

international atomic energy agency the **abdus salam** international centre for theoretical physics

Course on "Inverse Methods in Atmospheric Science" 1 - 12 October 2001

301/1332-2

"General Inverse Methods or Discrete Linear I11-Posed Problems"

Michael JACOBSEN Technical University of Denmark Brussels, Belgium

Please note: These are preliminary notes intended for internal distribution only.

General Inverse Methods ^{or} Discrete Linear Ill-Posed Problems

Michael Jacobsen (mj@imm.dtu.dk) PhD-student at Informatics and Mathematical Modelling Technical University of Denmark

1

Discrete Linear Ill-Posed Problems, Part 1 of 4 Setting the Stage

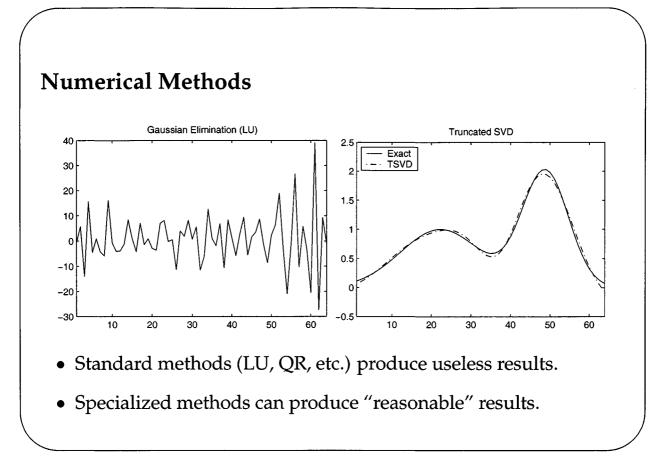
Definition:

- 1. a square or overdetermined system of linear algebraic equations
- 2. with a huge condition number
- 3. coming from the discretization of an inverse/ill-posed problem.

Our generic ill-posed problem:

A Fredholm integral equation of the first kind

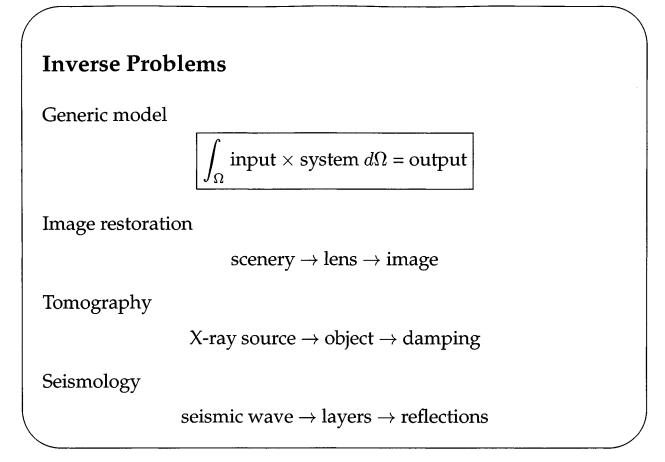
$$\int_0^1 K(s,t) f(t) dt = g(s) , \qquad 0 \le s \le 1 .$$

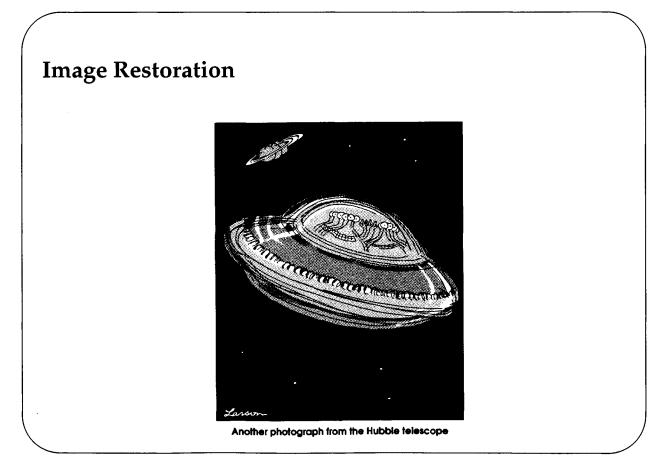


3

Some Important Questions

- How to discretize the integral equation?
- Why is the matrix always so ill conditioned?
- Why can we still compute an approximate solution?
- How can we compute it stably and efficiently?
- Is additional information available?
- How can we incorporate it in the solution scheme?
- How should we implement the numerical scheme?





