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WHAT IS AN INVERSE OR RETRIEVAL PROBLEM? THINGS TO THINK ABOUT

• Almost any measurement you make...

When you measure some function of the quantity you really want, you
have a retrieval problem.

Sometimes it's trivial, sometimes it isn't.

• Various aspects:

~ Formulate the problem properly:

Describe the measurement in terms of some Forward Model

Don't forget experimental error!

- Finding a solution, inverting the forward model

Algebraic

Numerical

No unique solution

No solution at all

- Finding the 'best' solution

Uniqueness - a unique solution may not be the best...

Accuracy

Efficiency

- Understanding the answer

• Why isn't the problem trivial?

- Forward models which are not explicitly invertible

- Ill-conditioned or ill-posed problems

- Errors in the measurement (and in the forward model) can map into
errors in the solution in a non-trivial way.

• What to measure?

- Does it actually contain the information you want?

• Updating existing knowledge

- You always have some prior knowledge of the 'unknown'

- the measurement improves that knowledge

- the measurement may not be enough by itself to completely determine
the unknown

• Ill-posed problems

- You cannot solve an ill-posed problem. You have to convert it into a
well-posed problem.

- Which of an infinite manifold of solutions do you want?
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MATHEMATICAL CONCEPTS I MATHEMATICAL CONCEPTS II

Measurement Vector: y = (2/1,2/2, —Vm)

- Any measurement is of a finite number of quantities.

- Arrange them as a vector for computational purposes

State Vector: x = {x\,X2, ...xn)

- The desired quantity is often continuous - e.g. a temperature profile

- We can only make a finite number of measurements and calculations

- Express the unknown in terms of a finite number of parameters

- They do not all have to be of the same type

- Arrange them as a vector for computational purposes

- Examples:

- Temperature on a set of pressure levels, with a specified
interpolation rule.

- Fourier coefficients for a set of waves

Using vectors, it is convenient to think in terms of linear algebra and
vector spaces - even if the forward model is not linear

Measurement Space

- Measurement space is the space of measurement vectors, dimension m.

State Space

- State space is the space of state vectors, dimension n.

Generally the two vector spaces will have different dimensions,

Forward Function and Model

- The Forward Function f (x) maps from state space onto measurement
space, depending on the physics of the measurement.

- The Forward Model F(x)is the best we can do in the circumstances to
model the forward function

Inverse or Retrieval Method

- The inverse problem is one of finding an inverse mapping R(y):

Given a point in measurement space, which point or set of points in state
space could have mapped into it?
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STANDARD ILLUSTRATION

Idealised thernal-emission nadir sounder represented as a linear forward
model

y = Kx + e

K is the 'weighting function' matrix, e is measurement error or noise

• Vertical coordinate is notionally ln(p), discretised at 100 levels from 0 in
steps of 0 1 to 9 9 - around 0 to 70 km

• Eight channels (elements of y)

• State vector is notionally temperature at 100 levels

• Measurement error (when considered) is 0 5 K

0 10 0 20 0 30
Weighting function

0
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NOISE FREE MEASUREMENTS

Row Space and Null Space

Consider an error-free linear measurement, equivalent to solving linear
equations:

The rows of K are the weighting functions

The hi are a set of vectors in state space; the measurements are projec-
tions of the state x onto them.

They span a subspace called the row space, of dimension equal to the
rank of K, p < min(n, m). Ifp < m then the weighting functions are
not linearly independent.

Only those components of x in the row space can be measured.

The null space is the part of state space which is not in the row space.

ILL-POSED AND WELL-POSED PROBLEMS

111 or well posed - Under- or over-determined - Under- or over-constrained

The last two seem to mean the same thing.
Ill posed includes both under- and over-determined

Which is which?

1. p = m = n. Well posed.
The number of unknowns is equal to the number of measurements, and
they are all independent.

2. p < m = n. Both underconstrained and overconstrained.
The number of unknowns is equal to the number of measurements, but
the measurements are not independent, so they could be inconsistent, and
the number of independent pieces of information is less than the number
of unknowns.

3. p = m < n. Underconstrained.
More unknowns than measurements, but the measurements are all inde-
pendent.

4. p < m < n. Both underconstrained and overconstrained.
More unknowns than measurements, but the measurements are not inde-
pendent, so they could be inconsistent.

5. p — n < m. Overconstrained.
More measurements than unknowns, so they could be inconsistent, but
the unknowns are all in the row space, so there is information about all of
them.

6. p < n < m. Both underconstrained and overconstrained.
More measurements than unknowns, so they could be inconsistent, but
the unknowns are not all in the row space, so there is information about
all of them.
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ILL-POSED AND WELL-POSED PROBLEMS II SINGULAR VECTOR DECOMPOSITION

Summary

If p < n then the system is underconstrained; there is a null space.

If p < m then the system is overconstrained in some part of the row
space.

Identifying the row space and the null space

Let R and N be bases for the row space and null space respectively. R is
n X p, and N is n X (n — p). Together they form a basis for state space.
The n x n matrix (R, N) is orthonormal:

(R, N)T(R, N) = (R, N)(R, N) T = In

so that RTR = Ip, N T N = In_p and RRT + N N T = In . For each row k,
of K we must have

NTki = 0 and RTk* ^ 0

It can also be shown that RRTk; — k8-, so RTk,- form the coefficients of a
representation of ka- in the R space.

There are many ways of choosing a matrix R satisfying these conditions.
The simplest is Gram-Schmidt orthogonalisation:

Select a unit vector in the direction of kx to be = ki/(ki •

Find the components of all of the other k,-'s in this direction, and sub-
tract: k̂  = k; — k;ri so that all of the k̂  are orthogonal to r i .

Choose a unit vector in the direction of k^ to be r2.

Repeat until the remaining k""" are all zero.

Is the neatest way of doing the job. Express K as

where the subscripts indicate the sizes of the matrices.
Then the forward model becomes:

so that

or

= PAPV»X1

y' = Ax'

where y' = UTy and x' = V T x are both of order p.

The rows of V T , or the columns of V (in state space) are a basis for the
row space of K.

Similarly the columns of U (in measurement space) are a basis of its
column space.

We can also see that an exact solution is

x ' =

or
x = V A ' 1 U T y

This is only a unique solution if p = n.
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APPROACHES TO INVERSE PROBLEMS BAYESIAN APPROACH

Bayesian Approach

- What is the pdf of the state, given the measurement and the a priori!

Optimisation Approaches:

- Maximum Likelihood

- Maximum A Posteriori

- Minimum Variance

- Backus-Gilbert - resolution/noise trade-off

Ad hoc Approaches

- Relaxation

- Exact algebraic solutions

This is the most general approach to the problem (that I know of).

Knowledge is represented in terms of probability density functions:

• -P(x) is the a priori p.d.f. of the state, describing what we know about the
state before we make the measurement.

• P(y) is the a priori p.d.f. of the measurement.

• P(x, y) is the joint a priori p.d.f. of x and y.

• P(y|x) is the p.d.f. of the measurement given the state - this depends on
experimental error and the forward function.

• -P(x|y) is the p.d.f. of the state given the measurement - this is what we
want to find.

Bayes theorem states:

and of course

so that

P(x,y)=P(x |y)P(y)

P(y,x)=P(y|x)P(x)

P(yjx)P(x)
1 ]y> P(y)

If we have a prior p.d.f. for x, P(x), and we know statistically how y is
related to x via P(y|x), then we can find an un-normalised version of
P(x|y), namely P(y|x)P(x), which can be normalised if required.

pag.8



APPLICATION OF THE BAYESIAN APPROACH

Explicit forms for the p.d.f's:

• Assume that experimental error is Gaussian:

- lnP(y|x) = l-{y - F(x))rS£-1(y - F(x)) + const

where F(x) is the Forward model:

y = F(x)+e

and Se is the covariance matrix of the experimental error, e:

Se - E{eeT} = E{(y - F(x))(y - F(x))T}

• On the less justifiable assumption that the a priori p.d.f. is Gaussian we
can write:

- lnP(x) = J(x - xa)
TSr7

1(x - xn) + const

if x is distributed normally with mean xa and covariance Sa.

• Thus:

-21nP(x|y) = \y- F(x)]TS71[y - F(x)] + [x - xa]TS-1[x - xa] + const

• If we want a state estimate x rather than a p.d.f., then we must calculate
some function of P(x|y), such as its mean or its maximum

X = or <&l=0

• The accuracy of the estimate is given by the covariance of P(x|y) about
its mean or maximum.
2.03
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BAYESIAN SOLUTION FOR THE LINEAR PROBLEM

The linear problem has a forward model:

F(x) = Kx

where K is called the weighting function matrix for historic reasons.
The p.d.f. P(x|y) becomes:

-21nP(x|y) = [y - K x ^ S ^ f y - Kx] + [x - xa]
TSQ-1[x - xa] + cx

which is quadratic, so has to be of the form:

- 2 In P(x|y) = [x - x fST 1 [x - x] + c2

Equate the terms that are quadratic in x:

xTKTS72Kx = xTS~1x

giving

Equating the terms linear in x, (or, more easily, in xT), gives:

This must be valid for any x. Cancel the xT 's, and substitute for S"1:

K^-V + S"1^ = (K^^K + S-̂ x

giving:
x = (KrS71K + S - ^ - ^ K ^ ^ V - S^Xa)

This gives the full pdf, including both the mean and its covariance.

