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1 Introduction

'Inverse theory' usually concerns retrieving the op-
timal profile from a given set of measurements.
However it is possible to extend the theory to in-
clude the determination of the optimal measure-
ments.

Traditionally, selection of spectral filters for ra-
diometers, or channels for multispectral instru-
ments, has been done qualitatively This describes
a quantitative approach to the problem.

The aim is to identify a region of spectrum giving
best compromise between

• Random errors ('Precision')

• Total error ('Accuracy'), including both ran-
dom and systematic errors

Other factors such as computing cost can also be
considered.

Using the simplified case of a column retrieval of
carbon monoxide from a nadir-viewing instrument,
three examples of spectral selection will be consid-
ered in detail

1. Selection of individual channels

2. Selection of a filter band

3. Selection of microwindows

Following that, there is a brief discussion of the
extension to profile retrievals.

2 Channel Selection

Fig. 1 illustrates the radiance spectrum that might
be measured by a downward-viewing instrument
viewing at 1 cm"1 resolution.
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Figure 1: Nadir-viewing radiance spectrum at
1 cm"1 resolution for an atmosphere containing CO
and H2O (lower curve) above a black surface at
285 K. The upper curve, offset by 50 nW/(cm2 st
cm"1), shows the contribution from CO alone.

This spectrum covers the main CO infrared ab-
sorption band 2100-2200 cm"1 so would be the ob-
vious region to investigate for retrieving CO. Since
the surface is warmer than the atmosphere, the CO
and H2O features appear as lower radiances than
transparent regions of the spectrum (opposite to
limb-sounding where the background is cold-space).

Defining each 1 cm"1 element of this spectrum
as a 'channel' (typical resolution obtainable from
grating spectrometers), how do we determine the
best channel(s) to use?

2.1 Single Channel: Precision

We can describe the radiance spectrum in Fig. 1
(CO+H2O) as a set of measurements yi each cor-
responding to a single 1 cm"1 channel. Each mea-
surement is linearly related to the retrieved param-
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Figure 2: Jacobians of the CO column amount for
each 1 cm"1 channel. Crosses and numbers indicate
the channels with the 9 largest values.

eter x (i.e., the CO column amount) by

which defines the elements ki of the Jacobian (or
Weighting Function) vector k. (The fact that re-
lationship is usually non-linear is not relevant here
since we are only considering the error analysis).
This relationship can be simply inverted to give an
estimate x of the CO column

* = f. (2)
Assuming all measurements have the same random
noise variance Se, the random error in the estimate
x is given by

crnd e / o \
x — (h "|2 ^ ^

For a single channel, then, the random error is
minimised by selecting the channel with the highest
sensitivity \ki\ to CO column (obviously!). Fig. 2
shows the Jacobian spectrum of k, and the figure ' 1 '
marks the 'best' channel in the sense of minimising
the random error.

2.2 Multiple Channels: Precision
A set of channels can be expressed as elements of
a vector y, with the corresponding Jacobians as
vector k

y = kx (4)

Since k is not a square matrix, we cannot directly
invert this to obtain x, but, for example, can use a
least-squares fit

x — (5)

(6)

which defines the 'Gain Vector7 (row vector) gT . If
the noise on each measurement is constant S€ and
uncorrelated, this solution has random variance

S]•rnd (7)

(8)

(9)

where Se is the diagonal matrix SeI. It can be
shown that the weights represented by g\ in Eq. 5
represent the minimum variance solution S£nd.

More obviously, perhaps, this is the same solu-
tion obtained by combining the estimates x ob-
tained from each channel individually (Eq. 2)
weighted by their variances (Eq. 3).

The minimum (random) variance solution for
m channels is obtained simply by combining the
measurements with the m largest Jacobians \ki\
(Fig. 2), which are the same as the m channels giv-
ing the most precise individual estimates of x.

Taking a noise variance of Se=(1.0 nW/(cm2 st
cm"1)2 , Fig. 3 shows the improvement in preci-
sion as channels are added in decreasing order of
sensitivity \ki\. Also shown is the curve ~ y/m
corresponding to the improvement expected if all
channels were as equally sensitive as the first chan-
nel selected. Out of a potential 301 channels, the
minimum variance is approached after about 50
channels are selected, corresponding to those which
cover the strongest absorption lines.

