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Discrete Linear Ill-Posed Problems, Part 1 of 4
Setting the Stage

Definition:

1. a square or overdetermined system of linear algebraic equations

2. with a huge condition number

3. coming from the discretization of an inverse/ill-posed problem.

Our generic ill-posed problem:

A Fredholm integral equation of the first kind

f K(s,t)f{t)dt =
Jo



Numerical Methods

Gaussian Elimination (LU) Truncated SVD

Exact
• - • TSVD

•

10 20 30 40 50 10 20 30 40 50 60

Standard methods (LU, QR, etc.) produce useless results.

Specialized methods can produce "reasonable" results.

Some Important Questions

• How to discretize the integral equation?

• Why is the matrix always so ill conditioned?

• Why can we still compute an approximate solution?

• How can we compute it stably and efficiently?

• Is additional information available?

• How can we incorporate it in the solution scheme?

• How should we implement the numerical scheme?



Inverse Problems

Generic model

/ input x system dQ = output
Jn

Image restoration

scenery —> lens —>• image

Tomography

Seismology

X-ray source —> object —>• damping

seismic wave —> layers -^ reflections

Image Restoration

Another photograph from the Hubble telescope



Linear Inverse Problems

Fredholm integral equation of the first kind

/ K(s,t)f(t)dt =
Jo

Ditto with discrete right-hand side

f1

/ ki(t) f(t)dt = b{ ,
Jo

with ki(t) = K(si,t) and hi = g(si).

Integration with K has a smoothing effect on / , i.e., g is smoother
than / .

The Riemann-Lebesgue Lemma

Consider the function

/(*) = sin(27rjrf) , p = l , 2 , .

then for p —> oo and " arbitrary" K we have

g(a)= f K(8,t)f(t)dt->0
Jo

I.e., high frequencies are damped.

Therefore difficult to reconstruct / from g.



Illustration of Riemann-Lebesgue Lemma

Geomagnetic problem with f(t) = sin(27rp£), p = 1, 2,4, and 8.

0.5
— f(t)
— 9(s)

1
/

p = 4

50 100

p = 2

50 100

p = 8

50 100

Our Model Problem: Geomagnetic Prospecting

• Iron ore deposit at depth d below surface from 0 to 1 on t axis.

• Measurements of vertical component of magnetic field g(s) at
surface, from a to b on the 5 axis.

• Unknown: the vertical component of the field f(t) at the ore,
from 0 to 1 on the t axis.

10



The Geometry

11

Setting Up the Integral Equation

The value of g(s) due to the part dt on the t axis

sin0 -, v ,
dg= —rf(t)dt,

where r = ^d2 + (s — t)2. Using that sin 0 = d/r, we get

r6 ' * ' [d* + (s -

The total value of g(s) for a < s < b is therefore

d
(J9 I 7T0« = / '

12



Our Integral Equation

Fredholm integral equation of the first kind

[ d d t =
The kernel K, which represents the model, is

d
K(s,t) =

(d2 + (s - t)2fl2 '

and the right-hand side g is what we are able to measure.

From K and g we want to compute / , i.e., an inverse problem.

13

Discretization: the Quadrature Method

Recall the simple quadrature rule

/

« •

with
Wj — weights , tj = abscissas , j = 1, . . . , n .

Hence, we approximate the integral in our model as follows

/ K(s,t) f(t) dt «
3 =

Note that we have replaced / with / .

14



Quadrature Discretization, Cont.

To obtain a linear system of equations, we use collocation.

I.e., we require that tj) equals g at selected points:

Here, g(si) are really the measured values of the function g.

If m > n we obtain an overdetermined system.

Here we assume m = n for simplicity:

n

£
3=1

tj) f(tj) = ,j = 1 , . . . ,n .

15

The Discrete Problem in Matrix Form

Write out the last equation to obtain

w1K(s2,ti)

wnK(si,tny

WnK(s2,tn)

\wiK(sn,ti) w2K(sn,t2) ••• wnK(sn,tn)J \f(tn)J

or simply Ax = b (where A is n x n) with

— wj

Xj = f(tj)

h = g(si)

16



A Special Case: the Midpoint Rule

Equidistant abscissas

with identical weights Wj =n 1,j = l,...,n.

Matrix elements:

17

The Singular Value Decomposition

Assume that A is m x n and, for simplicity, also that m>n:

n

i=l

where U and V consist of singular vectors

U = (ui,...,un) , V = (vi,...,vn)

with UTU = VTV = In/ and the singular values satisfy

E = diag(o"i,..., an) , G\ > a2 > • • • > on > 0

Then||A||2 = GX and cond(,4) = ||A||2

18



Important SVD Relations

Avi = (JiUi \\Avi\\2 = °i .
} % = 1 , . . . ,n .

