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The EOS MLS instrument.

• The EOS MLS instrument is a follow on to the successful MLS instrument
flown on UARS, launched in 1991.

• It is designed to measure aspects of the chemistry and dynamics of the
stratosphere and upper troposphere.

• It will fly on the EOS Aura platform, along with the HIRDLS, OMI and
TES instruments.

• The Aura launch is currently scheduled for July 2003.

• EOS MLS is designed, built and calibrated by the Jet Propulsion Labora-
tory.

• The instrument uses the Microwave Heterodyne technique (described
later) to measure thermal emission from the earth's limb.
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Outline of talk.

• Description of the EOS MLS instrument.

• Overview of retrieval problem, construction of vectors etc.

• Issues related to retrieval 'phasing' and constrained quantity error prop-
agation.

• A 'two dimensional' approach to the retrieval problem.

• A discussion of forward model issues.

• Issues related to 'noisy' products (if time).

• Implementation of the algorithms in software.

• Some initial results from the algorithms.

• Plans for future development.
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Some aspects of microwave limb sounding.

• One major difference between microwave sounding and some other
techniques (e.g. infrared radiometry) is that spectral lines are easily re-
solved.

• In the stratosphere and troposphere spectral line shapes are dominated
by pressure broadening effects, as opposed to Doppler broadening.

• Lines broaden by ~3 MHz per hPa.

G Most information comes from observations of spectral contrast (the
shape of the line), as opposed to absolute radiance {baseline effects).

• So, for example if we can resolve lines with widths up to 1 GHz, we can
sound down to 300 hPa.

• Once the lines get broader than we can resolve issues of absolute radi-
ance come into piay, and errors get larger.

• Radiances described in terms of a brightness temperature, in Kelvins.

• Observed radiance can thus be a rough indication of the temperature in
regions where the radiances saturate (black-out).
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The microwave heterodyne technique.

Lower
sideband

Intermediate frequency (IF)
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EOS MLS Receivers.

• EOS MLS contains 7 microwave receivers, measuring radiation in the
regions around
118 GHz (two redundant receivers) measuring O2 emission for temper-

ature/pressure.

190 GHz measuring some stratospheric species and upper tropospheric
water.

240 GHz mainly intended for measurements of CO and upper tropo-
spheric O3.

640 GHz the main stratospheric chemistry 'workhorse'.

2.5 THz (two receivers) for measuring stratospheric OH.

• The 118 GHz receiver is a single sideband receiver, all the others are
double sideband.
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The EOS MLS instrument.

GHz module

GHz antenna

THz module

Spectrometer module
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EOS MLS Spectrometers.

• The signals from each receiver are sent to several spectrometers.

• These are centered on various spectral lines of interest.

• EOS MLS has four different types of spectrometers.
FB25 A filter bank containing 25 discrete channels, with narrow

(6 MHz) channels near the line center, broadening to 96 MHz in the
at 575 MHz away from line center.

MB11 A filter bank containing only 11 channels, corresponding to the
center 11 in the FB25 spectrometers.

DACS Digital auto-correlating spectrometers, giving ~0.2 MHz resolu-
tion over 10 MHz

WF4 These consist of four 500 MHz wide channels judiciously placed
within the IF spectrum.
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Overview of the retrieval process.

• Like most instruments the EOS MLS data are divided into 'Levels'.
Level 0 Raw data from the instrument.

Level 1 Calibrated radiances.

Level 2 Geophysical data along the orbit / tangent point track.

Level 3 Geophysical data mapped onto some regular lat/lon grid.

• The rest of this talk concerns the Level 2 processing.

• The method applied is the standard optimal estimation approach.

• While we have some new approaches to the problem, the fundamental
mathematical approach is standard.
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The EOS MLS Orbit and scan.

• Aura will fly in a 98° inclined sun-synchronous orbit, performing ~14.5
orbits per day.

• EOS MLS observes the limb directly in front of the spacecraft.
*=> This has interesting and very useful implications to be discussed later

in this presentation.

• The GHz and THz telescopes make a complete vertical scan of the at-
mosphere every -24 seconds.

• The scan pattern is designed that the observed latitudes are essentially
unchanged from orbit to orbit.

• All parts of the globe are measured twice per day.
>̂ Once on an ascending orbital node, once descending.

• There are plans to have Aqua, Aura, Cloudsat and other platforms fly in
formation.

