

13 TeV ATLAS Open Data

• How can we overcome geographical distances and allow anyone interested in experimental particle physics to learn remotely?

✓ ATLAS Collaboration launched a comprehensive educational <u>platform</u> to guide university-level students and teachers on how to use the data and analysis tools

 Provide a straightforward interface to replicate the procedures used by high-energyphysics researchers and enable users to experience the analysis of particle physics data in educational environments

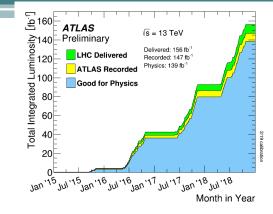
• What is the aim of ATLAS Open Data?

- provide data and tools to high school, undergraduate and graduate students
- help education in physics analysis techniques used in experimental HEP

 ATLAS Open Data has been incorporated into curriculums of multiple universities in Belgium, Canada, Colombia, Greece, Germany, Norway, Poland, Portugal, Spain, Sweden, Switzerland, UK, USA, Venezuela and others

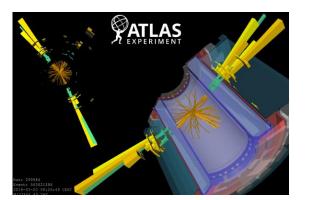
featured in ATLAS blog and <u>news</u>

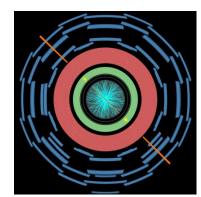
ATLAS Data Access Policy:

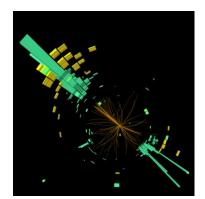

 <u>ATL-CB-PUB-2015-001</u>: sets out the guidelines regarding open access to ATLAS data by non-ATLAS members with a focus on education, training and outreach

Overview of the 13 TeV ATLAS Open Data

• 13 TeV ATLAS Open Data:


 61 runs from the first 4 periods of the 2016 protonproton data-taking


releasing to the public **10 fb⁻¹** of pp collision data (~ 270 million collision events)



• Events are selected by applying several event-quality and trigger criteria, and classified according to the type and multiplicity of reconstructed objects

subjected to a loose event preselection to reduce processing time

13 TeV ATLAS Open Data reconstructed objects contain:

 electrons, muons, photons, hadronically decaying tau-leptons, small-R jet and large-R jet candidates (and MET) reconstructed with the ATLAS detector

Electron (<i>e</i>)	Muon (μ)	Photon (γ)
InDet & EMCAL rec.	InDet & MS rec.	InDet & EMCAL rec.
loose identification	loose identification	tight identification
loose isolation	loose isolation	loose isolation
$p_{\rm T} > 7 { m ~GeV}$	$p_{\rm T} > 7 { m ~GeV}$	$E_{\rm T} > 25 { m GeV}$
$ \eta < 2.47$	$ \eta < 2.5$	$ \eta < 2.37$

Hadronically decaying τ -leptons (τ_h)	Small- <i>R</i> jets	Large-R jets
InDet & EMCAL rec.	EMCAL & HCAL rec.n	EMCAL & HCAL rec.
medium identification	anti- k_t , R = 0.4	anti- k_t , R = 1.0
$p_{\rm T} > 20 { m GeV}$	$p_{\rm T} > 20 { m ~GeV}$	$p_{\rm T} > 250 { m ~GeV}$
$ \eta < 2.5$	$ \eta < 2.5$	$ \eta < 2.0$
1 or 3 associated tracks		trimming: $R_{sub} = 0.2, f_{cut} = 0.05$

Selected events classified into separate final-state collections

• depending on the number of final state objects and their energy, and triggers used (single-lepton, diphoton,..)

