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Physical Overview of the Transfer of Solar Radiation in
the Atmosphere - Ocean System

Light propagation in the atmosphere-ocean system depends on:

• Atmospheric optical properties such as

=> Absorption by molecules (H2O, O3, CO2, and others)
=> Scattering by atmospheric molecules (Rayleigh scattering)
=> Scattering by aerosols

• Oceanic optical properties such as

=> Absorption by pure water
=> Scattering by density fluctuations (Rayleigh scattering)
=> Absorption by yellow substance or colored dissolved organic matter (CDOM)
=> Scattering and absorption by suspended particles
=> Scattering and absorption by air bubbles in the water column

Light propagation also depends on:

• Presnel reflection and transmission through the atmosphere-ocean interface

• Scattering by surface roughness (foam, white caps)

In addition:

• sources of light due to fluorescence and Raman scattering may (depending on wavelength)
contribute to the light field in the ocean.
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Simulation of the solar
signal in the

atmosphere-ocean
system

Physical overview
• Scattering and absorption

by aerosol layer

• Scattering and absorption
by algae cells

• Scattering and absorption
by suspended matter

• Absorption by yellow matter
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Figure 1: Illusiation of Light Propagation In the Atmosphere-Ocean System



Radiative Transfer Modeling
We consider a vertically stratified medium for which the transfer of diffuse radiation is described
by the equation of radiative tranfer (u = cos0; $ = polar angle; (p = azimuthal angle):

u- dr

S{T, U. <p) =

= I(T, it, (p) — S(T, U, 0),

W dip' f\ du'p(r, u', <p\ u, <p)I{r, u', <f>') + S*{r, u} 4>).

(1)

(2)

For the coupled atmosphere-ocean system, the change in the refractive index across the interface
must be accounted for. From elementary optics we know that:

• The refraction across the interface is described by Snells9 law

• The reflection and transmission are described by FresnePs equations

• The downward radiation distributed over 2TT steradians in the atmosphere will be restricted
to an angular cone less then 2n after being refracted into the ocean (see Figure below).

Figure 2: Schematic Illustration of two adjacent media with a flat interface such as the atmosphere overlying a calm ocean.



Definitions:

dr = \OL{Z) + <J{Z)\ dz optical depth (3)
a(z) = absorption coefficient [m"1] (4)
a[z) = scattering coefficient [m"1] (5)

a(z) = —7-7 T-r single scattering albedo (6)
a{z) + cr(z)

% % % %
a%

n — absorption cross section [m2] (8)
al

n = scattering cross section [m2] (9)
m = concentration of ith species [m~3] (10)

Phase function (normalized angular scattering cross section):

, , E, <7*(7\cos9) Ê  (j(r?cosO) a(r,co58)
. c o s 6 ) = plr.u ,0:u.0) = ; 7™—r~ ——— = ry— = 7-~~—~~ ( 1 1 )

6 = scattering angle (12)
(0'5 <̂ r) = polar and azimuthal angles prior to scattering (13)

(0. <p) = polar and azimuthal angles after scattering (14)

These angles are related through the cosine law of spherical geometry:

cos 0 = cos 6f cos6 + sin 6f sin 6 cos((/)f — 0). (15)



Factoring out Azimuthal Dependence
• Expand phase function in Legendre polynomials:

2M-1
, COS 0) = E (21 + l)xz(r) fl(cos 0)

/=o
where Pj(eos6) is the Legendre polynomial and the expansion coefficients are given by:

Xi(r)
2 -/-

cl cos G p(r, COS 0) P| (cos B)

Addition Theorem for Spherical Harmonics:

Pi(cosQ) = - 0)

(16)

(17)

(18)

1 1/2

• The phase function now becomes:

P(T\ COS G) = p(ii, (1): i

where

pm(u',u)

2M-1

m = 0
( 2 -

2M-1

*J!'IU) cosm((f>' —

(19)
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Factoring out Azimuthal Dependence - 2

• Now expand intensity as:

2N-1

/(r, u, (l>) = E Im(T, u) cos m((p0 0) (20)
m=0

• This leads to an equation for each Fourier component:

u -

where

TagfittmiLife STKVENK
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Factoring out Azimuthal Dependence - 3

The Azimuthal Dependence of the Radiative Transfer Equation has been factored out in the sense
that:

• The Fourier components are entirely uncoupled

• Independent solutions to Eq. (21) for each rn give the azimuthal components

• The sum in Eq. (20) then yields the complete azimuthal dependence of the radiance

Note also:

• Azimuthal dependence can be traced to the boundary conditions:

• If there is no azimuth-dependent beam source or reflection at either boundary, the sum in Eq.
(20) reduces to the rn = 0 term, the angles /i0 and 0o are irrelevant, and there is no azimuthal
dependence of the diffuse radiance.
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Henyey-Greenstein Phase Function
• This synthetic one-parameter phase function is given by:

7~> / /'V\ ' ' %j /O0\

PHG{COSb)) = j - ~2 t , p)\3/2 t 2 3 )

where the parameter g is the asymmetry factor:

9 = Xi • (24)

• Legendre polynomial expansion coefficients of the Henyey-Greenstein phase function:

xi = (g)1 • (25)

• This property explains its popularity because there is no need to compute Legendre polynomial
expansion coefficients!

Note that:

• g = 0 for isotropic scattering

• g = 1 for complete forward scattering

• g •= ~~ l for complete backward scattering.

STKVENK



Scaling Transforrnations
S - Isotropic Approximation:

P6-iso{u, U) = 7T L ^ P(COS(P) = 2/5(t./, U) + (1 -

leads to

dl{T.U) _, , a
a~ 7 — [ V'j a . / o / i v '

(XT

df = (1 - a/)dr, a = ( 1 ~ / ) o

1 - a/

Setting f = xi= g yields: a = a, <J = (1 - g)a, g = 0.

6-Two-Term Approximation:

PS-TTA(U', U) = 2fS(u', u) + (l- / ) ( ! + 3 x

Xl ~

Setting f = X2 = g2 yields: a = a, a = (1 - g2)a, g = g/(l + g).

These approximations are very popular in the diffusion approximation.

STKVENS
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Discrete-Ordinate-Approxiniation
Since azimuthal components in Eq. (20) are uncoupled, we may focus on azimuthally-averaged
radiance obtained by setting m = 0. We obtain a pair of coupled Integra-differential equations:

(26)

(27)

where (// =

2.A/ 1

E

Discrete-ordinate approximation:

• Replace integrals in equations above by quadrature sums, thereby transforming:

• pair of coupled integro-differential equations into a system of coupled differential equations:

dl^pjHl = /+(T|M.) « £ wspfaril+foiij)-^ wJp(-H^dr(Tjfj,j)-X+ e-r'"> (28)

rlT~(T II •) a N a N
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Photolysis Rate

In atmospheric photochemistry

• the Photolysis Rate Coefficient is defined as the local rate (per molecule) of a photoabsorption
event.

• the photolysis rate coefficient for the photodissociation of a particular species of concentration
rii is expressed as follows:

Ji = I™ dv 4TT (Iu/hu) m o?n{y) rf(v) [s~1}.

Here:

• a%
n{v) is the photoabsorption cross section,

• rf{y) (0 < rf < 1), is the quantum yield or efficiency by which the absorbed radiative energy
produces the photodissociation,

• vc is the minimum frequency corresponding to the threshold energy for the photoabsorption,
/ is the mean intensity, and

• ^ixlyjhv is the density of photons at a given frequency.

Photochemists use the term actinic flux for the quantity ATTI^. Optical oceanographers call this
quantity the scalar irradiance.

STKVKNS
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Biological Dose Rate

The rate at which a surface receives radiative energy capable of initiating certain biological
processes is obtained by:

• weighting the received radiation by a specific spectral function A(z/) < 1 called the action
spectrum, which

• gives the efficiency of a particular process, for example, the UV 'kill-rate'.

• The rate at which a flat surface is 'exposed' is called the Dose Rate:

D = /o°° duA(u)F- [W-m-2]

where:

• F~ is the incident irradiance.

• The radiation dose is defined to be the total time-integrated amount of energy received (usually
over one day) JdtD(i).

t
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Figure 3: Spectral distribution of solar (short-wave) and terrestrial (long-wave) radiation fields. Also shown are the approximate shapes and positions of the
scattering and absorption features of the Earth's atmosphere.
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Figure 4: Extraterrestrial solar irradiance, measured by a spectrometer on board an Earth-orbiting satellite. The UV spectrum (119 < A < 420 nm) was
measured by the SOLSTICE instrument on the UARS satellite (modified from a diagram provided by G. J. Rottmann, private communication, 1995).
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Sun

Top

Atmosphere

Figure 6: Schematic illustration of two adjacent media with a flat interface such as the atmosphere overlying a calm ocean. The atmosphere has a different
index of refraction (rar « 1) than the ocean (mr — 1.33). Therefore, radiation in the atmosphere distributed over 2TT sr will be confined to a cone less than
2?r sr in the ocean (region II). Radiation in the ocean within region I will be totally reflected when striking the interface from below (adapted from Thomas
and Stamnes, 1999).
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Comparison of DISORT Results with Monte Carlo Simulations
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Figure 7: Comparison of DISORT and Monte Carlo Results for the Coupled Atmopshere Ocean System. The Monte Carlo Computations are due to K. I.
Gjerstad, University of Bergen.
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Figure 8: Comparison between model computations (solid lines) and measurements (dotted lines) of depth versus ¥UV-B/^stotal- Inside the ozone hole, the
ozone abundance was 150 DU, the solar zenith angle was 56°, and the vertical distribution of chlorophyll concentration was 0.57 mg- rn~~3 from the surface to
20 m depth, 0.47 mg- m~3 below 20 m. Outside the ozone hole, the ozone abundance was 350 DU, the solar zenith angle was 57°, and the vertical distribution
of chlorophyll concentration was 1.9 mg-m~3 from the surface to 10 m depth, 1.6 mg«m~J from 10 to 20 m, and 1.5 mg- m~3 below 2 in.
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Figure 12: SeaWHsS image over Sharan ))usl Blowing- off Africait Coa«t.
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Figure 13: SoaWIFS image over the Carribean.
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Figure 14: The Karth from Space.
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The Two-Stream Approximation: Isotropic Scattering
(0)

We need to solve the following set of coupled, linear differential equations:

dI+(r,LLi) , x a Na
i I (r^i) - - E
OLT Z j=lGL N

- - E WjP(-Vj, A*i)/"(r, Mi) - Q + ( ^ Mi) (1)
Z 3=1

dI~(T,fjLi) ( a N
;; = I (T

5 Mi) - o E

(2 N

- E Wjpi-fij, -iii)r(r, fij) - Q"(r, ̂ ) . (2)

where

QHT, Hi) =
—
4TT



The Two-Stream Approximation: Isotropic Scattering
a)

Approximate Differential Equations

The radiative transfer equations for the half-range intensity fields are given by
(ignoring the beam source for the moment)

OL A f +/ f\ & rl i
i AX / ~ZT / n \XJIAJ JL \ I I h-k j ~T~ In UJLJJ J.

dr

~ \H ^/+(r, //) - \\l ^7"(r, ft- (1 - a)B.
Because the scattering is isotropic, the radiation field has no azimuthal dependence.

