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Beyond MHD — A Closed Fluid Description

S. M. Mahajan and R. D. Hazeltine

(October 1, 2001)

Abstract

With the constraints of the Lorentz covariance as a guide, we construct

the most general energy-momentum tensor for a magnetized (to be defined

in the text) plasma subject to a dominant electromagnetic force. A consis-

tent scheme is developed to derive a closed set of fluid equations determining

all the unknowns in the energy-momentum tensor. Since a complete knowl-

edge of the energy-momentum tensor is sufficient to close the Plasma-Maxwell

system, our set of equations represents a relatively complete description of a

collisionless magnetized plasma. The new theory subsumes the standard mag-

netohydrodynamics (MHD); in fact, it takes the original MHD program (i.e.,

a theory of magnetized plasma) to its logical limit. Relativistic as well as

the Nonrelativistic (directed as well as thermal speed much smaller than the

speed of light) manifestations of the system are displayed.

I. INTRODUCTION

Magnetic fields are the universal and principal instruments for confining plasmas barring

a few very special cases,like the stellar interiors, where the intense gravitational fields do the

job. The study of magnetized plasmas (an appropriate definition will be provided later),

therefore, is a study of most plasmas that are relatively long lived. Within the framework of

classical physics the most detailed descriptions of plasma dynamics are based on kinetic the-

ory in which each component of the plasma is viewed as a fluid in the six-dimensional phase

1



space. The kinetic approach is relatively complete but highly complicated especially when

applied to plasmas which are spatially inhomogeneous, that is, most plasmas of interest. A

less ambitious but often more manageable formulation of plasma dynamics emerges when we

are content to treat it as an ordinary fluid in the three-dimensional configuration space. The

program, then, consists of deriving the evolution equations of various physically meaningful

quantities (velocity moments of the kinetic distribution function) like the mass and charge

densities, the velocity (momentum) field, and pressure ; these equations are the equivalent of

the conservation laws one encounters in ordinary hydrodynamics but with electromagnetic

forces dominating the show.

All fluid theories have to cross a serious generic hurdle to be taken seriously; it is the

problem of closure. The evolution of each successive moment depends on a higher order

moment leading to an infinite set of equations which are of little use unless we can find

a prescription to truncate the system, i.e., we can express the nth order moment fully in

terms of the the lower n — 1 moments. The most successful and widely used fluid theory of

magnetized plasmas, the magnetohydrodynamics (MHD) [1], affects this closure by assuming

a plasma stress tensor (energy-momentum tensor) dictated fully by a local thermodynamic

equilibrium. We remind the reader that a knowledge of the stress tensor is sufficient to

calculate the charge and current densities needed to complete the Plasma-Maxwell system.

Although MHD does capture several key features of a magnetized plasma (the electro-

magnetic nature of its flow (E x B drift), for example), its reliance on the thermodynamic

closure fails to do justice to the dominant determinant of plasma dynamics, the electromag-

netic force. A more consistent treatment should allow the stress tensor to be determined by

electrodynamics just as the plasma flow velocity is. The "gyrotropic" CGL [2] tensor intro-

duced by Chew, Goldberger and Low was a step in this direction. Reflecting the presence

of a strong magnetic field, the CGL tensor displays the characteristic anisotropy between

directions parallel and perpendicular to the magnetic field. The CGL theory , however, was

seriously flawed because the ("double-adiabatic") laws used to advance the stress tensor are

not obviously physical, especially since heat flow along the field lines of a low collisionality



plasma can be rapid. In any case, we shall soon show that this tensor (and its relativistic

generalization) is not the most general one consistent with a dominant electromagnetic force.

It is fortunate that the most general energy-momentum tensor we find in this paper is also

physically reasonable (and warranted) and leads to a consistent and relatively clean fluid

description.

In this paper we develop a closed, Lorentz invariant, fluid theory of magnetized plasmas.

The Lorentz invariance of the theory extends the domain of validity of this theory to include

relativistic plasmas [3-7] : the plasmas in which either the thermal speed (the rms speed

of individual particles ) measured in the fluid rest frame, or the local bulk flow measured

in some convenient frame, can approach the speed of light. Many astrophysical and some

laboratory plasmas fall in this category although for a majority of laboratory plasmas a

non-relativistic limit (a low velocity and a low-temperature limit of the general theory) will

generally suffice.

