

the **abdus salam** international centre for theoretical physics

Course on "Inverse Methods in Atmospheric Science" 1 - 12 October 2001

301/1332-9

"The Empirical Optimal Estimation Method Applied to the Inversion of Atmospheric FTIR Remote Sensing Data"

> M. DE MAZIÈRE Belgian Institute for Space Aeronomy Brussels

Please note: These are preliminary notes intended for internal distribution only.

The empirical optimal estimation method applied to the inversion of atmospheric FTIR remote sensing data.

M. De Mazière

B. Barret

Belgian Institute for Space Aeronomy, Ringlaan 3, B-1180 Brussels, Belgium. martine@oma.be

OUTLINE

- Principle of FTIR remote sensing
- Inversion
 - Total columns
 - Improved total columns
 - vertical profiles
- Characterisation of the retrieval
- Application:

1996-2001 time series of O_3 at the Jungfraujoch

FTIR REMOTE SENSING

• Principle of Michelson interferometry:

 \Rightarrow recording of interferogram of incident light (sun, thermal emission,)

- \Rightarrow FFT
- \Rightarrow spectrum
 - high spectral resolution
 - multiplex advantage

⇒ distinction of many absorption/emission signatures simultaneously

ICTP 2001

\$5.2] }

> OEM applied to FTIR M. De Mazière, BIRA-IASB

Absorption ground-based spectrum

OEM applied to FTIR M. De Mazière, BIRA-IASB

Emission nadir spectrum

FTIR atmospheric 'PRODUCTS'

- Reference gas: $N_2(<1\%)$
- Minor constituents: $CO_2(<2\%), N_2O(\le 2\%), CH_4(\approx 2\%), CO(\le 4\%), O_3(\le 5\%), [H_2O]$
- Halogenated trace species: HCl ($\leq 4\%$), ClONO₂ ($\approx 20\%$), CCl₂F₂ ($\leq 4\%$), CHClF₂ ($\leq 6\%$), HF ($\leq 3\%$), COF₂ ($\leq 20\%$), SF₆($\approx 30\%$)
- Nitrogenated trace species: NO($\leq 6\%$), NO₂ ($\leq 10\%$), HNO₃ ($\approx 5\%$), HNO₄(monthly avg.)
- Other trace species: $C_2H_2 (\approx 20\%), C_2H_6 (\leq 6\%),$ HCN ($\leq 8\%$), OCS ($\leq 8\%$), H₂CO (monthly avg.), [H₂CO₂, CH₃Cl, CCl₄, CCl₃F, ...]; various isotopes

(Precisions estimated for Jungfraujoch conditions)

FTIR retrieval: forward model $y = f(x,b,b') + \varepsilon$ $F(x,b) \cong f(x,b,b'); \quad \Delta f = f(x,b,b') - F(x,b)$ $y \cong F(x,b) + \varepsilon$

y is the experimental measurement, x is the unknown state ε is the experimental error term

f, F are the forward function, model, respectively b are forward function parameters, that are in the model, w / best estimates \hat{b} ; some may be retrieved \rightarrow included in x b'are forward function parameters, ignored in the model

FTIR Forward Line By Line model

Solar absorption mode RT model: Transmission $T(\tilde{v}) = I(\tilde{v}) / I_0(\tilde{v}) = \exp(-\alpha(\tilde{v}))$ with $a(\tilde{v})$ absorption coefficient:

$$\alpha(\widetilde{v}) = \int_{z_0}^{\infty} dz \ l(z) \sum_{i} n_i(z) \sum_{j} S_{ij}(\widetilde{v}, z) f_{ij}(\widetilde{v}, z)$$

 $i \rightarrow \text{molecule}; j \rightarrow \text{absorption line}$
 $S_{ij} \text{ line strength / molecule}; f_{ij} \text{ lineshape}$
dependence on $z \iff \text{dependence on } P, T$
Instrument model: $\widetilde{T}(\widetilde{v}) = T(\widetilde{v}) \otimes ILS(\widetilde{v})$

FTIR LBL model parameters

• Linestrength and -shape $\Rightarrow b$

– Strength S(T) - depending on E''

Voigt lineshape is adopted,
 close to Lorentz at high pressure,
 close to Doppler at low pressure

• *neglects* Dicke narrowing, line mixing, $... \Rightarrow b'$

Doppler HWHM $\alpha_{\rm D} = v_0 \sqrt{\frac{2kT \ln 2}{M}}$ Lorentz HWHM $\alpha_L = \alpha_{L,0} (P/P_0)^m (T_0/T)^n$ $m \le 1 \quad n: 0.5 \rightarrow 1$ (databases for $\alpha_{L,0}$ and n)

OEM applied to FTIR M. De Mazière, BIRA-IASB

12

Linewidth contributions - comparison

OEM applied to FTIR M. De Mazière, BIRA-IASB

• Weighting fion: $\mathbf{K}_{\mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \cong \frac{\partial \mathbf{F}}{\partial \mathbf{x}}$

– saturated lines:

more sensitive to tropospheric contributions, reduced information content as to stratosphere

FTIR measurement sensitivities

– weak lines:

more information about the stratosphere

 $\mathbf{K}_{\mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \cong \frac{\partial \mathbf{F}}{\partial \mathbf{x}}$

OEM applied to FTIR M. De Mazière, BIRA-IASB

ICTP 2001

15

OEM applied to FTIR M. De Mazière, BIRA-IASB

ICTP 2001

16

FTIR retrieval: Inverse Model -1

• General formulation

 $\hat{x} = R(F(x,b) + \Delta f(x,b,b') + \mathcal{E}, x_a, \hat{b}, c)$

 \hat{x} is the retrieval result for x, through the inverse method R x_a and c:retrieval method parameters x_a the a priori estimate of x