Final-state categories	Leading object $p_{\rm T}$ (min) [GeV]	Collection name
$N_{\ell} = 1$	25	11ep
$N_{\ell} \ge 2$	25	2lep
$N_{\ell} = 3$	25	3lep
$N_{\ell} \ge 4$	25	41ep
$N_{\text{largeRjet}} \ge 1 \& N_{\ell} = 1$	250 (large- <i>R</i> jet), 25 (lepton)	11argeRjet11ep
$N_{\tau-{\rm had}} = 1 \& N_{\ell} = 1$	20 (τ_h), 25 (lepton)	11ep1tau
$N_{\gamma} \ge 2$	35	GamGam

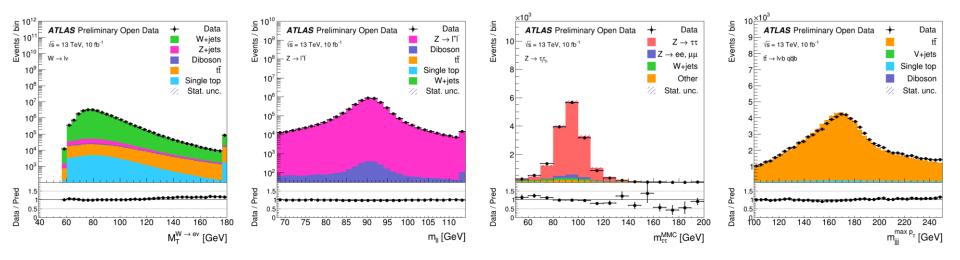
Also **MC simulation** samples describing several SM processes used to model the expected distributions of different signal and background events (top quark pair, single top quark, Z+jets, W+jets, WW/WZ/ZZ, SM Higgs and BSM signals)

Process	Unique "channelNumber"	Generator, hadronisation	Additional information	
	Top-quark production			
$t\bar{t}$ +jets	410000	Powheg-Box v2 [68] + Pythia 8 [69]	only 1ℓ and 2ℓ decays of $t\bar{t}$ -system	
single (anti)top t -channel	(410012) 410011	Powheg-Box $v1 + Pythia 6$ [70]		
single (anti)top Wt -channel	(410014) 410013	Powheg-Box v_2 + Pythia 6		
single (anti)top s -channel	(410026) 410025	Powheg-Box $v2 + Pythia 6$		
_		Z (+ jets) production		
$Z \rightarrow ee, \ \mu\mu, \ \tau\tau$	361106 - 361108	Powheg-Box $v2 + Pythia 8$	LO accuracy up to $N_{jets} = 1$	
$W \to e\nu, \mu\nu, \tau\nu$	361100 - 361105	Powheg-Box $v2 + Pythia 8$	LO accuracy up to $N_{jets} = 1$	
$W \to e\nu, \mu\nu, \tau\nu + \text{jets}$	364156 - 364197	Sherpa 2.2 [71]	LO accuracy up to 3-jets final states	
$Z \to ee, \mu\mu, \tau\tau + \text{jets}$	364100 - 364141	Sherpa 2.2	LO accuracy up to 3-jets final states	
		Diboson production		
WW	363359, 363360	Sherpa 2.2	$qq'\ell\nu$ final states	
WW	363492	Sherpa 2.2	$\ell \nu \ell' \nu'$ final states	
ZZ	363356	Sherpa 2.2	$qq'\ell^+\ell^-$ final states	
ZZ	363490	Sherpa 2.2	$\ell^+ \ell^- \ell^{'+} \ell^{'-}$ final states	
WZ	363358	Sherpa 2.2	$qq'\ell^+\ell^-$ final states	
WZ	363489	Sherpa 2.2	$\ell \nu q q'$ final states	
WZ	363491	Sherpa 2.2	$\ell \nu \ell^+ \ell^-$ final states	
WZ	363493	Sherpa 2.2	$\ell\nu\nu\nu'$ final states	
	SM Higgs	$production (m_{\rm H} = 125 \text{ GeV})$		
ggF, $H \to WW$	345324	Powheg-Box $v2 + Pythia 8$	$\ell \nu \ell' \nu'$ final states	
VBF, $H \to WW$	345323	Powheg-Box v2 + Pythia 8	$\ell \nu \ell' \nu'$ final states	
ggF, $H \to ZZ$	345060	Powheg-Box $v2 + Pythia 8$	$\ell^+ \ell^- \ell^{'+} \ell^{'-}$ final states	
VBF, $H \to ZZ$	344235	Powheg-Box v2 + Pythia 8	$\ell^+ \ell^- \ell^{'+} \ell^{'-}$ final states	
$ZH, H \rightarrow ZZ$	341947	Pythia 8	$\ell^+ \ell^- \ell^{'+} \ell^{'-}$ final states	
$WH, H \rightarrow ZZ$	341964	Pythia 8	$\ell^+ \ell^- \ell^{'+} \ell^{'-}$ final states	
ggF, $H \rightarrow \gamma \gamma$	343981	Powheg-Box $v2 + Pythia 8$		
$VBF, H \rightarrow \gamma\gamma$	345041	Powheg-Box v_2 + Pythia 8		
$WH(ZH), H \rightarrow \gamma\gamma$	345318, 345319	Powheg-Box $v2 + Pythia 8$		
$t\bar{t}H, H \rightarrow \gamma\gamma$	341081	aMC@NLO [72] + Pythia 8		
		BSM production		
$Z' \to t\bar{t}$	301325	Pythia 8	$m_{Z'} = 1 \text{ TeV}$	
$\tilde{\ell}\tilde{\ell}^{'} \rightarrow \ell\tilde{\chi}_{1}^{0}\ell^{'}\tilde{\chi}_{1}^{0\prime}$	392985	aMC@NLO + Pythia 8	$m_{\tilde{\ell}} = 600 \text{ GeV}, \ m_{\tilde{\chi}_1^0} = 300 \text{ GeV}$	