The demands of special relativity (Lorentz invariance) have a rather profound effect

on the very formulation of the theory. In the modern theories of elementary particles,

the symmetries are often the only guide to determine the form of interactions. We find

that Lorentz invariance does precisely that in this purely classical context; the form of the

energy momentum tensor, the centerpiece of the theory, is dictated almost entirely by the

considerations of Lorentz invariance. We are tempted to suggest that perhaps the best way

to derive even purely nonrelativistic theories is to first set up a Lorentz invariant formalism

and then take the appropriate limit.

Starting from the exact relativistic fluid equations, obtained by taking the moments of

the kinetic equation, we will first work out in Sec. 2 the schematics of a closure program

for a magnetized plasma. Quite predictably, the plasma magnetization alone proves to be

an insufficient assumption for a full closure: the scalar functions appearing in the theory

— such as enthalpy density, and the perpendicular and parallel pressures — outnumber the

field equations. To achieve closure we must resort to a representative distribution function

for each plasma species, chosen consistently with relativity, magnetization, anisotropy and



heat flow, in fact, chosen to reproduce the unique form of the energy momentum tensor

found independently by solving the appropriate moment equation with the constraints of

Lorentz invariance.

For many applications of the magnetized fluid set we can avoid the calculational complica-

tions of the relativistic equations (the compact tensor notation often hides their complexity)

and deal directly with their non-relativistic limit. Since the original equations are relativis-

tic both in the directed and the thermal speed, the derivation of the nonrelativistic set will

require taking two simultaneous limits v/c <C l,vth/c <C 1. Derivation and display of the

nonrelativistic set and comparing it with the standard MHD and the CGL theory makes up

the content of Sec. 3.

In Sec. 4 we carry out a token illustrative calculation and derive a dispersion relation for

the low-frequency waves in a homogenous plasma. By comparing it with similar calculations

for MHD and the CGL systems, we show that the inclusion of heat-flow (an essential element

of the new theory) brings the physics closer to the predictions of the drift-kinetic theory.

It is worth emphasizing that the covariant analysis of fluid equations for magnetized

plasmas is simpler and more transparent (primarily due to the use of compact tensor nota-

tion) than the nonrelativistic version found in many textbooks. In particular the relativistic

derivation suggests straightforward means for the inclusion of finite gyroradius physics. Such

generalization will be the subject of future work.

II. FLUID CLOSURE

General

Our search for a closed fluid description begins with the following three exact (collision-

less) conservation laws for each species of the plasma,



T, = 0 (2)

e ( F a X ^ + F^T") = 0. (3)e(FX + F

Here FM is the four-vector measure of the fluid particle-flux density, T7*" is the energy-

momentum tensor, and M ^ is the third-rank moment which we will call the "stress-flow"

tensor. The flux

r" = nRW (4)

where TIR is the plasma density in the rest-frame, and [7M = (7,7V) is the local four-velocity

of the fluid, with

72 = (1 - V2)-1 (5)

the relativistic dilation factor. Notice that in an arbitrary frame the density n =

These moments are defined in terms of the (Lorentz-scalar) distribution function

where p represents the four-momentum p^\

§V (6)
fpy" (7)

(8)

where d3p/p° is the invariant momentum-space volume element. Recall that for physical

particles, the four-momentum p^ satisfies the mass-shell condition

2+p2. (9)

where m is the particle rest-mass. The distribution function obeys

where g^ = eF^py is the electromagnetic four-force experienced by the particle of charge

e. The faraday tensor F^v will have the standard form; the reader is requested to consult



Ref. [8] for various properties of the electromagnetic (e.m.) field tensor and other tensors

derived from it.

There are two unique Lorentz scalars (relativistic invariants) associated with the

e.m.field; these are the contractions of the the tensor F with itself, and with its dual

where e^ is the completely antisymmetric tensor:

1-FKXFKX ^B2-E2 = W

and

— J ±* v a -—• FJ * MM — A [/y ( I I )

The scalars W and A play an essential role in defining the ordering used in this paper.

