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Statistical analysis

e Why? What?...
o why do we need statistical analysis?
o what do we mean by statistical analysis?

e Statistical Analysis in particle-collider physics:
o the way to extract quantitative information
from collision data

e ...and of course, what goes into the result section of
your paper is the quantitative information:
o we want to claim things like:
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Statistics a

Statistical Analysis Basics (for HEP)




Probability

Maximum likelihood and Fits Py

Gutsomes

e Likelihood: \_/

o defined as probability of observing a certain set of data e
given a model / hypothesis (with certain parameter values)

— —

L(6) = Prob(z|6) = -.1 Prob(z;|6)

probability / if data points / measurements / observation are

data independent (i.e. uncorrelated)

parameters
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e Maximum Likelihood principle:
o estimated value(s) of parameter(s)
= value(s) maximizing the Likelihood

e “Fit"
o parameter estimation procedure
via Likelihood maximization




Types of likelihood

e Binned Poisson Likelihood:

c@ld) = [ Prulvi8) = ] PulSi

i€bins i€bins
e Unbinned Likelihood: 3
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e The x?case: - X s 2
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- i€bins i€bins %
n o |
—2log E( Z M + Const. = X = 3 §
i€bins 7‘ ::
o Maximizing Likelihood = Minimizing x? or -2 log L s \/ S—




Types of measurements

e In HEP data analysis, different types of measurement:

o searches for a new process
o cross-section measurements:
m total cross-section
(full / fiducial phase-space...)
m differential cross-section
m ratios of cross-sections...
o other parameter estimation:
m usually “shape analyses”

(e.g. top mass, top width...)
o EFT fits / limits ...

e Also, measurements can take as inputs:
o binned data = histogram counts are the inputs

unbinned data = individual events as “input measurements”

other existing measurements / differential cross-section bins = “2 step” analysis
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Searches: discovery significance [ oAmASEn I e
- \s=8TeV: [Ldt=5.8591b" <1 :f
e Observing a new process (in the Frequentist language) 1‘32‘ R S
= seeing data incompatible with background-only hypothesis EE ______________ \ ;
(or “null hypothesis”) g ......2 S
e How to quantify it? or .\ AN
o define “test statistics”, quantifying agreement e N . 2
btw. data and a prediction (e.g. likelihood, x?, LH-ratio...) WL HE 0 2 14D . [GeV]

o define p,-value = probability of seeing worse agreement
than observed one, in the background-only hypothesis
m e “probability that what we see is a fake signal”

p.d.f. ' '
(or number of toy observed o turn p,into number of Gaussian
experiments) wt value by Glen Cowan . e ege —n
std.dev, define significance “Z
/ p, value < J in terms of number of sigmas:
e~ x — ) -7
under B-only / i m 50=~3-10
hypothesis

test statistics “t”
m=) more incompatible

more compatible {mmm
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Searches: exclusion limits

e If no evidence for signal, setting exclusion limits
e Usually limits set on signal strength p = g°° / gtheo": : L. Liits <
o values of y > quoted value excluded at 95% confidence-level ™ ™ * Gy

95% CL Limit on p

e Operationally: 3 e
o define test-statistics (as before), t (data,p) :Ob::ff“
o scan values of y, get t°bs for each p .
o assign prob. of seeing worse t than t°°S, assuming that value of y
o find p for which prob. =5% (i.e. 1-95%, corresponding to 20)

e What does CL_ mean? T DISTRIBUTION FOR 8 3

o description above defines “CL_, "
o canthen define “CL," as follows:
m get t° for each y (as before)
m define CL, as prob. of seeing worse ¢,
in the B-only hypothesis (u=0)
o thendefineCL,=CL_,, /CL_
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https://indico.cern.ch/event/576095/contributions/2342069/attachments/1356012/2049555/CLs_presentation.pdf




Inclusion of systematic uncertainties

e In particle collision physics we distinguish:

o statistical uncertainty: I:> Fully uncorrelated between
m result of stochastic fluctuations in data subsequent measurements
m consequence of limited size of analysed dataset

o systematic uncertainties:
m everything that is not a statistical uncertainty I:> Fully correlated between
m uncertainties associated with measurement apparatus, subsequent measurements

assumptions made, or model used

e Statistical uncertainty usually intrinsically included in inference method (e.g. in y? fit)
e Systematic uncertainties: non-obvious inclusion in and propagation through statistical analysis

e Side considerations:
o in our world, systematic uncertainties are uncertainties on Prob(x,0),
i.e. uncertainties on expected values (e.g. exp. S+B), not on data (!)
o systematics divided into multiple independent / uncorrelated “sources”