• In the two-stream approximation we replace the angularly-dependent quantities
J* by their averages over each hemisphere, I+(r) and I~(r) in each hemisphere.

STKVK1SIS



The Two-Stream Approximation: Isotropic Scattering
(2)

• This leads to the following pair of coupled differential equations which are called:

The two-stream equations

ZJ ZJ

= 7"(r) - ^/+(r) - °-r{T) - (1 - a)B.
ZJ ZJ

• Here ji^ is the cosine of the average polar angle 6 made by a beam, which
generally differs in the two hemispheres.

• These linear, coupled, ordinary differential equations allow for analytic solu-
tions by standard methods if the medium is homogeneous so that a(r) = a =
constant.

s n VICNS



The Two-Stream Approximation: Isotropic Scattering
(3)

Note that the two-stream approximation:

• Will be most accurate when the radiation field is nearly isotropic: deep inside
the medium, far away from any boundary, or from sources or sinks of radiation.
However, often it is accurate even at the boundaries themselves.

• Can teach us about radiative transfer in optically-thin as well as optically-thick
conditions, and for both scattering and emission-dominated problems.

The approximate two-stream expressions for the source function, the flux and the
heating rate are

S(r) = — JQ dfi[l(r, fi) + / (r, fi)} + (1 — a)B

1 - (5,

F(T) = 0

[fi+1+(T)-JI-I-(T)} (6)

STEVENS



BF
H(T) = - — « 2™ [/+(r) + /"(r)] - iiraB. (7)
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The Mean Inclination: Possible Choices for \x (1)

We could define p? formally as the intensity-weighted angular means:

F±

2TT/±

• Since we do not know the intensity distribution a priori this definition is of
little use, but it demonstrates that p will vary with optical depth and take on a
different value in the two hemispheres.

• Hence picking the same constant value for this quantity in both hemispheres
(p = p+ = p~ = constant) is clearly an approximation.

• If the intensity field were strictly hemispherically-isotropic, this formula yields
p = 1/2 for all depths and for both hemispheres (same as for one-point Gaussian
quadrature, see Chapter 8).

• If the intensity distribution were approximately linear in /x, say /(//) ~
where C is a constant, then p = 2/3.

imdLift* STEVENS



The Mean Inclination: Possible Choices for /i (2)

• Alternatively, we could use the root-mean-square value:

, fl)

\

• If the radiation field were isotropic this definition would yield p = l/y/3. This
is identical to the value obtained from a two-point Gaussian quadrature for the
complete range of u = cos 6 (—1<U<1).

• A linear variation of the radiation field would yield p = l / \ /2 = 0.71.

• Thus, these possible choices yield p-values ranging from 0.5 to 0.71. There is
really no certain way to decide categorically and a priori which choice is optimal,
or if there is another definition that would be even better.

• We have to pick the optimal p-value on a tr ial-and-error basis for each type
of problem. We now assume a single value for p but leave its value undetermined
to remind us that it represents some sort of average over a hemisphere.

STKVKNS
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Figure 1: Illustration of Prototype Problems in radiative transfer.



Prototype Problem 1 (1)

We ignore the thermal emission term.

• By first adding eqns. 3 and 4 and then subtracting eqns. 4 from 3 we obtain:

n

Differentiating eqn. 9 with respect to r, and substituting for d( / + — I~)/dr
from eqn. 8, we find:

dr2 p2

This provides us with an equation involving only the sum of the intensities.

STEYKNS



Prototype Problem 1 (2)

• Similarly, differentiating the first of the above equations, and substituting for
d(I+ + I~)/dr from the second equation, we find:

dr2 ft2 [

which involves only the difference of the intensities.

• We have the same differential equation to solve for both quantities. Calling the
unknown, Y\ we obtain a simple second-order diffusion equation

= Y2Y where T = V ^ a / A , (10)

for which the general solution is a sum of positive and negative exponentials

Y = A'eTr + B'e-TT.

A! and B' are arbitrary constants to be determined.

.^••.^v . - v » — STKVENS
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Prototype Problem 1 (3)

Since the sum and difference of the two intensities are both expressed as sums
of exponentials, each intensity component must be expressed in the same way:

= AeTr + Be-Tr; /"(r) = CeTr + De~TT (11)

where A, 5 , C, and D are additional arbitrary constants.

• We now introduce boundary conditions at the top and the bottom of the medium.
We begin with Prototype Problem 1 for which:

r(r = 0) = X = constant; /+(r*) = 0. (12)

• We choose this as our first example, as the two-stream solution to this problem
has the simplest analytic form of the three considered.

STKVKNS
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Prototype Problem 1 (5)

• Eqns. 11 display four constants of integration, but the two boundary conditions,
eqns. 12, and the fact that the differential equation is of degree two, suggest that
there are only two independent constants.

• To obtain the two necessary relationships between A B, C, and D, we substitute
eqns. 11 into eqns. 3-4. We find that:

C B a 1 - pT 1 - V I - a _
^~d = Po°'A D 2 - a + 2/xr l +

• An explanation of the physical meaning of p^ is provided in Example 7.2.

• We now substitute into the general solutions, eqns. 11, to obtain:

= AeTT + PooDe-TT (14)
- PooAeTT + De-Tr. (15)

£^*r'v...-. m* » d* S T K V E N S
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Prototype Problem 1 (6)

We now apply the boundary conditions (eqns. 12) which yield:

I-(r = o) = PooA + D=1 ; I+(r = r*) = AeVr* + p^De'^* = 0.

Solving for A and D we find:

• ^ TV* 9 —FT-* ' TV* 9 — TV*

• The solutions are:

c-r(r'-r)

where the denominator is

<r\ — IV* 2 - I V (18)

13



Prototype Problem 1 (7)

The solutions for the source function, flux and heating rate follow from eqns. 5-7:

S(T) = § (1 + Poo) [ e^ ' - " - Pooe"^-)] (19)

F(T) = - 2 ^ (1 - Poo) [e^'-^ + Pcoe-r^} (20)

(21)

Note that eqn. 6 yields F "(0) = 2TT/Z/ "(0) = 27r/iX for the incoming flux at the
top of the slab.

We might be tempted to set ft = 0.5 so that this expression would yield the exact
value, nX. However, to remain consistent with the two-stream approximation,
it is important to use the approximate expression, eqn. 6.

SYKVENS
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Prototype Problem 1 (8)

The flux reflectance, flux transmittance, and absorptance become:

V
p(-27r,27r) =

J-(r*) 1 - p2

T ( - 2 T T , -2TT) - 27r/i l j - Po°

(22)

(23)

a(-2ir) = 1 - p(-2?r, 2TT) - T ( -2TT, -2TT)

Note: the flux transmittance includes the 'beam' transmittance:

(24)

= 2E3(r

15



Prototype Problem 1 (9)

Thus, the diffuse flux transmittance is:

-2n, -2TT) = T(-27r, -2TT) - T6(-2TT, -2TT) = ^ ^ - 2E3(r*). (25)

Life STEVENS
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• To find the intensity P ^ T , fi) in the two-stream approximation, it is necessary
to integrate the (approximate) source function.

• This method yields a closed-form solution for the angular dependence of the
intensity, and may provide sufficient accuracy for some problems.

• We proceed by considering the expressions for the upward and downward inten-
sity:

n-r,!*) = Jo ^
(26)

STEVKNS
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Example: Angular Distribution of the Radiation Field
(2)

Inserting the approximate two-stream source function:

and performing the integration, we find:

+ [C-(p) - C+(n)}e-^'»} • (27)

(28)

where C±(pt) = (l± Tft)/(l ±

STEVENS
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Prototype Problem 3: Beam Incidence (1)

• We now consider the most important scattering problem in planetary atmo-
spheres - that of a collimated solar beam of flux F s , incident from above on a
planetary atmosphere.

• We simplify to an isotropically-scattering, homogeneous atmosphere and, as
usual, assume a black lower boundary. (Both these restrictions will be removed
later.

Setting the angle of incidence to be 0$ = cos l IIQ, we find that the appropriate
two-stream equations are:

dI/1 ~' a ' ' ' I~) - — Fse~T/f*° (29)
dr a 2 V a aj

 4TT

" dr a 2 K a aj
 4TT

where It and 17 are the diffuse intensities.

= 12 - °-{lJ +12) - f F°e~^ (30)
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Prototype Problem 3: Beam Incidence (2)

As before, we take the sum and difference of the above equations:

Differentiating eqn. 32 and substituting into eqn. 31, we find:

II) -
Similarly, if we differentiate eqn. 31 and substitute into eqn. 32 we get:

P ~ Id)

STEVENS
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Prototype Problem 3: Beam Incidence (3)

• We may use the same solution method used earlier for Prototype Problem 2.
As was shown previously, the homogeneous solution can be written as follows:

# = AeTr + PooDe- r r; Ij = PooAeTr + De~Vr

where F and p ^ have their usual meanings.

• We guess that the particular solution is proportional to e^T//i(3. Thus, we set:

Vr= Ae

IJ = PooAeTT + De~Tr

where Z+ and Z~ are constants to be determined.

