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Overview
Key elements of an NWP system

- Forecast model

- observations

- data assimilation

Satellite data used in NWP

- sounding data

- surface (window) data

- active data

Data assimilation systems

- optimal interpolation (retrievals)

- Variational (3D/4D) methods (direct radiance assimilation)

Research issues

- background error covariances

- systematic error

- treatment of cloud and the surface



ECMWF:

A European organisation with headquarters in the UK

Established by Convention in force from November 1975

Principal objectives:

- development of methods for forecasting weather beyond two days ahead
- collection and storage of appropriate meteorological data
- daily production and distribution of forecasts to the Member States
- provision of archival/retrieval facilities to the Member States
- provision of computational resources to the Member States

Staff of about 200

Member States:
Belgium
Denmark
Germany
Spain
France
Greece
Ireland
Italy
The Netherlands

Co-operation agreements with:

Croatia
Czech Republic

Iceland

Norway
Austria
Portugal
Switzerland
Finland
Sweden
Turkey
United Kingdom

Hungary
Slovenia



ECMWF activities

Medium-range forecasts of the state of the atmosphere,
land and ocean-waves to ten days ahead

- Deterministic (single high-resolution forecast)
- Probabilistic (ensemble of perturbed lower-resolution

forecasts)

Boundary conditions (initial conditions) for Member States'
short-range regional forecasting systems

Seasonal forecasts (including ocean circulation) to six
months ahead

Re-analyses of historical observations (for climate
applications)

Key elements of the NWP system

• The forecast model time evolves fields of geophysical
parameters (e.g. T/Q/U/V/O3) following the laws of
thermodynamics and chemistry

• The initial conditions used to start the forecast model are
provided by the analysis

• The analysis is generated from observations relating to
the geophysical parameters combined with a priori
background information (usually a short-range forecast
from the previous analysis).

•This combination process is known as data assimilation



The ECMWF forecast model (1)
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The Data Assimilation Process

Observations
Forecast t^sie

the cvo ixstton of t!ie
forecast model

•12 o f D OOIC SUT&

Observations Used in NWP
/« s/fw (conventional)

• SYNOP(surface)
- Ps,Wind-10m,RH-2m

• AIREP
- Wind, Temp

• DRIBU(drifting buoy)
- Ps, Wind-10m

• TEMP(balloon))
- Wind, Temp, Spec Humidity

• DROPSONDE
- Wind, Temp

• PILOT/Profiler
Wir»/~l

— wind

• PAOB
- Ps

Remotelv sensed (satellite)

• Polar orbiting platforms
- HIRS
- MSU
- AMSU-A/B
- ssu
- SSM/I(S)

- QuickScat
- ERS-scat

AIRS (soon)

• Geostationary platforms
- METEOSAT (5/7)

- GOES(E/W)

- GMS



Coverage of in-situ measurements
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Coverage of satellite-based measurements
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The importance of satellite data

The limited coverage of in-situ observations means
that satellite data are extremely important for global
numerical weather prediction, particularly in the
medium-range

Improvements in the quality of satellite observations and the
techniques developed to assimilate the data have resulted in
satellites now being of equal or greater importance than
radiosonde observations even in data dense regions of the
Northern Hemisphere

Impact of withdrawing different types of
observations on forecast quality

Anomaly correlation of 500hPa height for Southern Hemisphere
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Impact of withdrawing different types of
observations on forecast quality

Anomaly correlation of 500hPa height for Northern Hemisphere
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Break
So satellite data are very important... what do they measure

What do satellite instruments measure?

They DO NOT measure TEMPERATURE
They DO NOT measure HUMIDITY
They DO NOT measure WIND

Satellite instruments (active and passive) simply measure the radiance L that
reaches the top of the atmosphere at frequency <. The measured radiance is
related to geophysical atmospheric variables by the radiative transfer equation
(covered in previous lectures).

'
Surface Cloud/rain

n ' reflection ' scattering "•" contribution



FREQUENCY SELECTION

By selecting radiation at different frequencies or CHANNELS a satellite
instrument can provide information on a range of geophysical variables.

