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Auroral Zone Plasma Physics

Robert L. Lysak, University of Minnesota

Introduction

The auroral zone can be defined as the magnetic flux tubes that extend upward from the
auroral ionosphere, the region at about 70° geomagnetic latitude in both the northern and
southern hemispheres. The auroral zone is a fertile region for the study of plasma physics due to
a number of its unique characteristics. First of all, the auroral zone is a region in which field-
aligned currents flow. A consequence of these field-aligned currents is that parallel electric
fields develop in this region. These parallel electric fields appear to be localized in the region
around 6000 km altitude, a region called the auroral acceleration region. The reason for these
parallel electric fields is still controversial, but nearly all researchers in this area associate them
with the field-aligned currents in the auroral zone. In the time-dependent case, the field-aligned
currents evolve by the propagation of Alfvén waves along field lines. Ideal MHD Alfvén waves
do not carry an electric field and cannot accelerate particles; however, on the small spatial scales
present in the auroral zone, these Alfvén waves must be described by kinetic theory, and parallel
electric fields can develop. The interaction of these Alfvén waves with the ionosphere can lead
to structuring of the field-aligned currents. Another aspect of the auroral zone is that there are
strong gradients in the density, temperature, and magnetic field strength along the magnetic field
lines. Such gradients can directly affect Alfvén wave propagation as well as higher frequency
waves. The strong field-aligned currents imply that there is a relative drift between the electrons
and ions in this region that can give rise to instabilities. In addition, the gradients in the magnetic
field strength lead to a magnetic mirror force that can strongly affect the particle distributions
along auroral field lines by leading to a loss cone in the distributions. Even though the auroral
electrons are only weakly relativistic, relativity modifies the cyclotron resonance condition and
can give rise to strong radio emissions. These features of the auroral zone make it a fascinating
place of study for plasma physicists.

The auroral zone can be characterized as being a strongly magnetized plasma, in which
the electron plasma frequency can be much less than the electron gyrofrequency, ®,, <€, , and

indeed, in some cases we also have ® , <€;. (These conditions do not apply to the collisional

ionosphere, where the density is much higher.) This strong magnetization, or equivalently low
plasma density, affects many of the auroral zone properties. The auroral zone plasma is a
mixture of cold ionospheric plasma (T ~ 1 eV) and hot magnetospheric plasma (T ~ 100 V).
These population and the strong magnetic field mean that the auroral zone is a low beta (B = 2pop
/B*) plasma. Indeed, B can be extremely low, less than 10°.  As we shall see, this has
consequences for the acceleration of auroral particles and the propagation of Alfvén waves.

A. Parallel electric fields in the auroral zone

1. Response of auroral particles to parallel electric fields



The nearly dipolar magnetic field on these field lines implies that the magnetic mirror
force operates on these particles. On the other hand, the field-aligned currents in the ionosphere
can lead to the development of parallel potential drops on auroral field lines. We will discuss the
mechanisms for these potential drops later, but for now we will assume their existence and ask
their effect on the velocity space structure of auroral particles. This velocity space structure can
be seen by considering the two invariants of the motion, the total energy and the magnetic
moment of the particle (see, e.g., Chiu and Schulz, 1978). Assuming non-relativistic motion to
simplify the algebra, the invariants become:
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These invariants imply that if the particle has a velocity vy, and v, at a location where the
magnetic field and the potential are B; and @, then its parallel velocity at a location B;, ®; is

given by:
Vip = Vi + Vi, (1 _&)_M (3)
B, m
Note that the RHS of equation (3) must be greater than zero for the particle to be accessible to
point 2.

Let us now consider a situation where the field-aligned current and the parallel electric
field point in the upward direction. This implies that the potential increases as one moves
downward along the field line. There are two possible sources for plasma on this field line, one
being the outer magnetosphere and the other being the ionosphere. The magnetospheric source
is generally rather hot, with temperatures of 100-1000 eV and densities less than 1 cm™, while
the ionospheric source is much colder, 1-10 eV, but can be much more dense. Let B, be the
magnetic field in the magnetospheric source, and let ®; = 0 at this point. We will denote the
magnetic field and potential in the ionosphere as By and ®;. Note that magnetospheric particles
that reach the ionosphere will collide with ionospheric particles and be lost. We will write
quantities at the observation point without any subscripts. Note that we will assume B, < B< B,
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I First, consider ion motion, so that g > 0.
For ions, both the magnetic mirror force and the
_ parallel electric field produce an upward force.
For an ion not to be lost into the ionosphere, its
parallel velocity must go to zero (where it is
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It can be seen that this condition leads to a
Figure 1. Ion velocity space structure  hyperbola in velocity space that crosses the v, =

for an upward parallel electric field. 0 axis at the pointv? =2g(®, —®)/m. At very



Electron velocity space, By/B= 2.0, By/B=0.5, ¥,,,.= 1.0
T T :

large velocities, the term in equation (4) involving
.~ 1 the potential drops out, and this hyperbola reduces
_— 1 to the wusual loss cone at a pitch

~ 1 angletano=v, /v, =1/(B;/B-1). Points inside

R O 1 the hyperbola (i.e., those with greater parallel

Z e 1 velocities) will hit the ionosphere and be lost;

e thus, the upgoing part inside the hyperbola will

T 1 not contain any magnetospheric particles. On the

: other hand, ions that originate in the ionosphere

can only be present in this upgoing loss cone

region, and will form an upgoing beam.