• Substituting into eqns. 29-30, we find:

7++7- -

STKVKNS
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Prototype Problem 3: Beam Incidence (4)

• The above two equations may be solved for Z+ and Z separately:

+ = aFs/j,0(fl - /xp) = aFs/xo(/io + p) ( ,

4TT/}2(1 - P/i§)' 47r/i2(l TV2) ' l }

• We apply boundary conditions for the diffuse intensity: I~[(T = 0) = 0 and
/j~(r*) = 0. From these two conditions, we obtain two simultaneous equations
for A and D. After some manipulation we find:

where D is defined in eqn. 18.
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Prototype Problem 3: Beam Incidence (5)

• We may now solve for the source function, flux etc. For example, the source
function is:

n n P

S(T) = \{It + II) + Ve"T/"°- (35)

• Rather than display the rather complicated solution for a finite medium, we will
consider the simpler situation of a semi-infinite medium. With the condition on
the boundedness of the solution S(r)er —• 0, the positive exponentials must be
discarded, so that A = 0. The constant D reduces to:

=

II llllllHHil m W • -# STEVKNS
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Prototype Problem 3: Beam Incidence (6)

The diffuse intensities are:

% ^ & ) T T ( ) ^ ] (36)

7d-(r) = De~TT +
n 7^

W ( )rT ( ) T / " ° ! (37)

and the source function becomes (eqn. 35):

(38)

fluisLife sn:\ i NS
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Prototype Problem 3: Beam Incidence (7)

• We may ask: what happens if the denominator (1 — P 2 ^) is zero in the equations
for i j ? This can occur if the sun is at a specific location in the sky.

• It turns out that this is a so-called removable singularity, that can be 'cured'
by the application of L'Hospital's rule, which leads to a new algebraic form
that varies as rexp(—T//JLO).

• In computational work it is usually sufficient to use numerical 'dithering' by
which fiQ is changed slightly away from the 'singular value'. This artifice produces
satisfactory results, and avoids the 'inconvenience' of having to deal with a
special case involving a different solution.
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (1)

• Two-stream types of approximations are used primarily to compute fluxes and
mean intensities in plane geometry.

• Flux and mean intensity depend only on the azimuthally-averaged radiation
field. We are therefore interested in simple solutions to the azimuthally-averaged
radiative transfer equation valid for anisotropic scattering:

_ a

To obtain approximate solutions, we proceed by integrating eqn. 39 over
each hemisphere to find two coupled, first-order differential equations for
hemispherically-averaged upward and downward intensity 'streams'.

For now, we ignore thermal emission.
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (2)

• This leads to the usual two-stream approximation. We can obtain a similar
result by replacing the integral in eqn. 39 by a two-term quadrature.

• We may alternatively proceed by approximating the angular dependence of the
intensity by a polynomial in u. By choosing a linear polynomial, I(r,u) =
IQ(T) + ti/i(r), and taking angular moments of eqn. 39, we arrive at two coupled
equations for the zeroth and first moments of the intensity, IQ and I\. This
approach is usually referred to as the Eddington approximation.

• In the following, we examine both the Eddington and the two-stream approx-
imation. We shall be particularly interested in exposing the similarities and
differences between these two approaches.

• Assuming collimated incidence, S*(r/a) = (aFs/47r)p(—fiQ1u)e~T^0^ we ap-
proximate the angular dependence of the intensity as /(r , u) « [IQ(T) + t/Ji(r)],
which upon substitution into eqn. 39 yields:

STEVENS
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (3)

~/_\ du'p(ur,u)(Io+u'h)-?f-p(-H»u)e~^. (40)u (Io+uh)
(XT Z

• We expand the phase function in Legendre polynomials as usual, and find that
the azimuthally-averaged phase function is:

OO

p(u',u)= Z
L—U

where the moments of the phase function are given by:

• In the TSA, we normally retain only two terms: (1) the zeroth moment which is
unity because of the normalization of the phase function (xo = 1); and (2) the
first moment which we refer to as the asymmetry factor, g =

STKVENS
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (4)

Then:

- j_x du'p(uf, U)(IQ + u'li) = a(I0 + 3gu(u)2Ii)

where the ( ) symbol denotes an angular average over the sphere:

Since p(—Ho,u) = 1 — SgufiQ, eqn. 40 becomes:

_
(XT 4TT

• We first integrate eqn. 41 over u (from —1 to 1). This yields the first equation
below. We then multiply eqn. 41 by u, and integrate again, to obtain the second
equation below.

u& •••••• W 3 J &mm Lift* STEVENS
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (5)

• Thus, we are left with the following pair of coupled equations for the moments
of intensity, IQ and I\.

dr

(43)

Rather than solve these coupled equations immediately, we consider a slightly
different approach.

We start by writing eqn. 39 in terms of the half-range intensities:

(44)
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (6)

n

- g Jo
= I;(T,H)-S-{T,H) (45)

The above equations are 'exact'.

We proceed by integrating both equations over the hemisphere by applying the
operator /(] dfi.

If the / ± ( r , /i) are replaced by their averages over each hemisphere, / ± ( r ) , and
the explicit appearance of /i is replaced by some average value /2, this leads to
the following pair of coupled equations for / ± (dropping the 'd' subscript):

i:. m^ W t ** STEVENS
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (7)

" dr
where

2TT

STEVENS

dr

- abl+ - S*~ (47)

S*~ = ^ - [ 1 - 6(Mo)]e~T///o = X-(T)e-T/ti°. (48)
Z7T

Here

* + (r) = ^ F s & ( P o ) ; X- (T) = ^ F s [1 - 60io)] • (49)
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (8)

• The backscattering coefficients are defined as:

K/̂ ) = g Jo dii'p{-fif, /i) = - JQ d//p(//, -fj) (50)

1 1
b = /Q1 d\i 6(/x) = - /Q1 d/x/Q1 d//p(-/z', M) = ^ /o1 ̂ i ) 1 ^ ' ^ ' , ~ M ) (51)

We have used the Reciprocity Relations satisfied by the phase function,
p(—//',//) = p(fi/

i—fji); P(—/J!,—IJ,) = p{ii'1ji)) as well as the normalization
property.

N K
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (9)

• Equations 46 and 47 are the two-stream equations for anisotropic scattering. In
the limit of isotropic scattering, (p = 1 or b = | ) , they reduce to the equations
considered in the previous section, as they should.

• We note that if we choose \i = 1/y 3, then the backscattering coefficient and
the asymmetry factor are related through b = | (1 — g).

• We have derived two sets of differential equations (eqns. 42 and 43) and (eqns. 46
and 47), both of which are derived from similar assumptions. What is the
relationship, if any, between them?

• To answer this question, we will attempt to bring eqns. 46 and 47 into a form
similar to eqns. 42 and 43. We do so by using the change of variable

consistent with the Eddington approximation.

STKVENS

34



Anisotropic Scattering: Two-Stream versus Eddington
Approximations (10)

• By first adding eqns. 46 and 47, and then subtracting 46 from 47, we find after
some manipulation that eqns. 46 and 47 are equivalent to:

dr

dlo = (l - a + 2ab)Ii 4
dr

• Since I — a + 2a6 = 1 — a + a(l — 3,g/i2) = 1 — Sag pi2 and 1 — 26(//Q

1 — (1 — SgpfjLo) = Sgpfio, these last two equations become:

dl\ 1 —a_ a _T-///n

= (1 - Spa/i2)/! + ^ ^ o F s e - T / " ° . (54)
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (11)

• Comparing eqns. 42-43 and 53-54, we conclude that the equations describ-
ing the Eddington and two-stream approximations are identical
provided (u)2 = p?-

• Thus, the choices (11)2 = \ and fi = l/y/3 make the governing equations for the
two methods the same.

• Therefore any remaining difference between the two must stem from different
boundary conditions.

• This is readily seen as follows: A homogeneous boundary condition for the
downward diffuse intensity consistent with the two-stream approximation leads
to the boundary condition:

J-(0) = Jo - p,h = 0.

STKVENK
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Anisotropic Scattering: Two-Stream versus Eddington
Approximations (12)

• If, however, we require the downward diffuse flux to be zero at the upper bound-
ary (common practice in the Eddington approximation), then we find:

Jo " \h = 0.

• The value p = l / \ /3 for the average cosine follows from applying full-range
Gaussian quadrature (see Chapter 8) while a half-range Gaussian quadrature
would lead to p = \.
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Two-Stream Solutions for Anisotropic Scattering (1)

Focussing first on the homogeneous solution, we add and subtract eqns. 46 and
47 to obtain:

dr

dr

= —(a —

= - ( a

-Ii) (55)

(56)

where we have defined a = — [1 — a(l — b)]/p, and (3 = ab/ft.

• By differentiating one equation and substituting into the second, we obtain the
following uncoupled equations to solve:

+ Id) _ V2(T+ Id) 2/r+
\1

where
F - - a)(l - a + 2ab). (58)

38



Two-Stream Solutions for Anisotropic Scattering (2)

As in the case of isotropic scattering, the homogeneous solutions are:

# - AeTr + Be~VT = AeTr + PooDe-rT (59)

= Cerr + De~VT = PooAeTr + De~VT. (60)

The coefficients A, B, C, and D are NOT all independent as pointed out previ-
ously. The relation between them is found by substituting eqns. 59 and 60 into
eqns. 46 and 47, yielding:

C B VI - a + 2ab - y/T^a _
^a = Po°'A D y/1 - a + 2ab +

• Equations. 46 and 47 suggest seeking a particular solution of the form:

i. d (61)
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Two-Stream Solutions for Anisotropic Scattering (3)

Substitution of eqn. 61 into eqns. 46 and 47 yields:

_+ abXT + [1 — a + ab =F JllIIQ\X±

JU

where X± are given by eqns. 49.

• Note that if we set b = | (g = 0) and observe that in this case X+ = X~, it
can be verified that F and Z± are identical to those terms for the corresponding
isotropic scattering (eqns. 10 and 34).

• It is also clear that for b = \ we recover the earlier result for p^ (see eqn. 13).