In general, the channels currently used for NWP applications may be
considered as one of 3 different types

• Atmospheric nadir sounding channels (passive instruments)

• Surface sensing channels (passive instruments)

• Surface sensing channels (active instruments)

In practice (and often despite their name) real satellite instruments have a
combination of both atmospheric sounding and surface sensing channels

ATMOSPHERIC SOUNDING CHANNELS

These channels are located in parts of the infra-red and microwave spectrum for which the
main contribution to the measured radiance is described by:

That is they avoid frequencies for which surface radiation and cloud contributions are important.

They are primarily used to obtain information about atmospheric temperature and humidity.

AMSUA-channel 5 (53GHz) HIRS-channel 12 (6.7micron)

10



SURFACE SENSING CHANNELS (PASSIVE)
These are located in window regions of the infra-red and microwave spectrum at frequencies
where there is very little interaction with the atmosphere and the main contribution
to the measured radiance is:

L(v) = Surface emission [ Tsurf, £(u?v) ]

These are primarily used to obtain information on the surface temperature and quantities that
influence the surface emissivity such as wind (ocean) and vegetation (land). They can also be
used to obtain information on clouds/rain and cloud movements (to provide wind information)

SSM/I channel 7 (89GHz) HIRS channel 8 (11 microns)

ACTIVE INSTRUMENTS

These (e.g. scatterometers) illuminate the surface in window parts of the spectrum such that

L(v) = Surface scattering [ £(u,v) ]

These primarily provide information on ocean winds (via emissivity) without Tsurf ambiguity

Quick-scat
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ATMOSPHERIC TEMPERATURE SOUNDING

If radiation is selected in a sounding channel for which

And we define a function K(z) = —
\_dz\

the primary absorber being a well mixed gas (e.g. oxygen or CO2)
it can be seen that the measured radiance is essentially a weighted
average of the atmospheric temperature profile, or

The function K(z) that defines this vertical average is known as a
WEIGHTING FUNCTION

IDEAL WEIGHTING FUNCTIONS

K(z)

If the weighting function was a
delta-function, this would mean that
the measured radiance is sensitive
to the temperature at a single level
in the atmosphere.

If the weighting function was a
box-car function, this would mean
that the measured radiance was
sensitive to the mean temperature
between two atmospheric levels

K(z)
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REAL ATMOSPHERIC WEIGHTING FUNCTIONS

High in the atmosphere very
little radiation is emitted, but
most will reach the top of the
atmosphere

At some level there is an
optimal balance between the
amount of radiation emitted
and the amount reaching the
top of the atmosphere

A lot of radiation is emitted from the
dense lower atmosphere, but very
little survives to the top of the
atmosphere due to absorption.

K(z)

REAL WEIGHTING FUNCTIONS continued.,.

• The altitude at which the peak of the
weighting function occurs depends on the
strength of absorption for a given channel

•Channels in parts of the spectrum where the
absorption is strong (e.g. near the centre of
CO2 or O2 lines ) peak high in the
atmosphere

•Channels in parts of the spectrum where the
absorption is weak (e.g. in the wings of CO2
O2 lines) peak low in the atmosphere

By selecting a number of channels with varying absorption strengths
we sample the atmospheric temperature at different altitudes

13



Break

So we know what satellites measure, how do they fit in to NWP..?

The data assimilation problem (1)

Background information

Analysis

Observations

Initial conditiono
for next forecast

14



The data assimilation problem (2)

The analysis is an optimal combination of a priori
background information and new observed data.

It is optimal in that it is the Maximum Liklehood solution
and respects the uncertainty in both sources of information

Using Bayes theory the analysis becomes the state of the
atmosphere that minimizes a COST or PENALTY
FUNCTION

It is completely analogous to the inverse problem solved for
satellite retrievals.