Linear Inverse Problems

Fredholm integral equation of the first kind

$$\int_0^1 K(s,t) \, f(t) \, dt = g(s) \; .$$

Ditto with discrete right-hand side

$$\int_0^1 k_i(t) f(t) dt = b_i , \qquad i = 1, \dots, m .$$

with $k_i(t) = K(s_i, t)$ and $b_i = g(s_i)$.

Integration with K has a smoothing effect on f, i.e., g is smoother than f.

7

The Riemann-Lebesgue Lemma

Consider the function

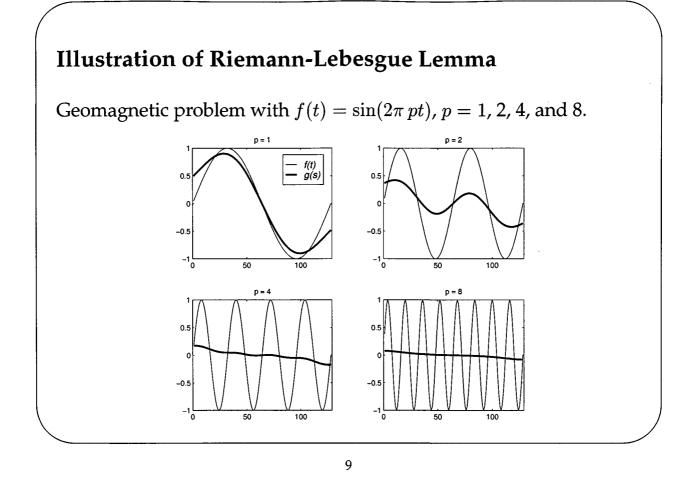
$$f(t) = \sin(2\pi pt)$$
, $p = 1, 2, ...$

then for $p \to \infty$ and "arbitrary" K we have

$$g(s) = \int_0^1 K(s,t) f(t) dt \to 0 .$$

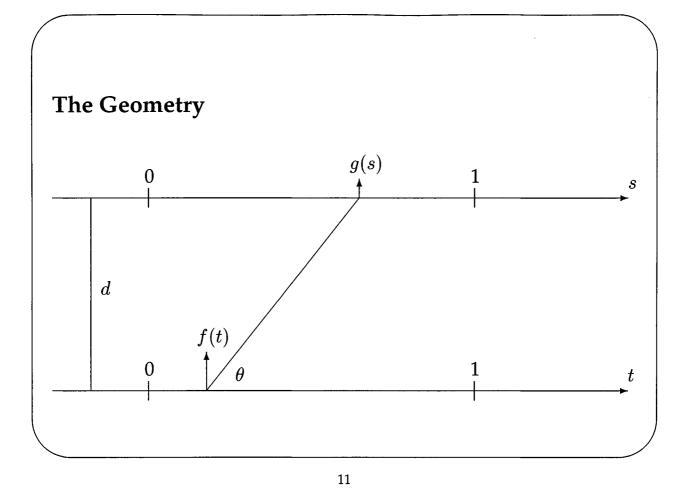
I.e., high frequencies are damped.

Therefore difficult to reconstruct f from g.



Our Model Problem: Geomagnetic Prospecting

- Iron ore deposit at depth *d* below surface from 0 to 1 on *t* axis.
- Measurements of vertical component of magnetic field *g*(*s*) at surface, from *a* to *b* on the *s* axis.
- Unknown: the vertical component of the field *f*(*t*) at the ore, from 0 to 1 on the *t* axis.



Setting Up the Integral Equation

The value of g(s) due to the part dt on the t axis

$$dg = rac{\sin heta}{r^2} f(t) \, dt \; ,$$

where $r = \sqrt{d^2 + (s - t)^2}$. Using that $\sin \theta = d/r$, we get

$$\frac{\sin\theta}{r^2} f(t) dt = \frac{d}{(d^2 + (s-t)^2)^{3/2}} f(t) dt .$$

The total value of g(s) for $a \leq s \leq b$ is therefore

$$g(s) = \int_0^1 \frac{d}{(d^2 + (s-t)^2)^{3/2}} f(t) dt$$

Our Integral Equation

Fredholm integral equation of the first kind:

$$\int_0^1 \frac{d}{(d^2 + (s-t)^2)^{3/2}} f(t) \, dt = g(s) \,, \qquad a \le s \le b \,.$$

The kernel K, which represents the model, is

$$K(s,t) = h(s-t) = \frac{d}{(d^2 + (s-t)^2)^{3/2}},$$

and the right-hand side g is what we are able to measure.

From K and g we want to compute f, i.e., an inverse problem.