Magnetized plasma

A plasma system is considered to be magnetized if two criteria are satisfied:

1. The two electromagnetic field invariants, W and A, satisfy

W > 0 (12)

A < 1. (13)

2. The thermal gyroradius (gyrotime) is small compared to any gradient scale length

(time scale of variation), that is, their ratio

5 < 1 (14)

The first condition implies that the magnetic field is larger than the electric field (much

larger than its parallel component; parallel in this paper means parallel to the magnetic



field) while the second condition is a statement that the magnetic field is strong (in some

appropriate sense). Although the first statement is fully covariant, we have deliberately

written the second statement in a more familiar form; a covariant definition is not very

transparent. In this paper we shall use the ordering A ~ S.

Before embarking on the fluid closure we must recall the central importance of the

energy -momentum tensor in affecting the charged fluid-Maxwell closure. The coupling of

the plasma to the e.m. field first enters a fluid system through the second moment equation,

the conservation law for energy-momentum. If the total (summed over all plasma species)

energy-momentum tensor for the plasma is denoted by T, then (2) implies

where Jv is the four-vector current density.

All fluid descriptions of magnetized plasma evolution use this second moment as a consti-

tutive relation, determining the four current in terms of the fields, and thus closing Maxwell's

equations:

™ = J^ (16)
dxv

Explicit expressions for the current density are give by the following set of equations (see

Ref. [8] for details):

W

ruv = o, (20)

where the last two equations are the covariant expressions of the charge conservation and

quasineutrality yielding respectively the parallel component of the current density and the

charge density. In a relativistic plasma the charge density can be presumed to vanish only
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in the instantaneous rest-frame. The first equation is the main equation of the trio and

determines the perpendicular components of J in terms of T. The symmetric tensor (rj^ is

the standard Minkowsky metric tensor)

el = -F^/W, (21)

and its compliment

% = %- <, (22)

constructed from the antisymmetric field tensor, are very important tensors of the theory; In

the magnetized limit, A ~ 5 —> 0, these tensors become approximate projection operators.

Energy-Momentum Tensor

The preceding discussion clearly shows that once the plasma stress tensor is known the

four-current density is determined fully closing Maxwell's equations. The principal task

ahead, then, is to compute T. Recall that conventional MHD (including relativistic MHD)

avoids the challenge by assuming the stress tensor to have the thermodynamic form,

T^ = vrfv + hU»Uu (23)

in terms of the pressure, p, the enthalpy density, h, and the fluid velocity four-vector U^.

This form would pertain if thermal relaxation due to collisions occurred more rapidly than

any other process of interest. Hence, the present work can be described as an extension of

MHD into regimes of much lower collisionality. In fact we ignore collisions altogether, and

find the form of the stress tensor for a plasma subject to the electromagnetic force alone.

The magnetized plasma assumption (MPA), coupled with Lorentz covariance allows us

to write a unique general form for the energy-momentum tensor T. Operationally, to the

leading order, MPA reduces the two moment equations (2) and(3) to

p = 0, (24)

FavTj + FPvTu
a = 0 (25)
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where we have suppressed any additional suffixes for notational simplicity. The solution of

the first is the well-known MHD law T°E + T x B = 0 giving the general form of the four

velocity

U» = -y(l,Vll + VE), (26)

where VE = E x b/B and V\\ = bb-V. Note in particular that all factors of 7 are evaluated

at the lowest-order flow V = V\\ + VE- The perpendicular velocity is already expressed in

terms of the e.m fields but V|| is still to be calculated. This brings us to the very heart of

the problem- the solution of (25) to find the energy momentum tensor T. Lorentz invariance

proves to be an invaluable guide. We have to construct a second order symmetric tensor

which solves (25). The only second order tensors of this description in the theory are eMi/,

W from the e.m.field, and U^UV and q^\Jv + Ulxqv representing the fluid momentum and

energy flow. We shall soon identify q. Lorentz invariance demands that when T is written

as a linear combination of these tensors , the combining coefficients must be scalars. The

identification of these scalars is done by the standard techniques of looking at T in the rest

frame of the fluid in which e and b become exact perpendicular and parallel projectors. We

find

Tw = h^n + e^p± + hu»ijv + q»Vv + jjvtf (27)

where p\\, p± and h are Lorentz scalars corresponding respectively to parallel pressure, per-

pendicular pressure and enthalpy density in the rest-frame, and where the four-vector q*1

must satisfy

eapqa = 0 (28)

in order to satisfy force-balance, and

Uaq
a = 0 (29)

in order to preserve the significance of p\\ and p±. Thus there is only one independent

component in q^\ this represents parallel heat flow in the rest-frame and is denoted by q\\.