• This will allow for near simultaneous observations.
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The retrieval equation.

• We choose to represent the state of the atmosphere by the vector x.

• Radiances from various bands within the instrument are gathered into
measurement vectors y^, with (typically diagonal) covariances S(.

• The standard Gauss Newton iteration is given by

x(r+1) (r) i \y K T S ^ K - Y KTS-1 lti--f-fx( r

Li J
where f ̂  is the forward model, and

dx
is the matrix of weighting functions or Jacobians.

• The solution covariance is given by

EOS MLS Retrievals Livesey 1-12 October 2001 (vi.5)



Virtual measurements and a priori

• As it stands, the matrix inversion above is typically not possible.
«=> There are aspects of the state vector for which the measurements

have yielded no information.

• We introduce virtual measurements, in the form of a priori estimates of
the state vector values.

• It will later prove useful to make these separate measurements, rather
than one of the y { vectors.
*=> The vector a is a virtual measurement of x with covariance Sa.

• The iteration thus becomes

• For elements of x that don't need a priori information, the corresponding
rows and columns of Sa are set to zero.
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Construction of the MLS state vector (cont.)

Retrieve temperature a id
composition on fixed

pressure surfaces

r
j Retrieve geopolential
! heighi" of one pressure
! surface (e.g. 100 mm
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Construction of the MLS state vector.

• The most important components of the MLS state vector are the temper-
ature and composition of the atmosphere, as a function of pressure.
o These are the standard products from MLS.

• Note that we use a pressure grid as opposed to a height grid.

• In addition, we include the geopotential height of a single pressure sur-
face (e.g. 100hPa).
o To include a complete profile of geopotential height is unnecessary,

as the temperature profile already conveys this information.

• However, the forward model requires more information in order to
model radiances.

• The most important information is the atmospheric pressure at each tan-
gent point.

• Also, the angular offset between the various MLS radiometers fields of
view is required.
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Sizing the MLS retrieval task.

• Consider the retrieval of a single MLS ozone profile from one scan's
worth of MLS 205 GHz ozone observations.

• Retrieve ozone at 12 surfaces per decade from 1000 hPa to 0.1 hPa.
>̂ Length of state vector x, n = 48

• We use 120 minor frames worth of radiances from 25 channels.
o Length of measurement vector y, m = 3000

• The linear form of the optimal estimation equation gives:

x-a+fS"1 KT KT Sy] (y - f)
i - 1
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Sizing the MLS retrieval task (cont.)

• a is the a priori state vector with n x n covariance matrix Sa.

• f is the forward model measurement vector, (the predicted radiances
corresponding to the a priori state.

• Sy is the m x m measurement covariance matrix.

• K is the m x n matrix of weighting functions:

dx
• The most time consuming aspects of the calculation are the inversion of

Sy. (m3) and the computation of KTSy^K (n2m + m2n).

• However, if Sy is diagonal, we are left with only u 2 m + nm -f- m.
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Constrained quantity error propagation.

• Many previous retrieval algorithms (e.g. UARS MLS, ISAMS) imple-
mented a multi-phase approach
o e.g. a retrieval of temperature/pressure first, from O2 radiances,

o followed by retrievals of various species, using the temperature and
pressure data from the earlier phase in the forward model.

• The previously retrieved quantities c (e.g. temperature and pressure) are
constrained in the later phases.

• However, our knowledge of these quantities is not perfect, they have a
covariance SC/ estimated by the early phase.

• This uncertainty needs to be propagated through the forward model into
an additional radiance uncertainty.

• We should modify our Sy matrices in the later phases according to
Sy —* Sy + KcScKc, where Kc describes the sensitivity of the radi-
ances to these constrained quantities Kc = dy/dc.
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The measurement covariance matrix

• Clearly, having Sy as a diagonal matrix would be a real advantage.

• What does is mean if the Sy matrix is diagonal?
o The 'errors' in the radiances are all uncorrelated.

& If the radiance in channel 0 is 'too high' that doesn't mean that chan-
nel 1 is any more or less likely to also be too high.

• What causes non diagonal covariance matrices?
o Certain instrumental effects such as gain variation. These can be

taken into account by retrieving quantities such as 'baseline'.

o The use of constrained quantity error propagation in multi-phase re-
trieval processes.
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Constrained quantity error propagation (cont.)