• We determine the constants A and D in eqns. 59-60 from the homogeneous
radiation boundary conditions appropriate for the diffuse intensities:

. _ (Ze + Z~Pooe-TT') n _ (Z+
Pooe-r*'w - Z~eTT')

V ' V
where V is defined by eqn. 18.

mdLife STKVENS
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Two-Stream Solutions for Anisotropic Scattering (4)

• The above solutions satisfy the differential eqns. 46 and 47, arid also obey ho-
mogeneous boundary conditions.

• It is easy to show that in the limit of isotropic scattering the expressions for
A and D above reduce to those following eqns. 34 as they should. The solutions
for the diffuse intensities are:

- z

Tzgmmufi? STEVKNS
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Two-Stream Solutions for Anisotropic Scattering (5)

• We can now solve for the half-range source functions, the flux and the heating
rate:

S+(T) = o(l - ft)tf(r) + abIJ{T) + ^ %o) (62)

aFe
S~(T) = o(l - b)IJ(r) + abltir) + ^ [1 - 6(MO)] (63)

F(T). = 2np,[lUr) - IJ{T)] - ^Fse~T^. (64)
H(T) =
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Scaling Approximations for Anisotropic Scattering (1)

• In §6.7 we noted that accurate representation of sharply-peaked phase functions
typically requires several hundred terms in a Legendre polynomical expansion.

• By making the approximation that photons scattered within this peak are not
scattered at all, we found that the RTE becomes more tractable, while losing
only a small amount of accuracy.

• This artifice is known as a scaling approximation, and takes on various
forms depending upon the choice of the truncation.

• We found that in the ^-isotropic approximation the scaled RTE corresponds to
an isotropic scattering problem, but with a different optical depth f = (1 — af)r
and a different single-scattering albedo d = (1 — / ) a / ( l — a/) .

• Here / is the fraction of the phase function within the forward peak. The value
of / is somewhat arbitrary but a good choice is / = g. where g is the asymmetry
factor. If the remainder of the phase function is constant, the RTE to be solved
is:
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Scaling Approximations for Anisotropic Scattering

^ dr v ' ^ 2
• Since we have solved the above equation in the two-stream approximation for

three prototype problems, it is a trivial matter to rewrite the solutions in terms
of the scaled parameters, a and f.

• We will write the asymmetry factor in terms of the backscattering coefficient,
b = (1/2) (1 — g). We use as an example the conservative scattering limit, d = 1
and f = 2br.

• For Prototype Problem 3 the scaled solutions for the reflectance and trans-
mitt ance are taken from eqns. 7.98 and 7.99:

(65)

27r) = ^ T ^ • (66)
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Accurate Numerical Solutions (1)

More sophisticated approximation techniques include:

• The discrete-ordinate method;

• The spherical-harmonic method;

• The doubling-adding method.

• In "in lowest order" the first two methods become the two-stream, and Ed-
dington approximations, respectively.

Discrete-Ordinate Method — Isotropic Scattering

Quadrature Formulas

• The solution of the isotropic-scattering problem involves the following integral
over angle:

j \ du /(r, u) = JQ d\i /+(r, \±) + £ d\i /"(r, ft).



Accurate Numerical Solutions (2)

• In the two-stream method:

We could improve the accuracy by including more points:

1 TIL

J_x du /(r, u) ~ £ wfjl(r, Uj
%J

where

• w'j is a quadrature weight and Uj is the discrete ordinate.

• The simplest example is the trapezoidal rule:

1 1

-h + h + h + ' ' • + Im-l + 2J
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Accurate Numerical Solutions (3)

• The more accurate Simpson's rule is:

/ \ dul « — (h + 4/ , + 2/r, + 4/ZL H

where

• Au is the (equal) spacing between the adjacent points, Uj, and the Ij denotes

INTERPOLATION FORMULA

• If we have m points at which we evaluate I{r,u), we can replace / with its
approximating polynomial <j)(u), which is a polynomial of degree (ra — 1).

ngNtfiniLift* STEVKNS



Accurate Numerical Solutions (4)

Consider the following form for </>(V), for m = 3:

I(U2)
- u2)(u1 - u3) {u2 - ui)(u2 -

(us — ui)(us — u2)'

• <f)(u) is a second-degree polynomial which, when evaluated at the points ti\, u%
and ^3 yields I{u\), I{u2), and /(t/,3), respectively.

• This an example of Lagrange's interpolation formula. We can write this
in abbreviated form, if we use the notation n to indicate products of terms:

H [ II \ == I T 1 7 / 11 • I — 111 lit till 7 / < - i l • • • 1 1 1 01 I
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Accurate Numerical Solutions (5)

• Then, since the polynomial (u — U\){u — u^) • • • (u — Uj-\)(u — Uj+\) • • • (u — um)
becomes:

F(u)/(u-Uj)= U(u-Uk)

we can write the polynomial <j>{u) in a shorthand form:

F(u)
4>(u) = .£

where F'(UJ) is defined as dF/du\u=u..

• The derivative will give a long string of polynomials of degree (m — 1); however,
when it is evaluated at u = Uj, all terms become zero except the term (u —
U\)(u — U2) ' ' ' (u — Uj-i)(u — Uj+i) ' • ' (U — Ur,

SllCVKNS



Accurate Numerical Solutions (6)

• Hence, the quadrature formula arising from the assumption that the intensity is
a polynomial of degree (m — 1) is:

I1 du I(u) - E w'I(u •)• w' - - L - I1 duF{u)

The quadrature points Uj are, so far, arbitrary.

• The error incurred by using the Lagrange interpolation formula is proportional
to the mth derivative of the functions [I(u)] being approximated.*

• Thus, it is clear that i / / ( r , u) happens to be a polynomial of degree (m — 1) or
smaller, then the m-point quadrature formula is exact.

*See, e. g., Burden, R. L., and J. D. Faires, Numerical Analysis, Prindle, Weber and Schmidt, Third Edition, Boston, 1985, p. 153.
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Accurate Numerical Solutions (7)

Example: Simple Demonstration of Quadrature

Let's assume that the intensity is a polynomial of degree 3:

I(u) = do + a\u + CI2U2 + a^u3 (1)

where ai (i — 0 , . . . , 3) are constants.

• Evaluating the function at the points u\ = — 1, u<i = 0, and u% = 1 yields three
evenly spaced points in the interval [—1,1].

• We find I{u\) = ao — a\ + a^ — a^y I(v,2) = ao, and 1(11,3) = <̂o + «i + <̂2 +

Lif %Lift*



Accurate Numerical Solutions (8)

Thus, the approximating polynomial becomes:

'/) = - (ao — a\ + a2 — a2) (u — u) + ao(u2 — 1) + - (ao + a\ + a2 4- as) (u2 + u)

F(u) = (u - ui)(u - u2)(u - us)

Ff(u) = (u — U2)(u — us) + (u — U\){u — us) + (u —

and the quadrature weights become:

, 1 (l duF(u) 1 1 1

r (liij U — U\ \U\ — U<i)\U\ — Us) o

and similarly:

, 1 ,1
2 — ^ 7 7 — r / i

duF(u) 4 , 1 ,! duF(u) 1
a n ( i w /3 3 F'^s)7"1 u-us 3
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Accurate Numerical Solutions (9)

So clearly:
Q

J\ du I(u) = £ w'i = ^ [/(«!) + 4I(u2) + 7(«3)]

which is the same as the exact result

1 du = Jx du aou

-a2

7/ II

«2T + «3T
- l

= 2ao+ga2

• Thus, we have demonstrated that Lagrange's 3-point formula integrates exactly
a polynomial of degree 3 or less.

• The error in the Lagrange interpolation polynomial of degree (m — 1) is propor-
tional to the mth derivative of the function being approximated.

• The resulting Newt on-Cotes formulas rely on using even spacing between
the points at which the function is evaluated.



Accurate Numerical Solutions (10)

We may ask:

• Is it possible to obtain higher accuracy? Can this be accomplished by
choosing the quadrature points in an optimal manner?

Gauss showed that:

• If F(u) is a certain polynomial, and the Uj are the roots of that polynomial,
then we get the accuracy of a polynomial of degree (2m — 1).

• This polynomial is the Legendre polynomial Pm(u). They have the special
property of being orthogonal to every power of u less than m, i. e.

As we have seen earlier:

\ du Pm{u)ul = 0 (Z = 0,1,2, • • •, m - 1).

• Note that if Uj is a root of an even Legendre polynomial, then — Uj is also a root.
Also, all m roots are real.
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Accurate Numerical Solutions (11)

The Double-Gauss Method

• It is customary to choose the even-order Legendre polynomials as the approx-
imating polynomial. This choice is made because:

• The roots of the even-orders appear in pairs: if we use a negative index to label
points in the downward hemisphere and a positive index for points in the upper
hemisphere, then u-i = —u+i.

• The quadrature weights are the same in each hemisphere, %. e. w[ = w'^.

• The 'full-range' approach has certain problems because it assumes that I(T. U)
is a smoothly-vary ing function of u (—1 < u < +1) with no "sharp corners" for
all values of r .

• For small r, the intensity changes rather rapidly as u passes through zero, i. e.
as the line of sight passes through the horizontal. In fact at r = 0, this change is
quite abrupt: I{r = 0, u) = 0 for slightly negative w-values; for slightly positive
u-values it will generally have a finite value.

STEVENS
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Accurate Numerical Solutions (12)

• It is difficult to 'fit' such a discontinuous distribution with a low-order polynomial
that span the full range between u = — 1 and u = 1. It is most difficult to get
accurate solutions near the surface: we should pay the most attention
to this region.

To remedy this situation, the 'Double-Gauss ' me thod was devised. In this
method, the hemispheres are treated separately:

• Instead of approximating ^s^1dul(u) by the sum \T^_Nw'iI{ui), we break
the angular integration into two hemispheres, and approximate each integral
separately:

j \ dul = /Q1 d/i I+ + /Q1 dfji I~ « £ Wjl+{iij) + £ Wjl~(iij).
3=1 3=1

• The Wj and /i?- are the weights and roots of the approximating polynomial for
the half-range. Note that we have used the same set of weights and roots for
both hemispheres.
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Accurate Numerical Solutions (13)

• To obtain the highest accuracy, we must again use Gaussian quadrature.
However, our new interval is (0 < /i < 1) instead of (—1 < u < 1).