The data assimilation problem (3)
The COST function

Vector containing
all observed^ata

Observation
error cpvariancecpv

J(x) = (x -xb)T B ' (x - M) + Cy - H[ jc])r k 1 ( v -U[xJ)

Multivariate 3 or 4
dimensional state of
the atmosphere
(background estimate
shown with subscript b

Background error
covariance

Operator mapping
atmospheric state
to observation space

15



The data assimilation problem (4)
In the past linear (one-step) implementations of Optimal
Interpolation (01) have been used to produce the analysis

Apart from the need to divide the globe in to small boxes (to
reduce the dimensionality of the problem) another limitation of
this approach was that the observations had to be linearly
related to the analysis variables (T/Q/U/V)

This was fine for in-situ data (e.g. radiosondes )

But satellite radiance data had to be converted to retrievals of
(T/Q) before being supplied to the assimilation system

EXTRACTING ATMOSPHERIC
TEMPERATURE FROM RADIANCE
MEASUREMENTS

If we know the entire atmospheric temperature profile T(z)
then we can compute (uniquely) the radiances a sounding
instrument would measure using the radiative transfer
equation. This is sometimes known as the forward
problem

In order to extract or retrieve the atmospheric temperature
profile from a set of measured radiances we must solve what
is known as the inverse problem

Unfortunately with a finite number of channels and
weighting functions that are generally broad, the inverse
problem is formally ill-posed (an infinite number of
different temperature profiles could give the same
measured radiances)

See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote
measurements of thermal radiation. Rev. Geophys .Space. Phys. 14, 609-624

16



RETRIEVAL ALGORITHMS

Three different types of retrieval have been used in NWP:

•Exact or least squares solutions to reduced inverse problems

•Regression (statistical / library search / neural net) methods

•Forecast background methods

The retrieval schemes differ in the way prior information is used
to supplement the information of the measured radiances and
solve the inverse problem !

1. Solutions to reduced inverse problems
We acknowledge that there is a limited amount of information in the measured radiances and re-formulate
the ill-posed inverse problem in terms of a reduced number of unknown variables that can be solved for
uniquely.

E.g. deep mean layer temperatures orEOF's (eigenfunctions) of the temperature profile

Unfortunately these can produce ill-conditioned solutions if we attempt to retain enough degrees of freedom
required for NWP and we subjectively impose a reduced representation for which it is difficult to quantify
the accuracy (this is very important for NWP).

2. Regression and Library search methods
Using a sample of temperature profiles matched (collocated) with a sample of radiance observations, a
statistical relationship is derived that predicts atmospheric temperature from the measured radiance.

(e.g. NESDIS operational retrievals or the 31 approach)

These tend to be limited by the statistical characteristics of the training sample / profile library and will not
produce physically important features if they are statistically rare in the training sample.

3. Forecast background methods
These use an explicit background or first-guess profile from a short range forecast and perform
optimal adjustments using the measured radiances. The adjustments minimize a cost function

17



Forecast Background Retrievals
We formulate a ID cost function (analogous to the 3D/4D cost
function defined for the analysis

J(x) = (x-p)1 B (x

1D profiles of
T / Q / O 3

(y •R-'CF-]

Vector of
measured
radiances

Radiative
transfer
operator

And minimize with a single step solution
(if channels / data are selected to avoid
nonlinear effects

xa = BH r [HBH T + R ] -' (y - H[xb]) Or iterate towards a solution if H
incorporates nonlinear effects (e.g.cloud)

Xn+i =Xb+Wn[y—H(Xn)—H(Xn)(Xb—Xn)

OR

Forecast Background Retrievals
These have a number of advantages that make them more suitable for NWF than
other methods

•The prior information (short-range forecast) is very accurate (more than statistical
climatology) which improves retrieval accuracy.

•The prior information contains information about physically important features
such as fronts, inversions and the tropopause.

•The error covariance of the prior information and resulting retrieval is better
known (crucial for the subsequent assimilation process).

•The retrieval may be considered an intermediate step towards the direct
assimilation, of radiances (no external sources of prior information)

BUT the error characteristics of the retrieval may be complicated
Hue, to its cnrmlatinn with.the forecast background./n^edtAvirelA
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Assimilation of satellite retrievals
in NWP

Whatever approach is adopted to convert radiance measurements to
temperature, humidity etc...The use of satellite retrievals is problematic for
two main reasons:

1) They retain characteristics of the a priori information that are very
difficult to remove.

