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Electromagnetic Radiation Spectrum

Speed of light in vacuum
C =3x108 m/s

Quantization of energy,
wave- particle duality,
Planck’s Law:
E=hf

where h =4.135 x 101> eV seconds
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X-Ray Photons
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X-Ray Photons Detection

Photon absorption by
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Digital Pulse Processing
Desirable features in modern X-Ray spectroscopy

Single photon detection capability

High energy resolution

Extended energy range

High photon counting rates

Effective and efficient pile-up rejection capability
High time resolution and time-stamping capability

Adaptability to different requirements and experimental conditions
such as
— Flexible tradeoffs between energy resolution and detection efficiency
— Possible optimization to different noise conditions and signal shapes
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Pulse Processmg Cham
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Time Domain Analysis of a Typical Voltage Step

Voltage Flat-Top Time Rise Time
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The true value can be calculated by mean of additions and multiplications
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Digital Pulse Processing I: Measuring Amplitudes

Input data FIR Coefficients

Nearly perfect flat top
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Digital Pulse Processing II: Detecting Arrival Times

Nearly constant derivative
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A short FIR can compute different discrete derivatives

Andres Cicuttin, ICTP Multidisciplinary Lab

10



Digital Pulse Processing Ill: Pile-up
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Digital Pulse Processor

Short FIR for Time arrival Main FSM and pileup
average derivative detection rejection logic
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Input data
stream —>

Output
data
stream

Long FIR for FIFO
digital pulse shaping
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DPP Context in SOC: Global Architecture
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FIR Design and Optimization

Input signal analysis

Deterministic component

Stochastic component
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FIR Design and Optimization

Input pulse modeling |

The ideal case corresponding to a single photon
detection is represented by the step function §;

_ {0, i<t
Si_{A, i >t

The finite frequency response of the CSA
determines a limited rise time that could be
modeled (15t aprox) as an exponential growth

0, i <t
T laa—e Ty, it

i

A constant detector leakage current determines a
baseline with a steady slope and a variable offset on
top of which the signal segment must be processed

Bo+iB1, lsto
S = —(i-tg)
Tla(i-e” ) 4By +iBy, i1

Several sources of noise will contribute with an
additive spurious signal n; that degrades the voltage
step measurement

B0+iB1+ni, lStO
S; = —(i—to)
T la(i—e ) 4By +iB it
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FIR Desigh and Optimization

Input pulse modeling Il

Pile up: Being a Poissonian process, two or more photons could be absorbed in the SDD
within any arbitrary small time window. The superposition of two photons absorbed at times
to and t; and respectively with amplitudes Ay and A4 is then given by

(By + By + 1y, i <t
—(i-to) )
s = 140(1—e ")+ By +iB, +m, tb< i<t
l
~(i~t0) ~(i-t1) ,
kAO(l—e TUR) + 4y (1—e" ) 4 By + By 4y, i >t



FIR Desigh and Optimization

Input pulse modeling Il

...and in general for m+1 photons

fBO + lBl + n;,
— ._t
a,(1 = %

Ao(l —e

) + By + iB, +n;,

L N (P

m

~(i-tj)
ZAj(l—e ]/T)+BO+iBl+ni,

/=0

) + By + iB, +n;,

i>t,



FIR Desigh and Optimization

Input noise characterization

Fitting

Inaccurate modeling
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FIR Desigh and Optimization

Input noise characterization

Fitting

By +iB; +n, i<ty
51 = —(f—tu}'}.’ —:El:_f-'u}f .
Ao(2(1-e )-(1-e )|+ Bo+iBitn, it

Experimental ACF (simple exponential vs bi —exponential fitting )
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Summary of main characteristics of a
configurable/programmable DPP

Energy measurement range

Energy resolution

Time resolution

Photon counting

Dead time measurement

Pile-up rejection

Max measurement photon rate

Max counting photon rate

Area, performance, power consumption
Pulse shapes discrimination
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