Magnetospheric ions outside the hyperbola will

Figure 2. Electron velocity space for reflect before they hit the ionosphere. The

upward parallel electric field. velocity space structure for ions is shown in

Figure 1.

The situation for electrons with an upward parallel electric field is more complicated.

For ions, the electric field and the mirror force point in the same direction; however, for

electrons, the mirror force is upward while the force from the parallel electric field is downward,

which complicates the velocity space structure. For a magnetospheric electron to avoid loss in
the ionosphere, it must satisfy a condition similar to (4) but withg =—e:

2e(®, -
vﬁ,=vﬁ_vi(%——1]+—e( ! )<0 (5)
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This still gives a hyperbola, but one which crosses the vy = 0 axis rather than the v; = 0 axis as
was the case with the ions. In addition, however, not every point in the electron velocity space is
accessible from the magnetospheric source. To determine this condition, we can consider a point
in velocity space at the observation point and trace its trajectory back to see whether it can reach
the source. This procedure leads to the condition:

B
vﬁ_\_=vﬁ+vi( “B‘i)"?” ©®

This condition describes the exterior of an ellipse in velocity space, which is sometimes termed
the “acceleration ellipse,” which crosses the v, = 0 axis at vj =2e®/m and crosses the vy = 0

axis atv: =(2e®/m)/(1-B,/B). The region inside this ellipse is inaccessible for electrons

originating in the outer magnetosphere. This velocity space structure is shown in Figure 2.

From this figure it can be seen that there are 5 distinct regions of velocity space. At large
parallel velocity and small perpendicular velocity, the downward electrons will be lost in the
ionosphere, and a loss cone will form for upward parallel velocity. This upward loss cone could
contain electrons of ionospheric origin that have sufficient energy to overcome the parallel
potential drop and escape, although generally the upward potential drop is much larger than the
energy of the ionospheric electrons and so few electrons will populate this region. At large
perpendicular velocity, we again have a population consisting of magnetospheric electrons that
mirror before reaching the ionosphere. Near zero velocity is a region of electrons of ionospheric
origin that do not have enough energy to overcome the parallel potential drop above the
observation point. These electrons will be reflected by the electric field and returned to the
ionosphere. These are referred to as backscattered electrons. Finally, there is the region between



the ellipse and the hyperbola. This region is not accessible to particles from either the
ionospheric or magnetospheric sources. Any electron that enters this region is trapped by the
magnetic mirror force below and the parallel electric field above the observation point. While it
might be expected that this region would not have any particles, it is often observed that this
region contains an enhancement in the distribution function. This indicates that the steady-state
assumption on which this picture is based must break down.

A few features of these particle distributions should be made. First of all, it should be
remembered that we assumed an upward parallel electric field. If the parallel electric field is in
fact downward, then the roles of ions and electrons are exchanged, and Figure 1 would apply to
electrons and Figure 2 to ions. Another important point to make regards the evolution of these
features with altitude. As an electron beam moves down the field line, the loss cone angle o
increases. This would imply that a downgoing electron beam would spread out in pitch angle
becoming more isotropic as it moves down the field line. Conversely, an upward going beam of
ions (or electrons) will become more field aligned as it moves up the field line. Observations
indicate that this is indeed the case. The primary downgoing electron beam, made up of
magnetospheric electrons with a reasonably large perpendicular energy, spreads out in pitch
angle at lower altitudes.

However, not all features of the auroral distribution can be simply described by this
steady-state picture. One of the first non-adiabatic features observed in the auroral zone were the
so-called ion conic distributions, which were first identified from S3-3 data by Sharp et al.
(1977). Ion conics are distributions of ions of up to 20 keV energy whose distribution looks like
a cone in velocity space with its symmetry axis along the upward v, axis. Ion conics are thought
to be formed by the perpendicular heating of ions, presumably at the ion cyclotron frequency or
its harmonics. These distributions are often observed to have a peak at an oblique angle,
suggesting that their perpendicular heating is followed by acceleration up the field line due to the
magnetic mirror force. Many wave modes have been suggested for this heating process (see,
e.g., Lysak, 1986), which will be discussed in detail below. Upward going “electron conics”
have also been observed (Menietti et al., 1985; Eliasson et al., 1996). Although superficially
similar to the ion conics, the electron conics appear to be enhancements in the electron
distribution that exist at the edge of the loss cone boundary. In addition, downgoing beams of
electrons with very small pitch angles have been seen from sounding rockets (Johnstone and
Winningham, 1982; McFadden et al., 1986) and more recently from the FAST satellite. The fact
that these beams do not spread in pitch angle is evidence that they are formed from the parallel
acceleration of cold beams of electrons. Such a particle distribution can not be easily formed
from the purely static picture described here.