It is then convenient to introduce the dimensionless four-vector ka such that

aqa =

We emphasize that (27) represents the unique, general form of the stress tensor in a

plasma dominated by the electromagnetic force. It is instructively compared to the special

case (23) used in MHD; evidently collisional dissipation has been allowed to remove stress

anisotropy in the latter. Compared to the CGL stress tensor, (27) differs in allowing heat

flow. The fact that the electromagnetic field appears in the stress tensor only through quasi-

projectors b^ and e^v is a reflection of gauge-invariance and the indicial symmetry of T^;

recall (7).

The stress tensor contains eight unknown scalar functions: nR(x,t), p\\{x,t), p±(x,t),

h(x, t), the three independent components of T^(x, £), and the single independent component

of qfl(x^t). Since (1) provides the evolution of the density, and (24) determines the two

perpendicular components of the flow, closure of our system requires five additional equations

for each plasma species. This task of finding the additional equations was accomplished in

Ref. [8]. Here we simply write down the closed system in its compact tensor form:

rJ^r = ^ I I ^ (30)

obtained by multiplying (2) by the dual tensor T, provides two independent equations. The

exact consequences,

= 0, (31)

= 0, (32)
UJu'~

or equivalently

dM
(Uakp + U?ka)-^- = -2e£,|/i, (33)

derived from the third moment (3) are the source of the additional two. For the final relation

that relates enthalpy h to the the pressure, density and temperature (not all independent)
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we have to resort to a representative distribution function which faithfully reproduces the

general form of T. In the process we also manage to evaluate the scalars mi,m2, and m>$

appearing in the general form of the third rank symmetric tensor M. We will not display

here the detailed expression for M but simply state that one of the crucial steps in the the

closure program was to express M in terms of the third rank symmetric tensors constructed

from the lower rank tensors of the theory which solve the leading order, electromagnetically

dominated, fourth moment equation (not displayed here); no new unknown tensors were

introduced. We believe that this procedure is eminently sensible.

We end this section by listing expressions for the above-mentioned scalars:

^^( ' -T ' ) (34)

7711 = T lKm + (P|1"p±) {K*" 2¥K2)} (35)

m2 = m(p\\ - p±)-^ (36)
•ft 3

ra/C .„„.
( 3 7 )

with

(39)

where Kn(() are the MacDonald functions associated with the momentum integrals of rel-

ativistic Maxwellians, £ = m/T is the inverse of the temperature measured in units of the

rest-mass, and A is a measure of the pressure anisotropy. For considerations of the next

section, it will be useful to remember that p\\ = URT and vrt\ + 777,2 = Th.

We have thus derived a closed system of fluid equations valid for a magnetized plasma

with arbitrary directed speed and arbitrary temperature. All dynamical variables of the

system (the pressures, the parallel velocity and heat flow etc.) needed to construct the

energy momentum tensor, have appropriate equations for their temporal advancement. The

equations are coupled and highly nonlinear; they represent, to the leading order, a complete

description of the macroscopic low- frequency motions of a magnetized plasma.
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III. NONRELATIVISTIC LIMIT — NR

Most of the laboratory magnetized plasmas are not relativistic, neither the directed

velocity nor the thermal speed are anywhere near the speed of light; the former is often

much smaller than the latter for hot thermonuclear plasmas. Thus a nonrelativistic limit of

the theory is extremely important for applications to familiar plasma systems. One could

ask if it was necessary to spend the labour of first deriving a fully covariant relativistic theory

and then go through the cumbersome process (it certainly is tedious but interestingly enough

turns out to be less tedious than conventional nonrelativistic in many ways) of taking the

double limit. We believe that this effort is fully justifiable — not only because we have a

very general theory applicable to a vastly larger set of physical systems, but also because

the dictates of space-time symmetries (Lorentz invariance) were crucial in the determination

of the unique form of the electromagnetically dominated energy-momentum tensor T — the

centerpiece of the problem and of the theory. Without the constraints of Lorentz covariance,

it is quite difficult, if not impossible, to derive the correct general expression for T.