2) They generally have complicated error structures that are difficult to
model in the subsequent assimilation (e.g. strong correlations between levels
and variables)

For these reasons the use of retrievals in global NWP has generally
been superceded by the direct assimilation of radiance data.

Direct assimilation of radiances in NWP
Variational analysis methods such as 3DVAR and 4DVAR allow the direct
assimilation of radiance observations (without the need for and explicit retrieval
step).

This is because such methods do NOT require a linear relationship between the
observed quantity (radiance) and the analysis variables (T/Q..)

The retrieval (or inversion) is essentially incorporated within the main analysis
by finding the 3D or 4D state of the atmosphere that minimizes the cost function

The forecast background still provides the prior information to supplement the
radiances, but the inversion is further constrained by the simultaneous
assimilation of other observations.

The cost function is minimized by iteration using efficient adjoint techniques
but the process is still expensive and requires super-computers

19



Implementation of 3DVAR

The vector x is a full global 3D vector describing the state of the atmosphere
and has a dimension in excess of 106. In practice the analysis variables are
scaled and remapped to balanced variables for which the background error
covariance reduces to a computationally managable block diagonal form.

These reduced covariances are estimated offline (see later)

The incremental approach is adopted where the comparison with observations is
done at full resolution, but the minimization (and gradient calculations) at a
reduced resolution.

The operator H (observation operator) for in-situ data is simply a spatial
interpolation, but for radiance data includes the full radiative transfer operator.

Additional constraints/c are imposed upon the solution by the inclusion of an
additional cost function term to e.g. filter gravity waves.

Implementation of 4DVAR

Instead of finding a single 3D atmospheric state that represents
observations over a given time window (e.g. 6hrs)? the 4DVAR
searches for a time series or trajectory of atmospheric states that
fits the Q.bs.eryatiQns at the time they were actually measured.

We minimize the cost function through all times slots / :

= (x-XbfB~l(x-xb)

Subject to the hard constraint that the states follow the model equations

20



Schematic representation of 4DVAR

X

f
,tJ;

4

Special characteristics of 4DVAR

• Better use is made of observations far from the center of the
assimilation time window (particularly important for satellite data)

•The inversion of the radiance data is constrained by the
background and its covariance, but also by the constraint that
radiance observations at different times force adjustments that are
consistent with the forecast model physics and dynamics

•In fitting the radiances, the 4DVAR has the option of advecting
warm (or moist) air and thus causes radiance data can cause wind
adjustments during the assimilation

21



Direct assimilation of radiances
By the direct assimilation of radiances we avoid the problem of
assimilating retrievals with complicated error structures.

BUT

There are still a number of significant problems that must be handled

•The specification of the background error covariance

•The specification of the radiance error co variance

•Other ambiguities in the data

•Systematic radiance and RT error

Break
So much for the theory, what are the main issues ...?

22



Specifying the background error covariance
We can think of the radiance data "seeing" and correcting errors
in the background state during the data assimilation process.

Difficult to correct Easy to correct

RETRIEVAL / ANALYSIS PERFORMANCE

Sharp / anti-correlated
background errors

Error standard deviation (K)

Broad / deep correlated
background error ^

Error standard deviation (K)

23



ESTIMATING FORECAST ERROR CORRELATIONS

If the background errors are mis-specified in the retrieval / analysis
this can lead to a complete mis-interpretation of the radiance information
and badly damage the analysis (indeed producing a analysis with larger
errors than the background state !)

Thus accurate estimation of B is crucial:

•comparison with radiosondes (best , _ p
estimate of truth but limited coverage J...

>~J;

•comparison of e.g. 48hr and 24hr
forecasts (so called NMC method)

•comparison of ensembles of analyses
made using perturbed observations

Sharp errors
in tropics

Broad errors
in mid-lat

Sounding channels sensitive to the lower troposphere

By placing sounding channels in parts of the
spectrum where the absorption is weak we
obtain temperature (and humidity)
information from the lower troposphere (low
peaking weighting functions).

BUT

These channels (obviously) become more
sensitive to surface emission and the effects
of cloud and precipitation.

In some cases surface or cloud contribution
can dominate the atmospheric signal and it
is difficult to use the data safely for
temperature / humidity sounding.