• This is easily arranged by defining the variable u = 2/x—1, so that the orthogonal
polynomial is PM(2[I — 1).

The new quadrature weight is given by:

Wj = —f— r y0 dfi—-1 - ^ (2)

and the fij are the roots of the half-range polynomials.

• Algorithms to compute the roots and weights are usually based on the full range:

• Must relate the half-range quadrature points and weights to those for the full
range.

STEVENS
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Accurate Numerical Solutions (14)

• Since the linear transformation t = (2x — x\ — #2)/(#2 — xi) wiU m a P a n v

interval [x\, X2] into [—1,1] provided x<i > X\, Gaussian quadrature can be used
to approximate:

dxl(x) = /_\ dtl

Choosing x\ = 0, x<i = 1, x = /i and t = u, we find:

O ^—1 2
and by applying Gaussian quadrature to each integral, we find on setting M = 2N
for the half-range:

.E Wjlfa) = -/_\ dul (-^-j = - E^ v/jl [^j-j . (3)

STKVKNS
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Accurate Numerical Solutions (15)

• Thus, in even orders the half-range points and weights are related to the full-
range ones by:

= — ; w« = -w.-. (4)

The new double-Gauss weights in even orders are half the Gaussian weights in
half the order.

According to eqn. 4 each pair of roots ± \UJ\ for any order N (full-range) gener-
ates two positive roots fij = (— \UJ\ + l)/2 and fi2N+i-j — (l^jl + l)/2 of order
2iV (half-range).
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Accurate Numerical Solutions (16)

Example: Low-order Quadrature

Let's examine the M = 1 approximation to see if we retrieve the two-stream
approximation.

Consider /^i, which is (1 + U\)/2.

• Now u\ is the root of P\(u) = u. This gives u\ = 0, and hence fi\ = | .

• The weight w\ is easily determined from its defmition in eqn. 2:

• Since Pi = 2/z — 1, P{ = 2, and hence w\ = l.

• Thus, we retrieve, in the lowest-order double-Gauss formula, the same equations
as the two-stream Schuster-Schwarzschild equations, in which Jl = 1/2.
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Accurate Numerical Solutions (17)

Following the same equations for the lowest even-order Gauss formula, we obtain:

• The same expressions except that p, = l / \ / 3 , rather than 1/2.

• This follows since the lowest-order even Gauss formula refers to the P2(u) =
\(3u2 — 1) Legendre polynomial for which P2(u) = 0 for u\ = ± l / \ / 3 .

• In summary, the lowest-order Double-Gauss formula leads to the 'half-range'
two-stream Schuster-Schwarzschild equations; and the lowest-order (even) Gauss
formula leads to the 'full-range' two-stream or Eddington approximation.

• We may now use the formulas given above to find the half-range roots and
weights for N — 1.

• Since the corresponding full-range roots and weights are u±i = ± l / \ / 3 and
w±i = 1, respectively, we find:

•Mi — |(1 ~ 1/"N/3), M2 = |(1 + l/ \ /3), w\ = \, W2 = \ for the half-range roots
and weights for 0 < \i < 1. For — 1 < fj, < 0 the weights are the same and

TaglfWmiLife STKVEISJS

17



The relationship between full-range Gaussian quadrature
JJ w'j) and half-range double-Gaussian quadrature:

N

1

2

3

4

5

6

3

1

1
2

1
2
3

1
2
3
4

1
2
3
4
5

1
2
3
4
5
6

2N + 1 - j

2

4
3

6
5
4

8
7
6
5

10
9
8
7
6

12
11
10
9
8
7

0.57735

0.33998
0.86114

0.23862
0.66121
0.93247

0.18343
0.52553
0.79667
0.96029

0.14887
0.43340
0.67941
0.86506
0.97391

0.12523
0.36783
0.58732
0.76990
0.90412
0.98156

1.00000

0.65215
0.34785

0.46791
0.36076
0.17132

0.36268
0.31371
0.22238
0.10123

0.29552
0.26927
0.21909
0.14945
0.06667

0.24915
0.23349
0.20317
0.16008
0.10694
0.04718

0.21132

0.06943
0.33001

0.03377
0.16940
0.38069

0.01986
0.10167
0.23723
0.40828

0.01305
0.06747
0.16030
0.28330
0.42556

0.00922
0.04794
0.11505
0.20634
0.31608
0.43738

Wj

0.50000

0.17393
0.32607

0.08566
0.18038
0.23396

0.05061
0.11119
0.15685
0.18134

0.03334
0.07473
0.10954
0.13463
0.14776

0.02359
0.05347
0.08004
0.10158
0.11675
0.12457

V-2N+1-J

0.78868

0.93057
0.66999

0.96623
0.83060
0.61931

0.98014
0.89833
0.76277
0.59172

0.98695
0.93253
0.83970
0.71670
0.57444

0.99078
0.95206
0.88495
0.79366
0.68392
0.56262

W2N+1-J

0.50000

0.17393
0.32607

0.08566
0.18038
0.23396

0.05061
0.11119
0.15685
0.18134

0.03334
0.07473
0.10954
0.13463
0.14776

0.02359
0.05347
0.08004
0.10158
0.11675
0.12457

STKVKNK
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Accurate Numerical Solutions (19)

Anisotropie Scattering

• We will generalize the discrete ordinate method to anisotropie scattering
in finite inhomogeneous (layered) media.

In doing so we shall introduce a matrix formulation, because it:

• Allows for a compact notation;

• Makes it easy to implement the method numerically;

• This formulation is valid for isotropic scattering as well as for any phase function.

For simplicity we start by considering a homogeneous slab.

• Recall: When the intensity is written as a Fourier cosine series, each Fourier
component satisfies a RTE mathematically identical to the azimuthally-averaged
equation.

• Thus, we may focus on the RTE for the m = 0 component (or the scaled version
if we want to utilize the S — M scaling).

19



Accurate Numerical Solutions (20)

Mathematically the un-scaled and the scaled equations are identical: scaling
only influences the optical properties of the medium and will not affect the
mathematical solution.

Therefore, we consider the following pair of equations for the azimuthally-
averaged half-range diffuse intensities:

\ /1 dJ {^ ) / ( O Xtrln (5)

dr
— (l dii1 r>( — n' —ii\J~(n- n'\ — Y~P~T/^O (a\

where

Life STKVENS
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Accurate Numerical Solutions (21)

2N—1

p(ji',n)= E (21 + l)xiPi(n)Pi(ji') (7)

X± = X0(±/x) = ~Fsp(-fi0, ±p) . (8)

We consider the collimated beam case for which:

• we need to deal with the full azimuthal dependence to arrive at the intensity
distribution.

The discrete ordinate approximation to the half-range RTE is obtained by:

• Replacing the integrals by quadrature sums and thus transforming the pair of
coupled integro-differential into a system of coupled differential equations as
follows:

STKVKNS
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Accurate Numerical Solutions (22)

dI+(T,LLi) , , N a N
= r(Tm) - - Er(T,m) E

(XT Z j=l

- ~ E wjpi-fij, fti)r(T, w ) - X+e-T'f° (9)
Z 3=1

dl~(r,fii) . a N ,
/ (r M) E Wpifi in)r

dl(r,fii) . a N ,
-IM -; = / (r, Mi) - - E Wjpifij, -in)r(Ti

UT Zj=l

- % E Wjji-m, -IH)I-(T, m) - X0-e-T/™. (10)
Z J=\

Quadrature Rule

• It is convenient to use the same quadrature in each hemisphere so that \i-i = —fit
and w-i = Wi.

'mm JLtflf t-uiw
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Accurate Numerical Solutions (23)

• The use of Gaussian quadrature is essential because it ensures that the phase
function is correctly normalized, i. e.:

N N
E Wjp(T,lLi,lLj)= E Wip(T, IM, ft) = I- (11)

j=-N i=-N

Note that:

• Energy is conserved in the computation (no spurious absorption for a = 1),
because the Gaussian rule is based on the zeros of the Legendre polynomials
which we have also used for our expansion of the phase function.

Big Advantages of Expanding t he t he Phase Function
in Legendre Polynomials are:

• (i) Normalization holds in all orders of approximation, i. e., for arbi-
trary values of N; (ii) the "isolation" of the azimuth dependence is accomplished.

igMmi Life STKVEISft*
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Accurate Numerical Solutions (24)

Recall:

• The quadrature points and weights of the "Double-Gauss" scheme satisfy \i_j =
—jJLj} and W-j = Wj.

The Main Advantage of this "Double-Gauss'5 Scheme is that :

The quadrature points (in even orders) are distributed symmetrically around•

u = 0.5 and clustered both towards \u\ = 1 and \u\ = 0,

WHEREAS

• In the Gaussian scheme for the complete range, — 1 < u < 1, they are clustered
towards u = ±1 .

• The clustering towards \u\ = 0 will give superior results near the boundaries
where the intensity varies rapidly around \u\ = 0.

• A half range scheme is also preferable since the intensity is discontinuous at the
boundaries.

STKVKNS
)tiswtw<*«it"&t*iwiN»
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Accurate Numerical Solutions (25)

• Another advantage is that half-range quantities such as upward and downward
fluxes and average intensities are obtained immediately without any further
approximations.

• Computation of half-range quantities using a full-range quadrature scheme
is obviously not self-consistent.

Matrix Formulation of the Discrete-Ordinate Method

• Before we consider the general multi-stream solution, we shall first describe the
two-and four-stream cases (AT = 1 and 2).

Two-stream approximation (N = 1):

The two-stream approximation is obtained by:

• Setting N = 1 in the half-range RTE, which yields 2 coupled differential equa-
tions:

STKVKNS
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Accurate Numerical Solutions (26)

(12)

(IT I
where

(13)

a
2

a

f) = ab = -p(-/xi,

= a(l -b) = -p(-Mi,

up STKVKNS
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Accurate Numerical Solutions (27)

Recall that:

• b = |(1 — 3<7/if) is called the backscatter ratio and that g is the first moment of
the phase, commonly referred to as the asymmetry factor.