13

Discretization: the Quadrature Method

Recall the simple quadrature rule

$$\int_0^1 \phi(t) \, dt \approx \sum_{j=1}^n w_j \, \phi(t_j) \; ,$$

with

 $w_j =$ weights, $t_j =$ abscissas, $j = 1, \ldots, n$.

Hence, we approximate the integral in our model as follows

$$\int_0^1 K(s,t) f(t) dt \approx \sum_{j=1}^n w_j K(s,t_j) \tilde{f}(t_j) \equiv \psi(s) .$$

Note that we have replaced f with \tilde{f} .

Quadrature Discretization, Cont.

To obtain a linear system of equations, we use collocation. I.e., we require that ψ equals g at selected points:

$$\psi(s_i) = g(s_i) \ , \qquad i = 1, \ldots, m \ .$$

Here, $g(s_i)$ are really the measured values of the function g. If m > n we obtain an overdetermined system. Here we assume m = n for simplicity:

$$\sum_{j=1}^{n} w_j K(s_i, t_j) \,\tilde{f}(t_j) = g(s_i) \,, \qquad i, j = 1, \dots, n \,.$$

15

The Discrete Problem in Matrix Form

Write out the last equation to obtain

$$\begin{pmatrix} w_1 K(s_1, t_1) & w_2 K(s_1, t_2) & \cdots & w_n K(s_1, t_n) \\ w_1 K(s_2, t_1) & w_2 K(s_2, t_2) & \cdots & w_n K(s_2, t_n) \\ \vdots & \vdots & & \vdots \\ w_1 K(s_n, t_1) & w_2 K(s_n, t_2) & \cdots & w_n K(s_n, t_n) \end{pmatrix} \begin{pmatrix} \tilde{f}(t_1) \\ \tilde{f}(t_2) \\ \vdots \\ \tilde{f}(t_n) \end{pmatrix} = \begin{pmatrix} g(s_1) \\ g(s_2) \\ \vdots \\ \tilde{f}(t_n) \end{pmatrix}$$

or simply A x = b (where A is $n \times n$) with

$$\left.\begin{array}{l}a_{ij} = w_j K(s_i, t_j)\\ x_j = \tilde{f}(t_j)\\ b_i = g(s_i)\end{array}\right\} \qquad i, j = 1, \dots, n \ .$$

A Special Case: the Midpoint Rule

Equidistant abscissas

$$t_j = (j - 0.5) n^{-1}, \qquad j = 1, \dots, n$$

with identical weights $w_j = n^{-1}$, j = 1, ..., n. Matrix elements:

$$a_{ij} = n^{-1} K(s_i, t_j) , \qquad i, j = 1, \dots, n .$$

17

The Singular Value Decomposition

Assume that *A* is $m \times n$ and, for simplicity, also that $m \ge n$:

$$A = U \Sigma V^T = \sum_{i=1}^n u_i \,\sigma_i \,v_i^T$$

where *U* and *V* consist of *singular vectors*

$$U = (u_1, \ldots, u_n), \qquad V = (v_1, \ldots, v_n)$$

with $U^T U = V^T V = I_n$, and the *singular values* satisfy

$$\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n), \qquad \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0.$$

Then $||A||_2 = \sigma_1$ and $cond(A) = ||A||_2 ||A^{\dagger}||_2 = \sigma_1/\sigma_n$.

Important SVD Relations

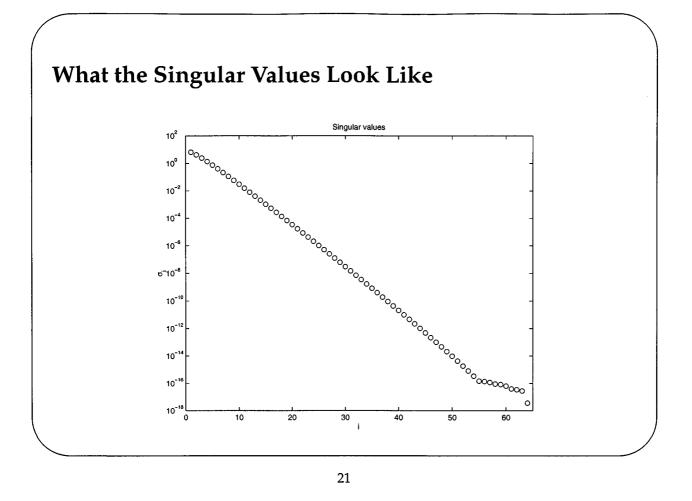
These equations are related to the (least squares) solution:

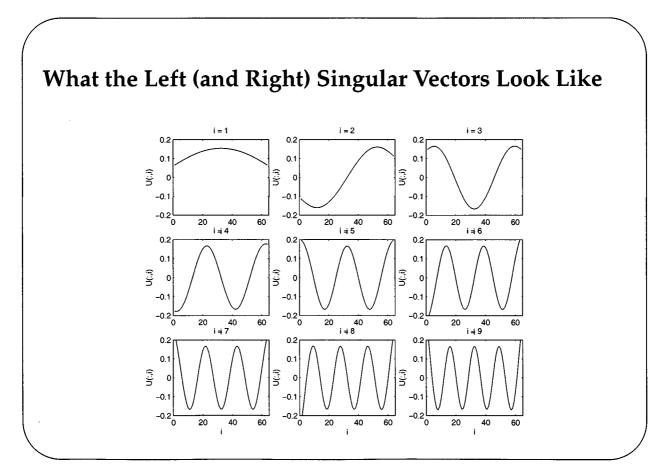
$$\begin{aligned} x &= \sum_{i=1}^{n} (v_i^T x) \, v_i \\ A \, x &= \sum_{i=1}^{n} \sigma_i \left(v_i^T x \right) u_i \,, \quad b = \sum_{i=1}^{n} (u_i^T b) \, u_i \\ A^{-1} b &= \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} \, v_i \,. \end{aligned}$$

19

Discrete Linear Ill-Posed Problems, Part 2 of 4 Regularization

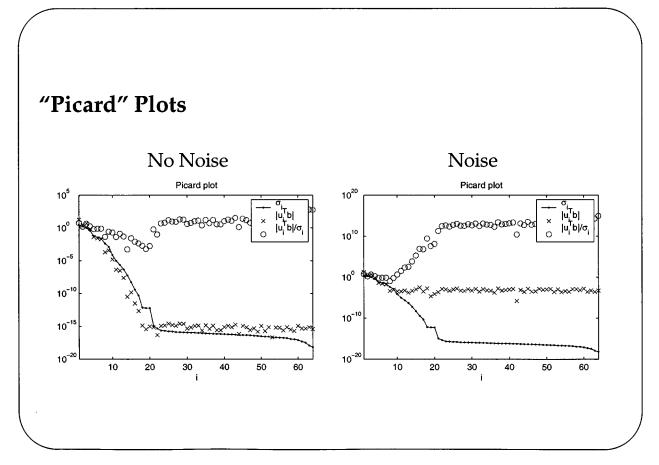
- 1. The SVD in plots
- 2. Regularization = stabilization
 - Filtering and/or side constraints
- 3. Tikhonov's method
 - Formulation and SVD analysis
- 4. Implementation of Tikhonov's method
- 5. Related methods
 - (a) Least squares with quadratic constraints
 - (b) Least squares with inequality constraints





Some Observations

- The singular values decay gradually to zero.
- No gap in the singular value spectrum.
- Condition number $cond(A) = "\infty."$
- Singular vectors have more oscillations as *i* increases.
- In this problem, # sign changes = i 1.



Regularization

Regularization = stabilization: how to deal with solution components corresponding to the small singular values.

Must – somehow – be filtered out or damped.

"Brute force approach": truncate the SVD expansion.

More sophisticated approaches are based on the residual norm

$$\rho(f) = \left\| \int_0^1 K(s,t) f(t) dt - g(s) \right\| ,$$

with some kind of side constraint(s) to the minimization.

25

Truncated SVD

Approximate *A* by the rank-*k* matrix

$$A_k = \sum_{i=1}^k u_i \, \sigma_i \, v_i^T \, , \quad k < n \; .$$

Formulation of the TSVD problem

 $\min \|x\|_2$ subject to $\|A_k x - b\|_2 = \min$.

The TSVD solution is

$$x_k = \sum_{i=1}^k \frac{u_i^T b}{\sigma_i} v_i \; .$$

But minimum 2-norm of x is often undesirable.

The Smoothing Norm

Let the smoothing norm $\omega(f)$ measure the "size" of the solution f. Example:

$$\omega(f)^2 = \int_0^1 |f^{(p)}(t)|^2 \, dt$$

- 1. Minimize $\rho(f)$ s.t. $\omega(f) \leq \delta$.
- 2. Minimize $\omega(f)$ s.t. $\rho(f) \leq \alpha$.
- 3. Tikhonov: min $\{\rho(f)^2 + \lambda^2 \omega(f)^2\}$.