T n - 1K1 S71 K

Figure 1:

1

s
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AN INTERPRETATION OF THE SOLUTION INFORMATION CONTENT OF A MEASUREMENT

The expected value is:

x = -1)-1(K rS-1(KrS£-1y + S-^a) (1)

Underconstrained case

There exists at least one 'exact' solution xe = Gy in the sense that
Kxe = y, i.e. KG = I. For example G = ^ 7

Replace y by Kxe in (1):

x = S-1)-1(KTS£-1Kxe

Overconstrained case

The least squares solution x; satisfies KTS~1K.xi = KTS71y-
Inserting this in (1) gives:

x =

Both represent a weighted mean of an exact solution xe or a least squares
solution x;, with xa using relative weights KTS^1K and S"1 respectively
- their Fisher information matrices.

This is exactly like the familiar combination of scalar measurements x\
and X2 of an unknown x, with variances a\ and a\ respectively:

x = {\ja\ + l/<r|)-1(ar1/or? + x2/o%)

Information in a general qualitative sense:

Conceptually, what does y tell you about x ?

We need to answer this to determine if a conceptual instrument design
actually works, and to optimise designs.

Use the linear problem for simplicity to illustrate the ideas.

y = Kx + e

Shannon Information

The information content of a measurement of x is the change the entropy
of the probability density function describing our knowledge of x, defined
by:

S{P} = - JP(x)log{P{x)/M(x.))dx

M(x) is a measure function. We will take it to be constant.

Compare this with the statistical mechanics definition of entropy:

S = —

The Shannon information content of a measurement is the change in en-
tropy between the p.d.f. before, P(x), and the p.d.f. after, P(x|y), the
measurement:

H = 5{P(x)} - 5{F(x|y)}
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ENTROPY OF A BOXCAR PDF ENTROPY OF A GAUSSIAN PDF

Consider a uniform pdf in one dimension, constant in (0,a):

P(x) — I/a 0 < x < a

and zero outside. The entropy is given by

S=- f - l n ( - )dz = lna
Jo a \aj

An similarly, the entropy of any constant pdf in a finite volume V
of arbitrary shape is:

i.e the entropy is the log of the volume of state space occupied by the pdf.

What does this mean? Consider the Gaussian distribution:

^x - x)]
(27r)

If you evaluate the entropy of a Gaussian distribution you will find it is
proportional to log |S|^.

The contours of P(x) in n-space are ellipsoidal, described by

(x — x)TS^1(x — x) = constant

The principal axes of the ellipsoid are the eigenvectors of S, and their
lengths are proportional to the square roots of the corresponding eigen-
values.

The volume of the ellipsoid is proportional to the root of the product of
the eigenvalues, which is proportional to |S|2\

Entropy is the log of the volume enclosed by some particular contour of
P(x). A 'volume of uncertainty'.

The information content of a measurement is the log of the ratio of the
volumes of uncertainty before and after making a measurement.
A generalisation of 'signal to noise'.

In our case:

minus the log of the determinant of the weight of xa in the Bayesian ex-
pectation.
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DEGREES OF FREEDOM FOR SIGNAL AND NOISE INDEPENDENT MEASUREMENTS

The state estimate that maximises P(x|y) in the linear Gaussian case is
the one which minimises

X2 = [y - ^ f y - Kx] + [x - xa]
TSf7

1[x - xa]

The r.h.s. has initially m + n degrees of freedom, of which n are fixed by
choosing x, so the expected value of \ 2 is m-

These m degrees of freedom can be assigned to degrees of freedom for
noise dn and degrees of freedom for signal ds according to:

dn = E{[y - Kx]TS7a[y - Kx]}

ds = £ { [ x - x a ] r S j 1 [ x - x o ] }

Using tr(CD)=tr(DC), we can see that

da=E{[x-xa]
TS-1[x-xa]}

= tr( JB{[x-xa][x-xo]T}Sa-1)

With some manipulation we can find

ds = trtQK^S^K + S~1)-1KTS71K)

= tr(KSoKT(KS aKT + S^"1)

dn = tr{{KTS-1'K + S"1)"^1) + m - n

= tr(Se(KSoKT + Se)-1)

The elements of the measurement vector will not be statistically indepen-
dent if the covariance is not diagonal. Likewise for the a priori.

The measurements will not be independent if K is not diagonal.

Therefore it is helpful to transform to a different basis.

First, statistical independence. Define:

_ A _ I
y — >->e y x — s a x

The transformed covariances Sa and Se both become unit matrices.

The forward model becomes:

y = Kx + e

where K — S£
 2 KSJ •

The solution covariance becomes:
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TRANSFORM AGAIN INFORMATION & DEGREES OF FREEDOM

Now make K diagonal. Rotate both x and y to yet another basis, defined
by the singular vectors of K:

K = UAVT

Define:
x' = V T x y' - U T y e' = UTe

The forward model becomes:

y' = Ax' + e' (1)

This separates the original problem into a set of independent scalar prob-
lems.

The Jacobian is diagonal, A, and the a priori and noise covariances are
still unit matrices, hence the solution covariance is:

which is diagonal, and the solution itself is

not x' = A - 1 y ' as you might expect from (1).

Elements for which Â  ^> 1 or (1 + A?)"1 <C 1 are well measured

Elements for which A, <S 1 or (1 + A2)~1 »• 1 are poorly measured.

Shannon Information in the Transformed Basis

Because it is a ratio of volumes, the linear transformation does not change
the information content. So consider information in the x', y' system:

= S{S'a}-S{S>}

| log(|(A2

Degres of Freedom in the Transformed Basis

The number of independent quantities measured can be thought of as the
number of eigenvalues for which Â  3> 1

The degrees of freedom for signal is

It is also the sum of the eigenvalues of In — S.

For each independent component x\

• The information content is \ log(l -f- A?)

• The degrees of freedom for signal is A|(l + A2 )~1
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THE OBSERVABLE, NULL AND NEAR NULL SPACES

The part of measurement space that can be seen is that spanned by the
weighting functions. Anything outside that is in the null space of K.

Any orthogonal linear combination of the weighting functions will form a
basis (coordinate system) for the observable space. An example is those
singular vectors of K which have non-zero singular values.

The vectors which have zero singular values form a basis for the null space.

Any component of the state in the null space maps onto the origin in
measurement space.

This implies that there are distinct states, in fact whole subspaces, which
map onto the same point in measurement space, and cannot be distin-
guished by the measurement.

However

- the solution can have components in the null space - from the a priori.

- components observable in principle can have near zero contributions
from the measurement, the 'near null space'

In the x', y' system:

- vectors with A = 0 are in the null space

- vectors with A Ĉ 1 are in the near null space

- vectors with A > 1 are in the non-null space
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FTIR Measurements of CO.
;oe

30 levels; 894 measurements:

Apparently heavily overconstrained.

Singular Values of K

5.345
0.0046
7.76e-05
1.38e-05
5.82e-06
3.52e-06
9.83e-07
1.18e-07
1.37e-07
3.37e-08

3.498
7.15e-04
2.13e-05
9.01e-06
4.79e-06
3.748e-06
2.37e-07
1.48e-06
6.67e-08
5.83e-09

0.033
2.56e-04
1.71e-05
6.73e-06
2.87e-06
1.91e-06
7.71e-07
1.95e-07
3.50e-08
6.29e-09

Noise is 0.03 in these units;
Prior variance is ~ 1 .

There are about 2.5 degrees of freedom.

Lot of near null space.

s

0
180 200 220 240 260 280 30

Temperature, K
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ERROR ANALYSIS AND CHARACTERISATION THE TRANSFER FUNCTION

If we want our retrieval to optimise something, we had better find out
what properties a retrieval might have, so we can choose what we want to
optimise.

We will therefore set up a formal characterisation that can apply to any
retrieval method

The measurement y is conceptually a function of some unknown state x:

y = f(x,b)+e

where:
- y is the measurement vector, length m
- x is the state vector, length n
- f is a function describing the physics of the measurement,
- b is a set of 'known' parameters of this function,
- e is measurement error, with covariance Sc.

The retrieval x is conceptually a function of the form:

x = R(y,b,c)

where:
- R represents the retrieval method
- b is our estimate of the forward function parameters b
- c represents any parameters used in the inverse method

that do not affect the measurement, e.g. a priori.