7

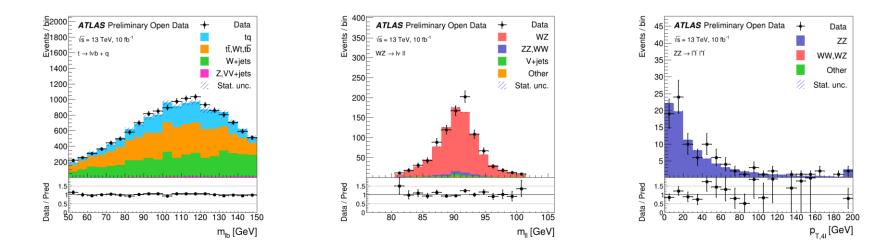
 both data and MC provided in a simplified data format reducing the information content of the original data analysis format used within ATLAS

• ROOT tuple with more than **80 branches**, optimised to reduce the complexities encountered in a full-scale analysis (~150 GB of storage)


Tuple branch name	C++ type	Variable description	Tuple branch name	C++ type	Variable description
runNumber	int	number uniquely identifying ATLAS data-taking run	photon_n	int	number of pre-selected photons
eventNumber	int	event number and run number combined uniquely identifies event	photon_truthMatched	vector <bool></bool>	boolean indicating whether the photon is matched to a simulated photon
channelNumber	int	number uniquely identifying ATLAS simulated dataset	photon_trigMatched	vector <bool></bool>	boolean indicating whether the photon is that one triggering the event
mcWeight	float	weight of a simulated event	photon_trigMatched photon_pt	vector <float></float>	transverse momentum of the photon
XSection	float	total cross-section, including filter efficiency and higher-order correction factor			
SumWeights	float	generated sum of weights for MC process	photon_eta	vector <float></float>	pseudo-rapidity of the photon
scaleFactor_PILEUP	float	scale-factor for pileup reweighting	photon_phi	vector <float></float>	azimuthal angle of the photon
scaleFactor_ELE	float	scale-factor for electron efficiency	photon_E	vector < float >	energy of the photon
scaleFactor_MUON	float	scale-factor for muon efficiency	photon_isTightID	vector <bool></bool>	boolean indicating whether photon satisfies tight identification reconstruction criteria
scaleFactor_PHOTON	float	scale-factor for photon efficiency	photon_ptcone30	vector <float></float>	scalar sum of track $p_{\rm T}$ in a cone of $R=0.3$ around photon
scaleFactor_TAU	float	scale-factor for tau efficiency	photon_etcone20	vector <float></float>	scalar sum of track E_{T} in a cone of $R=0.2$ around photon
scaleFactor_BTAG	float	scale-factor for b-tagging algorithm @70% efficiency	photon_convType	vector <int></int>	information whether and where the photon was converted
scaleFactor_LepTRIGGER	float	scale-factor for lepton triggers	largeRjet_n	int	number of pre-selected large- R jets
scaleFactor_PhotonTRIGGER	float	scale-factor for photon triggers	largeRjet_pt	vector <float></float>	transverse momentum of the large- R jet
trigE	bool	boolean whether event passes a single-electron trigger	largeRjet_eta	vector <float></float>	pseudo-rapidity of the large- R jet
trigM	bool	boolean whether event passes a single-muon trigger	largeRjet_phi	vector <float></float>	azimuthal angle of the large- R jet
trigP	bool	boolean whether event passes a diphoton trigger	largeRiet_E	vector <float></float>	energy of the large- R jet
lep_n	int	number of pre-selected leptons		vector <float></float>	
lep_truthMatched	vector <bool></bool>	boolean indicating whether the lepton is matched to a simulated lepton	largeRjet_m		invariant mass of the large- R jet
lep_trigMatched	vector <bool></bool>	boolean indicating whether the lepton is the one triggering the event	largeRjet_truthMatched	vector <int></int>	information whether the large- R jet is matched to a simulated large- R jet
lep_pt	vector <float></float>	transverse momentum of the lepton	largeRjet_D2	vector <float></float>	weight from algorithm [57] for W/Z -boson tagging
lep_eta	vector <float></float>	pseudo-rapidity, η , of the lepton	largeRjet_tau32	vector < float >	weight from algorithm [57] for top-quark tagging
lep_phi	vector <float></float>	azimuthal angle, ϕ , of the lepton	tau_n	int	number of pre-selected hadronically decaying τ -lepton
