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Reinforcement Learning
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Markov Decision Process




Deep Reinforcement Learning
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Online vs Offline Reinforcement Learning

reinforcement learning offline reinforcement learning

train for
many epochs
big dataset from
past interactions % %

deploy learned policy in new scenarios

this is done
many times




FPGA for Reinforcement Learning (Acceleration)
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[2018 - Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA]




FPGA for Reinforcement Learning (Acceleration)
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[2018 - Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA]



Quantum Computing




Quantum Entanglement
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Quantum Circuits




Quantum Complexity

NP problems
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Quantum Complexity
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Quantum Complexity
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FPGA for Quantum Computing (Building)

[2021 - FPGA-based control and measurement system for superconducting quantum information processors]




FPGA for Quantum Computing (Building)

Quantum Gate: set destination, timing,
carrier, amplitude and envelope.

300

|

100 1

—— In-phase

W - Quadrature

Voltage (mV)
o

-

—-300 +— T - . - : - ; r
0 20 40 60 80 100 120 140 160
Time (ns)

Readout: Measures relaxation time and
dephasing time.

Expectation Value

SRB on [5]

T >
.0
© ©
~w

0.8

b
o
1

=
B
1

=
N
1

©
H

2
o
1

200 400 600 800 1000 1200
Sequence Length

o

[2021 - FPGA-based control and measurement system for superconducting quantum information processors]




Reinforcement Learning in Quantum Computing
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[2022 - Learning Mixed Strategies in Quantum Games with Imperfect Information]



FPGA for Reinforcement Learning in Quantum Computing (Real-time)

Learning Quantum Strategies (Time)
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[2022 - Learning-based Protocol for Routing in Quantum Networks]

Learning Quantum Strategies (Avg time)
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Quantum Computing in Reinforcement Learning
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[2021 - Parametrized Quantum Policies for Reinforcement Learning]
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FPGA for Quantum Computing in Reinforcement Learning (Simulation)
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Figure 2.4: Systolic arrays

[2021 - Tensor Networks for Simulating Quantum Circuits on FPGAs]

(b) Systolic array architecture implementing matrix multiplication. Input matrices A and B stream
by to produce output matrix C' via successive mutiply-accumulate (MAC) operations. Note that C
remains in the processing elements (i.e. this is a diagram of an OS architecture). [35].
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Thank you!
Questions?