ATUi = OiVi m T | |

These equations are related to the (least squares) solution:

X =

Ax =

A ~"-I-/) —
/ I U —

n
y (

n

n

t̂ (v

)Vi

, b =
n

J2(ufb)ui

19

Discrete Linear Ill-Posed Problems, Part 2 of 4
Regularization

1. The SVD in plots

2. Regularization = stabilization

• Filtering and/or side constraints

3. Tikhonov's method

• Formulation and SVD analysis

4. Implementation of Tikhonov's method

5. Related methods
(a) Least squares with quadratic constraints

(b) Least squares with inequality constraints

20



What the Singular Values Look Like

Singular values

10 20 30 40 50 60
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What the Left (and Right) Singular Vectors Look Like
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Some Observations

• The singular values decay gradually to zero.

• No gap in the singular value spectrum.

• Condition number cond(A) = "oo."

• Singular vectors have more oscillations as i increases.

• In this problem, # sign changes = i — 1.

23

'Picard" Plots

No Noise
Picard plot
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Regularization

Regularization = stabilization: how to deal with solution
components corresponding to the small singular values.

Must - somehow - be filtered out or damped.

"Brute force approach": truncate the SVD expansion.

More sophisticated approaches are based on the residual norm

I K(s,t)f(t)dt-g(s)
'0

with some kind of side constraint(s) to the minimization.

25

Truncated SVD

Approximate A by the rank-fc matrix

<n

Formulation of the TSVD problem

min ||#||2 subject to \\Ak x — b\\2 = min

The TSVD solution is

But minimum 2-norm of x is often undesirable.

26



The Smoothing Norm

Let the smoothing norm u(f) measure the "size" of the solution / .

Example:

u(f)2= C\f
Jo

1. Minimize p(f) s.t. uj(f) < 5.

2. Minimize uj(f) s.t. p(f) < a.

3. Tikhonov: min{p(/)2 + A2u(f)2}.

27

SVD Analysis of Discrete Tikhonov Regularization

Can write the discrete Tikhonov solution x\ in terms of the SVD of A

of ujb

Filters components when A2 > of, i.e., components with small o .̂

28



Tikhonov Regularization in General Form

(less filtering

more filtering)

log || A x - b

29

Efficient Implementation The original formulation

Two alternative formulations

(ATA + A2/) x = ATb

min
A

XI
x —

0

The first shows that we have a linear problem. The second shows
how to solve it stably:

• treat it as a least squares problem

* utilize the sparsity

30



Least Squares with a Quadratic Constraint

Alternative formulations of Tikhonov regularization

m i n \\Ax — b\\2 subject to \\x ~ ^*| |2<<^

min \\x — x*||2 subject to \\Ax — b\\2 < S ,

Corresponds to the intersection of the L-curve and the horizontal
line \\x — x* \\2 = OL, or the vertical line || A x — &H2 = 5.

Requires a root finder, such as Newton's method.

31

Inequality Constraints Three important constraints to the

solution: nonnegativity, monotonicity, convexity. All three can be put
in the general form Gx >0:

x > 0 (nonnegativity)

L\ x > 0 (monotonicity)

L2 x > 0 (convexity)

where L\ and L2 approximate the first and second derivative
operators, respectively.

The resulting least squares problem is

mm subject to Gx >0

2

32



Discrete Linear Ill-Posed Problems, Part 3 of 4
The Regularization Parameter

1. Perturbation and regularization error

2. The Picard condition

3. Parameter choice

(a) L-curve

(b) Generalized Cross Validation

33

Relation to the Regularization Parameter

The regularization parameter (A or k) determines how many SVD
components are included in the regularized solution.
If we write

£reg = A*b and b = bexact + e ,

then A or k should balance the perturbation and regularization errors

^exact ~ %reg — A "exact ~~ A b

= (A^-A*)bexact-A*e.

A typical situation in practice:

• The norm j | e 112 is not known.

• The errors are fixed (not practical to repeat measurements).

34



The Discrete Picard Condition

The relative decay of the singular values and the Fourier coefficients
plays a major role!

The Discrete Picard Condition. Let TA denote the level at which the
singular values of A level off. Then the discrete Picard condition is
satisfied if, for all singular values &i > TA, the corresponding
coefficients \u[&exact|/ on the average, decay to zero faster than the cr<.

Can base the analysis on the moving geometric mean

Pi = vi1 I n \ufb\ , i = l + q,...,n-q
j=i-q

35

Properties of the L-Curve

Theorem 4.5.1. The semi-norm \\x\ H2 is a monotonically decreasing
convex function of the norm \\Ax\ — &H2.