There is also another non-trivial advantage inherent in this procedure. Once the approx-

imations are spelled out, the theory can be worked out to a given order by a straightforward

mechanical prescription; there is almost no fear of missing terms of equal magnitude in a

specific equation.

On our way to the NR limit, we first write down the three-vector forms of various

equations. It will require the three-vector forms of various constituents of T and M: These

include the vector ka,

obtained by using its defining relations (28)-(29) or by Lorentz boosting the rest-frame

ka — {0, &}, and the four-curvature

_iV\d\ogW

dx» W '
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Notice that dve1^ — —dvb1^. It will be convenient to use the identity JJvdv — j(dt + V

V) = jd/dt, and the notation kvdv = d/ds. Using all this, we obtain

d

dl
-V = 0, (42)

djV

d^G" = 0,

with the definitions

(43)

(44)

(45)

= 7
W

E

and

dt
5Th -

dt
dTh dlogVW n dV

H—; m2 ; h 7m37fe • —^ = ehE\\ds ds ds
(46)

as the three-vector expressions of (1), (30) (two equations), (31) and (33). We must augment

this set with the three-vector version of (18) [(19) and (20) are trivial]:

(47)

withG, andG0 given by

I 1 • I G°
d

w dt \ n

(P\\ ~ Pi.) (48)

and

1 -
Pn - Pi

w dt \ n J

-P±) (49)
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It would seem that we have taken a giant step backward; from lofty heights of the explicit

elegance and compactness of the covariant equations we have descended into a complicated

mess. This is, however, an intermediate step; our aim is to derive the low-temperature, low-

velocity limit of these exact equations. We do not expect to recapture their earlier beauty,

but we will have a set of equations which we can compare and contrast with known systems

and find what essential new physics we have incorporated in the present system.

The nonrelativistic limit has to be taken carefully; there are occasions when all leading-

order terms cancel in the equation and one has to resort to higher orders in expansion,

especially in ( = m/T. However, the program is straightforward and mechanical and the

results are unique for a prescribed ordering; No intuition on the relative importance of terms

is needed to arrive at the desired consistent set. The inequalities V, C~ly/2 ^ 1 capture the es-

sentials of the NR limit. In the procedure followed here, we also take d/dt ~ d/dt ^ 1 / < 1 .

We just remind the reader that various physical quantities appearing in the equations are

relativistically inequivalent; their appearance in the same equation, therefore, implies that

they must be 'multiplied' by factors that are also inequivalent in the expansion so that the

terms in which they appear are of the same order.

Since V ~ E/B, in the NR limit W = B2 - E2 ~ B2. Similarly we find that d/ds -> V||.

Putting it all together and using ( the large argument limits of the MacDonald functions

= CP|| + 2?ll +P± + 0(°°/O, (50)

| l + —J , (52)

2 / 5 \
m3 = -mq\\ ( 1 + — 1 , (53)

we arrive finally at the following set of NR equations:

The parallel equation of motion

mnb • — + V||P|( + (RL - P||)V|| log B = enE\\ - vxq\\ - ^Jh (54)

14



two equations for the evolution of parallel and perpendicular pressures

( 5 5 )

and an equation for the evolution of parallel heat flow,

1 IT [T /3
W f + 2 (̂P-L - Pll)VH l o § 5 + VH [ - ( jP | 1

(57)

and finally the equation for the perpendicular current

- P±) hln B + 6V|,£n ̂ = A ) + Mn ^ 1 .

(58)

In the process of taking the nonrelativistic limit we have also added collisions (as reflected

by the presence of the collision frequencies (us) on the right-hand side of (54), (56), and

(57). All equations except (58) hold for each individual species (species index suppressed)

while in (58), the upper case P's denote the total plasma pressure.