2.3 Single Channel: Accuracy
So far it has been assumed that the random noise S€

is the only source of uncertainty in the retrieval. As
illustrated in Fig. 1, water vapour is also a signifi-
cant absorber in this spectral region. If the water
vapour is not accurately known, this can contribute
to the uncertainty in modelling the radiance spec-
trum. If we assume a ±5% uncertainty in the esti-
mated total H2O column amount, this contributes
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Figure 3: Reduction in random error as channels Figure 4: Changes in nadir-viewing radiance spec-
are combined in order of decreasing sensitivity. The trum for a 5% decrease in H2O (top curve) or a
dotted line shows the \fm curve through the first 10% increase in CO (bottom curve),
point for comparison.

an error spectrum comparable in magnitude (Fig. 4)
to a 10% variation in CO column, and affects the
P-branch more than the R-branch.

For a single-channel retrieval (Eq. 2) x = yi/ki
so if Syi represents the value of the H2O error spec-
trum for measurement y^ this will contribute a re-
trieval error variance of

osys _ (10)

Combining this with the noise contribution (Eq. 3),
the total retrieval error will then be

(11)

So the best single channel would be the one which
produces the minimum value of 5*0t which now de-
pends not only on having a large sensitivity to CO
(large \ki\), but also on a low sensitivity to H2O
variability \5yi\ compared to the noise Se. In this
case it turns out to be the same as the first chan-
nel selected on the basis of minimising the random
error alone.

2.4 Combining Systematic Errors

Although for a single channel we can effectively re-
gard the contribution from H2O uncertainty as an
additional noise variance ($yi)2, when combining

two or more channels it has to be treated separately.
This is because the H2O errors are correlated: an
underestimate of the water-vapour column by 5%
will lead to a positive increase in radiance across
the whole spectrum.

Assuming that the retrieval weights each mea-
surement as

(12)
T

where g T may or may not be the weights used in
Eq. 5, the systematic component of the retrieval
error due to water-vapour is

6x — (13)

where Sy is a random vector with shape given by
the 5% H2O error spectrum but multiplied by an
unknown random scalar with mean 0 and standard
deviation 1.

The total error on x is then

(14)

2.5 Systematic Error Sources
By 'systematic' we mean any source of error which
is fully correlated between measurements and thus
can be represented as an error spectrum.

Here we consider only one source of systematic
error, but additional independent sources of sys-
tematic error j can be included in Eq. 14 as addi-



tional terms:

(15)

Effectively, any source of error in the measure-
ment or forward model that can be represented as
a 1-cr error spectrum and is independent of other
error sources can be included. (If error sources are
correlated they can, in principle, be decoupled into
independent components). Examples are

• Uncertainties in interfering species

• Calibration uncertainties (both radiometric
and spectral)

• Instrumental uncertainties (e.g., pointing)

• Forward model deficiencies (e.g., omitting non-
LTE)

2.6 Covariance Matrices
The systematic error component in the measure-
ments and the retrieval has been described in terms
of an error vector Syi although the measurement
total error covariance matrix Sy is a more natural
method of containing this information. The two are
related by:

Sv - (16)

(17)

where Se is the random noise covariance and E{...}
denotes 'expectation value'.

The retrieval total error is given by

CtOt — cr^G cr (~\R\

While this is more elegant than Eq. 15, it is neces-
sary to maintain the systematic errors as separate
vectors Syi so we shall continue to use the form in
Eq. 15.

2.7 Gain matrix
In Eqs. 13-18 we have not specified the elements of
gT that map each measurement into the retrieval.

We want to select channels to minimise the total
retrieval error 5*ot, but there are two possibilities

according to whether or not the gain matrix is spec-
ified.

If we are at liberty to choose our own gain matrix
then, in principle one could redefine the weights gi
that minimise S*ot.

However, if we are selecting channels for some
operational retrieval that is defined to weight mea-
surements by random noise then we need to use the
same form. This will be assumed in the following,
although see §4.4 on spectral masks.

2.8 Multiple Channels: Accuracy
We can now evaluate the total error for any combi-
nation of channels, but how do we determine which
channels to use? There are several possibilities

1. Select channels in sequence of increasing ran-
dom error (decreasing \ki\) as in §2.2

2. Determine total error of each channel regarded
as a single channel retrieval (Eq. 11), and select
in sequence of increasing value

3. Determine total error of each channel, as in
2, but after selecting channel with the small-
est value, evaluate increase in total error for
each channel, select whichever minimises total
error, reevaluate increase, and so on.