2. Generalized Ohm’s Law and Anomalous Resistivity

The discussion in the previous session assumed that there was a field-aligned potential
drop present on auroral field lines, and so the next task is to determine the physics behind the
development of parallel electric fields in this region of space. This is an interesting question
since according to the ideal, collisionless Ohm’s Law, E+ vxB/c =0, which implies that the
parallel electric field should be zero. Physically, this condition holds in a collisionless plasma
since the light, essentially massless electrons are assumed to be able to short out any parallel
electric fields by their rapid motion along the field line. As we saw in the first quarter of the



course, the Ohm’s Law cited above is valid only as an approximation of the full “generalized”
Ohm’s Law, which is a consequence of the two-fluid picture of a plasma with only the
assumption of a small mass ratio. This generalized Ohm’s Law takes the form:

E+ vxB m |:g+v.(jv+vj_£j:]+_l_ij——]—V~f’e (7
ne
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ne’ | ot nec ne
(equation 3.33 from first quarter). If we take the parallel component of this equation by doing a
dot product with a unit vector in the direction of the magnetic field, it can be written as:

E = +—5—-—(V-P, ®
ne” dt  ne
Here the total time derivative is meant to include all of the terms inside the bracket of equation
(7). Thus, three effects can give rise to parallel electric fields in a two-fluid description of a
plasma: resistivity, electron inertia, or electron pressure, corresponding respectively to the three
terms on the RHS of equation (8).

In a collisionless plasma such as the auroral zone, particle-particle collisions do not give
a significant resistivity, and so the first term is small unless wave-particle effects can give rise to
an “anomalous resistivity.” The other two terms can produce parallel electric fields in time-
varying and nonuniform plasmas.

The most discussed candidate for anomalous resistivity has been the electrostatic ion
cyclotron (EIC) wave, discussed by Kindel and Kennel (1971). These authors showed that the
critical drift for the (EIC) instability was below that of the ion acoustic instability when the
electron and ion temperatures were comparable. As we showed then, the critical drift for the EIC
instability is vy / a;= 165 for T, =T,

It is worth emphasizing that, despite being called a “current-driven” instability, this
instability, as well as the ion acoustic instability, is really driven by the relative drift between
electrons and ions. This relative drift is given by vy = ji / ne, and in general, both j, and n will
vary along the field line. Consider a magnetic flux tube in which a field-aligned current flows.
In general, in the collisionless magnetosphere, the steady-state perpendicular conductivity is
zero, i.e., perpendicular currents cannot flow, aside from the effects of diamagnetic drifts or
magnetic gradient-curvature drifts, both of which require the existence of hot plasma. Of course,
perpendicular currents can also flow in the collisional ionosphere. In the topside ionosphere,
however, collisions are unimportant, the plasma is relatively cold, and the curvature of the
magnetic field is not strong, and so in the steady state, we expect all the current to flow along the
magnetic field. (In a time-dependent situation, polarization currents which are proportional to
the time derivative of the perpendicular electric field can also flow, which gives rise to Alfvén
waves, which will be discussed shortly.)

If there are no perpendicular currents, current continuity demands that the total parallel
current must be conserved. The current density, however, will change since the cross-section of
the flux tube changes in a dipole field. Thus, if /, represents the total parallel current and A is the
cross section of the flux tube, the current density is jy = Iy / A. The cross section of the flux tube

is defined by the requirement that the magnetic flux is constant, i.e.,@szB-dAzBA.

m, dj” 1 ( .—-e)“

Therefore, the current density can be written as j, =(I,/®;)B, and the drift velocity scales
asv, < B/n.

The implications of this scaling to the auroral zone were considered by Lysak and
Hudson (1979). Using data from the S3-3 satellite (Mozer et al., 1979), in which the density



profile in the auroral zone was measured using the lower hybrid resonance frequency, we
modeled the density by a function of the form:

n (cm"3 ) =1.34x10"[h(km)] "> 9)

where h is the altitude in kilometers. Using this profile, we found that the drift velocity for a
given amount of current has a broad maximum at altitudes of 5000-8000 km. The drift velocity
decreases at tow altitudes due to the enhancement of the density as the ionosphere is approached,
and it also decreases at high altitudes since the plasma densit?/ on auroral field lines becomes
nearly constant while the magnetic field falls off roughly as ™~ due to the dipolar nature of the
field.