We incorporated the collisions with two ends in view: the first was to present a more or

less complete theory of magnetized plasmas valid for arbitrary collision frequency ((54)-(58)

with equations of continuity for each species) and the second was to show how the current

theory subsumes less general and less encompassing systems like MHD.

There are several important features which distinguish the current theory from its pre-

decessors:

The parallel heat flow (q\\) has attained the status of a dynamic variable of the system

on an equal a priori footing with density, parallel velocity or pressure; it is not given by an

additionally assumed diffusive transport equation but by a a perfectly well-defined (rather

complicated) evolution equation (57) which relates it to other dynamic variables. This

15



factor adds both to the complexity and to the richness of the self-consistent dynamics of a

magnetized plasma.

For plasma motions for which the heat flow along the field line cannot be ignored, there

are no "equations of state" for either the parallel or the perpendicular pressure. It is only

when (<j||) is negligible that the pressure evolution equations (55)-(56) reduce to the familiar

form for the equation of state with the difference that the magnetic field strength has worked

its way into the scheme of things. The equation of state for a magnetized plasma in the limit

of vanishing parallel heat flow, relates not just the particle pressure but some combination of

the particle and the magnetic field pressure(B2) with the plasma density. The two "adiabatic

laws" obtained from the q\\ — 0 limit of (55)-(56),

are precisely the double adiabatic laws of the CGL theory.

This is perhaps as good a juncture as any to comment on the conditions when q\\ — 0 may

be a reasonable assumption. For this we will have to introduce another ordering parameter,

\i — (d/dt)/is, which measures the ratio of the inverse time scales of interest and any of

the collision frequencies occurring on the right hand-side of the above system of equations.

For large collision frequencies (/x —> 0), it is easy to infer that the leading order solution of

the evolution equation (57) must be q\\ = 0. If this ordering were applied to the rest of the

set, we are forced to conclude from (56) that p\\ — p± —> 0. High collisionality, therefore,

does not permit either the parallel heat flow or the pressure anisotropy. This raises doubts

about the justification of the CGL theory (pressure anisotropy but no neat flow) in any

regime of interest unless one can devise a yet unknown ordering. The general statement

(in the nonrelativistic magnetized plasmas) that MHD is collisional while CGL is applicable

for collisionless plasmas is definitely contradicted by our general formulation. CGL requires

high collisionality to make q\\ = 0; but when this is done the resulting theory is MHD and

16



not CGL; the latter does not constitute a consistent approximation to the physical system.

When terms proportional top||— p± and q\\ are neglected in our general energy momentum

tensor (27) it reduces precisely to the MHD energy- momentum tensor (23) as it must. This

shows the consistency of the formalism and also displays the fact the energy momentum

tensor must reflect all the information on the momentum and energy flows.

IV. LINEAR THEORY — SOUND WAVES

We now carry out an extremely simple calculation to show how the current theory may

be a closer approximation to the detailed kinetic theory than MHD. For this purpose we

choose the problem of deriving the dispersion relation for the low-frequency MHD waves in

a homogeneous collisionless plasma. This problem can be exactly solved in the fluid as well

as equivalent kinetic models.

Let the density n0, the pressure p0, the temperature To, and the magnetic field Bo be

uniform, and q$ — 0, pj{ = p5_, Vo — 0 in the equilibrium state. Let us also allow the ion

and electron temperatures to be different (in the T? —>• 0 limit, the dispersion relations are

the simplest) with r = If/Te° — p\jp\. <>,From the linearization of (54) and (55), we have

5 uo

5 u

p°

P\\
p°

~p±
B

+ 2 6 I I
Bo

h
Bo

3 ""
no_

-1,no\ '

(61)

(62)

which yield the relation

? 1 _1̂1 _ o

Bo
(63)

valid for each species. The linearized equations (58) and (57) lead to (V = VE + V[|6Q)

V\\~
com

ze£j|
um

k\\ P\
mu ri(

k\\T°
um

1 _ 1̂1 ^ o
) to m

4

PI
p°

P|| P±
p°

5
2

(64)

(65)
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and may be combined (eliminating E\\) to relate the heat-flow perturbation to the others,