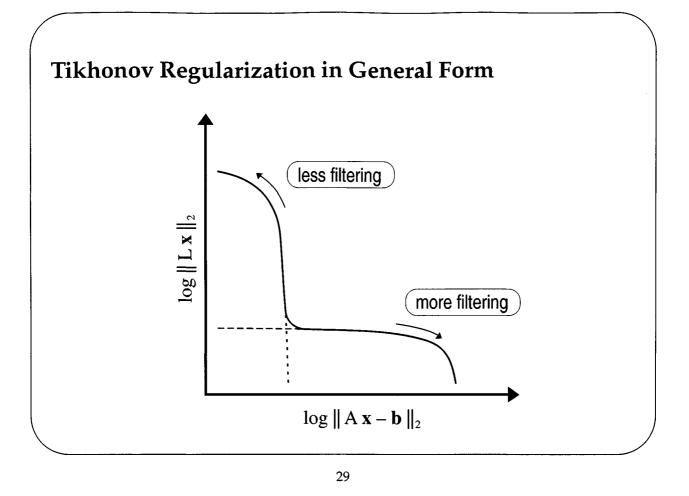
27

SVD Analysis of Discrete Tikhonov Regularization

Can write the discrete Tikhonov solution x_{λ} in terms of the SVD of A

$$x_{\lambda} = \sum_{i=1}^{n} \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2} \frac{u_i^T b}{\sigma_i} v_i$$

Filters components when $\lambda^2 > \sigma_i^2$, i.e., components with small σ_i .



Efficient Implementation The original formulation

min
$$\{ \|Ax - b\|_2^2 + \lambda^2 \|x\|_2^2 \}$$
.

Two alternative formulations

$$(A^{T}A + \lambda^{2}I) x = A^{T}b$$
$$\min \left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_{2}$$

The first shows that we have a linear problem. The second shows how to solve it stably:

- treat it as a least squares problem
- utilize the sparsity

Least Squares with a Quadratic Constraint

Alternative formulations of Tikhonov regularization

 $\begin{array}{ll} \min \|A \, x - b\|_2 & \text{subject to} & \|x - x^*\|_2 \leq \alpha \\ \min \|x - x^*\|_2 & \text{subject to} & \|A \, x - b\|_2 \leq \delta \,, \end{array}$

Corresponds to the intersection of the L-curve and the horizontal line $||x - x^*||_2 = \alpha$, or the vertical line $||Ax - b||_2 = \delta$.

Requires a root finder, such as Newton's method.

31

Inequality Constraints Three important constraints to the

solution: nonnegativity, monotonicity, convexity. All three can be put in the general form $G x \ge 0$:

 $x \ge 0$ (nonnegativity) $L_1 x \ge 0$ (monotonicity) $L_2 x \ge 0$ (convexity)

where L_1 and L_2 approximate the first and second derivative operators, respectively.

The resulting least squares problem is

$$\min \left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_{2} \quad \text{subject to} \quad G \, x \ge 0 \, .$$

Discrete Linear Ill-Posed Problems, Part 3 of 4 The Regularization Parameter

- 1. Perturbation and regularization error
- 2. The Picard condition
- 3. Parameter choice
 - (a) L-curve
 - (b) Generalized Cross Validation

33

Relation to the Regularization Parameter

The regularization parameter (λ or k) determines how many SVD components are included in the regularized solution. If we write

$$x_{reg} = A^{\#}b$$
 and $b = b_{exact} + e$,

then λ or k should *balance* the perturbation and regularization errors

$$x_{\text{exact}} - x_{\text{reg}} = A^{\dagger} b_{\text{exact}} - A^{\#} b$$
$$= (A^{\dagger} - A^{\#}) b_{\text{exact}} - A^{\#} e .$$

A typical situation in practice:

- The norm $||e||_2$ is not known.
- The errors are fixed (not practical to repeat measurements).

The Discrete Picard Condition

The relative decay of the singular values and the Fourier coefficients plays a major role!

The Discrete Picard Condition. Let τ_A denote the level at which the singular values of A level off. Then the discrete Picard condition is satisfied if, for all singular values $\sigma_i > \tau_A$, the corresponding coefficients $|u_i^T b_{\text{exact}}|$, on the average, decay to zero faster than the σ_i .

Can base the analysis on the moving geometric mean

$$\rho_i = \sigma_i^{-1} \left(\prod_{j=i-q}^{i+q} |u_i^T b| \right)^{1/(2q+1)}, \quad i = 1+q, \dots, n-q.$$

Properties of the L-Curve

Theorem 4.5.1. The semi-norm $||x_{\lambda}||_2$ is a monotonically decreasing convex function of the norm $||A x_{\lambda} - b||_2$.