• If we take /ii = 3~^? then for g — —1 we have complete backseattering (b = 1),
for g = 1 complete forward scattering (b = 0). and for g = 0 isotropic scattering
(6 = "

• The value //i = 3 2 corresponds to Gaussian quadrature for the full-range
[—1,1], while Gaussian quadrature for the half range [0,1] (referred to as Double-
Gauss) yields \i\ = \.

We may rewri te eqns. 12 and 13 in mat r ix form as:

/ -
— -a -p'

. (3 a .

7+
/ -

— (14)

where

STEVENS
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Accurate Numerical Solutions (28)

±Q± =

2

Example 8.3 Four-stream approximation (N = 2):

In this case we obtain four coupled differential equations:

ST1CVENS
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Mi
dr

- , M2) - ^ i -

, MI) - w2-

, MI)

M2)

M2
dr

- , M2) - W i -

, MI) - W22

, Mi)

- M r dr
- , M2) - ^ l ^

-

-M2 -
dr

-

, M2) ~ ^ ^ ( - M b ~ M 2 ) / " ( T , MI)

, MI) ~ ^ 2 -
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Accurate Numerical Solutions (30)

We may rewrite these equations in matrix form as follows:

d

where

-an
— OLi\

021

A2
£22

«11

«21 " 2 2

(15)

Q±(r, /i.) =

- 1 a
2
a

1

,2,
- l

_ - i (2
-

a

/ \ 1 1

STKVENS
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P22 =

By introducing the vectors

1 w2-p(

-

-

-

we may write eqn. 15 in a more compact form as:

dr

1+

I -
-a -0'
J3 a

1+

I -

* = 1,2

Q +

Q -
(16)

where all the elements of the matrices a and /3 are defined above.
Note that:

• This equation is very similar to the one obtained, in the two-stream approxima-
tion except that the scalars a and /3 have become 2 x 2 matrices.

• a and /3 may be interpreted as local transmission and reflection operators.
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Multi-stream approximation (N arbitrary):

It should now be obvious how to generalize this scheme:

• We write eqn. 9 and 10 in matrix form as:

where

Q ±

M

a =
P

W

1

D +

D"

Jr
1+
I-

— - a ~P'
L P & _

1+
I-

— Q+

ij = 1
- 1}

a
2

(17)
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Accurate Numerical Solutions (33)

We note that the structure of the (2N x 2 JV) matrix:

-a -/3

in eqn. 17 can be traced to the fact that

• The phase function depends only on the scattering angle (i. e., the angle between

• This special, structure is also a consequence of having chosen a quadrature rule
satisfying ji-i = —^ w-i = Wj,.-

• Because of this structure, eqn. 17 permits eigensolutions with eigenvalues occur-
ring in positive/negative pairs:

• We can reduce the order of the resulting algebraic eigenvalue problem by a factor
of 2 which leads to a decrease of the computational burden by a factor of 8.

mm- :'•• IP » jf» S1TCVENSlife
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Accurate Numerical Solutions (34)

Matrix Eigensolutions

Two-st ream solutions (N = 1):

• Seek solutions to the homogeneous version of eqn. 14 (Q± = 0) of the form
r± = g±

e
 Ar, g± = - This leads to the algebraic eigenvalue problem:

a
. - /? - a .

Writing this matrix equation as follows:

9

19'
= X 9

[9'
(18)

= Xg+= Xg

-f3g+ - ag~ = Xg~

and adding and subtracting these two equations, we find:

(a - = X(g+

r*H'j Life
STEVKNS
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(20)
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Accurate Numerical Solutions (35)

Substitution of the last equation into eqn. 19 yields:

(a - I3)(a + I3)(g+ + g~) = A V + <T)
which has the solutions Ai = k., A_i = —k with

1
k = Ja2 - p2 = —yl(l-a)(l-a + 2ab) > 0 (a < 1) (21)

g+ + g~ = arbitrary constant (=1) (22)

which we may set equal to unity.

For Ai = k eqn. 20 yields:

g+ - g~ = (a + (5)/k (23)

(assuming k •=£ 0 or a

STKYKNS
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Accurate Numerical Solutions (36)

Combining eqns. 22 and 23 we find:

9t (a ~ a

- a
and thus

si
[9i\

\Poo

-1

— Hoc

which is the eigenvector belonging to eigenvalue X\ = k.

(24)

(25)

Repeating this for A_i = — &, we find i = Poc, and:

9±i

9-1J

1

7OO

(26)

I
STEVENS
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Accurate Numerical Solutions (37)

The complete homogeneous solution becomes a linear combination of the expo-
nential solutions for eigenvalues X\ = k and A_i = —fc, i. e.

-kT (27)
7"(T) = / ( T , - M I ) = C_iff_i(-/ii)c+fcT + C i 5 i ( - W ) e - * r

= PooC-ifl-iC+MOe+^ + CiffiC-AtiJe-*7 (28)

where C\ and C_i are constants of integration. We note that:

• These solutions are identical to those given previously for the two-stream ap-
proximation as they should be.

• In anticipation of the extension to more than two streams we may rewrite the
solution in the following somewhat artificial form:

\ = E C^g^(±ix%)e^T + E Cjgj(±^)e-^T i = 1,1 (29)
ii ii

with k\ = k, given by eqn. 21.

STKVKNS
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Accurate Numerical Solutions (38)

Multi-stream solutions (N arbitrary)

• Equations 17 is a system of 2N coupled, ordinary differential equations with
constant coefficients.

• These coupled equations are linear and our goal is to uncouple them by using
well-known methods of linear algebra.

• From the discussion of the two- and four-stream cases it is now obvious that
we should proceed by seeking solutions to the homogeneous version (Q = 0) of
eqn. 17 of the form:

(30)

We find:

a p g
g

+
= k g

g

+
(31)

Equation 31 is a standard algebraic eigenvalue problem of order 2N x 2N with
eigenvalues k and eigenvectors ±

STKVKNS
iBswownrr
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Accurate Numerical Solutions (39)

• Because of the special structure of the matrix in eqn. 31, the eigenvalues occur
in positive/negative pairs and the order of the algebraic eigenvalue problem
(eqn. 31) may be reduced as follows:

We rewrite the homogeneous version of eqn. 17 as:

dr

dr
Adding these two equations, we find:

Subtracting these two equations, we find:

dr

STEVKNS

(32)

(33)
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Accurate Numerical Solutions (40)

Combining eqns. 32 and 33, we obtain:

or in view of eqn. 30:

(a - p)(& + ^)(g+ + g") = /c2(g+ + g") (34)

• This completes the reduction of the order.

• To proceed we solve eqn. 34 to obtain eigenvalues and eigenvectors (g+ + g~).

• We then use eqn. 33 to determine (g+ — g~), and proceed as in the four-stream
case to construct a complete set of eigenvectors.

tmiLift* STKVKNS
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Accurate Numerical Solutions (41)

Inhomogeneous Solution

• It is easily verified that a particular solution for collimated beam incidence is:

-TM> (35)
where the ZQ(UJ) are determined by the following system of linear algebraic
equations:

N

E
j=-N

a
''2

(36)

Equation 36 is obtained by simply substituting the "trial" solution (eqn. 35) into
eqns. 9-10.
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Accurate Numerical Solutions (42)

• In the two-stream case eqn. 36 reduces to a system of two algebraic equations
with two unknowns which is easily solved analytically and the solutions were
provided previously.

• The four-stream case involves four algebraic equations and may also be solved
analytically,

BUT

• This may not be worth the effort, since standard linear equation solvers have
built-in features like pivoting implying that such a software package is, in general,
likely to produce numerical results superior to those obtained from the analytic
solutions.

Example: Thermal Source

For thermal sources the emitted radiation is isotropic (and azimuth-independent):

Q'(T) = (1 - a)B(T).

Life STEVENS

sst
42



Accurate Numerical Solutions (43)

To account for the temperature variation in the slab we may approximate the
Planck function for each layer by a polynomial in optical depth r:

B[T(r)]=T6

Then

• if we insist that the solution should also be a polynomial in r, i. e.

= Z
1=0

we can show that the coefficients YI{UJ) are determined by solving the followin
system of linear algebraic equations:

= (1 - a)bK

£ \8ij - Wj-p(uj, Ui)) YI(UJ) = (1 - a)bi - (I + l)uiYi+1(ui)
j= — N \ Z I

l = K -l,K -2,...,0.
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Accurate Numerical Solutions (44)

• It is popular to use a linear approximation (K = 1), which only requires knowl-
edge of the temperature at layer interfaces to compute the Planck function there.

• Noting that the Planck function depends linearly on temperature in the long
wavelength (Rayleigh-Jeans) limit, but exponentially in the short wavelength
(Wien's) limit:

• we expect an exponential times a linear dependence of the Planck function
on r to work well under most circumstances.

General Solution

The general solution to eqns. 9 and 10 consists of a linear combination, with
coefficients Cj, of all the homogeneous solutions, plus the particular solution:

£ C-j9-j(±iJLi)ektT + E
J = l 3=1

(37)

STKVENS
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Accurate Numerical Solutions (45)

Recall that:

• The kj and gj{±.fii) are the eigenvalues and eigenvectors obtained as described
above.

• The zkfii are the quadrature angles.

• The C±j the constants of integration.

Source Function and Angular Distributions

For a slab of thickness r*, we may solve eqns. 9 and 10 formally to obtain (ji > 0):

* S (, i) (38)

= /" (0, n)e~^ + J0
T -S~(t, ^ e " ^ - ^ " . (39)

&.-;:-'•!, ' STEVENS
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Accurate Numerical Solutions (46)

These two equations show that:

• If we know the source function S±(t, fi)1 we can find the intensity at arbitrary
angles by integrating the source function.

• We shall use the discrete ordinate solutions to derive explicit expressions for the
source function which can be integrated analytically.

Analytic Expression for the Source Function

• In view of eqns. 9-10 the discrete-ordinate approximation to the source function
mav be written as:

a N

N .