The Profile Likelihood formalism

e More and more common approach for including systematics in HEP statistical analysis:
o include systematic uncertainties as unknown parameters in the model
o nuisance parameters modifying expectations in a parametric way
o prior probabilities on values of nuisance parameters to reflect limited knowledge

e The binned profile-likelihood:

Gaussian
data Poisson (or other pdf...)

N - | S I /
L(n | 6, k) =TI, P(n,| S(0, ky+B (6, k))  T1, G(6)

_ / v !

. . data events  prediction in bin i constraint term
constrained parameters: C : :

; in bin i (signal+background) for nuisance
nuisance parameters (NPs) arameter i
associated to systematic P J
uncertainties unconstrained parameters:

parameter of interest (POI or “p”) + unconstrained nuisance

parameters (e.g. background normalization parameters) n




Nuisance parameters and systematic uncertainties

normal distribution

Each (independent) source of systematic uncertainty =
included in the likelihood as b
constrained nuisance parameters (NPs): -
o affecting S+B prediction in a coherent way b
o effectinterpolated and extrapolated
from 3 discrete values S
(0 = nominal, 1 ="“up”var., -1 =“down” var.) Tt 5

to range of continuous values

L(n | 5, ]:) =, P(n_| Si(79,7c)+Bi(79,7c)) X Hj G(@j ) 2log(L)

e The fit procedure becomes a multi-dimensional
Likelihood maximisation problem
o the fit result is not just the value (and uncertainty)
on parameter(s) of interest (POI), but a set of values for A R
all the parameters, including nuisance parameters: ([, 0o, ...0n—-1) : L(f1,0) = mazx




Profile likelihood ratio and asymptotic regime

e Neyman-Pearson lemma:
o the likelihood ratio A = L(H,)/L(H,) is the optimal discriminator when testing hypothesis
H, vs. H, (e.g. H, = presence of signal (u>0), H, no signal (u=0))

o inthe case of our profile likelihood, can build profile likelihood ratio, as a function of POI:

Maximize L for a given p

é‘ ‘conditional’ likelihood
Profile likelihood ratio )\(M) - L, f")
only dependent on p ¥4 ( 'a, 9)

Maximize L

oo oo ‘unconditional’ likelihood
o maximizing A vs. y = maximizing L vs. (u,6)

)

e Wilks’' Theorem: in large statistics data samples, A distribution follows % *
x? distribution: 5 X s B2
~2log\(x) = ~2(log L §) ~ I L(3.0)) = (A1)

o »
o N @ o

= can get the uncertainty on y (including effect of all systematics!!) X ______________
o large-statistics means > ~ O(10) events A AL

+ 1oy

o saves from running very time consuming pseudo-experiments a
A,/"\ YPERIMEN




Profiling, pre-fit and post-fit

e Profile likelihood fit can:
o change background prediction, if best-fit 6 values different from 6,
o reduce uncertainty on background, through:

m constraint of NPs
("improved knowledge" of parameters that are affected by systematic uncertainties,
i.e. data have enough statistical power to further constraint the NP)
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NP pulls, constraints and correlations

ATLAS Preliminary {s =13 TeV, 36.1 fb"
ttH signal strength
H H ttH cross section (scale variations)
e Useful to monitor NP pulls and constraints:
tZ cross section
n N n H
o they are "nuisance", but they can be important! s rermelilonss
W/ Z +jets normalization Non-prompt stat. in 3 {f CR
{1 PS and hadronization
T ISR/FSR Fake Tj,q Stat. in 15t bin of 1£+2%,,4
JES NPScenario 1 - NP 1
JER Fake T;,,g modelling (17 + 27;,,4)
light-tag Eigenvar. 5
light-tag Eigenvar. 4 Fake Thaq low pr (220S+1Th,4)
light-tag Eigenvar. 3
light-tag Eigenvar. 2 Fake Thag comp. tt (220S +17T9)
light-tag Eigenvar. 1
b-tag Extrapolation from ¢ Fake Thag cOmp. Z (2208 +17,44)
b-tag Extrapolation
c-tag Eigenvar. 3 VV modelling (shower tune)
c-tag Eigenvar. 1
b-tag Eigenvar. 3 VV cross section
b-tag Eigenvar. 2
b-tag Eigenvar. 1 Jet energy scale (pile-up subtraction)