24



OPTIONS FOR USING LOWER TROPOSPHERIC
SOUNDING CHANNELS

AMSUA data usage 2001/1.1/10 pink=rejected blue=used

• Screen the data carefully and only use
situations for which the surface and cloud
radiance contributions can be computed
very accurately a priori (e.g. cloud free
situations over sea). But meteorologically
important areas are often cloudy!

•Simultaneously estimate atmospheric
temperature, surface temperature /
emissivity and cloud parameters within the
analysis or retrieval process (need very
good background statistics !) Can be
dangerous.

!

ne
|P.op

? Clear and Cloudy
AIRS spectra

Characteristic
r | spectral patterns

; *

* ff * A^4yja^4^y^> ^^m^m^^^^J^^m^^^^^^^' -»'-~z~4r»?i-ii£s}j ::
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What do we know about the
cloud signal ?

• Over warm surfaces (non-frozen) it
is always negative 2

•In band split / ranked channels it 1
increases monotonically negative

•We can identify an "obviously"
contaminated channel and step
backwards with a digital filter to
locate the first channel with
discernable cloud contamination

•All channels ranked as higher
peaking can safely be assimilated as

LW band, OB ft. 280

Cloudy channels

SYSTEMATIC ERRORS

Systematic error must be removed
before the assimilation otherwise biases
will propogate in to the analysis.

Sources of systematic error in radiance
assimilation include *

• instrument error (calibration)

•radiative transfer error (spectroscopy or *
RT model)

•cloud/rain screening errors

Mean corrected and uncorrected

| _ _ H
«J : r ft^i IJ:—~—

^ t •>.-, A I ^ i - * - < -*.,* ~\ *

AMSUA for May 20001
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DIAGNOSING SYSTEMATIC ERRORS

Systematic errors in observations are usually identified by
monitoring against the forecast background (or analysis) in the
vicinity of constraining radiosonde data. How do we know the
source of the bias ?

3

H50
-1
-2
-3

T i *T*1 -

2QZ224352B3G 2 4 6 8 101214161820
APR

3
2

H50:

-3
4 6 S 10121 416 IS33

HIRS channel 5 (peaking around
600hPa on N0AA-14 satellite has
+2.0K radiance bias against model

HIRS channel 5 (peaking around
600hPa on NOAA-16 satellite has
no radiance bias against model.

APR

DIAGNOSING SYSTEMATIC ERRORS

What if the model is wrong ?

This time series shows
an apparent systematic
error in AMSU channel
14 (peaking at lhPa). By
checking against other
research data (HALOE and
LIDAR data) the bias was
confirmed as a model bias
and the channel is now
assimilated with no bias
correction

* \
S 4

•J]

V
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Wind adjustments with radiance data

Radiances can influence the model wind field during the data
assimilation process in a number of ways:

•Directly through the use of frequent cloud imagery

•Directly via surface emissivity (mostly microwave)

•Indirectly through model physics (humidity)

•Indirectly through passive tracing(humidity and ozone)

We must ensure that the adjustments from different data types
are consistent within the system (satellite vs in-situ)

Indirect forcing of the wind field through model physics

Q>Q

O>o
By adding humidity to
the lower troposphere or
removing moisture from
the upper troposphere the
satellite humidity information
can cause large scale wind
adjustments !
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Indirect forcing of the wind field by passive tracing

By observing humidity
or ozone signals in the
radiance data, the 4DVAR
can advect these fields
to fit the radiances causing
wind adjustments.

This is particularly true with
high temporal density
radiance from GEO satellites

Review of key concepts (1)

•Satellite data are extremely important in NWP, even in areas
with a dense network of in-situ observations

•Data assimilation combines observations and a priori information
in an optimal way and is analogous to the retrieval inverse problem

•Modern data assimilation systems have largely moved to variational
approaches and use radiance observations directly (not retrievals)

29



Review of key concepts (2)

•The limited vertical resolution of satellite radiances makes the
specification of background error covariances crucial

•Systematic errors can be very harmful, particularly in 4D systems
where they have a multivariate (wind) impact on the analysis

•Dealing with cloud and surface emission remains one of the most
difficult areas of research.
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