Define x_{ls} = least squares solution and

$$\delta_0 = \| (I_m - U U^T) b \|_2$$
 (inconsistency measure)

Then

$$\delta_0 \le ||A x_{L,\lambda} - b||_2 \le ||b||_2$$

 $0 \le ||x_\lambda||_2 \le ||x_{\mathrm{ls}}||_2$.

More Properties of the L-curve

Any point (δ, η) on the L-curve is a solution to the following two inequality-constrained least squares problems:

 $\delta = \min ||Ax - b||_2 \quad \text{subject to} \quad ||x||_2 \le \eta$ $\eta = \min ||x||_2 \quad \text{subject to} \quad ||Ax - b||_2 \le \delta.$ Can study the L-curve by means of the expressions $||x_{\text{reg}}||_2^2 = \sum_{i=1}^p \left(f_i \frac{u_i^T b}{\sigma_i}\right)^2$ $||Ax_{\text{reg}} - b||_2^2 = \sum_{i=1}^p \left((1 - f_i) u_i^T b\right)^2 + \delta_0^2.$

37

The L-Shaped Appearance of the L-curve

Analysis: study L-curves for b_{exact} and e.

Result: the L-curve has two distinctly different parts.

- The horizontal part where the regularization errors dominate.
- The vertical part where the perturbation errors dominate.

The optimal regularization parameter must lie somewhere near the L-curve's corner.

The corner is located approximately at

$$\left(\|A x_{\lambda} - b\|_2, \|x_{\lambda}\|_2\right) \approx \left(\sqrt{\sigma_0^2 n}, \|x_{\text{exact}}\|_2\right)$$

Analysis of the L-Curve

Assume that b lies in the range of A, such that

 $u_i^T b = 0$, $i = n+1, \ldots, m$.

Can analyze the L-curve by means of the expressions

$$\|x_{\lambda}\|_{2}^{2} = \sum_{i=1}^{m} \left(\frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda^{2}} \frac{u_{i}^{T}b}{\sigma_{i}}\right)^{2}$$
$$\|b - A x_{\lambda}\|_{2}^{2} = \sum_{i=1}^{n} \left(\frac{\lambda^{2}}{\sigma_{i}^{2} + \lambda^{2}} u_{i}^{T}b\right)^{2}$$

Recall that $b = b_{\text{exact}} + e$.

39

The Flat and Steep Parts

The component b_{exact} dominates when λ is small:

$$\|x_{\lambda}\|_{2} \approx \|x_{\text{exact}}\|_{2}$$
$$\|b - A x_{\lambda}\|_{2}^{2} \approx \lambda^{4} \sum_{i=1}^{n} \left(\frac{u_{i}^{T} b}{\sigma_{i}^{2}}\right)^{2}$$

The error *e* dominates when λ is large $(u_i^T e \approx \pm \epsilon_0)$:

$$\|A^{\#}e\|_{2}^{2} \approx \lambda^{-4} \sum_{i=1}^{n} \left(\sigma_{i} u_{i}^{T}e\right)^{2} \approx \lambda^{-4} \epsilon_{0}^{2} \|A\|_{F}^{2}$$
$$|b - A A^{\#}e\|_{2}^{2} \approx \epsilon_{0}^{2} \sum_{i=1}^{n} \left(\frac{\lambda^{2}}{\sigma_{i}^{2} + \lambda^{2}}\right)^{2} \approx n \epsilon_{0}^{2}.$$

The Key Idea

The flat and the steep parts of the L-curve represent solutions that are dominated by regularization errors and perturbation errors.

The balance between these two errors must occur near the L-curve's corner.

The two parts – as well as the corner – are emphasized in log-log scale.

Log-log scale is insensitive to scalings of *A* and *b*.

41

The Curvature of the L-Curve

Want to derive an analytical expression for the L-curve's curvature κ in log-log scale; define

$$\eta = \|x_{\lambda}\|_{2}^{2}, \qquad
ho = \|A x_{\lambda} - b\|_{2}^{2}$$

and

 $\hat{\eta} = \log \eta \;, \qquad \hat{\rho} = \log \rho \;.$

Then the curvature is given by

$$\kappa = 2 \, rac{\hat{
ho}' \hat{\eta}'' - \hat{
ho}'' \hat{\eta}'}{((\hat{
ho}')^2 + (\hat{\eta}')^2)^{3/2}} \, .$$

Generalized Cross Validation (GCV)

Statistical approach: Seeks to minimize the expected value of

$$\|Ax - b^{\text{exact}}\|_2$$

Notice b^{exact} . Another viewpoint: If any measurement is left out then a solution from the remaining should predict the left out measurement.