e Important to consider also NP correlations: EREREEREERERE R
o uncertainties on NPs (and POI/) extracted from g ; ! “ ; v : % § ; §
covariance matrix, which includes correlation coefficients R EEEREE

m correlation built by the fit, even if completely B :

independent / uncorrelated sources of uncertainty before the fit
(correlation in the improved knowledge of the parameters)
m (anti-)correlations can reduce total post-fit uncertainty!




I m paCt Of syste mati cs "which systematics are more important?”

1. "Ranking plot" shows pre-fit and post-fitimpact 2. "Grouped impact table" reports contributions

of individual NP on the determination of y: to total uncertainty from groups of syst.:
o each NP fixed to * 1 pre-fit and post-fit error o  fix a group of NPs to post-fit values
o fit re-done with N-7 parameters o repeat the fit, get reduced error on y
o impact = difference in central value of y o impact = difference in quadrature btw. original

and reduced error on y
o  get stat. uncertainty by fixing all NPs

i red
Pre-fit impact on o,/ Ao, /oh

[ ]6=8+A0 | 0=0-A0 -004 -0.02 0 0.02 0.04
T U B |

Post-fit impact on 6, /c”® [ T L
Wo=0+A0 moe=08A0 | ATLAS
—e— Nuis. Param. Pull | /s =13TeV, 139 fo” :
: : Category A7id (o] Aic (g
Shower model incl. acceptance T fid Tinc
Luminosity Signal modelling
Shower migration parameter
FSR model SR1 tt shower/hadronisation +2.8 +29
Top p NNLO reweighting 17 scale variations +1.4 +2.0
JES (pile-up subtraction)
WNT
Py Total systematic uncertainty — +4.3 +4.6
PDFALHC NP4 - ;
Showeadel shape SR Data statistical uncertainty +0.05 +0.05
5 Total uncertainty +4.3 +4.6

(6-6,)/A0 m
A,/"\ YPERIMEN




Tools for statistical analysis
(with Profile Likelihood)
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Profile likelihood - Implementation in ROOT (2T

\ [0 | [t | o] " ROOT
\\ L,'f}/
A
e RoofFit: toolkit to extend ROOT providing language to describe data models
o model distribution of observable x in terms of parameters 6 e
using probability density function PDF Mathematclcocept
variable X RooRealVar
. . . . function f(x) RooAbsReal
e RooStats: project to provide advanced stat. techniques for LHC collaborations w @) -
o built on top of RooFit e ¥ ot
integral f f (x)dx RooRealIntegral

. Xmin
list of space points RooAbsData

e RooWorkspace: generic container class for all RooFit objects, containing:
o full model configuration
(i.e. all information to run statistical calculations)
o PDF and parameter/observables descriptions uncertainty/shape of nuisance parameters
o (multiple) data sets

e HistFactory: tool for creating RooFit workspaces formatted for use with RooStats tools
o meant for analyses based on template histograms




Practical part
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Repository and environment O

e GitHub repository: https://github.com/pinamont/statistics-tutorial GitHub

e The whole tutorial will be run 'A.

through Jupyter notebooks jupyter

(python and ROOT/C++ based) v e Goal: guide you through what's actually
@ done to publish your results
o with some exercises to get
e 2 available options: acquainted with the machinery

o we'll choose dynamically what to

o Binder @ cover (raise your hands!)
o you may use therests as a

o SWAN-+cern-box é @ reference (& feel free to contact us!)



https://github.com/pinamont/statistics-tutorial

Setting up the environment :

¢ Statistics Tutorial - ICTP ATLAS Open Data 2022
e Gotothe GitHub repository 0 Authors

o
GltHUb Michele Pinamonti - INFN Sezione di Trieste

credits to: Valerio Ippolito - INFN Sezione di Roma

e Choose one of the 2 options:

. Scope
o Binder: _ . . .
We will go through the typical steps of defining, filling up and analysing a workspace.
@ m no CERN account needed .
. Preliminaries
u cou | d ta ke more tl me to I 0a d ot There are two main ways to run this tutorial: Binder and SWAN.
o SWAN:

\ @ m CERN account needed (and cern-box / eos space set up)
“ﬂm m should be faster to start
/s

e Follow instructions on the README file for setting up environment, according to chosen option

e Once ready, try running the nello world.ipynb notebook

e (Caveat:
o  exercise doesn't seem to work with ROOT version 26.04 (set by default in SWAN)
o  setting-up ROOT version 24.06 in Binder
o  following instructions on README for SWAN should work as well (setting-up 24.06)



https://github.com/pinamont/statistics-tutorial

Binder and SWAN interfaces

) 1t c 4 Launcher

i

Filter files by name Q
./ El Notebook
P Name - Last Modified SWAN > My Projects > statistics-tutoriall
I8 create_data 27 minutes ago D D
I data 27 minutes ago statistics-tutorial1 1 @@@
= | fit 27 minutes ago
Python 3 ROOT C++ O NAME ~ SIZE STATUS MODIFIED
B limit 27 minutes ago (ip);lt:emel) i “ T/U HRRE
* B p_values 27 minutes ago [T create_data 2 giorni fa
t i 7 minut | 2 giorni fa
B8 systematics 27 minutes ago Console [ data giorn
Y: environment.yml 27 minutes ago < fi P
[®] hello_world.ipynb 27 minutes ago . .
Dw [;L‘ i fimit 2 giorni fa
M README.md 27 minutes ago " ]
[ p_values 2 giorni fa
Python 3 ROOT C++ [7 systematics 2 giomni fa
(ipykernel)
& hello_world.ipynb 2.16 kB 2 giorni fa
D environment.yml 1288 2 giorni fa
Other
(3 README.md 478 2 giomifa

Terminal Text File




Tutorial

e Tutorial structured as a set of notebooks, each performing a single action:

o create data/create workspace.ipynb —  create a RooWorkspace from existing histograms
—  will use output of this notebook for all other operations
m simplified version create workspace minimal.ipynb also available

o create data/inspect workspace.ipynb —  inspect what's inside the workspace we just created

o fit/simple fit.ipynb —  perform a fit and print fit results

o fit/postfit plots.ipynb —  visualize projection of fit results to expected distributions
0o systematics/ranking.ipynb —  breakdown of impact of systematics - method 1

o systematics/impact table.ipynb —  breakdown of impact of systematics - method 2

o limit/toys.ipynb —  perform exclusion limit extraction

o p values/pvalues.ipynb —  p-value and significance calculation




Our example workspace

e We'll use as an exercise a set of inputs (histograms):
o  ATLAS ttH search (H — bb), part of real fitting exercise with very first 2015 data
o tt+(b)-jets selection (1-lepton channel)

2 T I T T L L L L B LB R
.. . § - ATLAS Internal ¢ Data 2015 [l tTH e § - ATLAS Internal ¢ Data 2015 [l ttH -
e TJwoO statlstlcally mdependent G o[ s=13TeV,85pb " [iT+jets MISingleTop ] D g =13Tev,85pb " (Jef+jots MSingle Top
" . " L ttH tutorial 772 Uncertainty 4 [ ttH tutorial 72 Uncertainty 7
datasets (“regions - 5,3b - " >6,>4b i
" " . | Pre-Fit ] C Pre-Fit i
r “channels”, as you wish): 80 ] o ]
o “5j,3b" 60;7/% —: 0 -
— C.ontro.I Reglon,' P a1 Y .
enriched in tt + (b)jets - Z | +:

©) "> 6], >4 b" 20— 4 10 P

- VAL {77, -

— Signal Region

E x%ndf=9.7/10 pluu-047 g

o

o

E 4°ndf=0.8/5 x prob 0. 98
0.75 / //

0'5’00 250 300 350 400 450 500 550 600 650 700

1.25

RN

Data / Pred.
o

R

(4]

Data / Pred
BAN
W

: N\

i o
\

N

N
N

—
R

5,
3]