(40)

STKVENS
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Accurate Numerical Solutions (47)

Substituting the general solution of eqn. 37 into eqn. 40, we find:

N ^
v̂  (^ .n .(

— 2s y^-jy-j\3=1

X fc-r N

±/i)e j + E
3=1

^ + Z^)e~T^ (41)
3=1 3=1

where

a N
& ( ± M ) = o E j>*p ( -^ , ±v)9j(-lk) + WiP{+Vi, ±/j)gj{+/J>i)} (42)

Z z = l

^ ( / x ) = ^ E {^iP(-A*i, ±M)^o(-Mi) + w#(+/Ji, ± M ) Z O ( + ^ ) } + X O ( ± / / ) . (43)

Note that:

• Equations 42 and 43 are convenient analytic interpolation formulas for the
§j(±/z) and the Zo(±.ji).

• They clearly reveal the interpolatory nature of eqn. 41 for the source function.

• The fact that they are derived from the basic radiative transfer equation to
which we are seeking solutions, indicates that these expressions may be superior
to any other standard interpolation scheme.

I3gN9>mIJfe STKVKNS
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Accurate Numerical Solutions (48)

Interpolated Intensities

Using eqns. 41 in eqns. 38-39, we find that for a layer of thickness r*, the intensities
become:

r+(r a) - I+(T* u)e-{T*-T)/» + Y C-9jK'T^) le~kiT - e-^
T*+^*-T^\ (U)

, H) = J-(0, At)e-T/" + E Cj^p- {e~k'T - e~TW (45)
j——N 1 KjJ

• We have for convenience included the particular solution as the j = 0 term in
the sum so that Co^oli/^) = Zo(^fJ>) and ko = 1/fJ^o-

• The basic soundness and merit of the intensity expressions given above will be
demonstrated in the following examples.

STKVKNS
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Accurate Numerical Solutions (49)

• First, we note that eqns. 44-45 when evaluated at the quadrature points, yield
results identical to eqns. 37.

• Secondly, eqns. 44-45 satisfy the boundary conditions for all /z-values (even
though we have imposed such conditions only at the quadrature points!).

• Thirdly, the more complicated expressions (i. e. eqns. 44-45 as compared to
eqn. 37) have the merit of "correcting" the simpler expression (eqn. 37) for
/x-values not coinciding with the quadrature points.

Example: The Meri t of t he Interpolat ion Scheme

• Equations 44 and 45 provide a convenient means of computing the intensities:

• for arb i t ra ry angles A N D at any desired optical depth .

However:

• the merit of these expressions depends crucially on the ability to compute effi-
ciently the eigenvectors §j(±//) and the particular solution vector ZO(±/JL).

Life STEVENS
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Accurate Numerical Solutions (50)

• Since the gj(ii) are known at the quadrature points (// = /i?;, i = ± 1 , . . . , ±AT),
this information can be used as a basis for interpolation using any standard
interpolation scheme.

The following figure illustrates the problems one might encounter in interpolation
using standard techniques:

• The eigenvector corresponding to the smallest eigenvalue for a phase function
typical of atmospheric aerosols with single scattering albedo a = 0.9 illustrates
the typical behavior of some of the eigenvectors.

• A 16-stream computation (N'= 8) was used in this example. The values at the
quadrature points to be interpolated are indicated by the dots.

• We notice that there is a pronounced dip close to fi = 0.

• It is difficult to fit a polynomial to a function with such a pronounced dip. A
cubic spline interpolation also performs poorly on both sides of the dip, whereas
the analytic expression (eqn. 42) yields good results.
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Accurate Numerical Solutions (51)

Consequence of using Different Interpolation Schemes:

• The analytic expressions to compute the eigenvectors and the particular solution
vector yield good results.

• The results obtained by using cubic spline interpolation of the eigenvectors are
inaccurate for —0.6 < u < —0.1.

This example illustrates that:

• An interpolation scheme which interpolates the eigenvectors, is best suited as a
general purpose interpolation scheme: because:

• it can provide accurate intensities at any desired angle and depth.

Hg^mUfe STI:YI:NS

t
51



Accurate Numerical Solutions (52)

Boundary Conditions - Removal of Ill-Conditioning

Boundary Condit ions
We noted that:

• If the diffuse bidirectional reflectance, Pd(/i, </>; — //, (/>'), is a function only of the
difference between the azimuthal angles before and after reflection, then we may
expand it in a cosine series as follows:

2iV—1
- v \ <t>'\ M, 4>) = Pd(-»', M; 4> - 00 = E P ™ ( - / A AO COS

m=0
where the expansion coefficients are computed from:

/TT 0 - (t)')pd(-l^f, VA~ 00 cosra(0

Here the superscript m refers to the azimuthal component.

STKVENS
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Accurate Numerical Solutions (53)

• The advantage of this expansion is that we again are able to isolate the azimuthal
components. In fact, each Fourier component must satisfy the bottom boundary
condition:

( 4 6 )

where Ts is the temperature of, and e(/i) is the emittance of the lower boundary
surface.

Thus, eqns. 37 must satisfy boundary conditions as follows:

(47)

(48)

tmhife STKVKNS
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Accurate Numerical Solutions (54)

where
TV

5m0)

(49)

Xm{—[ii) is the radiation incident at the top boundary.

Note that:

For Prototype Problem 1 we would have Xm{—/^) = constant (the same for all
fii) for ra = 0, and Xm{—fii) = 0 for m ̂  0 (uniform illumination).

For P ro to type Problems 2 and 3 we have, of course, Tm(—/Ji) = 0 since
there is by definition no diffuse radiation incident in P ro to type Prob lem
3 and P ro to type Problem 2 is assumed to be driven entirely by internal
radiation sources.

Mfe STKVKNS
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\\/y\ \ / /

p = 0

Prototype
Problem 1

/
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p = 0

Prototype
Problem 2
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p = 0

Prototype
Problem 3

(a)

Partially
Reflecting
Boundary

Variants of lower boundary condition

(b)

m l

Partially
Transparent
Boundary

(c)

Semi-Infinite
Slab

Figure 1: Illustration of Prototype Problems in radiative transfer.
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Accurate Numerical Solutions (56)

Note also that:

• Since eqns. 47 and 48 introduce a fundamental distinction between downward
directions (denoted by —) and upward directions (denoted by +), one should
select a quadrature rule which integrates separately over the downward and
upward directions.

• As rioted previously, the Double-Gauss rule that we have adopted satisfies this
requirement.

For the discussion of boundary conditions, it is convenient to write the discrete
ordinate solution in the following form (kj > 0 and k-j = —kj):

, Ik) = E [Cjgj(±^)e-kiT + C-j9^(±^e+kiT} + [^(r, m) (50)

Here:

• The sum contains the homogeneous solution involving the unknown coefficients
(the Cj) and

• U±{T, jjii) is the particular solution given by eqn. 35.
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Accurate Numerical Solutions (57)

Insertion of eqn. 50 into eqns. 47-49 yields (omitting the m-superscript):

E -IH) + C-jg-j{-m)} = i{-m) - tr(o, m), % = i, • • •, N (5i)

E

(52)

where

N
rj(fjbi) = 1 - (1 + £m0) E -l^n)wniingj(-/jJn)/gj(+iJ,i) (53)

AT

E

7T
-Mo). (54)

up STKVKNS
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Accurate Numerical Solutions (58)

Note that:

• Equations 51 and 52 constitute a 27V x 27V system of linear algebraic equa-
tions from which the 2N unknown coefficients, the Cj (j = ± 1 , . . . , ±JV) are
determined.

Removal of Numerical Ill-Conditioning

• The numerical solution of this set of equations is seriously hampered by the fact
that eqns. 51 and 52 are intrinsically ill-conditioned.

By "ill-conditionine;" we mean:

• When eqns. 51 and 52 are written in matrix form the resulting matrix can-
not be successfully inverted by existing computers that work with "finite-digit"
arithmetic.

• If r* is sufficiently large, som of the elements of the matrix become huge while
others become tiny, and it is this situation that leads to ill-conditioning.

STKVKNS
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Accurate Numerical Solutions (59)

• Fortunately, this ill-conditioning may be entirely eliminated by a simple scaling
transformation discussed below.

Attempts to solve eqns. 51 and 52 as they stand reveal that they are notoriously
ill-conditioned:

• The root of the ill-conditioning problem lies in the occurrence of exponentials
with positive arguments in eqns. 51 and 52 (recall that kj > 0 by convention)
which must be removed.

• This is achieved by the scaling transformation:

C+j = C'+je
kiTt and C-j = C'^e'^K (55)

Note that we have written:

• Tt and Tfr for the optical depths at the top and the bottom of the layer, respec-
tively.

• This was done deliberately to generalize this scaling scheme to apply to a multi-
layered medium. In the present one-layer case we have rt = 0 and r^ = r*.

STKVKISTS
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Accurate Numerical Solutions (60)

Removal of Numerical 111-Conditioning, cont....

Inserting eqns. 55 into eqns. 51 arid 52 and solving for the C' instead of the C?-,
we find that:

• All the exponential terms in the coefficient matrix have negative arguments
(kj >0,n>rt).

• Consequently, numerical ill-conditioning is avoided implying that the system
of algebraic equations determining the C'- will be unconditionally stable for
arbitrary layer thickness.

• The merit of the scaling transformation is to remove all positive arguments of
the exponentials occurring in the matrix elements of the coefficient matrix.

H O W DOES IT W O R K ?
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Accurate Numerical Solutions (61)

• To demonstrate how this scheme works we shall use the two-stream case as an
example:

Example: Removal of Ill-Conditioning — Two-Stream Case (N = 1)

In this simple case, eqns. 51 and 52 reduce to:

+ CL1gZ1e
kTt = (RHS)t

= (RHS)

where we have used eqns. 27 and 28.

STEVENS
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Accurate Numerical Solutions (62)

The left hand side may be written in matrix form as:

rig+e Mb

This matrix is ill-conditioned because:

• One element becomes very large while another one becomes very small as
becomes large. This limits solutions to problems for which kr^ < 3 or 4.

Using the scaling transformation we find that the above matrix becomes:

n— p — kirh—Tt) 1 f (^f

In the limit of large values of &(T& — Tt) this matrix becomes

Hence:

• The ill-conditioning problem has been entirely eliminated.