Minimize the GCV-functional

$$\mathcal{G}(\lambda) = rac{\|Ax_{\lambda} - b\|_2^2}{\operatorname{trace}(I - AA^{\#})}$$

43

Experiences with GCV and the L-Curve

- The GCV method, on the average, leads to a slight oversmoothing which accounts for the increased average error, compared to the optimal results. Occasionally GCV undersmooths, leading to larger errors.
- The L-curve criterion consistently oversmooths—there is no $\lambda < \lambda_{opt}$. Hence, the average error is greater than that for GCV.
- The L-curve criterion is more *robust* than GCV, in the sense that the L-curve criterion never leads to large errors while GCV occasionally does.

Discrete Linear Ill-Posed Problems — Part 4 of 4 Iterative Methods

Two different classes of iterative methods.

• Iterative solution of a regularized problem, such as Tikhonov

$$\left(A^T A + \lambda^2 L^T L\right) x = A^T b .$$

Challenge: to construct a good preconditioner!

• Iterate on the unregularized system, e.g., on

$$A^T A x = A^T b$$

and use the iteration number as the regularization parameter!

45

Advantages of Iterative Methods

- The matrix *A* is never altered, only "touched" via matrix-vector multiplications *A x* and *A*^{*T*} *y*.
- The matrix *A* is not explicitly required we only need a "black box" that computes the action of *A* or the underlying operator.
- Produces a natural sequence of regularized solutions; stop when the solution is "satisfactory" (parameter choice).
- Atomic operations are easy to parallelize.

Disadvantages

• Convergence may be (very) slow.

ART or Kaczmarz's Method

Kaczmarz's method = algebraic reconstruction technique (ART):

$$x \leftarrow x + rac{b_i - a_i^T x}{\|a_i\|_2^2} a_i \ , \qquad i=1,\ldots,m \ ,$$

where b_i is the *i*th component *b*.

Mathematically equivalent to Gauss-Seidel's method for the problem

$$x = A^T y , \qquad A A^T y = b .$$

Used successfully in computerized tomography.

In general: fast initial convergence, then slow.

47

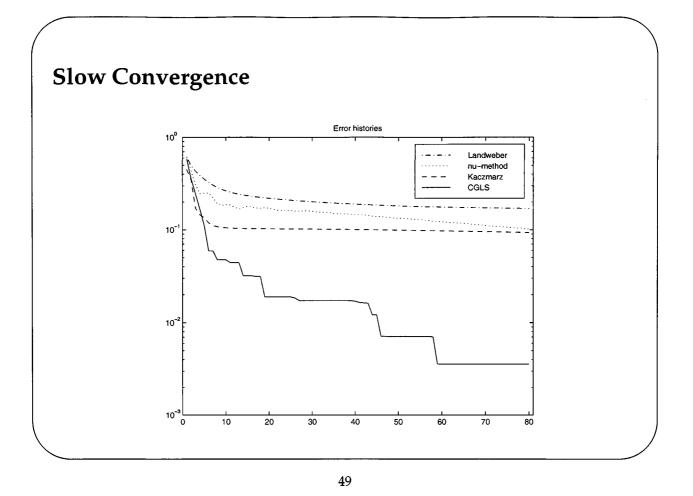
Conjugate Gradients

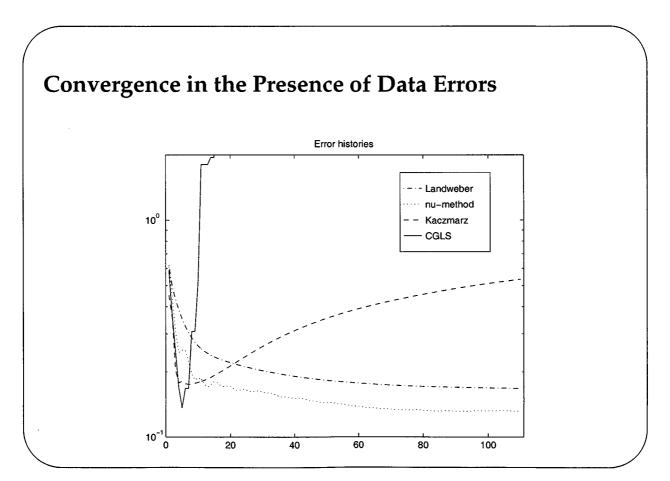
CGLS: CG applied to the normal equations $A^T A x = A^T b$:

$$\begin{aligned} \alpha_k &= \|A^T r^{(k-1)}\|_2^2 / \|A d^{(k-1)}\|_2^2 \\ x^{(k)} &= x^{(k-1)} + \alpha_k d^{(k-1)} \\ r^{(k)} &= r^{(k-1)} - \alpha_k A d^{(k-1)} \\ \beta_k &= \|A^T r^{(k)}\|_2^2 / \|A^T r^{(k-1)}\|_2^2 \\ d^{(k)} &= A^T r^{(k)} + \beta_k d^{(k-1)} \end{aligned}$$

where $r^{(k)}$ is the residual vector $r^{(k)} = b - A x^{(k)}$, and $d^{(k)}$ is an auxiliary *m*-vector.