Thus the retrieval is related to the 'truth' x formally by:

x=R(f(x,b) + e,b,c)

which may be regarded as the transfer function of the measurement and
retrieval system as a whole.

Characterisation means evaluating:

- dx/dx — A, sensitivity to actual state: Averaging Kernel

Error analysis involves evaluating:

- dx/de — Gy, sensitivity to noise (or to measurement!)

- dx/db = G;,, sensitivity to non-retrieved parameters

- dx/dc = Gc, sensitivity to retrieval method parameters

and understanding the effect of replacing f by a numerical Forward
Model F.
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THE FORWARD MODEL LINEARISE THE TRANSFER FUNCTION

We often need to approximate the forward function by a Forward Model:

F(x,b)~f(x,b)

Where F models the physics of the measurement, including the
instrument, as well as we can.

• It usually has parameters b which have experimental error

• The vector b is not a target for retrieval

• There may be parameters b' of the forward function that are not in-
cluded in the forward model:

F(x,b)~f(x,b ,b ' )

The retrieved quantity is expressed as:

x = R(f (x, b, b') + e, b, xa, c)

where we have also separated xa, the a priori, from other components
of c.

Replace f by F + Af:

x = R(F(x, b) + Af (x, b, b') + e, b, xa, c)

where Af is the error in the forward model relative to the real physics:

Af = f (x ,b ,b ' ) -F(x ,b)

Linearise F about x = xa, b = b:

x = R(F(xa,b) + Kx(x- xQ) + K6(b - b) + Af (x, b, b') + e, b,xa , c)

where Kx = dF/dx (the weighting function) and K& = 3F/3b.

Linearise R with respect to its first argument, y:

x = R[F(xa, b), b,xa, c] + Gy[Kx{x - xa) + Kfe(b - b) + Af(x, b, b') + e]

where Gy = 9R/5y (the contribution function)
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CHARACTERISATION THE AVERAGING KERNEL

Some rearrangement gives:

x - x a =R(F(xa,b),b,xa,c) - xa

+ A(x - xa)

Gyey

where
A = Gj,Kx = <9x/dx

bias
smoothing

error

the averaging kernel, and

is the total error in the measurement relative to the forward model.

The retrieved state is a smoothed version of the true state with smooth-
ing functions given by the rows of A, plus error terms:

x = xa + A(x - xa) + Gyey = (I - A)xa + Ax + Gycy

You can either:

• accept that the retrieval is an estimate of a smoothed state, not the true
state

or

• consider the retrieval as an estimate of the true state, with an error con-
tribution due to smoothing.

The error analysis is different in the two cases, because in the second case
there is an extra term.

Bias

This is the error you would get on doing a simulated error-free retrieval of
the a priori.

A priori is what you know about the state before you make the measure-
ment. Any reasonable retrieval method should return the a priori given a
measurement vector that corresponds to it, so the bias should be zero.

But check your system to be sure it is. . .

• If the state represents a profile, then the averaging kernel is a smoothing
function with a width and an area.

- The width is a measure of the resolution of the observing system

- The area (generally between zero and unity) is a simple measure of the
amount of real information that appears in the retrieval.
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THE OTHER TWO PARAMETERS

"The retrieved quantity is expressed as:

x = R(f (x, b, b') + e, b, xa , c)

where we have also separated xa, the a priori, from other components
of c."

We should also look at the sensitivity of the retrieval to the inverse model
parameters, xa and c.

The linear expansion in x, b and e gave:

x = [R(F(xa, b), b, xa, c)] + A(x - xa) + Gyey

We argued that the term in square brackets should be equal to x a , for
any reasonable retrieval.

This has the consequence that, at least to first order, <9R/dc = 0 for any
reasonable retrieval.

It also follows that:
5R 3x T .

_ I _ J\

d dx

-.04 0.04 0.08 0.12

For any reasonable retrieval.

Thus the reasonableness criterion has the consequence that there can be
no inverse model parameters c that matter, other than x a .

Incidentally: The term in square brackets should not depend on b either.
This implies that Gb + Gj,Kfc = 0.
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ERROR ANALYSIS MEASUREMENT NOISE

Some further rearrangement gives for the error in x:

x-x=(A-I)(x-xa)
+ Gy€y

where the bias term has been dropped, and:

Thus the error sources can be split up as:

x-x=(A-I)(x-x a )

+ GvK6(b - b)
+ GyAf(x,b,b')
+ Gy€

Some of these are easy to estimate, some are not.

smoothing

measurement error

smoothing

model parameters
modelling error

measurement noise

measurement noise = Gye

This is the easiest component to evaluate.

e is usually random noise, and is often unbiassed and uncorrelated be-
tween channels, and has a known covariance matrix.

The covariance of the measurement noise is:

Sn = GyS£Gy

Note that Sn is not necessarily diagonal, so there will be errors which are
correlated between different elements of the state vector.

This is true of all of the error sources.
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SMOOTHING ERROR

To estimate the actual smoothing error, you need to know the true state:

smoothing error = (A — I)(x - xo)

To characterise the statistics of this error, you need its mean and covari-
ance over some ensemble.

The mean should be zero.

The covariance is:

~i 1 1 r n 1 1 1 1 r

s =£{(A -

= (A -

- xa)(x - xa)T(A - I)T}

- xa)(x - xa)
T}(A - I)T

= ( A - I ) S a ( A - I ) T

where Sa is the covariance of an ensemble of states about the a priori
state. This is best regarded as the covariance of a climatology.

To estimate the smoothing error, you need to know the climatological co-
variance matrix.

To do the job properly, you need the real climatology, not just some ad
hoc matrix that has been used as a constraint in the retrieval.

The real climatology is often not available. Much of the smoothing error
can be in fine spatial scales that may never have been measured.
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SMOOTHING ERROR

To estimate the actual smoothing error, you need to know the true state:

smoothing error = (A — I)(x — xa)

To characterise the statistics of this error, you need its mean and covari-
ance over some ensemble.

The mean should be zero.

The covariance is:

Ss =£{(A -

=(A -

- xa)(x - xa)T(A - I)T}

- xa)(x - xa)
T}(A - I)T

= ( A - I ) S a ( A - I ) T

where Sa is the covariance of an ensemble of states about the a priori
state. This is best regarded as the covariance of a climatology.

To estimate the smoothing error, you need to know the climatological co-
variance matrix.

To do the job properly, you need the real climatology, not just some ad
hoc matrix that has been used as a constraint in the retrieval.

The real climatology is often not available. Much of the smoothing error
can be in fine spatial scales that may never have been measured.
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FORWARD MODEL ERRORS ERROR COVARIANCE MATRIX

Forward model parameters

forward model parameter error = GyK.b(b — b)

This one is easy. (In principle)

If you have estimated the forward model parameters properly, their indi-
vidual errors will be unbiassed, so the mean error will be zero.

The covariance is:
b Gy

where St is the error covariance matrix of b, namely £{(b — b)(b — h)T}

However remember that this is most probably a systematic, not a random
error.

Modelling error

modelling error = GyAf = Gj,(f (x, b, b') - F(x, b))

Note that this is evaluated at the true state, and with the true value of b,
but hopefully its sensitivity to these quantities is not large.

This can be hard to evaluate, because it requires a model f which in-
cludes the correct physics. If F is simply a numerical approximation for
efficiency's sake, it may not be too difficult, but if f is not known in de-
tail, or so horrendously complex that no proper model is feasible, then
modelling error can be tricky to estimate.

This is also usually a systematic error.

An Error Covariance Matrix S is defined as

Diagonal elements are the familiar error variances.

The corresponding probability density function (PDF),
if Gaussian, is:

Contours of the PDF are

(y - y)TS"1(y - y) = const

i.e. ellipsoids, with arbitrary axes.
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CORRELATED ERRORS

• How do we conceptualise an error covariance matrix?

• What corresponds to error bars for a profile?

We would really like a PDF to be of the form

i.e. each Z{ to have independent errors.

This can be done by diagonalising S, and substituting S = LALT, where
L is matrix of eigenvectors 1,-. Then

P(y) ex exp ( - i (y -

So if we put z = LT(y — y) then the Zi are independent with variance A,-.

Thus we can express the error in e.g. a state vector estimate x, due to an
error covariance S, in terms of Error Patterns ê  = A? 1; such that the
total error is of the form

where the error patterns are orthogonal, and the coefficients /? are inde-
pendent random variables with unit variance.

-0.06 0.00 0.06
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WHAT CAN WE OPTIMISE?

-0.15 0.15

We have derived the Bayesian description of the ensemble of possible so-
lutions. To select one profile from the ensemble as the solution we can
choose to optimise something.