[t is worth noting that most theories of anomalous resistivity in the auroral zone are
controversial, and no such theory has gained widespread acceptance in the auroral community.
Thus, it is not clear what role if any that wave-particle interactions play in the formation of
parallel electric fields. Nevertheless, the scaling of the drift velocity of the current as discussed
above is relevant, as a number of other models for parallel electric fields are enhanced when the
drift velocity is high.

3. Magnetic mirror effects on parallel electric fields

Of course, the fluid description of plasmas is an approximation to the kinetic theory of
plasmas, and one might ask if the kinetic description can lead to parallel electric fields. A
starting point for such a discussion is the electron and ion velocity space distributions discussed
above. First of all, let us neglect any ion contribution to the field-aligned current density
(observationally, the ion current is less than 10% of the electron current). Concentrating on the
electrons, let us consider the upward current region where the parallel electric field is upward
and the main electron motion is downward. If we assume that the magnetospheric source
contains a bi-Maxwellian population (i.e., possibly different temperatures parallel and
perpendicular to the magnetic field), then one can calculate the total flux of electrons that hit the
ionosphere. The mirroring or trapped electrons do not contribute to the field-aligned current,
since only electrons that move down the field line and do not go back up give a net current.
Thus, the field-aligned current can be calculated by looking at the flux of electrons in the loss
cone. Note that since the width of the loss cone increases as a function of the potential drop, the
amount of current should also be a function of the potential. This procedure was first carried out
by Knight (1973), and was discussed extensively by Fridman and Lemaire (1980). They found
that the field-aligned current could be written as:

T B exp(—xeA® /T,
ji=—ne B P( u) (10)
2mm, B, 1+x

where n,, B;,, Ty and T, are the density, magnetic field, and parallel and perpendicular
temperatures in the source, B; is the magnetic field at the ionosphere, A® is the potential drop
and the quantity x=(T,/T )/(B,/B,—-1). The factors outside the brackets simply give the
thermal current along the field line in the source, multiplied by the magnetic field ratio that takes
into account the fact that the current flows along a flux tube that becomes smaller as the
magnetic field becomes larger. The factor in the brackets gives the fraction of the downgoing
electrons that are in the loss cone. Note that this factor becomes one when the potential drop is



very large, indicating that all downgoing electrons are lost into the ionosphere.
If we note that B, > B, if the source is far out in the magnetosphere, the quantity x is

generally much less than one. If we have xeA® /T, <« 1, we can expand the exponential to first
order in the potential drop, which gives:

jmone | B _x | eAD (11)
"\ 2mm, B, 1+x T,

IfeAD /T, > 1, equation (11) can be written as a linear current-voltage relation j; = ~-K A®,

where the coefficient K has the form:
K= ne’ T,

T, (1-B,/B,)\ 2nm,
If we consider currents flowing on auroral field lines, typical numbers would give T, ~ T, ~ 100
eV and B,/ B, ~ 1000, then x ~ 10™. For these parameters, the linear current-voltage relation is
valid for potential drops between 100 eV and 100 keV, which encompasses a great deal of the
region of interest for auroral particles. Thus, this linear current-voltage relation is often used in
auroral ionosphere. For these parameters and a density of 1 cm? , the constant K ~ 10 mho/m>.
Note that this value gives a current of 1 pA/m” for a voltage drop of 1 kV.

On the other hand, some authors have taken this relationship, sometimes referred to as the
Knight relation, to describe the cause of parallel electric fields in the auroral zone. This view is
mistaken (in the opinion of the author of these notes), since equation (10) only describes the
response of the auroral particles to an imposed potential drop. To describe the causes of parallel
electric fields in a model such as this requires additional information; in particular, one must
ensure that the parallel electric field is consistent with Poisson’s equation or, more simply, a
quasi-neutrality condition. An early model of this type was introduced by Alfvén and
Falthammar (1963), who considered a simple model consisting of monoenergetic population of
electrons and ions that had both parallel and perpendicular energies. Their idea was that if the
electrons and ions had different pitch angles, they would mirror at different altitudes producing a
charge imbalance. This leads to a parallel electric field being set up that would adjust the
electron and ion distributions so that quasi-neutrality was maintained at all locations along the
field line. They found a parallel electric field given by:
WiuWe_L _WeIIu/i_L ﬂg_
eB, (Wm +Well|) ds

where the W terms are the electron and ion energies parallel and perpendicular to the field in the
source region, and s is the distance along the field line. Note that the parallel electric field goes
to zero if the electrons and ions have the same pitch angle, i.e,W, /W, =W, /W, . An upward

(12)

E =~ (13)

parallel electric field is produced if the electrons are more perpendicular than the ions, and vice
versa.