lep_E	vector < float >	energy of the lepton	tau_pt	vector <float></float>	transverse momentum of the hadronically decaying τ -lepton
lep_z0	vector <float></float>	z-coordinate of the track associated to the lepton wrt. primary vertex	tau_eta	vector <float></float>	pseudo-rapidity of the hadronically decaying τ -lepton
lep_charge	vector <int></int>	charge of the lepton	tau_phi	vector <float></float>	azimuthal angle of the hadronically decaying τ -lepton
lep_type	vector <int></int>	number signifying the lepton type (e or μ)	tau_E	vector <float></float>	energy of the hadronically decaying τ -lepton
lep_isTightID	vector < bool >	boolean indicating whether lepton satisfies tight ID reconstruction criteria	tau_charge	vector <int></int>	charge of the hadronically decaying τ -lepton
lep_ptcone30	vector <float></float>	scalar sum of track $p_{\rm T}$ in a cone of $R=0.3$ around lepton, used for tracking isolation	tau_isTightID	vector <bool></bool>	boolean indicating whether hadronically decaying τ -lepton satisfies tight ID reconstruction
lep_etcone20	vector <float></float>	scalar sum of track $E_{\rm T}$ in a cone of R =0.2 around lepton, used for calorimeter isolation	tau_truthMatched	vector <bool></bool>	boolean indicating whether the hadronically decaying τ -lepton is matched to a simulated
lep_trackd0pvunbiased	vector <float></float>	d_0 of track associated to lepton at point of closest approach (p.c.a.)	tau_trigMatched	vector <bool></bool>	boolean signifying whether the τ -lepton is the one triggering the event
lep_tracksigd0pvunbiased	vector <float></float>	d_0 significance of the track associated to lepton at the p.c.a.	tau_nTracks	vector <int></int>	number of tracks in the hadronically decaying τ -lepton decay
met_et	float	transverse energy of the missing momentum vector	tau_BDTid	vector <float></float>	output of the multivariate algorithm [24] discriminating hadronically decaying τ -leptons fr
met_phi	float int	azimuthal angle of the missing momentum vector		float	di_{τ} invariant mass using the missing-mass calculator [54]
jet_n		number of pre-selected jets	ditau_m		
jet_pt	vector <float> vector<float></float></float>	transverse momentum of the jet	lep_pt_syst	vector < float >	single component syst. uncert. (lepton momentum scale and resolution [36,15]) affecting le
jet_eta		pseudo-rapidity, η , of the jet	met_et_syst	float	single component syst. uncert. $(E_{\rm T}^{\rm miss}$ scale and resolution [30]) affecting met_pt
jet_phi jet_E	vector <float> vector<float></float></float>	azimuthal angle, ϕ , of the jet energy of the jet	jet_pt_syst	vector <float></float>	single component syst. uncert. (jet energy scale [37]) affecting jet_pt
jet_E jet_jvt	vector <float></float>	jet vertex tagger discriminant [21] of the jet	photon_pt_syst	vector <float></float>	single component syst. uncert. (photon energy scale and resolution [16]) affecting photon_
jet_jvt jet_trueflav	vector <noat></noat>	jet vertex tagger discriminant [21] of the jet flavour of the simulated jet	largeRjet_pt_syst	vector <float></float>	single component syst. uncert. (large-R jet energy resolution [37]) affecting largeRjet_pt
jet_truenav jet_truthMatched	vector <int> vector<bool></bool></int>	havour of the simulated jet boolean indicating whether the jet is matched to a simulated jet	tau_pt_syst	vector <float></float>	single component syst. uncert. (τ -lepton reconstruction and energy scale [24]) affecting ta
jet_trutnMatched jet_MV2c10	vector <float></float>	output from the multivariate b-tagging algorithm [22] of the jet	ecceptory of		single component eyes, and the () representee on build energy scale [24]) and component eyes,
Jet_MA 2C10	vector <noat></noat>	output from the multivariate o-tagging algorithm [22] of the jet			