• We have looked at the following characteristics of a retrieval:

Averaging kernel; smoothing error; measurement error; modelling error

• Possible qualities that can be used to choose a profile include:

Maximum likelihood
- The profile at which <9P(x|y)/<9x = 0

Expectation value

.= I P(x\y)xdx

Minimum variance _
- The method for which £{(x - x)(x — x)} is minimum.

Minimum measurement error
- The method for which GySyG^ is minimum.

Minimum smoothing error
- The method for which (A — I)Sa(A - I ) T is minimum.

Minimum averaging kernel width
- We must first formally define the width of an averaging kernel.

Minimum modelling error
- The method for which modelling error and/or model parameter error is
minimum.

Minim,um total error
- The method for which G y S y Gj + (A - I)Sa(A - I )T is minimum.
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MAXIMUM A POSTERIORI / MAXIMUM LIKELIHOOD MINIMUM VARIANCE AND EXPECTED VALUE

ML maximises P(y|x) (the 'likelihood'), while MAP maximises P(x|y).
The term 'ML' has been widely misused in retrieval to mean MAP. The
difference is just the presence of a priori in the cost function.

For Gaussian noise and a priori we can find the MAP x by maximising

-21n(P(x|y) = [y - P(x)]TS71[y - F(x)] + [x - xa]TS-1[x - xo] + const

giving

d
lx [-21n(P(x|y)] = 0 = - F(x)] xa]

This cannot be solved explicitly for x because of the possibly non-linear
term F(x). So linearise F(x) about some point x0 (which could be the
same as xo):

dF(x)
dx

F(x) = F(x0) -f

where yo = F(xo) and K =
(Strictly, I should have linearised

Hence:

[x - x0] = y0 + K[x - x0]

™

-K T S7 1 (y - y0 - K[x - x0])

which can be rearranged to give:

K r S7 1 (y - y0 - K[xa - x0]) = K^S

too, but it is often small)

^ [ x - xa] = 0

or:
x - xa =

- xa]

- y0 - K[xa - x0])

For the non-linear case, this can be used as an iteration, by using x for
next time around.

The minimum variance solution is the state x such that the variance
about x is minimised. Using the Bayesian solution p.d.f.:

d_
dx

^ Ax - x)2P(x|y) dx = 0

which gives:

x = / xP(x|y) dx

The minimum variance solution is the expected value for any p.d.f.

Minimum variance and maximum likelihood will be the same if the p.d.f.
is symmetric about the maximum likelihood.

For the linear problem, the minimum variance solution is also the one
which minimises the diagonal elements of:

when x = Dy. It is straightforward to show that the solution is

D = E{xyT}[E{xxT}}-1 = S a K r (KS a K T + S,)"1

(Exercise!) This does not require Gaussian p.d.f's.

It is equivalent to multiple regression of x on y, and can also be carried
out by direct regression between measurements and independently mea-
sured states, without knowing K.

Another exercise - show:

S a K T (KS a K r + S,)"1

+
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MINIMISE MEASUREMENT ERROR SENSITIVITY
AND/OR

SMOOTHING ERROR

• The error in the retrieval due to measurement error ey is Gey

The retrieval method which minimises this error is found by choosing G
to minimise the covariance GS^G7.
We need another constraint because the answer is G = O.
The smoothing error would be rather poor!

• Smoothing error is (I — A)(x — xa) with covariance (I — A)Sa(I — A)T .
Put A = GK and minimise this with respect to G to find the retrieval
method that minimises smoothing error:

0
d

(I - GK)Sa(I - GK)T = (I - GK)SaK3

leading to
\-l

which is reminiscent of the smoothest exact solution, and is the same as
the minimum variance solution with Sj, omitted.
Note that this gives an exact solution for the underconstrained problem,
because KG = I.

We can minimise a weighted sum of the measurement error and smooth-
ing err terms, to trade off noise sensitivity and smoothing error:

0 = ^ [ ( 1 - GK)SO(I - GK) T T

This is identical to the minimum variance formulation if 7 = 1, and the
solution is:

This allows a trade-off, but at the expense of departure from theoretical
optimality.

RESOLUTION

• What do we mean by resolution:

- separation of 'distinguishable' ^-functions?

- 'width' of the ^-function response?

- 'width' of the averaging kernel?

- sine wave response?

• How do we define width?

It should be possible to use in optimisation algebra, and should produce
sensible results if A (or A{z)) has negative lobes.

- Full width at half height - not helpful for algebra.

- Second moment about mean

w(A(z))
fjA(z)(z-zfdz
V jA(z)dz

where z — J zA(z)dz/ J A{z)dz. This is reasonable for positive A(z).

- Backus and Gilbert defined 'spread'

= 12 / A2{z)(z-z0fdz

as the spread of the function A(z) about the position z0, for functions
with unit area, f A(z) dz = 1
The factor 12 is chosen so that a top hat function has a spread equal to
its width.
Functions without unit area can be normalised before the spread is calcu-
lated.
The quantity ZQ can be an arbitrary level, or the mean of A(z).
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OPTIMISE RESOLUTION - BACKUS & GILBERT BACKUS - GILBERT II

Find the retrieval method G such that the resolution of the retrieved
profile x = Gy is best, i.e. find G such that the spread of the averaging
kernel at each level is minimum, and A has unit area.

Use continuous functions, because I can't do this in matrix algebra!

x(z) = YJGi{z)yi = Y^Gi(z) JKiWxWdz'

i.e.

where

x(z)= f A(z,z')x(z')dz'

is the averaging kernel for level z.
Substitute into the expression for spread gives:

s(z) = 12 f(z - z'f Y,Gi(z)Ki(z')Gj{z)Kj(z')dz'
•' ij

Define Qij(z) as

Qij(z) = 12 f(z - z'fKiWKjWdz'

which is a computable matrix function of z, then

We now minimise s(z) subject to the unit area constraint.

d
dGk(z)

where k{ = fKi{z')dz'.

= 0

This looks neater in matrix notation

d r T

but we must remember that the vector g and the matrix Q are functions
of z. The solution is

1

The spread is s(z) = gT(z)Q(z)g(z). Substitute the solution:

1

The measurement noise of this solution is

and tends to be dreadful, as you might expect.

Therefore we minimise a weighted sum of spread and noise variance:

^ [gTQg + AgTk + /igrS£g] - 0

where // is a 'trade-off' parameter, trading resolution for noise perfor-
mance. The solution is obviously
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THE NONLINEAR CASE

• There are two sources of non-linearity of the solution:

- A non-linear problem, i.e. a non-linear forward model
- Non-Gaussian statistics.

The Bayesian solution for Gaussian statistics is:

- 2 ln(P(x|y)) = [y - F(x)]TS71[y - F(x)] + [x - xa]
TSQ-1[x - xo] + const

The maximum likelikood solution requires the solution of:

Vx[-21n(P(x|y)] = 0 = -KTS£-1[y - F(x)] + S^[x - xo]

If the statistics were non-Gaussian, this equation would be non-linear in
x, even if F were linear.

Once we have found a solution, we can linearise and do the error analysis.
We can then find a solution pdf.

• But in the nonlinear case, how do we find a solution?

- Numerical integration of JxP(x|y)cbc is expensive

- Numerical minimisation of — ln(F(x|y))

- Linearise and iterate

- ad hoc iteration which exploits the algebraic form

- transform the problem to be as linear as possible
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GAUSS-NEWTON ITERATION CONVERGENCE OF THE GAUSS-NEWTON ITERATION

Newton's method for finding the zero of a scalar function f(x) of one
variable is

1

dx

The version for a vector-valued function of a vector, g(x), is:

x n + i = xn - (Vxg(xn))"1 g(xn)

where the inverse is a matrix inverse.

If you apply this to the maximum a posteriori problem:

g(x) = - K ^ I y - F(x)] + S-^x - xa] (1)

you get something quite complicated, because there is a term involving
VXKT - an object with three subscripts:

Vxg = — VXK Se [y — F(x)]+K S~ K + S~

If we ignore that term - it is usually small - we get:

x7l+i = xn - (S-1 +K^S71K7 1)"1(-K^S71[y - F(xn)] + S " 1 ^ - xo])

This can also be obtained by linearising F(x) about xn in (1) and solving
for x.

The iteration can be put in the form:

xn + 1 = xa + Gn[y - F(xn)] + GnKn[xn - xo]

where

Converging to:

•"-CO •"•& I ^-*OO \_J \*"-OO / J ~> ^ ' " O O -**"OO | /"-OQ *~™ -"-CA J

Put x = Xoo and consider the case when G and K don't vary with n:

xn + 1 - x = -G[F(xn) - F(x)] + GK[xn - x]

Expand F(x):

Xn+i - x = -G[K(xn - x) + O(xn - x)2] + GK[xn - x] = O(xn - x)2

Thus this has quadratic convergence whatever G might be!
(But it only converges to the right answer if G has the right value.)