• FTIR:

 $-x \Leftrightarrow$ target concentrations (column w/ fixed profile $\rightarrow ... \rightarrow$ profile), selected model par^s;

 $-c \Leftrightarrow x_a, S_a, S_{\varepsilon} \Leftrightarrow SNR_{retr,}$ convergence criterium

- FTIR retrieval: Inverse Model 2 • OEM - Non-linear case- Newtonian iteration $\hat{x} = (S_a^{-1} + K^T S_{\varepsilon}^{-1} K)^{-1} (K^T S_{\varepsilon}^{-1} y + S_a^{-1} x_a)$ $x_{n+1} = (S_a^{-1} + K_n^T S_{\varepsilon}^{-1} K_n)^{-1} [K_n^T S_{\varepsilon}^{-1} (y_m - y_n + K_n x_n) + S_a^{-1} x_a]$ $x_{n+1} = x_a + S_a K_n^T (K_n S_a K_n^T + S_{\varepsilon})^{-1} [(y_m - y_n) - K_n (x_a - x_n)]$
- For vertical inversion of ground-based solar absorption FTIR: *SFIT2* code, empirical implementation of OEM
 - empirical estimations of best S_{ε} , S_{x_a} and of covariances of all retrieved parameters (S_b)
 - best ? best fit, w/o instabilities in retrieved state = best compromise between a priori and measurement info

ICTP 2001

Retrieval characterisation - 1

After linearisation and re-arrangement

 $\hat{x} - x_a = R(F(x_a, \hat{b}), \hat{b}, x_a, c) - x_a \qquad \text{bias} > 0$ + $A(x - x_a) \qquad \text{smoothing}$ + $G_y \varepsilon_y \qquad \text{retrieval error}$

sensitivity of retrieval to measurement

$$K_x = \frac{\partial F}{\partial x}$$

 $G_{y} = \frac{\partial R}{\partial v}$

sensitivity of forward model to unknown state

(weighting function)

 $A = G_{v}K_{x}$ sensitivity of retrieved to real state (averaging kernel)

Retrieval characterisation - 2

Or else $\hat{x} - x = (A - I)(x - x_a)$ smoothing error $+ G_{v}K_{b}(b-\hat{b})$ model parameter error $+G_v\Delta f(x,b,b')$ forward model error $+G_{v}\mathcal{E}$ 'retrieval' (measurement) error $K_b = \frac{\partial F}{\partial b}$ sensitivity of forward model to model parameters $S_{A} = (A-I)S_{r}(A-I)^{T}$ covariance of smoothing error $S_v = G_v S_e G_v^T$ covariance of measurement error

1002.6-1003.2 cm⁻¹

1000.0-1005.0 cm⁻¹

CO

FTIR inversion: smoothing and measurement errors - 1

M. De Mazière, BIRA-IASB

FTIR inversion: smoothing and measurement errors - 2

ICTP 2001

OEM applied to FTIR M. De Mazière, BIRA-IASB

ICTP 2001

OEM applied to FTIR M. De Mazière, BIRA-IASB

FTIR inversion: model params errors

- Spectroscopy (systematic, altitude-independent)
- P/T (random, altitude dependent)
- background slope, zero level of spectrum
- instrument parameters: EAP
- estimated from Monte Carlo simulations

FTIR inversion: correlations between retrieved parameters - 1

FTIR inversion: correlations between retrieved parameters - 2

Layer	3.6-12 km		12-18 km		18-24 km		24-40 km	
Microwindow	N	В	N	В	N	В	N	B
Model parameter								
Background slope	0.9	0.1	-0.6	0.1	0.2	0.0	0.0	0.0
Effective apodization parameter	0.4	0.0	-0.5	0.2	0.8	-0.1	-0.3	0.3
Zero transmission level	0.5	-0.1	-0.5	0.3	0.7	-0.3	-0.1	0.4

Correlation coefficients between the relative errors ((retrieved-true)/true) of the retrieved partial columns and the retrieved model parameters resulting from the Monte-Carlo study (see text) for retrievals performed in the narrow microwindow (N) and in the broad microwindow (B).

FTIR inversion: total error budget

Layer	3.6-12 km	12-18 km	18-24 km	24-40 km	VCA
Systematic Error Source					
Air broadening coefficient uncertainty	4.6	1.6	0.9	-3.9	0.1
Line intensity uncertainty	2.0	2.0	2.0	2.0	2.0
EAP uncertainty	0.8	1.9	8.4	-7.9	0.6
Total systematic error	5.1	3.2	8.7	9.0	2.1
Random Error Source		,			
Temperature uncertainty	1.9	2.8	0.3	4.9	3.3
Measurement noise	1.3	2.2	1.7	1.1	0.2
Null-space error	7.8	9.2	3.7	1.6	0.2
Total random error	8.1	9.9	4.1	5.3	3.3

Systematic and random errors budgets (%) for the retrieval of ozone partial columns in the broad microwindow 1000 - 1005 cm⁻¹.

FTIR inversion: validation

 Comparison between FTIR retrieved profiles at the Jungfraujoch and correlative data, from sonde, LIDAR and microwave, from June 1996 to November 2000

Conclusions

- O₃ profiles can be retrieved from GB highresolution FTIR spectra in the 1000-1005 cm⁻¹ µwindow, in 4 independent layers, incl. the troposphere, covering distinct atmospheric regimes
- The theoretical characterisation of the OEM inversion has been confirmed by a statistical comparison with independent measurements
- The inversion can cope to some extent with model and instrument uncertainties.

Conclusions

• Perspective:

application to space-based nadir viewing FTIR experiments, like IASI/METOP-1, TES/Aura, ...