For the first method, the total error together with
the random and systematic error components are
plotted in Fig. 5. This method reaches a minimum
of 2.2% accuracy after about 20 channels and then
the systematic errors start to accumulate, increas-
ing the total error.

The results are compared in with the other two
methods in Fig. 6.

The first three selected points are the same for all
methods, but the other two methods remain close
for the first 10 points before the systematic errors
start to dominate the second method, but the third
method is clearly the best for any number of se-
lected channels. Between about 30-200 channels
points the accuracy is constant, reflecting the fact
that points with zero CO sensitivity (and therefore
zero weight) are introduced in preference to points
which improve the CO precision but at the expense
of accuracy due to H2O inteference. The selection
would stop well before this, but if all methods are
forced to use all 301 points then the accuracies nec-
essarily converge once again. The first 9 selected
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Figure 5: The change in accuracy as channels are
selected in the sequence which minimises random
error. Also plotted are the random (same as in
Fig. 3) and systematic components of the total er-

ror.
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Figure 7: Jacobians of the CO column amount
for each 1 cm"1 channel, as before. Crosses and
numbers indicate the best 9 channels (selected by
Method 3) allowing for a 5% uncertainty in water
vapour.

points for the third method are plotted in Fig. 7 —
note the shift to higher wavenumbers (smaller H2O
contamination) compared to the points selected for
method 1 (Fig. 2).

min = 2.0% '
min=1.8%
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Figure 6: CO column retrieval accuracy as a func-
tion of number of channels used for 3 different se-
lection schemes: (1) select to minimise random er-
ror (solid); (2) select by minimum initial total error
(dotted); (3) select by minimum iterated total error
(dashed).

2.9 Optimal Selection?

For m channels, the 'Optimal Selection' is the set
of channels which produces the minimum error.

Considering random errors alone this is straight-
forwards: the random error contribution from each
possible channel is evaluated, and the best m chan-
nels correspond to the smallest m random retrieval
errors.

Including systematic errors it is more compli-
cated. We can evaluate total error for each channel,
and the best single channel is the channel with the
smallest total error. However, for two channels we
cannot assume that the next best channel is the one
with the second smallest total error (Method#2),
or even that it is the one with the smallest increase
(Method#3) — there may be two completely differ-
ent channels which combine to give a smaller total
error.

The only method to be sure is to calculate the to-
tal error for all possible combinations of m channels
— usually too large a problem to be practical.



3 Filter Selection

A filter can be regarded as a sequence of adjacent
channels, all of which will be equally weighted (as-
suming a 'boxcar' filter response), and defined by
the two cut-off points.

For a filter spanning m channels i = j' + 1 . . . j +
m, the measurement y and Jacobian k are just the
averages over the component channels

j-\-m

3+rn

k = ±. V ki

(19)

(20)
2100 2200

Wavenumber [cm"']

Assuming that the noise variance is the sum of the
constant noise variances Se of each channel: Figure 8: Growth of filter for CO column retrieval

considering random errors alone.
j+m

s e = -^
m

(21)

giving S/N for constant

3.1 Filter: Precision
Considering just the random error, the retrieval er-
ror can be expressed as

5rnd
— (22)

So, starting with the single channel i with maxi-
mum \ki\ we can compare the improvement if adja-
cent channels are added, and move the filter edge
to include whichever leads to the greatest reduction
in 5£nd. The expansion of the filter edges is plotted
in Fig. 8

The first selected point is the same as the first
channel selected in Fig. 2, corresponding to the cen-
tre of the strongest P-branch line near 2100 cm"1.
After that, the upper edge first moves to 2140 cm"1

then the lower edge to 2075 cm"1 then the upper
edge again to encompass most of the R-branch, etc.

The change in retrieval precision as the filter is
expanded is plotted in Fig. 9.

The precision initially gets worse as the filter ex-
pands from 1-5 cm"1 width. While the filter ex-
pands across the gaps between CO lines (spacing

Figure 9: Change in precision for CO column as a
function of filter size in Fig. 8.



~5 cm"1), the signal contribution from CO is re-
duced but the noise continues to increase in propor-
tion to the square root of the filter width. The rip-
ple effect is apparent as more CO lines are included.
Finally a minimum (1.7%) is reached at a width of
around 140 cm"1. At this point (Fig. 9) most of
the strong lines in the CO band are included and
any further expansion in either direction introduces
more noise than signal.