IO 160 150 0 250 0
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p ;value and discovery significance

e Observing a new process
= seeing data incompatible with background-only hypothesis (“null hypothesis”)

e How to quantify it?
o define “test statistics”, quantifying data-prediction agreement
o define p,-value = probability of seeing worse agreement (in B-only hypothesis)
o turn p,into number of Gaussian std.dev, define significance “Z”

in terms of number of sigmas reminder: cudi)
One-sided tests-statistics Ap) = TOM)
e inthe case of profile-likelihood ratio:
p.d.f.
(or number of toy _ ~
experiments) 3?552‘;:: go = 2InA(0) lf >0
0 p<0
/ p, value oo < f
under B-only / Py = / F (QO |()) dqo 2o x
hypothesis 0.0bs 1
test statistics “t” Zop=2 (1 - pO)

more compatible ¢mm ' wmm) more incompatible




o

- ATLAS 2011 -2012 M+t

[ \s=7Tev: Jldt-464sm’ L[ 1t20
[ \s=8Tev:Jldt-5859m' —— Observed
..... Bkg. Expected

Exclusion limits

e No evidence = exclusion limits
o usually on signal strength p = g°s / gtheory

95% CL Limit on u

e Define test-statistics (as before), t (data,p) 10! | ~ CL, Limits
ObS 110 150 200 300 400 500
o scan values of y, get t°° for each p m,, [GeV]

o assign prob. of seeing worse t than t°PS, assuming that value of y
o find p for which prob. =5% (i.e. 1 - 95%, corresponding to 20)

—4— Observed ClLs
@ Observed CLs+b
—4— Observed CLb
----- Expected CLs - Median
[ Expected CLs + 16
[ ] Expected CLs : 2 &

p value

0.6

e What does CL_ mean?
o description above defines “CL_,.”
o can then define “CL," as follows: -
m get t° for each y (as before)
m define CL, as prob. of seeing worse ¢,
in the B-only hypothesis (u=0)
o then define CL,=CL_,, /CL,

T DISTRIBUTION FOR 8

T DISTRIBUTION
FOR 58

PROBABILITY DENSITY

TEST STATISTIC T




Profiling pitfalls

e The profile likelihood approach is valid with some assumptions
o in particular, assumed that "nature" can be described by
the model with a single combination of values for the parameters

e Cannot just take large uncertainties hoping that they are enough to cover
for imperfect knowledge of S+B expectation!

A

This configuration will not be able to

Syst Y fit these points

\ +——-#__+_ +
B A SERC SR
S L following this
VSt :UoWn" nof’7/na/ trEJe distribution

=

e '"Flexibility" / "granularity" of the systematics model needs to be considered




Theory modeling systematics

e Experimental systematics nowadays often well suited for profile likelihood application:
o come from calibrations = gaussian constraint appropriate
o broken-down into several independent/uncorrelated components (JES, b-tagging...)
e Different situation for theory systematics:
o difficulty 1: what is the distribution of the subsidiary measurement?
o difficulty 2: what are the parameters of the systematic?
m can a combination of the included parameters describe any possible configuration?

m is any allowed value of the parameter physically meaningful?
See: https://indico.cern.ch/event/287744/contributions/1641261/attachments/535763/738679/Verkerke Statistics 3.pdf

o b
e The obviously tricky case: "two point" systematics © Pythia
o e.g. Herwigvs. Pythia as "parton shower and g
hadronization model uncertainty", %
as a single NP j‘% Herwig
m

Nuisance parameter Ogep,



https://indico.cern.ch/event/287744/contributions/1641261/attachments/535763/738679/Verkerke_Statistics_3.pdf

Theory modeling systematics Which prior?

. Box with )
One-bin case: Gaussian Gaussian wings Delta fuctions z
- reasonable to think that "Sherpa" g e \é&
can be between Herwig and Pythia bt fost «i\“‘\\\
GJ b 0015 0015
T ' Si
= ut 2
E ‘ X
C nmsj o | DMS_ oo
g | ) § “AO\'
5, O R T O D ¥
8 Pythia Herwig Pythia Pythia Herwig Pythia Pythia Herwig Pythia
m
Nuisance parameter Ogen Pre-fit / non-constrained NP could be fine

to cover for all possible models...
Shape case:

- Sherpa can be different from linear
combination of Py and Her...

... but is this level
of constraint ok?

Pythia Nature

g ;

S \(3 i

S oons - ?\l’{(\ Next yo ol @ Sherpa Pythia Nature

T 0.003 | ape

B generator

= 0.002 § A\

H \,\e‘"’l\g Nextyears (O R =heps
generator

Herwig



