency [clk]* LUT FF BRAM DSP

PYNQ

Sol_1_rf1 39 69% 75% 0% 369%

Sol_2_rf8 55 72% 24% 0% 50%

KRIA

Sol_3_rf1 20 49% 12% 0% 69%

ZCU102

Sol_4_rf1 20 20% 5% 0% 34%

*Latency only for inference
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Pulse shape discrimination for WCD
Implementation on SoC-based FPGA

Integration with Vivado IP Integrator
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Pulse shape discrimination for WCD
Implementation on SoC-based FPGA

Final resource usage reported by Vivado

 

LUT FF BRAM DSP

PYNQ 44.6% 23% 34% 50%

KRIA 30% 7.8% 33% 69%

ZCU102 7.8% 2.8% 9.9% 27%
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Pulse shape discrimination for WCD
Implementation on SoC-based FPGA

Family / Part: zynquplus / xczu9eg-ffvb1156-2-e 
Clock cycles for inference: 21 (Estimated by HLS: 20)
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PYNQ-Z1 implementation
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PYNQ-Z1 implementation
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based on CNN



Image classification based on CNN
Experimental setup
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- Romina Molina, Valentina Carrer, Maynor Ballina, Maria Liz Crespo, Luciana Bollati, Daniel Sequeiro, Stefano Marsi and Giovanni Ramponi. “ML-based classifier for precision 
agriculture on embedded systems”. ApplePies2022. [Accepted]. 
- A. Suárez, R. S. Molina, G. Ramponi, R. Petrino, L. Bollati and D. Sequeiros, "Pest detection and classification to reduce pesticide use in fruit crops based on deep neural networks and 
image processing," 2021 XIX Workshop on Information Processing and Control (RPIC), 2021, pp. 1-6.
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Image classification based on CNN
Methodology
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Image classification based on CNN
Datasets
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Pest24 [6]

Arg

A standard dataset available in the literature for training, granting a stable and effective performance.

Images provided by the current system in Argentina.
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Image classification based on CNN
ML-based architectures
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Top. Teacher architecture based on VGG16 and obtained through transfer learning - 14,818,706 parameters (Model size: 177.6Mb)
Bottom: Distilled architecture. Compression ratio: 7409x – in number of parameters –Based on [9] 
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Image classification based on CNN
Confusion matrix
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Image classification based on CNN
Experimental results

- SoC-based FPGA
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LUT FF BRAM DSP

PYNQ 41% 28% 88% 12%

KRIA 20% 28% 22% 2%

Utilization from place & route reports (post-implementation)

Based on [9] 
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