Note: this finite limit does not occur with selec-
tion of individual channels (Fig. 3) since gi (Eq. 5)
reduces both signal and noise contributions for
channels with low signal contribution.

3.2 Filter: Accuracy
The 5% uncertainty in H2O column contributes an
error Sy to the measurement y given by:

2100 2200
Wavenumber [cm"']

Figure 10: Growth of filter for CO column retrieval
considering total error.

m
(23)

Analogously with the single channel case
(Eq. 11), the total retrieval error is:

= s™d + siys

1 /-*
r(*

(24)

(25)

Growing the filter edgewise as before, except this
time minimising 5*°* rather than just 5£nd, the re-
sults are shown in Figs. 10.

The first selected point is the same as before, but
this time the initial growth is generally towards
lower wavenumber rather than higher wavenum-
bers. However, Fig. 11 shows that the total error
never improves after the first point. It is apparent
that this is due to the increasing systematic error
component: having included many CO lines with
significant H2O contributions while the random er-
ror is dominant, it is not then possible to exclude
them so as to reduce the systematic error contribu-
tion.

This is another example of the difficulty in find-
ing 'optimal' solutions when considering systematic
errors: the initial selection makes no allowance for
the ultimate accuracy.

The 'best' filter can be obtained by considering
the error of all possible filter positions (involving

. /
/Systematic

10
Filter Width [cm"1]

Figure 11: Growth of filter for CO column retrieval
considering total error.
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Figure 12: Growth of filter for CO column retrieval
considering total error, as in Fig. 10, except starting
at the second best point (around 2170 cm"1)

300x300 trials in this limited example). More prac-
tically, one can try 'growing' a number of filters
from different starting positions and select the best.

Figs. 12 and 13 show the results of repeating the
selection but this time starting at the point with
the second lowest value of 5*ot. Since this hap-
pens to be in the less-contaminated R-branch, the
systematic errors are generally lower to start with
and as a result the total error reaches a lower min-
imum of 4.4% accuracy for a filter width of around
40 cm""1 encompassing most of the R-branch.

As well as growing a number of 'trial' filters, one
can also weight the initial selection against system-
atic errors by growing towards the side which, in-
stead of minimising 5*ot, minimises

(26)

for a > 1. Using a value a = 3 promotes the R-
branch channel from second to first selected point
and the filter subsequently grows in a similar fash-
ion, although moving the higher rather than lower
wavenumber boundary more to start with (Fig. 14).

Fig. 15 shows a slightly lower minimum (4.1%),
achieved at 20 cm""1 width, but the curves are all
similar to the previous example starting at the same
point. Given sufficient number of trials with differ-
ent starting points, further improvements may still
be found.

100

10

1

-

Systematic

/ • s _ I

&

Total

/

. . . i

}
min = 4.4% r^j ~

Random '•••--•:

.10 100
Filter Width [cm"1]

Figure 13: Accuracy as a function of filter width
for filter grown in Fig. 12.

2100
Wavenumber [err

Figure 14: Growth of filter for CO column retrieval
considering total error, as in Fig. 10, except penal-
ising systematic errors.
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Figure 15: Accuracy as a function of filter width
for filter grown in Fig. 14.

4 Microwindow Selection
A microwindow can be regarded as a set of adja-
cent channels. However, unlike filters, individual
weights can be applied to each channel. The ad-
vantage of selecting adjacent channels is that an
additional component can be fitted within each mi-
crowindow, e.g., surface radiance (nadir sounding)
or atmospheric continuum (limb sounding) — any-
thing whose source can be assumed spectrally flat
over the width of the microwindow. This is use-
ful for eliminating smoothly varying but unknown
terms which affect the absolute radiance.

Fig. 16 shows the Jacobian spectrum for the sur-
face emission. Although the surface emission is
spectrally smooth (Planck function), its Jacobian
has significant structure corresponding to the posi-
tions of strong H2O lines.

4.1 Single Microwindow: Precision

To select the first microwindow, there are now two
unknowns: the CO column x\ and the surface emis-
sion X2 in vector x. To solve this we can consider
retrieving from pairs of adjacent spectral points
y = (yuyi+i):

— ^XV JVJ x

x = Gy

S™ = GSeG

where K is initially a 2x2 matrix.