Define x\s = least squares solution and

<̂o = || (An - U UT) &H2 (inconsistency measure)

Then

So<\\AxLtx-b\\2<\\b\\2

36



More Properties of the L-curve

Any point (5, rf) on the L-curve is a solution to the following two
inequality-constrained least squares problems:

S = min \\Ax — &H2 subject to ||x||2 < 77

77 = min ||x||2 subject to \\Ax — &||2 < 5 •

Can study the L-curve by means of the expressions

2 = 1

37

The L-Shaped Appearance of the L-curve

Analysis: study L-curves for 6exact and e.

Result: the L-curve has two distinctly different parts.

• The horizontal part where the regularization errors dominate.

• The vertical part where the perturbation errors dominate.

The optimal regularization parameter must lie somewhere near the
L-curve's corner.

The corner is located approximately at

(\\Axx - b\\2 , Î Alb) ~ ( J^n) , Inexact||2 )

38



Analysis of the L-Curve

Assume that b lies in the range of A, such that

ui b = 0 , i = n + 1 , . . . , m .

Can analyze the L-curve by means of the expressions

m £b\

/ A 9 \ 2

Recall that b = 6eXact + e-

39

The Flat and Steep Parts

The component 6exact dominates when A is small:

\\x\h ~

The error e dominates when A is large (ufe « ±eo):

II 1 1 ^ / J \ v / \J \\ \\ IP

2 = 1

n /
.2 V ^ / ^

12 - ' U / . V ( 7 2 + A 2

40



The Key Idea

The flat and the steep parts of the L-curve represent solutions that
are dominated by regularization errors and perturbation errors.

The balance between these two errors must occur near the L-curve's
corner.

The two parts - as well as the corner - are emphasized in log-log
scale.

Log-log scale is insensitive to scalings of A and b.

41

The Curvature of the L-Curve

Want to derive an analytical expression for the L-curve's curvature
in log-log scale; define

, p=\\Axx-b\\i

and

f) = log 77, p = logp .

Then the curvature is given by

= o P'i' - p"i

42



Generalized Cross Validation (GCV)

Statistical approach: Seeks to minimize the expected value of

\\Ax-be™ct\\2

Notice 6exact. Another viewpoint: If any measurement is left out then
a solution from the remaining should predict the left out
measurement.

Minimize the GCV-functional

\\Axx - bg
trace(/ - AA*)

43

Experiences with GCV and the L-Curve

• The GCV method, on the average, leads to a slight
oversmoothing which accounts for the increased average error,
compared to the optimal results. Occasionally GCV
undersmooths, leading to larger errors.

• The L-curve criterion consistently oversmooths—there is no
A < AOpt- Hence, the average error is greater than that for GCV

• The L-curve criterion is more robust than GCV, in the sense that
the L-curve criterion never leads to large errors while GCV
occasionally does.

44



Discrete Linear Ill-Posed Problems — Part 4 of 4
Iterative Methods

Two different classes of iterative methods.

• Iterative solution of a regularized problem, such as Tikhonov

(ATA + X2LTL) x = ATb.

Challenge: to construct a good preconditioner!

• Iterate on the unregularized system, e.g., on

ATAx = ATb

and use the iteration number as the regularization parameter!

45

Advantages of Iterative Methods

• The matrix A is never altered, only "touched" via matrix-vector
multiplications A x and ATy.

• The matrix A is not explicitly required - we only need a "black
box" that computes the action of A or the underlying operator.

• Produces a natural sequence of regularized solutions; stop when
the solution is "satisfactory" (parameter choice).

• Atomic operations are easy to parallelize.

Disadvantages

• Convergence may be (very) slow.

46



ART or Kaczmarz's Method

Kaczmarz's method = algebraic reconstruction technique (ART):

X <- X -\
i - afx

7TK CLi , 2 = l , . . . , m ,

HI2
where bi is the ith component 6.

Mathematically equivalent to Gauss-Seidel's method for the problem

x = ATy , A ATy = b .

Used successfully in computerized tomography

In general: fast initial convergence, then slow.

47

Conjugate Gradients

CGLS: CG applied to the normal equations ATA x = ATb:

ak =
x(k) =

d(k) = ATr(k)+pk

where Ak^ is the residual vector r^ = b — A x^h\ and d^ is an
auxiliary m-vector.

Initialization: starting vector x^°\ residual r^ =b — Ax^\ and

48



Slow Convergence

Error histories
10°

10"

Landweber
nu-method
Kaczmarz
CGLS
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Convergence in the Presence of Data Errors

Error histories
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Semi-Convergence

CGLS exhibits semi-convergence:

• initial convergence towards xeXact/

• followed by (slow) convergence to x\s =

Must stop at the end of the first stage!

A full understanding of this phenomenon is still lacking and is
subject of current research.
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Pretty Pictures: Filter Factors

k = 4

10 10
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Finite Precision Filter Factors

k = 8

k = 11
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Finite Precision Slow-Down
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