Initialization: starting vector $x^{(0)}$, residual $r^{(0)} = b - A x^{(0)}$, and $d^{(0)} = A^T r^{(0)}$.





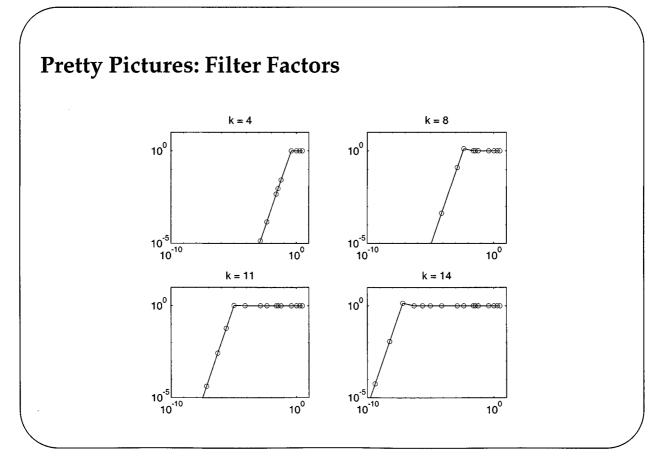
Semi-Convergence

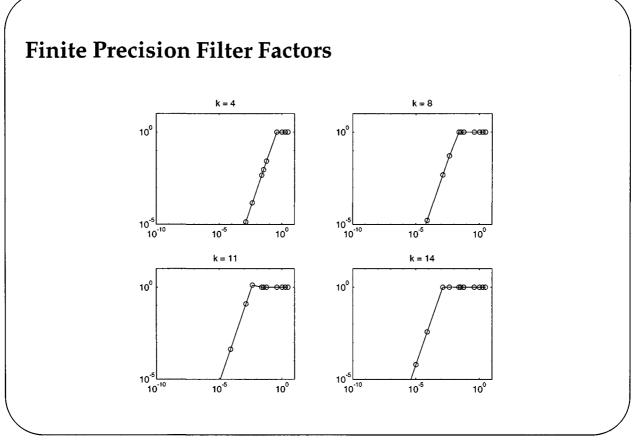
CGLS exhibits *semi-convergence*:

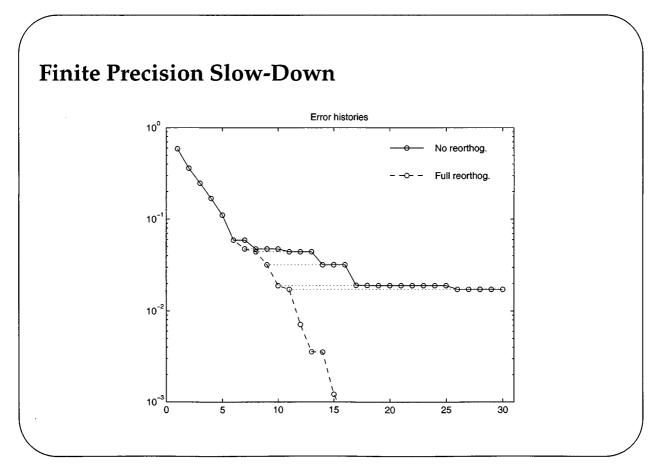
- initial convergence towards *x*_{exact},
- followed by (slow) convergence to $x_{ls} = A^{\dagger}b$.

Must stop at the end of the first stage!

A full understanding of this phenomenon is still lacking and is subject of current research.







References

Recommendable

- Per Christian Hansen: "Rank-Deficient and Discrete Ill-Posed Problems", SIAM, 1998
- Per Christian Hansen: "Regularization Tools Version 3.1" for Matlab 6.0
- Arnold Neumaier: "Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization", SIAM Review, 1998.

WWW:

- Per Christian Hansen: http://www.imm.dtu.dk/~pch
- Me: http://www.imm.dtu.dk/~mj

55