(27)

(28)

(29)

Figure 16: Changes in nadir-viewing radiance spec-
trum for a 0.1K increase in surface temperature
(top curve) compared with a 5 % increase in H2O
column (bottom curve).

We are only interested in the precision with
which the CO column can be retrieved — not the
surface term — so we need only consider minimis-
ing the first diagonal element of S™d (correspond-
ing to the random variance of the CO retrieval).

Having found the best 2-element microwindow,
we then investigate expanding either edge in turn
by adding an extra element to either end of the y
vector in Eq. 28, i.e., additional rows to the ma-
trix K and expand the microwindow in whichever
direction gives the best improvement or some max-
imum specified width is reached. Note that G is
initially K" 1 (2x2) but, unlike K"1 , G remains
well-defined — the least squares fit solution — as
the first dimension of K is increased as more mea-
surements are added to the microwindow.

The maximum width is the range over which
we believe our assumption of a spectrally flat sur-
face term is valid, in this case taken as 10 cm"1.
Fig. 17 shows the first microwindow is, not surpris-
ingly, selected around the strong P-branch line at
2100 cm"1. Selecting for precision, this will always
grow to the maximum width.

4.2 Multiple Microwindows:
sion

Preci-

Having selected the first microwindow, selection
of the second and subsequent microwindows is
not quite so straightforwards since every time we
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Figure 17: Selected microwindows for CO column
retrieval minimising random error. Numbers indi-
cate the first 9 microwindows selected.

Figure 18: Precision of CO column retrieval as mi-
crowindows are added. The vertical ticks indicate
the cumulative width for each new microwindow,
the numbers indicate the first 9 microwindows.

add a microwindow we add an extra retrieved pa-
rameter Xj corresponding to the surface term in
microwindow#(j—1), so that the Jacobian matrix
K becomes unwieldy (previously this was only a
vector k).

Fortunately, 'Sequential Estimation' provides a
convenient method of updating the random covari-
ance considering only the Jacobian matrix for mi-
crowindow at a time. Given S™d from the first
microwindow, start by setting an a priori estimate
for the next microwindow covariance S™d

:;rnd / (5™d)u 0 \

V o « > ;
(30)

where the second diagonal element is a large num-
ber, corresponding to no prior knowledge of the
surface term in the next microwindow. As mea-
surements for the next microwindow are added the
covariance is updated as follows:

G = S*ndKT (S,

S™d = ( I - G K ) S :
T

irnd

(31)

(32)

where K only contains the measurements being
considered for the current microwindow. Having
completed the microwindow, S™d is updated as be-
fore, ready for the next microwindow. Of course,
this could also be used to select the first microwin-
dow with (Sa) n also set large.

Applying this, the additional microwindows
shown in Fig. 17 are selected. As expected the first

9 microwindows are concentrated around the strong
CO lines and most grow to their maximum allowed
width of 10 cm"1. The only limitation on reaching
maximum width is the overlap with points already
selected for earlier microwindows.

The improvement in precision is plotted in
Fig. 18. Note that this is not quite as good as the
channel-by-channel selection, reaching 1.5% rather
than 1.4% (Fig. 3). This is because some informa-
tion from the measurements is required to retrieve
the surface term for each microwindow.

4.3 Multiple Microwindows:
racy

Accu-

For a single microwindow, the total error is given
by

- GSeG
T + (G*y) (G6yf (33)

Where G is as defined in Eq. 27. This only dif-
fers from the multiple-channel case (Eq. 14) in that
instead of the single row vector g T there is now
the 2-row matrix G to accommodate the two re-
trieved parameters. Again, only the first diagonal
element of S .̂ot needs to be considered. This shifts
the first selected microwindow from the P-branch
to the strongest line in the R-branch (Fig. 19).

For the second and subsequent microwindows
we can use the 'Sequential Estimation' equations
(Eqs. 31 and 32) once again, although it is nec-
essary to introduce modifications to track the sys-

10
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Figure 19: Selected microwindows for CO column Figure 20: Accuracy of CO column retrieval as mi-
retrieval minimising total error. crowindows are added.

tematic errors through the a priori estimate 5a. (ini-
tially set to 0)

<5x* = G<5y + (I - GK) SS (34)

= grnd

Applying this, the selected microwindows are
shown in Fig. 19. Compared to the previous case
minimising only the random error (Fig. 17) the first
few microwindows are still concentrated around the
strong CO lines but in this case they often tend to
be smaller than the maximum allowed width.