If we allow G and K to vary with n, but in a well behaved way so that
they can be expanded in x — x about G and K, then the algebra is messy,
but we can still show that the convergence is close to quadratic.
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WARNING HOW DO WE KNOW IT HAS CONVERGED?

Don't confuse xa and xn in a Gauss-Newton iteration!

Firstly, consider the meaning of what you are doing...
[Exercise for the student]

Then, see what happens:
The result is an iteration of the form

x n + i =x n + Gn[y - F(xn)] + GnKn[xn - xn]

=x n + G n [ y - F ( x n ) ]

i.e. a linear relaxation which tries to converge to an exact solution. In the
limit:

x = x + G[y - F(x)]

independent of xa. Take the difference:

x n + 1 - x = xn - x - G(F(xn) - F(x)) = (In - GK)(x« - x)

The convergence is first order, not second order, because GK ^ In:

In — GK = (Sa + K Se K) Sa

y - F(xn) compared with Sc?

The goodness of the fit compared with the experimental error, for exam-

r

In any particular case y — F(xn) may be larger or smaller than antici-
pated. It should only be ~ S€ on the average, and should have a
X/2-distribution. But Se is the wrong covariance anyway...

F(xn +]) compared with F(xn)?

This is better. For quadratic convergence, the difference F(xn) — F(xn+i)
is a good estimate of the convergence error in yn , so it is a useful over-
estimate of the error in yn+i- The difference should be small relative to
KSKT + Sf:

(F(yn+1) - F(xn))T(KSKT + S f)-1(F(y r i+1) - F(xn)) m

where m is the number of degrees of freedom, i.e. the expected value of
(y - F (x) ) r (KSK r + S ^ - ^ y - F(x)). S£ by itself is probably good
enough for a convergence test.

x n + i compared with xn?

Alternatively, the difference xn — ~x.n+i is a good estimate of the conver-
gence error in xn , so it is a useful overestimate of the error in x n + 1 . The
test is:

X2 = (xn - xn + 1)TS~1(xn - x n + i ) < n

because n is the expected value of (x — x ) S - 1 (x — x).
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HAS IT CONVERGED TO THE RIGHT ANSWER? DO THE MEASUREMENTS FIT THE CLIMATOLOGY?

• Does the retrieval fit the radiances?

How does y — y fit with the appropriate covariance? Remembering that
y — ya = KG(y — yft), the correct covariance is given by:

SSy=E{(y-y)(y~y)T}

=E{(KG - I)(y - yo)(y - ya)
T(KG - if}

=(KG - I)(KSaK
T + S£)(KG - I)T

For the optimal estimator, G = SaKT(KSoKT + Se)~
a so that I - KG =

S£(KSaKT + S f)-1 hence:

X2 = (y - y)rS£-1(KSoKT + SOSr^y - y)

• Does the retrieval fit the climatology?

We first need to know what the covariance of an ensemble of retrievals is:

S x = £ { ( x - x a ) ( x - x a ) T }

=£{GK(x - X a ) ( x - x a ) rKTGT + GS£GT}

=GKSaKTGT + GS€Gr

where Sy<< is the radiance ensemble covariance. For the optimal estima-
tor:

Sx = SaKT(KSuKT + Sf)"
1KSa = So - S

This has rank m, and will be singular if m < ra, so that it is hard to com-
pute x2 = (x - x a)TS71(x - xa). Transform to the non-null-space.

You can use this test to check whether there is something wrong with an
individual measurement, or the climatology. The value of x2 is:

X2 - (Y - ya) = (y - y a ) r (KS oK - ya

with m degrees of freedom. If x2 is outside the appropriate range, the
cause may be: a problem with the climatological mean, the covariance,
the forward model, or the measurement.
It may help to look at an ensemble of measurements, and compare their
mean and covariance with the climatological mean and covariance.

• Does the retrieval fit the radiances, again

Using

y - y = (KG - I)(y - yo) - -S£(KSXKT +

in the x2 for y — y we get:

T r^y - y)

- ya

X2 = (y - y)rS71(KSxKT +
= (y - ya)

T(KSxKT + S,)
) - 1 ( y - y a )

Thus if a measurement fits the measurement climatology, then an opti-
mally retrieved measurement will fit the actual measurement with the
same value of x2-
Computing it separately from y — y becomes a test of the numerics, the
non-linearity, and the convergence.
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VALIDATION EFFICIENCY

• Measurments vs. a •priori climatology using a %2 test.

- look at distribution of \2

- correctness of the forward model
- knowledge of the measurement error
- knowledge of the climatological mean and covariance
- climatology pdf

• Measurements vs. retrieved measurements using a \2 test

- numerics
- correct convergence test
- measurements consistent with forward model
- knowledge of the measurement error

• Comparison of retrievals with the climatology, looking for bias and
unexpected variance about mean.

- Determine whether the discrepancy is due to the retrieval or the
climatology.

• Examine retrievals that fail to converge properly, and determine reasons.

• Examine retrievals that converge outside limits set by a measurement
error \2 test, and determine reasons.

• Internal consistency, e.g:

- comparison of retrievals for different instrument settings where
appropriate;

- comparison of co-located measurements on ascending/descending
sections of the orbit.

• Comparison of retrievals with other instruments.

• Comparison with models, but taking due note of possible modelling
errors.

There are various ways of arranging the Newtonian iteration:

x n + 1 = xn + (S ; 1 + K ^ S r 1 ^ ) - 1 ^ ^ 1 ^ - F(xn)] - S " 1 ^ - xo])

= xa + (S : 1 + K ^ K , , ) - 1 ! ^ - 1 ^ - F(xn)] + Kn[xn - xa])

and, in the other form:

x n + 1 = xa + SaK^(S f + KnSoK^)-1([y - F(xn)] + Kn[xn - xa])

All of these require F(xn) and Kn to be evaluated at every iteration.

• You can't avoid evaluating P(xn) - that is the quantity that must con-
verge to approximately y

• You can avoid recalculating Kn , with luck, if the problem is not too non-
linear:

- Start at x0 = x a , and use Ko for Kn .

- Compute SaK^(Se + K0SaK^)~1 once, and use it each time.

- F(xn) will converge to approximately y, but not to the optimal
solution.

The two solutions, x and XQO, satisfy:

x = xa + S a K T S7 1 [y-F(x) ]

Xoo = xa + SoK rS71[y - F(Xoo)]

Putting F(Xoo) = F(x) + K(xoo - x) gives the difference to first order:

x - Xoo = SaKTS71K(xo o - x) + S a (K r - KT)Se-
x[y - F(x)]

hence

x-x 0 0 = (Sa-
1+KTS71K)-1(Kr-KT)S71[y-F(x)]

You could re-evaluate K once, as a final stage.
6.08
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UPDATING STRATEGY: n-FORM UPDATING STRATEGY: ?n-FORM

A single iteration in the n—form is

x i + 1 = xa. + (Kf S^Ki + S " 1 ) - ^ ^ ; 1 ^

and after the final iteration

S = (K rSe-1K + S: 1 )"

The beginners method is usually something like

F(Xl) - xa)]

Wi = Se
 XK

W 2 = S"1

W 3 = KTWi + W 2

Wi — K(x,; — Xa)

w2 = Wf(y-F(x i)+w1]
S = W3-1

x — x,. 4- Sw

mn {or 1.5m n)
0 {or 1.5n3)

n2m

nm

1 nm

n 3

n2

In normal circumstances (Sy diagonal, S required, Sa
 1 precomputed),

this takes n{3m + n + nm + n2).

However:

Don't invert matrices! Gaussian elimination takes n3/3 operations and
back substitution takes n2/2.

Cholesky decomposition applies to symmetric matrices and is even faster,
n3/6.

QR decomposition is better conditioned - we can avoid computing KTK.

A single iteration in the m—form is

x,;+1 = xa + S aKf (S£ + K ; S a Kf )"1[

and after the final iteration

S = So - So.Kf (Se + K,S

A Cholesky solution of

(S£ + KiSaKf )z = [y - F(xi

F(x.t) - xa)]

) " 1 K IS a

- xa)]

will take around m3/6 operations, plus n2m + nm2/2 for evaluating the
term K;SQKf. Then

x?;+i — xa + SaKf z

will only take a further nm.

Sequential updating

If Se is diagonal we can update the solution separately with each mea-
surement yj, and avoid the solution of simultaneous equations.

1

Sj := Sj.! - SJ.1kjkjSJ_1/{kJSJ_1kJ + a))

where k j is the jth row of K . Repea t this for each j = 1 . . . m to upda te
from Xi to Xi+\.
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TIME EVOLUTION OF THE STATE THE KALMAN FILTER

• Consider measuring a system whose state is evolving according to a
known set of equations:

xt+i = Et(xt) +£t

where Et represents the evolution operator, and £ is a random vector rep-
resenting random forcing or model deficiencies.