Z\
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Accurate Numerical Spin's - Inhomogeneous Slab (63)

So far we have considered only a homogeneous slab in which the single scattering
albedo and the phase function were assumed to be constant throughout the slab.
We shall now allow for both to be a function of optical depth:

• To approximate the behavior of a vertically inhomogeneous slab we will divide
it into a number of layers. Thus:

• the slab is assumed to consist of L adjacent layers in which the single scattering
albedo and the phase function are taken to be constant within each layer, but
allowed to vary from layer to layer.

• For an emitting slab we assume that we know the temperature at the layer
boundaries.

• The idea is that by using enough layers we can approximate the actual variation
in optical properties and temperature as closely as desired.

mildfp STKVKNK
I C t f k
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T = 0

Emitting and reflecting lower boundary
Figure 2: Schematic illustration of a multi-layered, inhomogeneous medium overlying an emitting and partially reflecting surface.
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Accurate Numerical Spin's — Inhomogeneous Slab (65)

The advantage of this approach is that we can use the solutions derived previously
because each of the layers by assumption is homogeneous.

• This implies that we may write the solution for the pth layer as (kjP > 0 and
K—jp — *v jp)

/^(r , fa) = £ [Cjpgjp(±iJLi)e-ktoT + C-jpg-jp(±in)e+k^T\ + E/±(r, m)

p = l , 2 , . . . , L (56)

where

• the sum contains the homogeneous solution involving the unknown coefficients
(the Cjp) and C^(r, Hi) is the particular solution given by eqn. 35.

Note that:

• except for the layer index p eqn. 56 is identical to eqn. 50 as it should be. The
solution contains 2N constants per layer yielding a total of 2N x L unknown
constants.

up STKVKNS
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Accurate Numerical Spin's — Inhomogeneous Slab (66)

In addition to boundary conditions we must now require the intensity to be
continuous across layer interfaces. As we shall see this will lead to a set of algebraic
equations from which the 2N x L unknown constants can be determined.

• Thus, eqn. 37 must now satisfy boundary and continuity conditions as follows:

(57)

...,L-l (58)

(59)

where

• Ir"'{^i) is given by eqn. 49 with r* replaced by 7£.

• Equation 58 is included to ensure that the intensity is continuous across layer
interfaces.

mi Lift* t ,.(*iu.STEVENS
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Accurate Numerical Spin's — Inhomogeneous Slab (67)

Insertion of eqn. 56 into eqns. 57-59 yields (omitting the m-superscript):

iViV
E {Cjigji(-fii) + C-jig-ji(-m)} = !{-

I

- £/i(0, -//*)> 2 = 1, . . . , JV

(60)

UP+I(TP, ft) - Up(rpi

z = ± 1 , . . . , ±iV;p = 1, . . . , L - 1
(61)

3=1

(62)

where r7- is given by eqn. 53 with gj replaced by g:ji, and T is given by eqn. 54 with
U"^- replaced by Ui arid r* by

STEVKNS
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Accurate Numerical Soln's — Inhomogeneous Slab (68)

Equations 60-62 constitute:

• a (2iV x L) x (2JV x L) system of linear algebraic equations from which the
2JV x L unknown coefficients, the C-rp (j = ± 1 , . . . , ±N:p = 1 , . . . , L) are
determined.

Note that:

• eqns. 60 and 62 constitute the boundary conditions and are therefore identical
to eqns. 51 and 52 (again except for the layer indices).

• As in the one-layer case we must deal with the fact that eqns. 60-62 are intrin-
sically ill-conditioned.

• Again, this ill-conditioning may be entirely eliminated by the scaling transfor-
mation introduced previously (eqns. 55). To illustrate how this scheme works
for a multi-layered slab it suffices to consider two layers in the two-stream ap-
proximation.
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Accurate Numerical Spin's — Inhomogeneous Slab (69)

In a multi-layered medium we may evaluate the integral in eqns. 38 and 39 by
integrating layer by layer as follows (rp_i < r < rp and /x > 0):

i.Q^Sfrrie (63)

/T ^ - ( t ) / i ) e - ( T -« ) / " . (64)

STKVISNSW 3J^ - STEVI;

69



Accurate Numerical Spin's — Inhomogeneous Slab (70)

Using eqn. 41 for Sj(t , /x) in each layer (properly indexed) in eqns. 63 and 64, we
find:

C ^ ( + / i ) \\kjnTn-\+(Tn-<l-T)ln\ _ p-[kjnTn+(jn-T

1
+ kjn/J,

(65)

with rn. -i replaced by r for n = p.

E E
n=\ j=—N 1 —

(66)

with rn replaced by r for n = p. It is easily verified that for a single layer (rn_i = r,
i~n = TL = T* in eqn. 65; rn = r, rn_i = 0 in eqn. 66) eqns. 65 and 66 reduce to
eqns. 44 and 45 as they should.
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Accurate Numerical Spin's - Inhomogeneous Slab (71)

Scaled Solutions

Equations 56 and 65 and 66 contain exponentials with positive arguments which
will eventually lead to numerical overflow for large enough values of these arguments.
Fortunately:

• we can remove all these positive arguments by introducing the scaling transfor-
mation into our solutions.

Since only the homogeneous solution is affected, it suffices to substitute eqns. 55
into the homogeneous version of eqn. 56 ignoring the particular solution U^

= .£ {CJjp{±^)e-k^-T^ + C'_jpg-jP(±^)e-k^"-^}. (67)

Since kjp > 0 and rv-\ < r < rp, all exponentials in eqn. 67 have negative
arguments as they should to avoid overflow in the numerical computations.

STEVKNS
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Figure 3: Comparison of accurate (48-stream) and approximate 16-stream diffuse intensities computed with and without S — M scaling at several optical
depths within an aerosol layer of total optical thickness T^ = 1 for A0 = 0, 90 and 180°. a=0.9, and JJLQ = —0.5. Note that the ordinate scale is not the same
in the various diagrams.
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Figure 4: Relative error of the reflected and transmitted intensities computed by strict application of 8 — M and by applying a correction to the 6 — M
method (solid line) which is simply the difference between the singly-scattered intensity computed from the exact phase function and fromthe 8 — M-scaled
phase function. This example pertains to vertical (collimated) illumination of a homogeneous slab of total optical thickness 0.8 consisting of particles with
scattering properties defined in the previous Figure.
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T=0 .05

T=0.75

Figure 5: Three-dimensional display of diffuse intensity versus polar and azimuthal angles for several optical depths within a layer consisting of aerosol
particles ('Haze L') of optical thickness TL = 1, single scattering albedo a = 0.9, and cosine of solar zenith angle //Q = 0.5.
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Description of VDISORT

Brief History - 1

The discrete ordinate radiative transfer algorithm (DISORT) has
proven to be an accurate, versatile and reliable method for the
solution of the scalar radiative transfer problem in plane-parallel,
vertically inhomogeneous media.

An extension of the scalar discrete ordinate theory to solve the 4-
vector problem for the complete Stokes parameters was reported
by Weng (1992), wTho adopted an approach to the solution of the
vector problem completely analogous to the scalar case. Thus:

the computer code for the vector problem could rely on the same
well-tested routine to obtain the eigenvalues and eigenvectors as
the one used in the scalar version (DISORT). Also:

»miLifv STKVKNS



Brief History 2

• the same scaling transformation (Stamnes and Conklin, 1984) could
be applied to circumvent the notorious ill-conditioning that occurs
when applying boundary and layer interface continuity conditions.

The FORTRAN code developed by Weng had a few shortcomings:

»it had been applied exclusively in the microwave region, and thus
had not been tested for beam source applications.

»the procedure to compute the Fourier component of the phase ma-
trix turned out to be both inaccurate and inefficient.

To remove these flaws an improved version (Schulz et al , 1999):

» corrected errors in the numerical implementation

» replaced the procedure for computing the Fourier components of
the phase matrix by a more accurate and efficient method

• tested the performance of the code against benchmark results.



Brief History - 2

However, although the code seems to have the potential to become
an accurate and reliable tool for a variety of applications:

• no attempt has been made to test it in a systematic and compre-
hensive manner. Also, no attempt has been made to document the
code thoroughly and extensively

The original code provided solutions for the Stokes vector at the
discrete ordinates (i. e. at the quadrature polar angles). Computer
time increases cubically with the number of quadrature angles:

• it becomes cost-effective to obtain the solution at a
limited number of quadra ture angles and then gener-
ate the solution at additional angles by using a much
faster interpolation scheme.
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Brief History - 3

• Therefore, analytic expressions for the intensity at arbitrary angles
and optical depths were developed for the vector code (Schulz and
Stamnes, 2000).

W H Y A R E THESE ANALYTIC EXPRESSIONS SO
USEFUL? BECAUSE T H E Y SATISFY:

• not only the radiative transfer equation, but also

• the boundary and layer-interface continuity conditions
at arbitrary angles, and

• they have proven to be superior to standard interpo-
lation schemes.

STEVENS



Capabilities

The capabilites of the VDISORT code may be summarized as fol-
lows:

• It provides solutions for the Stokes vector at abritrary (user-specified)
optical depths and at arbitrary (user-specified) polar angles.

• It can provide output at any number of layers and any number of
angles in a single run at essentially no additional cost.

• It can be applied to compute the Stokes vector for ensembles of
nonspherical particles (ice clouds).

• It can be applied to particles that are small compared to the wave-
length (Rayleigh limit) as well as to particles in the Mie regime.

• It can be used to provide solutions for (solar) beam sources as well
as internal (thermal emission) sources.
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Limitations

The current version of the code has the following limitations:

• It applies exclusively to plane-parallel geometry.

» The lower boundary is assumed to be a Lambertian reflector.

• Although the code has been tested for particles in the Mie regime,
its performance has not been extensively tested for extreme phase
matrices associated with ensembles of particles that are large com-
pared to the wavelength.

FINAL THOUGHT/CHALLENGE:

• The speed of the DOM oc N3: its efficiency could proba-
bly be improved by constructing an eigensolver that
takes full advantage of the fact that the eigenvalues
are real!?)
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