• This will make Sy non-diagonal.
z> If the temperature we are using is too high, then all the forward

model radiances will be too large 'in concert'.

• One could choose to ignore the non-diagonal elements of the new Sy
matrix.

• However, previous experience has shown that this can be a poor ap-
proximation.
o The retrieval algorithm puts less 'trust' in the measurements than they

deserve.

• Is there an alternative approach which avoids the costly calculations,
and yet retains accuracy?
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A new approach to multi-phase retrievals.

• , Avoiding constrained quantity error propagation makes Sy diagonal.

• Instead we retrieve everything at once from every channel.

• However, as the real MLS system is non linear, we may have to perform
several iterations on this 'big' system.

• To improve the efficiency, we re-introduce phasing with a new twist.

• In the early phases we retrieve the most non-linear quantities (those
needing several iterations to converge) from appropriate bands.
o For example, retrieve temperature and pressure from O2 radiances.

• Once a good estimate is obtained for these quantities, add more linear
items to the state and measurement vectors, while still retrieving the
earlier quantities.

• This larger system will need fewer iterations to converge, as the non-
linear quantities are already close to the solution.

• Think of the earlier phases getting Initial guesses' for the final phase.
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Dividing the data processing into chunks.

• We process the data in chunks of -1/8-1/4 orbit in length.

• The measurement vectors y^ contain information from M scans.

• .The state vector x describes N vertical profiles.

• Typically we choose N = M. but this is not a requirement.

• The chunks to overlap slightly, to account for 'edge' effects.

• We have q profiles of overlap (e.g. 3) giving Q = N—2q non overlapped
profiles per chunk.

Chunk B

1-21

Chunk A

^ /̂\ ^/\ ^^/\ ^^*
X |Q-5| X|Q-4| X[Q-3| X|Q-2|

«^/\ Ttf*̂ ^ ^t^^ I

IQI IQ+11 IQ+21 j

Time/profiles/scans
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A 'two dimensional' approach.

• Unlike UARS MLS, the EOS MLS instrument looks forward from the
spacecraft.

• This means that all the observations are within the orbital plane.
*=> Although the rotation of the earth has an impact on this.

• Each limb ray is affected by the state of the atmosphere over a -1000 km
path length.

• This corresponds to several adjacent retrieved profiles.

• Note that the scan can be arranged to stack the tangent points in a verti-
cal profile.
o As you scan up, the tangent point gets closer to you.

o If this happens at the same rate as the spacecraft moves forward, the
tangent point locus is vertical.

• In the EOS MLS case, we scan slowly through the troposphere and lower
stratosphere, then speed up in the upper stratosphere and mesosphere.

• How can we devise an algorithm that takes most advantage of this ge-
ometry?
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Weighting functions for this problem.

• The efficiency gain in this case comes from noting that the weighting
function matrices Kj are very sparse.

• For example, the values of temperature for profile 1 have no effect on
the radiances for scan 10.

• This gives a block structure for K| similar to.
Profiles —>
x x 0 0 0 0
x x x 0 0 0

X X

ax
0 x 0 0
0 0 x x x 0
0 0 0 x x x
0 0 0 0 x x

• Where 'profile' is taken to mean the complete state (temperature and
composition profiles) for one location.
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j1 S • the 'Normal equations'.

• Given the form for K| shown above, and assuming S^ is diagonal (more
on this later), the matrix K j S f 1 K\, needed in the retrieval, is of the form:

1 x Profiles—>

I

x x
X X

X X

0 x x

x 0 0 0
x x 0 0
x x x 0

x x x
0 0 x x
0 0 0 x

x

• We know that we can ignore any block products involving absent (com-
pletely 0) blocks in Kj

• This matrix is sometimes known as the matrix of normal equations.

• Given a matrix K^ with block bandwidth p, K T S ^ K ^ will have a block
bandwidth 2p.

• Forming this matrix product is the most CPU intensive part of the inverse
model calculation, as m ^> n
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A prototype retrieval

• A 'proof of concept' prototype has been designed.

• Forward model and retrieval both written in IDL.

• Forward model contains all 2D radiative transfer methods required.

• Retrieval linearises this forward model to the form

y* = y* + K*{x-x*)

• 25 profiles of UARS MLS data have been taken as 'truth'.
*=> Note that the horizontal resolution of UARS MLS is -500 km.

o For EOS MLS it is-150 km.

o Thus the gradients in this model atmosphere are probably a little
severe.