The accuracy is plotted as a function of selection
in Fig. 20. This shows remarkably small system-
atic errors, and a total error which is almost en-
tirely dominated by random error. Using all the
selected microwindows, an accuracy of 1.6% is ob-
tained compared to 1.8% for individual channels
(Fig. 6, Method#3) and 4.1% with a filter (Fig. 15).

There are three explanations for this

1. The algorithm has selected microwindows
where the H2O error spectrum is absorbed into
the surface emission retrieval rather than the
CO retrieval.

2. Instead of there always being a negative cor-
relation (overestimate H2O =>- underestimate
CO), a dual CO-surface retrieval allows both
signs of correlation between H2O and CO

3. In this particular example, there is a strong an-
ticorrelation between the surface emission Ja-
cobian and the H2O error spectrum (Fig. 16)

which assists the removal of H2O errors (effec-
tively performing an H2O retrieval)

The first two points are generally true, but to
achieve the second effect it is necessary to have a
fixed sequence of microwindows, not just an arbi-
trary selection from a set of individually 'good' mi-
crowindows. Such a selection can probably only be
made by computer.

4.4 Spectral Masks
Selecting for precision, microwindow growth is lim-
ited only by the maximum width allowed, or by
encountering channels previously selected for other
microwindows. This is because the Gain Matrix G
(Eqs. 27 or 31) optimally weights each channel by
its random noise and Jacobian so as to maximise
precision.

However, selecting for accuracy using the same
Gain Matrix, it is possible that while including the
channel reduces the random error, the total error
increases due to the larger systematic errors associ-
ated with the channel: the channel effectively con-
tributes 'negative information', so the microwindow
growth stops rather than include it.

If we are not allowed to change the Gain Matrix
of the retrieval, there is still an option to 'mask'
the channel, i.e., remove it from the measurement
vector completely, and continue to grow the mi-
crowindow up to its maximum width. This effec-
tively applies zero weight to the channel instead of
the Gain Matrix weight.

11



5 Profile Retrievals

When retrieving a profile rather than a simple
scalar, there are two problems

1. Finding a retrieval model which works for any
number of unknowns

2. Finding a single scalar parameter to minimise

5.1 Retrieval Model
Up until now the starting point for each selection
has been based on inverting an equation of the
form:

x = K- L y (36)

where K is either a scalar or (for microwindow se-
lection) a 2 x 2 matrix, and the number of measure-
ments in y is the same as the number of retrieved
parameters in x.

To retrieve a profile where x has dimension n >
10, it is probably impractical simply to form y from
sets of n consecutive measurements and expect that
K is non-singular (i.e., that the n measurements
each contain some unique information on each of
the n retrieved parameters).

'Optimal Estimation' turns out to be a conve-
nient solution: start with some a priori estimate
of the (random) covariance Sa , then apply the
'Sequential Estimation' equations Eqs 31,32 and
34,35. This allows selection to start with a single
channel for any number of retrieved parameters.

5.2 Figure of Merit
Assuming that we can calculate the retrieval covari-
ance Sx how do we compare two alternative covari-
ances (each containing n x n elements) and decide
which is better?

For example, consider three covariance matrices
that could describe a 2-level profile retrieval:

Using the trace (sum of diagonal elements), A ap-
pears best (=5), followed by B (=6) then C (=7).

Using the product of diagonal elements, B is best
(=5), followed by A (=6) and C (-10).

Using the determinant, C is best (=1), followed
by B (=5) and A (=6).

Unlike with the scalar retrieval, there is not a
unique choice.

5.3 Information Content
The Shannon information content of a retrieval is
a reasonable figure of merit to apply. It is defined
by

|S«|
(37)

where | . . . | signifies determinant and Sa represents
the covariance of the a priori information, i.e.,
how well the profile is known before the retrieval.
For example, if we have 10-level temperature pro-
file and we knew the temperature at each level to
±10 K before the retrieval, and after the retrieval
we knew the temperature at each level to ±5 K,
this would yield a value H = 10. if is measured in
'bits', reducing the uncertainty at each profile level
by a factor 2 corresponding to 1 'bit' of information.

Really, this is just weighting by the determinant.
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