Si To

p° mcj m
3 P\\ PA. 5 n 1
2 p^ + ~f ~ 2 n J '

(66)

Equations (62)-(65) may be readily solved to derive (z = (To/
fm)k?J'u

1 - ^1 5

PI, _ 3(1 - z) [ n _ 2_

. 13111 -1--1- y

(67)

(68)

determining p± and py in terms of 6|| and n. Let us consider the standard case of a hot

plasma for which the Alfven speed, VA ^ ^the-> the electron thermal speed. Then for electrons

(z —> oo), (67) simplifies to [PQ = pQ
e + p® is the total pressure]

P||e = P||e = 15 F_ri 2 _6||_1 1

P o (l+r)p°e 11 [no 3BQ\I + T'
(69)

For the ions, however, z must be kept finite

3(1 - z)

Po
n
n0 3 Bo\ 1 + T

(70)

Adding (69) and (70) yields the total pressure perturbation p\\

P\\ = n 1

_n0 3

n 2

15 3(1 -Z)T"

where
15 3 ( 1 - z ) r
11

15

(71)

(72)

Using the linearized continuity equation

(73)
77-0 -£>0 ^ -M) ^ 0 -M)

where z = rz, we express the pressure perturbation fully in terms of 6||, the parallel magnetic

perturbation

(74)
Po 1 - a(u)z(l + T) BQ'
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Since in the force balance equation we will need the perturbed perpendicular pressure, we

may calculate it from (63) and (74),

PL - l V a{uj) + si h - \(u) h (75)
~P~Q - 3 [3 1 - a(u)z(l + r) + 5J B~ = ( W (?5)

The perpendiclar component of the force balance equation (58) yields on linearization and

some manipulation

VA
x 60) (76)

where (3 = 8TTPO/BQ is the plasma beta. Equation (76) allows two consequences:

(i) Dotting it with fcj_ gives

)(JE± x 60) - — (fe± • ^±)&o, (77)

(ii) Crossing it with k± yields

k\\b0 • (fcj_ x b±) = — fc_L • Sj_. (78)

The use of Faraday's law cob = k x 22, translating as

CJ&II = fe_L • (JB_L x 60) 5 (79)

and

u(b0 x 6JL) = -kE± (80)

completes the system. From (78)-(80) it is trivial to derive

a,2 = k\v\ (81)

implying that the shear Alfven wave stilll remains unchanged in this simple geometry. The

description relation for the other two coupled modes (the compressional and the sound wave)

is naturally severly altered; it is obtained from (77) and (79) to be

2

— " kf\ ~ kl = PHu)k±. (82)

19



In the limit of zero ion temperature and /? —» 0, the modes decouple and become simplified,

yielding,

u? ~ {k\ + k\)v\ (83)

(84)

2 * '

We find that, for this very primitive case, we have obtained quite an interesting result:

the effective sound speed vs — yj 15/11 Cs which lies between the kinetic value Cs and the

MHD value A/5/3 CS. This is a very encouraging result for the new theory because the

influence of the parallel heat flow, by not allowing the standard adiabatic law with 7 = 5/3,

has affected the rate of sound propagation along the field line. We expect many more changes

in more substantial and nontrivial cases. Incidentally, the CGL model would give a sound

speed J(3)CS which is much worse than the MHD result.

V. SUMMARY

A relatively complete closed fluid model of magnetized plasmas moving with arbitrary

thermal and directed speeds is derived from the exact moments of the kinetic equation by ap-

pealing to space-time symmetries ( Lorentz invariance) and the fact that the electromagnetic

force is the principal determinant of plasma dynamics. The electrodynamically determined

energy momentum tensor has a built in pressure anisotropy and nonzero parallel heat flow

distinguishing it from MHD which is subsumed in the new theory. The system derived in this

paper may be viewed as the logical culmination of the intended MHD program (theory of

magnetized plasmas); it is obtained essentially by replacing the thermodynamic stress tensor

of MHD by the more relevant and general tensor dictated by the electrmanetic nature of the

dominant interaction. We expect both the relativstic and the nonrelativistic manifestations

to find widespread applications in problems ranging from the structure of intergalactic jets

to low frequency motions of hot confined laboratory plasmas.
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