This model faces the difficulty that it must be very tightly tuned in order to give
reasonable potential drops.  Integrating (13) along the field line gives a potential
drop A® = (8W /e)(B, / B, —1), where 6W represents the energy factors in (13). SinceB, » B,,
the energy factor 8W must only be a few eV despite the fact that the individual energy terms

should be the order of 1 keV. Thus, this model would require a high degree of fine tuning to
consistently produce potential drops in the 1-10 kV range that is observed. Of course, the model



is highly idealized: in practice, there is a range of energies in the electron and ion distributions,
and in addition, quasi-neutrality can be maintained by the addition of ionospheric particles. A
numerical model that contained more realistic populations was developed by Chiu and Schulz
(1978) and Chiu and Cornwall (1980). These studies differ in that the former assumed quasi-
neutrality while the latter solved the full Poisson equation. These authors iterated the particle
populations and the parallel potential drop in an attempt to converge toward a solution. They
found parallel electric field distributions that, in agreement with equation (13), scaled with the
magnetic field gradient, but had a more reasonable value of the total potential drop. A difficulty
with this model is that they needed to assume a rather high lower boundary condition (2000 km),
below which the plasma was assumed to become collisional. This was a bit troublesome since
the maximum parallel electric field then occurred right above the lower boundary where the
magnetic field gradient is the strongest. Perhaps most importantly, this model was intrinsically
steady state and difficult to generalize to a time-dependent situation. Thus, while models of this
sort might account for the structure of a steady aurora arc, they fail in time-dependent situations
such as active auroral forms. It is important to note, however, that the Knight relation (10) is not
affected by the drawbacks in this theory, and should apply to adiabatically moving particles in
any potential gradient.

A more sophisticated model of this sort has recently been presented by Ergun et al.
(2000). In this model, they included 8 different particle populations: Ionosphere hydrogen and
oxygen ions, magnetospheric hydrogen, cold ionospheric electrons, primary magnetospheric
electrons, backscattered primary electrons, secondary electrons (ionospheric electrons that are
energized by collisions with the primaries), and electrons in the trapped region (cf. Figure 2).
They found that one or two strong “transition layers” containing large parallel potential drops
occurred in localized regions along the auroral field line. Such regions may be described by the
BGK double layer theory discussed in the next section.

3. Plasma double layers.

The so-called plasma double layer is an example of a nonlinear wave that can be treated
by the BGK theory, in which electrostatic nonlinear wave structures are formed self-consistently
with the particle populations that provide the charge density that supports the wave. The plasma
double layer is a stationary potential structure consisting of a potential step. These structures
have been extensively studied since such a potential step would be an efficient accelerator of
particles. It is thought by some that such a structure, or perhaps a series of such structures, may
be responsible for the particle acceleration in the auroral zone. The name is due to the fact that
such a potential structure can be maintained by two layers of charge, one positive and one
negative. This can be seen from this figure by noting that the charge is the second derivative of
the potential, and thus the upward curving part of the potential for x<0 is associated with a
negative charge layer and the region of downward curvature for x>0 corresponds to a positive
charge layer. The full phase space structure for both electrons and ions is shown in Figure 3.
Note that the electron potential energy takes a downward step with increasing x, and so the
electron phase space is a mirror reflection of the ion phase space diagram.

We may determine the qualitative form of the Sagdeev potential for this problem from
noting the potential step structure. The Sagdeev potential must have maxima both at the origin
and at the point® = ®,, where ®; is the amplitude of the double layer, as is shown in Figure 3.

If we note that the Sagdeev potential is related to the double layer by the relation:



AU : q)”z_d_U=_£_ (14)
d® g,
we can see that the Sagdeev potential is given by:
o 1S on o
—_— U (®)=—[p(®")d® (15)
q)o 80 0

Then we can note a few properties of this solution.
First of all, since the Sagdeev potential is zero at ®=0
and ®=®,, we note that the total charge in the system

Fig. 3. Sketch of the Sagdeev must \{ani§h. In addition, the deri\./ative of the Sagdeev
potential is O at these two end points, thus, the charge
density is zero at the boundaries. Finally, the second
derivative of the Sagdeev potential is negative at both boundaries, which implies that the first
derivative of the charge density is negative. Thus, as stated previously, the charge density must
be negative near ®=0 and positive as ® approaches ®y.
Thus, let us see what types of particle populations we would need to have to support such
a double layer. Since the importance of these double layers is to accelerate particles, it would
seem that a minimal set of populations would be a cold ion beam entering from the right hand
side of Figure 7.8, and a cold electron beam entering from the left hand side. Let us see if these
two populations are sufficient to support the double layer. First, consider an ion beam with has a
density n,0 and a velocity up at x = +oo where the potential is @p. At any other position x energy
conservation gives:

potential for a double layer.