• A retrieval of Temperature, tangent pressure and ozone was performed.

• Radiances from R l : 118. BIF: PT and R2:190. B6F: 03 were used.
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Computational effort in the retrieval

• The formation of the normal equations scales according to Npu 2 m.

• The key point is that this operation scales as N, not N 2 . Therefore.

• It takes the same time to retrieve one 200 profile chunk as to retrieve
two 100 profile chunks!

• The limitation on the size of N becomes the memory capacity of the
computer.

• Solving this matirx with a 'sparsity aware' Cholesky decomposition
scales as N2pn3 .

• Thus, the matrix solver will typically be faster than the KJSy]K by a
factor of - m /Nn .

• Of course, in real situations we have more complex state and measure-
ment vectors, introducing more sparsity.
o For example, very few MLS bands have sensitivity to minor species

such as CIO.
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Weighting functions for the prototype

g 100

-0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0
Temperature weighting function / K/K

-0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0
Ozone weighting function / K/ppmv
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Results from a prototype — Temperature
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The 'full' MLS forward model.

• The forward model is similar to that developed for UARS MLS, extended
to two dimensions.

• It is a microwave line by line model, using pressure as the independent
vertical coordinate.

• Radiances are computed for a set of fixed tangent pressures.
>̂ A different fixed frequency mesh is used for each tangent pressure.

o Typically covering one or more 25 channel filter bank.

o The radiances at these frequencies are then convolved with the indi-
vidual MLS channel responses.

• These profiles are then convolved with the MLS field of view (FOV) re-
sponse, and interpolated to the required tangent presssure.
o This interpolation yields the derivative of radiance wrt. tangent pres-

sure virtually for free.
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Results from a prototype — Ozone
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The 'full' MLS forward model (cont.)

• The state vector profiles are taken to represent tie points in a linear
spline' interpolation.

• Note that the state vector contains vmr not log vmr (except for H2O in
the troposphere).

• The forward model accounts for the linear variations in temperature and
composition accross it's integration layers.

• A Gauss-Legendre quadrature (3-6 point) integration scheme is applied.

• Radiance derivatives with respect to composition, temperature, and
some spectroscopic parameters can be computed analytically.

• The mixing ratio derivatives are cheap to compute.

• Temperature derivatives are somewhat more expensive.
^> It transpires that the most significant terms are those due to the effects

of the FOV.

>̂ Changes in temperature affect the shape of the FOV when viewed in
pressure space.
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The linear MLS forward model

• For many of the MLS spectral bands, the system is highly linear.

• Given this, it is possible to construct a simple linear forward model as

y=y* + K*[x-x*] (1)

• y* and K* are pre-tabulated radiances and derivatives for state x*.

• In UARS MLS the x* linearisation states were divided up according to
latitude band and month.

• For EOS we intend a more dynamic scheme, tabulating standard cases
(e.g. inside polar vortex, tropical spring,...), and choosing the most ap-
propriate given the value of x.

• The radiances and derivatives are tabulated for fixed tangent pressures.

• These are then interpolated to the tangent pressures in the state vector.
The interpolation yielding the derivative with respect to tangent pressure
as an added bonus.
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Approach for 'noisy' products.

• Many of the MLS data products will be 'noisy'

• Products such as BrO with very low concentrations and/or signal
strengths.

• Some form of averaging (e.g. weekly zonal mean, monthly map) will be
needed to yield Level 2 data with useful signal to noise.

•
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Forward model implementation

• We plan to use the linear forward model for most channels.

• As each channel becomes optically thick, the linear forward model be-
comes a poorer approximation.

• Optical depth increases with decreasing tangent height and increasing
proximity to the line center.

• We use each channel down to the tangent heights where it is too opti-
cally thick, and then ignore it.

• Information will still be obtained from the channels further from the line
center at these heights.

• For the 'wing' channels (furthest from line center), we'll have to use the
full non-linear forward model if we wish to get useful information.

• We may still take the derivatives from the linear model for speed.
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Obvious approaches for 'noisy' products

• There are two obvious approaches for dealing with 'noisy' products.

• Average in measurement space:
o Average together many radiance observations and perform retrievals

on the averaged radiances.

o This works, provided the signal of interest is not affected by a varying
contaminant who's effect on the radiances is non-linear.

• Average in state space:
o Perform single profile retrievals as with the 'standard' products and

average the results appropriately.

o This solves the problem with non linear contaminants.