12 examples of physics analysis using 13 TeV ATLAS Open Data

 inspired and following as closely as possible the procedures and selections taken in already published ATLAS Collaboration results


Analyses	Physics processes	Purpose
4 high statistics	W→Iv, Z→(ee/µµ), тт top-quark-pair	high event yields to study the SM processes in detail

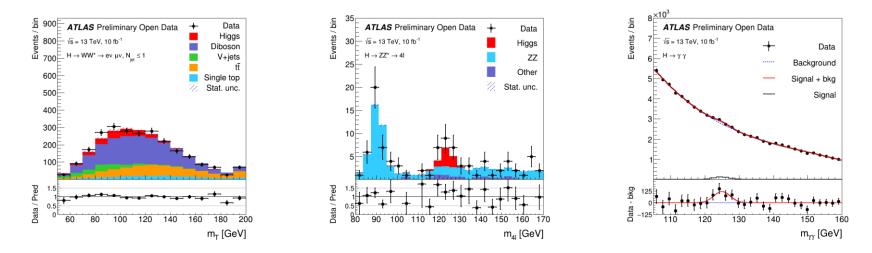
Using ATLAS Open Data, you can **re-create the major particle discoveries** of the late 20th century: the Z-boson, W-boson and top quark

13 TeV ATLAS Open Data physics analysis examples

Analyses	Physics processes	Purpose
3 low statistics	Single-top-quark, WZ and ZZ diboson	illustrate the statistical limitations of the released dataset

Educational test-bed for **new data-analysis techniques**, e.g. kinematic fitting, multivariate discrimination and machine learning tasks

Analyses	Physics processes	Purpose
2 BSM physics	SUSY, heavy boson	searching for new physics using different physics objects
$ \begin{array}{c} $	Diboson	$ \begin{array}{c} $


Evaluation of the impact of different sources of systematic uncertainties is one of the new tasks that is available with the 13 TeV datasets

M_{T2} [GeV]

m^{Top-tagged Large-R jet, Small-R jet, Lepton} [GeV]

13 TeV ATLAS Open Data physics analysis examples

Analyses	Physics processes	Purpose
3 Higgs boson	H→WW, H→ZZ H→γγ	"re-discover" the production of the SM Higgs boson

"Re-discover" the SM Higgs boson in different final-state scenarios!

• But how?

The 13 TeV ATLAS Open Data is hosted on the <u>CERN Open Data online</u> portal and <u>ATLAS Open Data online portal</u>

Is accompanied by a set of analysis frameworks, written in C++ and interfaced with ROOT, Python uproot and pandas/numpy, pyROOT and RDataFrame, publicly available in a <u>GitHub repository</u>.

The frameworks implement the protocols needed for reading the datasets, making an analysis selection, writing out histograms and plotting the results.

 During this workshop, you will get familiar with all the frameworks, both written in C++, PyRoot and RootDataFrame

