

C



T E

INSTITUTO DE INVESTIGACIONES CIENTÍFICAS Y TECNOLÓGICAS EN ELECTRÓNICA

# FPGA uses for Reinforcement Learning and Quantum Computing



The Abdus Salam International Centre for Theoretical Physics

**Agustin Silva** 





#### • Reinforcement Learning

- FPGA for RL (Acceleration)
- Quantum Computing
  - FPGA for QC (Building)
- Reinforcement Learning in QC
  - FPGA for RL in QC (Real-time control)
- Quantum Computing in RL
  - FPGA for QC in RL (Simulation)





- Reinforcement Learning
  FPGA for RL (Acceleration)
- Quantum Computing
  - FPGA for QC (Building)
- Reinforcement Learning in QC
  - FPGA for RL in QC (Real-time control)
- Quantum Computing in RL
  - FPGA for QC in RL (Simulation)





- Reinforcement Learning
  FPGA for RL (Acceleration)
- Quantum Computing
  - FPGA for QC (Building)
- Reinforcement Learning in QC
  - FPGA for RL in QC (Real-time control)
- Quantum Computing in RL
  - FPGA for QC in RL (Simulation)





- Reinforcement Learning
  - FPGA for RL (Acceleration)
- Quantum Computing
  - FPGA for QC (Building)
- Reinforcement Learning in QC
  - FPGA for RL in QC (Real-time control)
- Quantum Computing in RL
  - FPGA for QC in RL (Simulation)





- Reinforcement Learning
  - FPGA for RL (Acceleration)
- Quantum Computing
  - FPGA for QC (Building)
- Reinforcement Learning in QC
  - FPGA for RL in QC (Real-time control)
- Quantum Computing in RL
  - FPGA for QC in RL (Simulation)





- Reinforcement Learning
  - FPGA for RL (Acceleration)
- Quantum Computing
  - FPGA for QC (Building)
- Reinforcement Learning in QC
  - FPGA for RL in QC (Real-time control)
- Quantum Computing in RL
  - FPGA for QC in RL (Simulation)





- Reinforcement Learning
  - FPGA for RL (Acceleration)
- Quantum Computing
  - FPGA for QC (Building)
- Reinforcement Learning in QC
  - FPGA for RL in QC (Real-time control)
- Quantum Computing in RL
  - FPGA for QC in RL (Simulation)





- Reinforcement Learning
  - FPGA for RL (Acceleration)
- Quantum Computing
  - FPGA for QC (Building)
- Reinforcement Learning in QC
  - FPGA for RL in QC (Real-time control)
- Quantum Computing in RL
  - $\circ$  FPGA for QC in RL (Simulation)





#### **Reinforcement Learning**







#### Markov Decision Process







#### Deep Reinforcement Learning







#### **Online vs Offline Reinforcement Learning**







#### FPGA for Reinforcement Learning (Acceleration)



[2018 - Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA]





#### FPGA for Reinforcement Learning (Acceleration)



FIGURE 6. Sn module architecture.

[2018 - Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA]





#### **Quantum Computing**







#### Quantum Entanglement







#### **Quantum Circuits**





































#### FPGA for Quantum Computing (Building)



[2021 - FPGA-based control and measurement system for superconducting quantum information processors]





#### FPGA for Quantum Computing (Building)

Quantum Gate: set destination, timing, carrier, amplitude and envelope.



Readout: Measures relaxation time and dephasing time.



[2021 - FPGA-based control and measurement system for superconducting quantum information processors]





#### **Reinforcement Learning in Quantum Computing**



[2022 - Learning Mixed Strategies in Quantum Games with Imperfect Information]





#### FPGA for Reinforcement Learning in Quantum Computing (Real-time)







#### Quantum Computing in Reinforcement Learning







#### FPGA for Quantum Computing in Reinforcement Learning (Simulation)



(b) Systolic array architecture implementing matrix multiplication. Input matrices A and B stream by to produce output matrix C via successive multiply-accumulate (MAC) operations. Note that C remains in the processing elements (i.e. this is a diagram of an OS architecture). [38].

Figure 2.4: Systolic arrays





- to accelerate Reinforcement Learning algorithms.
- to build Quantum Computers.
- in real-time Reinforcement Learning application.
- to simulate Quantum Computers.





- to accelerate Reinforcement Learning algorithms.
- to build Quantum Computers.
- in real-time Reinforcement Learning application.
- to simulate Quantum Computers.





- to accelerate Reinforcement Learning algorithms.
- to build Quantum Computers.
- in real-time Reinforcement Learning application.
- to simulate Quantum Computers.





- to accelerate Reinforcement Learning algorithms.
- to build Quantum Computers.
- in real-time Reinforcement Learning application.
- to simulate Quantum Computers.





# Thank you! Questions?