• We measure the state at every time t using a forward model:

yt = F t ( x t ) + ct

• The problem is to find the best estimate of the state at each time t using
the measurements made so far, and possibly prior information.

Our knowledge of the state x t at time t is P(x t |y t ,y t_i , . . . )

Prior knowledge at time t + 1 is this pdf evolved according to the time
evolution model:

P{xt+i\yt,yt-i,-.-) = / .P(x i+i |x t)P(x t |y t,y t_i,...)cbc (

We make a measurement yt+i at time t + 1, and use Bayes theorem to
obtain:

P(x t + 1 | y t + 1 ,y t ,y t _i , . . . ) = P(y 4 + i |x t + 1 )P(x t + 1 |y t ,y t_ 1 , . . .

This describes in principle how we sequentially update a state estimate
with new measurements.

The basic Kalman filter operates on the linear version of the problem:

Yt —KfXt + et

where E and K are known matrices, which may be time varying.

The filter operates sequentially in i, which we may think of as time,
though it could be space.

At time t — 1 an estimate of x t_i has been made, namely x t_i, with error
covariance S t_i.

The stochastic prediction equation is used to make a prior estimate for
time t:

Sat — EtS#.-iEt + bft

which is then combined optimally with the measurement at time t:

C — S K (K S KT + S )~~1

i t = yiat + G t(y t - K tx a t)

where Gt is known as the Kalman gain matrix.
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THE EXTENDED KALMAN FILTER KALMAN SMOOTHER

The non-linear case is dealt with by appropriate linearisation:

Xat =£t(*t-l)

is evaluated non-linearly, but it is linearised about xt-i to obtain the
prior state estimate covariance Sot:

™ dEtixt-i)
ax

Sat
 = EtSt_iE t + Sjt

The forward model is linearised at the measurement time about the prior
estimate to obtain K( for calculating the gain matrix:

ax

but the nonlinear forward model is used to update xat:

xt =xat + Gt(yt-F(xat))

If necessary this stage may be iterated as for the non-linear retrieval.

The filter uses only data at and before the estimate time. It is appropri-
ate for real-time estimation.

If estimation is being done after the event, information from both sides of
the estimate time can be used:

Filter forward in time.
At each estimate time save the estimate and its covariance

Filter backwards in time. At each estimate time:

- combine the backward prior estimate and its covariance with the
forward estimate and its covariance, producing the smoothed estimate
and its covariance

- combine the backward prior estimate and its covariance with the
measurement in the usual way to produce the backward filtered
estimate.

- do not include any forward data in the backward filter.
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A SIMPLE CASE: SCALAR TIME SERIES THE STEADY STATE

Consider filtering or smoothing a random walk sampled at fixed intervals

- No missing or bad data

- Measurement model: yt — xt + e*, of ^constant

- Prediction model: xt — xt-i + £t,
 a\ ^constant.

Then:

A priori state and variance are:

Kalman gain is:

Dt =

Updated state is:

xt = xll + Dt(yt ~ x?) =

Updated variance is:

< + Dtyt

In the steady state, far from end effects, Dt and of will tend to constant
values.

a2 tends to a value given by:

or

and JD tends to

The estimate tends to

+
a2 + a2 + a2

— Dyt + (1 - D ) f t _ i

= Dyt + (1 - D)[£>yt_! + (1 - D)xt.2]

= D[yt + (1 - D ) ^ . ! + (1 - D)2yt-2 +

i.e. is an exponentially weighted mean of the historic measurements.

Kalman Smoothing will obviously give:

D
2 - D

[yt + (1 - D){yt-x + yt+i) + (1 - D)2(yt-2 + yt+2)
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HOW DO WE OBTAIN A PREDICTION EQUATION? PARAMETER ESTIMATION

If we really understand what's going on, there is no problem.

If we don't we have to guess - assume an algebraic form, and fit
parameters from samples of real data.

The simple case xt — Xt-i+Ct is unrealistic, because the statistics diverge:

£{x2} = £{x2} = £{(xt_1 + 6)2} - £{x2} + a2

The modified equation xt — axt-i + ft works:

£{x2} = £{x2} = E{{axt-i + ft)2} = o?£{x2} + a\

So

al = £{x2} = - ^ L
1 — OLA

However, we don't know what xt is, so we have to use y%.

We can estimate ai and a2 from the variance of yt — yt-i'

£(yt - yt-r)2 = £{& + et - e^)2 = a2 + 2a2

Or lagging even further:

s-l

£(Vt - Vt-s? =

A linear fit in s will give both a2 and a2.

r=0

2 and a2

Estimate a from the lag correlation, £{ytVt-n}, of the measured time se-
ries.

Note that
xt =axt-i +

=a2x t_2
n - l

3=0

So that

£{xtxt-n} = £{anx2_n

n-1

"~2 • V , t-]Xt_n} = ana2
x + 0

3=0

Hence the lag correlation of y is the same:

£{VtVt-n\ =£{(xt +

=£{xtxt-n}
=anal

For n — 0 there is an extra term:

So we compute the lag correlation, subtract a2 from the zero lag term,
and try to fit cena2 to the series.

We will usually find it doesn't fit, because the prediction equation is
inadequate.
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HIGHER ORDER PREDICTION MODELS

Lag correlation may not be a simple exponential decrease.

Adjust the prediction equation to fit the lag correlation.
It may require a second (or more) order prediction equation, e.g.

xt = atxt-i

which could be transformed to a first order equation with two unknowns,
e.g:

xt = atxt-\ - PtZt-i + 6

Zt = Xt-l

where zt is defined as xt-i- This is called state vector augmentation.

The general autoregressive prediction model with constant coefficients is

125 115 105 100 95

WEST LONGITUDE |deg)

80

Figure 3.9-2 Meridian Component, Vertical Deflections of Gravity -
35th Parallel, United States (Ref. 9)

75

Consider the lag covariance Sj with lag j < n:

Sj =£{xtxt-j}

Thus if we can estimate the lag covariances from a large sample of the
time series, we can solve these linear equations for the model parameters.

These are known as the Yule-Walker equations.

5! O ACTUAL DATA

— FITTED FIRST-OcDEk MODEL

— FITTED SECOND-ORDER MODEL

50 75 100

DISTANCE SHIFT, nm
125 150

Figure 3.9-3 Vertical Deflection Sample Autocorrelation Function -
35 th Parallel U.S.
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EXAMPLES OF APPLICATIONS AD-HOC RETRIEVAL METHODS

• The classic application: Update of satellite orbital parameters.

- The state vector is the orbit parameters.

- The measurements are satellite position and velocity, known functions
of the orbital parameters, at arbitrary time intervals.

• ISAMS temperature retrieval.

- The state vector is the temperature at a set of tangent points and the
pressure at one of these points.

- The measurement is a set of radiances from a different subset of direc-
tions every 2.048s, corresponding to the tangent points plus the satellite
roll angle

- The stochastic equation is ad hoc

• Kalman filter mapping

- Separately filtered at each latitude and height

- The state vector is a set of fourier coefficients around a latitude circle

- the measurement is a quantity measured at one longitude at each cross-
ing of the measurement track

-- the stochastic equation is ad hoc, eg first order in amplitude and phase

• Mainly Useless Methods: for illustration only

- Constrained exact solutions: linear or non-linear

- Truncated eigenvalue expansions

- Least squares

• Sometimes Useful Methods

- Constrained linear/non-linear: Twomey-Tikhonov

- Linear Relaxation

- Non-linear Relaxation: Chahine etc.

- Approximations to optimal methods

- Onion-peeling
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CONSTRAINED EXACT SOLUTIONS ERROR ANALYSIS

• Virtually all practical retrieval problems are formally under-determined

There are a finite number of measurements, m, and the state usually in-
cludes a continuous function of position, X(z).

• The continuous part of the state can be constrained by a representation
with n parameters, e.g:

X(z) = i = wT(z)x

Can usually be done accurately enough for practical purposes, if n is large
enough.

• To attempt an 'exact' solution, approximate state so that m = n

- This may or may not make the problem well-determined.
(Strictly n should equal the rank of K.)

- This may or may not be an accurate enough representation.

The problem becomes:

y = F(x) + e = F(xo) + K(x - x0) + e

where K is square, and the solution is:

x = x o - K - 1 ( y - F ( x o ) )

which may or may not have to be iterated.

The problem is in the error analysis, the solution converges to:

x = x + K~1c

The term K~1e can be large.

Express K in terms of its eigenvectors to examine the error term:

K = RALT and K"1 =

so that

Eigenvectors are normalised, so the important bit is A"1.

If K has small eigenvalues, then x will have large errors.

The ratio between the smallest and largest eigenvalues is the condition
number of the matrix.

Transform the problem with L r . The solution is of the form:

LTx = LTx - A~:LT€

or
x' = x'

Thus elements of x' which correspond to small eigenvalues are not well
determined.