%Muf+e®=%Mu,f,+e®,, (16)

where u; and @ are the values at the point x. Using this relation and the continuity equation, the
ion density is given by:
— ni(iuil) —_ n;

i)
_ (17)
u, \/]+26 (@, —- D)/ Muj,

For the electrons, we can let define the density n,0 and u. at x=—o where®=®,. Then the

;=

electron energy equation is:
1 1
Emuf —ed =5mue20 (18)

and the density will be:
n

= e() (19)
U, 14 2eD ) midl,

As noted above, the charge density must be zero, i.e., the electron and ion densities must be
equal, at the boundaries where ® =0 and® =®,,. These two conditions require:

- ne()uei) —

,

My

My (20)
J1+2e®,/ Mu;,
and: Mo 1)

Ry = B e
V1+2e®, / mul,

It can be easily seen that these two conditions are incompatible with each other. Physically, this
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results from the fact that an accelerated beam decreases in density, and so the ion density is
smaller on the left while the electron density is smaller on the right.

Thus, in order to support this solution, we need to add electrons on the right and ions on
the left, which can be done by adding a reflected population of ions and electrons. If we assume
that these reflected populations are described by a Boltzmann factor, the total densities of the two
species can be written as:

s ~e®/T;

+n.e " (22)
\/1 +2¢(®, -®)/ Mu}

n
and n, -_______eo__,_n

J1+2e®/ mu’,

where n; is the trapped ion density at ® =0 and n,, is the trapped electron density at® =®,.

We now clearly have enough parameters to insure quasi-neutrality at the two boundaries.
Let us now calculate the contributions to the Sagdeev potential for each of these for
populations by using (15). The ion beam contribution is given by:

e(O—D)/T,

€ ‘ (23)

n.e

U” = Jhio~
()= & J\/1+2e(<1>0 D)/ Mic)

(24)
B anu [ 1200, [ 2e(@, Z—cp)}
and the electron beam contribution can be evaluated similarly:
2
u,, (q>)=—”f'“’"”f“[ 1422 (25)
0 mity,
The trapped ion population contribution is:
]
U, (@)= [ de’
S 3 (26)
_ IINY: (1 _e..(,q)/ri )
80
and the trapped electrons give:
_ NI wo-oyn _ eoyr,
U.(®)= ¢ ~e 27)

8l)
Putting all of these together gives:

2¢(®, - D
U (‘I>)=i n,Mu, 1+26—(D2"— 4—— (P . ) —ngmul,| 1+ 26? -1
8() Mu,'(; MLII-” (28)
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Note that U(0) is equal to zero by construction; therefore, the quasi-neutrality condition at
® =P, is equivalent to sayingU(®,) =0. This condition can be written:
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2 2eD )
0=U(®,)= gi[”mM”i.o |: 1+ “e“go‘ - 1j| =Ml [ 1+ ZeCIZO -1 J

0 Mum mu,, 29)

(i

T (1= ), T (1= )]

It would clearly be difficult to make much sense out of the condition (29) in the general case, so
we will restrict this discussion to the strong double layer limit, which states that the potential
energy change across the double layer is much larger than any other energy in the system,

ie.,e®, > Mu,, mu, T, T, . Then, the quasi-neutrality condition gives:

1
U (q)o ) = E“ [”‘io“m\] 2Me®D, —n,yu o\ 2me®, +n,T — ne/Te] =0 (30)
0

This condition can be rewritten:

’M ntT —nT M

_— it i et e

ne()ue() - n’i()ui(i + 2 (D - n’i()ui() (3 1)
m ,/ me®,, m

where the last inequality follows from the strong double layer limit. This equation is known as
the Langmuir condition, and it states that the electron flux is much greater than the ion flux
through the double layer, or equivalently that the electrons carry most of the current through the
double layer.

It is somewhat curious that although we cannot make a double layer without the trapped
particles, information about the trapped particles disappears from the Langmuir condition in the
strong double layer limit. Nevertheless, the trapped particles are essential to the structure.
(Actually it can be shown that only one of the trapped populations is necessary.) We do,
however, have an additional condition to fill, namely that the Sagdeev potential be a local
maximum at @ =0 and at @y. The second derivative of (28) yields:

2 . 2e (D _¢ -3/2 =312
U”@D)=f~['“g[l+ (@, )] +le 14292
} 0

2 2
€, | Mu Mu, mu, mu,

it
(32)
_ﬁe—eo/r,. —ﬁ”—e‘)@_q}”)/r‘}

T

1 4
It can be seen that the beam terms in this expression give only positive contributions to the
second derivative; thus, the trapped particles are essential to make the second derivative negative
at the boundaries. Evaluating (32) at ® =@, and applying the strong double layer

approximation gives:

‘e_%U”((Do)z niU7 + ne(lue()\/z _Egt_< 0 (33)
e Mu,,  (2e@,)" T,
Applying the Langmuir condition n,‘,(,ue(,\/z =n,u,,NM , we can write this condition as:
3/2
, 1{ Mu,
nmz 14— Uiy < Eci (34)
Mu, 2{ e®, T,