*=> However, the a priori information is introduced in each profile re-
trieval and will thus strongly bias an average.

*=> But one can't make the individual profile a priori too loose without
risking instability in the individual retrievals.
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A new approach: Average in 'information' space.

• Construct a state vector which is the desired result.
o For example a monthly zonal mean BrO field.

• Then we consider each relevant set of radiance observations as an indi-
vidual measure of this quantity.

• We use the previously retrieved quantities such as temperature, pres-
sure, ozone etc. as constrained quantities in the forward model for these
retrievals.
o This deals with the issues of having non linear contaminants.

o Error propagation for these quantities is tbd.

o We include the a priori in the retrieval once only.

• Mathematically this comes down to:

x s = fs - i+ 5 -KTS - iK i~yK T s - i [ f (o ) ]

where the summation is over all the relevant sets of radiance profiles.
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Implementation of the algorithms in software.

• We want to process one days worth of data in less than one day.
o We're aiming for 6 hours, to allow for parallel reprocessing streams.

• The software is written at JPL, and will be run at a Raytheon facility in
Pasadena under contract to JPL.

• The data will then be sent to the Goddard DAAC (EOS data repository)
for archive and distribution.

• We're anticipating running the code on Beowulf style cluster.

• Having divide the data into the chunks described earlier, we have the
nodes work on them independently.

• If the nodes themselves have multiple (e.g. 2) processors, either:
>̂ give them each two chunks (may take too much memory).

o write the chunk processing code in a parallel manner (a little harder
to implement).

• We currently have a 64 node, 128 processor IBM linux cluster.

EOS MLS Retrievals Livesey 1-12 October 2001 (v1.5)

Making it even easier

• It is possible to improve on the efficiency of this algorithm further,

• if the routine (i.e. daily) processing outputs forward model radiances or
the radiance residuals.

• These are equivalent to the y — f terms in the retrieval equation.

• As the signal of interest is small, weighting functions can be pre-
tabulated.

• The daily processing can even retrieve its own estimates of the 'noisy'
species.
o These can be useful in spotting 'freak' events.

• Again, as the signals are small, a linear correction can be made for the
amount inferred by the daily processing.

• The UARS MLS instrument has a filter bank centered on a spectral line
from H2O2.

• This will be an ideal test case for the algorithm.
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Implemetation in software (cont.)

• Software written in Fortran 95.
o F95 has many powerful features that Fortran 77 really lacks.

o Higher level languages such as IDL and Matlab lack the speed, also
cost too much in cluster environment.

«=> C does not handle arrays as well, and is typically harder to optimize.

• We implemented a somewhat object orientated approach.
o Defining 'vector' and 'matrix' types and overloading some appropri-

ate operators.

• The code is driven by the 'Level 2 Configuration File' (I2cf).
• => This is essentially a language devised to describe retrievals, forward

model calculations and related activities.
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Vectors, quantities and matrices in the software

• At the heart of the software is the concept of a 'quantity'.
o This is a collection of data for a chunk.

o For example, a set of temperature profiles, or ozone profiles, tangent
pressures or radiances.

o Simpler items such as instrument calibration parameters, isotope ra-
tios etc. are also stored as 'quantities'.

• Quantities are collected together to make 'vectors'.
o For example the state vector, and measurement vectors.

o For efficiency we divorce the vector 'template' (quantity geolocation
information etc.) from the 'value'.

• We also define the concept of a matrix.
o These have attached vectors describing their rows and columns.

*=> Typically describe derivative of one vector with respect to another
(e.g. weighting functions), or the covariance of a single vector.
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A flexible Level 2 program.

• The Level 2 software is very flexible:
^> Can read and write to/from both Level 1 and Level 2.

^> Manipulates gridded data from climatological sources.

o Can perform stand alone forward model calculations, in addition to
retrievals.

• This means that the one program can do:
^> Standard retrievals.

*=> Simulations of radiance fields.

o Pre-computation of the tables for the linear forward model.

o Or even all three together!

• This is much easier than writing three separate programs, each using
slightly different I/O and initialisation code.

• Clearly, the configuration needs to be described in a clear manner.
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Storage and manipulation of matrices

• The quantities in a vector a themeselves divided into 'instances',
o These are horizontal realizations of the quantity.

o Individual temperature profiles, separate radiance scans etc.