Q.02 6.03
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TRUNCATED EIGENVECTOR/SVD EXPANSIONS LEAST SQUARES SOLUTIONS

The aim here is to deal with the near-null-space.

x' = x'

Thus elements of x' which correspond to small eigenvalues and are not
well determined are set to zero, rather than to a random noise value.

Choose the cut off so that the signal to noise in the last retained term is
about unity.

This can be done using SVD rather than eigenvectors, so that K does not
have to be square.

However - the use of a minimum variance solution effectively combines
these ill-determined components optimally with a priori, and doesn't in-
volve computing eigenvectors. In a slightly different transformation:

has a noise term:

In truncated SVD the last term retained contains too much noise, the
first term ignored contains information.

The over-constrained case

In the case where m > n an exact solution is not normally possible.
The least squares solution minimises:

(y - F(x))T(y - F(x)) or (y - Kx)T(y - Kx)

The solution in the linear case is the standard normal equations:

x = ( K T K ) - 1 K r y

In the non-linear case you can, e.g. iterate a linearised version:

x n + 1 = xn + (K^Kn)-1K^(y - F(xB))

Note the similarity to the optimal solutions. It can be obtained by
putting S"1 = O and Se - 1 .

The under-constrained case

In the case where m < n there are an infinite number of exact solutions.
The one whose state vector has the shortest length is found by

minimising xTx or (x — XQ)T(X — Xo)

subject to y = Kx or y = F(x)

The solution is, in the linear case:

x = KT(KKT)~1y

or in the non-linear case, iterate:

Note the similarity to the optimal solutions. It can be obtained by
putting Sa = I and Se = O.

The optimal solution minimised a properly weighted sum of these two.
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TWOMEY-TIKHONOV LINEAR RELAXATION

This approach minimises a cost function:

(x - xo)TH(x - x0) + 7(y - Kx)T(y - Kx)

where the first term represents some weighted departure from an a priori
Xo, and the second term constrains the solution to approximately fit the
measurements. The factor 7 is chosen to give appropriate relative weight-
ing to the two constraints.

The matrix H can be chosen to minimise e.g.:

- the squared difference between x and x0 (H = I)

- the squared second difference for a smooth solution

- the log of a pdf. This would make it a statistically optimal method.

The solution is:

x = xo + + KTK)~1KT(y - Kx0)

Consider the case H = I, and use the singular vector transformation
K = UAVr, noting that K need not be square.

x = x0
1 VAUr(y - UAVTx0)

where x' = VTx, y' = UTy and y' = Ax' + e'.

This falls apart into separate equations, one for each element:

xi — x
oi

elements for which A? <C 7 1 contribute at reduced weight, elements for
which Af >̂ 7 - 1 contribute at full weight.

Linear relaxation is an iteration of the form:

xn+1=xn + D(y-F(xn))

I.e. if y ^ F(x) then something gets added to x to adjust it

D is chosen ad-hoc so that (y — F(xn)) decreases at each stage.
Useful if K is difficult or impossible to obtain.

At convergence x = Xoo, so that we must have:

x = x + D(y -F (x ) )

This implies that y = F(x) if D has rank m, i.e. an exact solution.
Subtract:

(xn + 1 - x) = (xn - x) - D(F(xB) - F(x))

Expand F(x) about x: F(x) = F(x) -f K(x - x) + O(x - x)2 then

x n + 1 - x = xn - x - DK(xn - x) + O(xn - x)2

= (I - DK)(Xn - X) + O(Xn - X)2

If D = K"1, then you get quadratic convergence. This is the exact solu-
tion in the linear case.

(J(.O6
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For example the H-matrix for the squared second difference is,
for order 10, of the form

1
2
1
0
0
0
0
0
0
0

- 2
5

- 4
1
0
0
0
0
0
0

1
- 4

6
—4

1
0
0
0
0
0

0
1

_4

6
- 4

1
0
0
0
0

0
0
1

—4
6

- 4
1
0
0
0

0
0
0
1

- 4
6

- 4
1
0
0

0
0
0
0
1

- 4
6

- 4
1
0

0
0
0
0
0
1

- 4
6

- 4
1

0
0
0
0
0
0
1

- 4
5

- 2

0
0
0
0
0
0
0
1

_2

1

(6.33)

This matrix is singular (its columns sum to zero), so it cannot be thought of as the
inverse of some covariance matrix, but it can be taken to be an information matrix.
If the state vector is expressed in a polynomial representation, this constraint will
be found not to constrain the constant and linear coefficient. The solution is

x = xa + ( 7 - ^ + K T K)- 1 K T (y - Kxa) (6.34)

which bears a stronger resemblance to the maximum likelihood method than either
of the least squares methods, the only difference being the interpretation of the
constraint matrices.
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LINEAR RELAXATION - EIGENVECTORS NON-LINEAR RELAXATION

In the case of first order convergence, decompose I — DK into eigenvec-
tors:

I - D K - RALT

then convergence follows

x n + i - x = RALT(xn - x) + O(xn - x)2

or
LT(x n + 1 - x) = ALT(xn - x) + O(xn - x)2

i.e. you can express (xn — x) in terms of components such that each itera-
tion multiplies the coefficient of the ith component by a factor A;.
The iteration converges if |A,| < 1 for all i.

For a reasonable iteration you will find that the small eigenvalues corre-
spond to large scale structure, and vice versa, and you can stop iterating
before the fine structure blows up.

The solution is of the form:

x = x0 + Da

where a = ]T}n y — F(xn), i.e. a linear combination of the columns of D.

If you know K, a good choice is something like:

D = Kjf (KoKjf + 7I) - 1 in the underconstrained case

D = ( K ^ K Q + 7l)~1Kjf in the overconstrained case.

Non-linear relaxation was popularised by Chahine:

Xi ~ Xi F<(x»)

where the state represented by values of the profile at the peaks of the
weighting functions, so each X{ corresponds to a y,-.

For well peaked weighting functions, intuition tells us this will converge to
a profile which produces the right measurements.

Convergence can be analysed by taking logs:

l n < + 1 = In a;? + (lny,- - lnF;(x"))

We can see that this is the same as the linear relaxation, with:

- a transformed state vector whose elements are logs of the original,

- a similarly transformed measurement vector,

- D = I.

The transformed weighting function has elements

and the convergence depends on the eigenvalues of I — K'.

This is useful if K is difficult or expensive to evaluate, and the state rep-
resentation is appropriate.

0J.O8
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Table 6.1 Eigenvalues corresponding to the eigenvectors in Fig. 6.3(a), and number of iterations
required to reduce error by a factor of 10. The negative eigenvalue corresponds to an error
component that alternates in sign as the iteration proceeds.

Number
1
2
3
4
5
6
7
8

Eigenvalue
0.0371
0.3426

-0.6033
0.6413
0.8444
0.9454
0.9847
0.9965

Iterations
0.7
2.2
4.6
5.2

13.6
41

149
666

Retrieved quantity

' 0
Fig. 6-3 (a) Eigenvector analysis for the convergence of the linear relaxation retrieval. The anno-
tation corresponds to the eigenvalue number in table 6.1. (b) Convergence of a linear relaxation
retrieval for the standard case. The true profile is the solid line, and the iterations are labelled
with iteration number.

CHAHINE-TWOMEY RELAXATION

This version does not need a representation determined by the positions
of the peaks of the weighting functions. Any reasonable vertical grid will
do.

The iteration given by Twomey et al (1977) is:

j is the height index, i is the channel index, n is the iteration number,
Kij is normalised so that the peak value is unity.
(Although the description of the iteration is not clear).
It can be rearranged as:

Taking logs:

Close to the solution we can expand the logs:

which is a linear relaxation with

D

This relaxation requires K to be evaluated. If that is to be done, and op-
timal estimator might be more appropriate.
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FORWARD MODELS AND WEIGHTING FUNCTIONS CHOICE OF STATE VECTOR: EXAMPLE I

With emphasis on infrared measurements. ..

Considerations:

• Choice of state vector for convenience and/or linearity

- coordinates: height or pressure?

- temperature, pressure or density? mixing ratio or concentration?
log or linear?

• Is the calibration part of the forward model?

- could include calibration parameters in the state vector

• Approximations in forward model for speed and accuracy

- Avoiding line-by-line

• Efficient methods of computation of derivatives:

- Perturbing the forward model code, (easiest)

- Coding the derivative of the forward model algebra

- Coding the derivative of the forward model code (most satisfactory)

Nadir sounding of the temperature profile, e.g. O2

The equation of transfer is of the form:

dr(i/,z, 00)/•OO

L{u)= / B(v,T(z))
Jo

Jo ' dP

dz

Something like B is the obvious state variable, for near linearity.

But is z or p the most appropriate coordinate?