• The matrices are divided up into blocks by quantity and index.
o The derivative of band 1, scan 10 radiance with respect to tempera-

ture profile 11 etc.

Q The blocks in the matrices can be of four types:
Absent All zeros, nothing stored.

Full A'full'block.

Banded A block with a few clustered non-zero elements per column.

Sparse A block with a few non-zero elements in random locations.

• The banded and sparse representations are only typically worthwhile for
blocks with <~20% non-zero elements.

• The matrix algebra in the code effitiently deals with all of these.
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The Level 2 Configuration File (I2cf)

• The I2cf is in many ways a computer language for describing retrievals.

• Can define quantities, vectors, matrices etc. in a very similar manner to
the definitions of types and variables in other languages.

• The syntax is somewhat reminiscent of IDL.
; Define a ver t ica l coordinate system in -logiO(pressare/hPa)>
; with 25 surfaces at 12 per doca.de s tar t ing at 1000mb, followed
; by 24 surfaces at 6 per decade.
standardSurfaces: vGrid, coordinate=Zeta, type=Logarithmic, $

start=1000mb, formula=[25:12, 24:6]

; Place profiles where GJfz tangent point; height f i r s t crosses
; 15km each scan.
standardProfiles: hGrid, type=height, height=15km, module=GHz

; Dofine a. template for temperature, GHz tangent pressure,
; ozone and band 6 radiances.
temperature: Quantity, vGrid=standardSurfaces, hGrid=standardProfiles, $

type=temperature
ptahGHz: Quantity, type=ptan, module=GHz
ozone: Quantity, type=vmr, molecule=03, vGrid=standardSurfaces, $

hGrid=standardProfiles
band6: Quantity, type=radiance, signal=)R2:19O.B6:O3'
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The Level 2 Configuration File (cont.)

; Define templates for state and measurement vectors
stateTemplate: vector-Template, quantities=[temperature, ozone, ptanGHz]
measTemplate: vectorTemplate, quantities=[band6j

; Define various vectors
x: vector, template=stateTemplate ; State vector
a: vector, template=stateTemplate ; A priori state vector
y: vector, template^measTemplate ; Measurement vector
yNoise: vector, template=measTemplate ; Measurement noise

; Set up appropriate default states
Fill, quantity=x.temperature, method=gridded, source=aprioriTemp

; aprioriTemp is a gridded field read by earlier lines
; in the 12of

Fill, quantity=y.band6, method=llb ; Fill radiances from LI file
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Production code.

• The production code is still under development and testing.

• Essential functionality in place.

• What remains are many 'small but vital' features that will be needed.

Q Also need to ensure code is 'bomb proof.
>̂ Must be able to cope with missing data, broken radiometers etc.

• Hoping to add an 'on-line diagnostic' capability.
*=> A separate IDL task that can communicate with the fortran code dur-

ing testing display results etc.

• Note that the software is flexible enough that it can easily be modified
to process data from UARS MLS.
>̂ No code changes required, just some changes to the I2cf and new

calibration files.

• Some results from a simple retrieval, similar to the 'prototype' follow.

EOS MLS Retrievals 46 Livesey 1-12 October 2001 (v1.5)

The Level 2 Configuration File (cont.)

; Perform a very simple retrieval (definition of some terras omitted)
Retrieve, state=x, measurements=y, measurementSD=yNoise, $

forwardModel=retFwm, $
covariance=myCovariance, apriori=a, columnScale=norm, $
maxF=2, maxJ=l, lambda=0.0,outputSD=sdOut

; One defines forward model configurations (e.g. retFwm) earlier
; ID. the 12cf. A retrieval can use more than one forward model.

; Later parts of the 12cf deal yith jo in..ing together data from the
; chunks and out-putting them in the appropriate files.
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Results from production code.

1.0 hPa Pressure surface

Red - truth, Black - retrieved (dotted 1 D), Cyan - a priori
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Summary.

• MLS is a passive microwave instrument designed to measure the chem-
istry and dynamics of earth's atmosphere from 5-80 km.

• The retrieval algorithms use the standard optimal estimation approach.

• One new aspect is a two dimensional 'tomographic' approach to the
problem.

• Avoid error propagation problems by doing simultaneous retrievals.

• Implemented in a very flexible software setup.

• Work proceeding well.

EOS MLS Retrievals 48 Livesey 1 -12 October 2001 (v1.5)