Transmittance is given by

( [ k[v,p(z'),T(z')]pa(z')dz'T(v,z,oo)=exp(-

and the density of absorber (assuming a known constant mass mixing
ratio c) is such that pa(z)dz — (c/g)dp. It is much simpler in p:

- fk{v,p',T(p'))-dp>
Jo 9

It is easy to see that the profile is indeterminate in terms of z, because
you could move the whole atmosphere vertically by n km, and make no
difference to the measured radiance.

J-02
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CHOICE OF STATE VECTOR: EXAMPLE II CHOICE OF STATE VECTOR: EXAMPLE III

Temperature profile from, solar occultation

The equation of transfer is of the form:

Hy,zt) = Lo{v)exp(-[ k[p,p(S),T(S)]cp{s)d.<
V J — oo

where s is distance from the tangent point along the LOS.
The relation between zt, z and s, ignoring refraction, is roughly:

(Re Zt) S2 = (Re

Measurements are made at known intervals in z(, so a height grid is
probably most convenient.

If k[v,p(s),T(s)] is fairly constant (e.g. UV), then p(z) is going to be the
most linear and straightforward state variable.

p(s)ds = p(z(s))—dz

and obtain p(z) and T(z) by integrating the hydrostatic equation down-
wards from the top:

/•O

= /

J z
p(z')g(z')dz' and T(z) =

Mgp(z)
R p(z)

You may need to define a top level ZT, and include p(zx) in the state
vector.

Refraction is best done in terms of p(z).

Remember to convert the error covariance:

ST = CSPCT where C = ~

Temperature profile from limb emission

This one is messy:

/ •oo

L(v,zt)= B(u,T(z(s)))
J — oo

dr(v, s, oo)
ds

ds

Measurements are made at known intervals in z(, so a height grid is prob-
ably most convenient. Transmittance is given by

T s = e x p ( - I" k[u,p(8'),T(S')]cP{s')ds')
J s

The mass path is best expressed in terms of density, but the Planck
function is best expressed in terms of temperature.
B or T is probably the best choice for linearity.

The hydrostatic equation has to be used to relate p and T. If T(z) is the
used:

Inp(z) = Inp(zo) -

so we need pressure at a reference height as part of the state vector.

=> T(z) alone is inadequate.

But if we do not have accurate absolute pointing, then z has to be a rela-
tive to some tangent view from the instrument.

=£* T(p) alone is inadequate too.
You can get p(p) directly from the equation of state, and then a relative
z(p) from the hydrostatic equation, but you need e.g. the tangent pres-
sure of a reference scan direction as part of the state vector.

And relating a geometric scan to a pressure grid is messy.

p(z) where the z's are the measurement tangent point grid is the only
state variable that doesn't need a reference.
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DERIVATIVES: NADIR LINE-BY-LINE I EXAMPLE: NADIR LINE-BY-LINE II

Atmospheric model:

- State vector is mixing ratio Xj in layers
- n layers, 1 . . . n
- n + 1 levels, 0 . . . n, surface to space.
- Planck function of layer i is Bi, of the surface is Bg.
- Transmittance from level i to level n is T,-.

Radiance y emitted by atmosphere is:

- /„ is the normalised filter function, ~}2V /„ = 1,
- yv is the radiance at wavenumber index v

The equation of transfer gives for yu:

yv- I Bdr =

thus defining 6j

Now look at the transmittance:

Tvi = where

where in layer j :
- KVJ is the absorption coefficient,
- rrij is the mass of air and
- Xj is the mass mixing ratio.

= Bn

n - l

»=o

j-i+l

Then:
n - l

yv = Bn + 22 bi exp ( -
i=0 j = i+l

Both sums here can be accumulated from the top in one loop.

The derivative is

o n —1 n

K,,h =
for i < k
for i > k

hence
fc-i

8- exp ( -
i = 0

which can be computed at the same time as yv:

- Accumulate \i downwards from the top on one loop.

- In a subsequent loop accumulate yv upward from the bottom,
computing Kvk from the partial sums as you go.

The extra cost of computing the weighting function at the same time as the
radiance is one multiplication in the inner loop. Almost negligible.

And finally
and y — ^ fvyv
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MATRIX ALGEBRA - EIGENVECTORS

The eigenvalue problem associated with an Arbitrary square matrix A, of
order n, is to find eigenvectors 1 and scalar eigenvalues A which satisfy

A1 = A1

If A is a coordinate transformation, then 1 has the same representation in
the untransformed and transformed coordinates, apart from a factor A.

This is the same as (A — AI)1 = 0, a homogeneous equation, which can
only have a solution if |A — AI| = 0, giving a polynomial equation of
degree n, with n solutions for A. They will be complex in general.

An eigenvector can be scaled by an arbitrary factor. It is conventional to
normalise them so that 1T1 = 1 or 1*1 = 1 (Hermitian adjoint)

Matrix of eigenvectors, L:

where the columns of L are the eigenvectors, and A is a diagonal matrix,
with the eigenvectors on the diagonal.

Transpose L r A T = ALT

Multiply by R = ( i / ) " 1 A T = RALT

Postmultiply by R A T R = RA

Thus R is the matrix of eigenvectors of AT.
AT has the same eigenvalues as A.

In the case of a Symmetric matrix, S = ST we must have L = R, so that
LTL = LLT = I or LT = L"1 , and the eigenvectors are orthogonal.
The eigenvalues are real and positive.
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EIGENVECTORS - GEOMETRIC INTERPRETATION SINGULAR VALUE DECOMPOSITION

Consider the scalar equation:

xTSx = 1

where S is symmetric. This is the equation of a quadrat ic surface cen-
tered on the origin, in n-space. The normal to the surface is the vector
<9(xTSx)/cbc = Sx, and x is the radius vector, so

Sx = Ax

is the problem of finding points where the normal and the radius vector
are parallel. These are where the principal axes intersect the surface. At
these points, x T S x = 1 too, so x T A x = 1 or:

A —
1

x T x

So the eigenvalues are the reciprocals of the squares of the lengths of the
principal axes.

The lengths are independent of the coordinate system, so will also be in-
variant under an arbitrary orthogonal transformation, i.e. one in which
(distance)2 = x T x is unchanged.

Consider using the eigenvectors of S to transform the equation for the
quadratic surface:

x T L A L T x = 1 or y r A y = 1 or = 1

where y = L x or x = Ly . This transforms the surface into its principal
axis representation.

The standard eigenvalue problem is meaningless for non-square matrices.

A 'shifted' eigenvalue problem associated with an arbitrary non-square
matrix K, m rows and n columns can be constructed:

Kv=Au

K T u =Av (1)

diere v, of length n, and u, of length TO, are called the singular vectors of
K.

This is equivalent to the symmetric problem:

( O K
= A u

From (1) we can get
K T Kv = AKTu = A2v

KK T u = AKv = A2u

so u and v are the eigenvectors of KK T (m x TO) and K T K (n x n) re-
spectively.

Care is needed in constructing a matrix of singular vectors, because indi-
vidual u and v vectors correspond to each other, yet there are potentially
different numbers of v and u vectors. If the rank of K is p, then there
will be p non-zero singular values, and both KK T and K r K will have p
non-zero eigenvalues. The surplus eigenvectors will have zero eigenvalues,
and can be discarded and we can write:

OK
O

where A is pxp, U is m xp, and V is n xp. There will be n + m—p more
eigenvectors of the composite matrix, all with zero eigenvalue.

A-Oj
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EIGENVECTORS - USEFUL RELATIONSHIPS SQUARE ROOTS OF MATRICES

Asymmetric Matrices

AR = RA
Lr A = AL

LRT = L T R = I

A" 1 =
A" = RAnLT

LTAR = A
LTA"R = An

Symmetric Matrices

LT = L"1

LLT = LTL = I
S = LALT = £

S"1=LA-1Lr

Sn = LAnLT

LTSL = A
LTSnL = A™

SINGULAR VECTORS - USEFUL RELATIONSHIPS

K V = U A

K T U =VA

U T KV = V T K T U = A

K =UAVT

K T =VAUT

V T V =U T U = Ip

KK T U =UA2

K r K V =VA2

The square root of an arbitrary matrix is defined as A 2 where

Using An = RAnLT for n = 1/2:

This square root of a matrix is not unique, because the diagonal elements
of A5 in R A 5 L r can have either sign, leading to 2n possibilities.

We only use square roots of symmetric covariance matrices. In this case
S2 — LA5LT is symmetric.

Symmetric matrices can also have non-symmetric roots satisfying S =
(S5)TS2, of which the Cholesky decomposition:

where T is upper triangular, is the most useful.

There are an infinite number of non-symmetric square roots: if S 2 is a
square root, then clearly so is XS2 where X is any orthonormal matrix.

The inverse symmetric square root is S~2 = LA~2LT
j ancj the inverse

Cholesky decomposition is S"1 — ip-i-p-T rp^g m v e r s e square root T""1

is triangular, and its numerical effect is implemented efficiently by back
substitution.
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