Finally, we may note that quasi-neutrality at @ =@ requires that:
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2
m Mu;
Py = Mo — Neglheq o ’ 2e® =n,| 1 "\, > cI:) =y (35)
Dy €Dy,

Thus, combining (34) and (35), and ignoring terms of orderMu;, /2e®, , we find a simple
condition, known as the Bohm criterion:

e} T,
iy > (36)

This condition implies that the ion beam must flow into the double layer at a speed exceeding the
ion acoustic speed. Recalling that the ion velocity is essentially the center-of-mass velocity for
the system, this condition can also be interpreted to say that the double layer propagates through
the plasma with a speed greater than the ion acoustic speed. It should be noted that similar

considerations at ® =0 lead to the conditionu’, >T,/m. If the initial beam densities for the

electrons and ions are equal and the temperatures of the trapped particles are as well, these two
conditions are equivalent.

The above considerations are an example of how the BGK theory can be used in
conjunction with physically reasonable assumptions to establish conditions for the existence of a
nonlinear wave in a plasma. As a practical matter, this type of calculation is restricted to one-
dimensional, unmagnetized situations, yet it is still of some use in describing these nonlinear
waves. The physics that is missing in such calculations is any information on the evolution of
these nonlinear structures, in particular, the mechanism by which such a quasi-steady wave may
be established in the first place. Such structures may arise from a turbulent situation by some
sort of self-organization process, but the description of the details of this evolution is still an
open question. We will discuss some aspects of the nonlinear evolution of waves in the next
chapter, but it should be emphasized that many aspects of this question remain unanswered.

4. The thickness of auroral arcs: the role of the ionosphere

Perhaps the most striking feature of observed auroral arcs is their narrow width in one
direction perpendicular to the magnetic field. By making observations in the magnetic zenith,
where projection effects do not obscure the true thickness of the observed aurora, Maggs and
Davis (1968) showed that individual auroral arcs could have thicknesses down to 100 m. These
observations were repeated and confirmed by Borovsky and Suszcynsky (1993). More recently,
arcs at an even narrower scale size were reported at the IAGA meeting in Uppsala (1997) by T.
S. Trondsen. These narrow scale sizes are in contrast with early observations of auroral particles
that indicated that electron precipitation structures in the auroral zone had a thickness of a few to
a few tens of kilometers (e.g., Arnoldy, 1977; Evans et al., 1977). Borovsky (1993a) has pointed
out that no theory of auroral arcs has yet produced a satisfactory picture of such a wide range of
scales. Thus, it is a major challenge to auroral theory to account for auroral arcs on scales of tens
of meters to tens of kilometers.

The simplest model of auroral arc scales comes from the electrostatic theory including
the Knight relation (11) in its linearized form, j, =—K(®, —®,), where we explicitly write out

the ionospheric and source potentials. Note that in this relation, upward field-aligned current is
negative, since in the northern hemisphere the magnetic field direction is downward. In order to
derive a scale size from this relationship, we need to consider the closure of this field-aligned
current in the ionosphere. The field-aligned current closes in the ionosphere by means of
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perpendicular currents that flow due to the finite Hall and Pedersen conductivities. The Ohm’s
Law for perpendicular currents can be written in the form:

. Gp Oy
= ‘E 37
Jo (GH s, ) L (37)
where the Pedersen and Hall conductivities are given by (e.g., Kelley, 1989):
2 2
ng. Vv, ng.
o, = sy . S - G, =— sds . B ~ 38
i Z‘ m, v +Q # Z m, v:+Q> (38)

where v, is the collision frequency of species s and the gyrofrequency £, contains the sign of the
charge (i.e., is negative for electrons). Physically, the Pedersen conductivity occurs when the ion
collision frequency is approximately equal to the gyrofrequency, allowing the ions to move in
the direction of the applied electric field, while the Hall conductivity is greatest when the ions
are strongly tied to the neutral atmosphere by collisions while the electrons are free to execute an
ExB drift. Note that we can also write (37) in the vector form:

j.=0:E —c,E xb (39)
where b is the unit vector in the magnetic field direction.

Current continuity and the absence of any charge build-up in the ionosphere indicate that
the total current must be divergence-free, i.e.,V-j=0. If we assume for a moment that the

magnetic field lines are exactly vertical, and that the z direction points vertically downward, then
the current continuity condition can be written as:
%
Vydi=- (40)
0z

Now we can take advantage of the fact that the ionosphere can be considered to be a thin slab,
since the current carrying region of the ionosphere has a scale of about 150 km. We can then
integrate equation (40) over the height of the ionosphere, yielding:

VL . IJ_ - (jlfrmom - jltl‘()p ) — j|:0p (41)
where fop and bottom refer to the field-aligned current through the top and bottom surfaces of the
ionosphere, and I, = sz J, is the perpendicular current integrated over the ionosphere. The

last step in (41) follows by the assumption that no current flows out the bottom of the ionosphere
into the atmosphere. '
Note that if the magnetic field is not strictly vertical, the current entering the ionosphere

is reduced by the sine of the inclination angle, and so (132) should be written asV, -1, = j, sini,

where i is the inclination angle (90° for a vertical field). For a dipole field, the magnetic field
can be written as:

B = BoFE (330504 sind
===5 (r cosB+0sin ) (42)

where 0 is the co-latitude. Thus, the inclination angle is given bytani =B, /B, =2cot8. The

auroral zone is roughly at an latitude of 70°, or a co-latitude of 20°. Thus, the inclination angle
is about 80° whose sine is 0.983. Thus, neglecting the inclination angle is a reasonably good
approximation (to within 2%) in the auroral zone, and we will make this approximation in what
follows. '

The height-integrated current in equation (41) can be written in terms of a height-
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integrated conductivity tensor,i:sz 6. Inserting these quantities into equation (39) and

additionally assuming that the electric field in the ionosphere is electrostatic, E, =—V @, . Then
we can write equation (41) as:

j[: = —ZPV:i(DI _V_LEP 'VJ_(DI +(VLZH XVJ.(I)I )f’ (43)
Note that if the conductivities are uniform, only the first term on the RHS of (43) survives. In

this case, we can use (43) together with the Knight relation to eliminate the field-aligned current,
and write:

LVi®, =K(Q -2,) (44)

x
or: [ ——Kivi )(I), =, (45)
Equation (45) then gives the ionospheric potential in response to an imposed potential in the
source region. It is important to note that this equation contains a new scale

length A, =/Z,/ K , which is sometimes termed the magnetosphere-ionosphere coupling scale

length. For typical values of Zp = 10 mho and K = 10 mho/m?, this scale length is 100 km.
The physical significance behind this expression can be seen if we Fourier analyze the
fields in the perpendicular direction. Then the ionospheric potential becomes:
P

@ =t (46)
1+k*A2,
and the parallel potential drop can be written as:
242
AD=0,-® =-], k—7;"4’2— (47)
1+k*A;,

Thus, the parallel potential drop is small for large-scale structures kA,, < 1, and can approach

the full value of the source potential for small structures. Therefore Ay, represents a maximum
scale size for auroral potential drops. Note also that because of the minus sign in (47), a negative
potential in the source is necessary for a positive potential drop, i.e., one that leads to an upward
parallel electric field and field-aligned current. Thus, the field-aligned current can be roughly
considered to be the response of the plasma to a negative space charge in the outer
magnetosphere that repels electrons down the field line to create the upward field-aligned
current.

Note that the MI coupling scale length is quite large and so cannot explain the scale size
of individual auroral arcs. It does, however, give an indication of the largest potential structures
that could be formed, and indeed, auroral structures are rarely seen on scales greater than 100
km. Further investigations of the implications of this type of model can be found in Lyons
(1980) and Lysak (1985).

B. Time-dependent magnetosphere-ionosphere coupling: kinetic Alfvén waves

The considerations discussed previously have all been based on a steady-state picture of
magnetosphere-ionosphere coupling. While steady auroral arcs are commonly observed, it is
perhaps more typical for the aurora to be very dynamic, constantly moving and changing in
brightness. Thus, it seems clear that a time-dependent model of auroral currents should be
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considered. Since the changes in the aurora should be associated with changes in the field-
aligned current, the dynamics of such current changes is important. Within the context of MHD
theory, the wave that carries field-aligned current is the intermediate or shear Alfvén wave. As it
turns out, when the perpendicular wavelength of these Alfvén waves becomes small, the ideal
MHD description of the plasma breaks down. This breakdown can be described in terms of the
generalized Ohm’s Law, equation (7), or more fundamentally, in terms of kinetic theory. In this
section, we will first consider the fluid description of shear Alfvén waves, both from an ideal
MHD point of view and from a two-fluid model. We will then discuss the fully kinetic
dispersion relation.

1. Ideal MHD model of shear Alfvén waves and their reflection from the ionosphere

Of the three MHD wave modes, only the shear Alfvén wave carries a field-aligned
current. This wave is magnetically incompressible, meaning that the wave changes the direction
but not the magnitude of the magnetic field strength. Thus, the simplest model for this wave
involves the ideal, incompressible MHD equations. If we assume that the background magnetic
field By is directed along the z direction, these equations can be written in terms of the velocity
perturbation v and the magnetic perturbation, which we will denote by a lower case vector b.
Then the relevant linearized equations become:

v jxB, 1

—==""L=—B, Vb 48
ot ¢ ar ° , (48)
ob

§=Vx(vao)=B0~Vv (49)

Note that these equations have been simplified by assuming that the background magnetic field
is uniform, and by making the incompressible assumptions that B,-b=0 andV-v=0. Fourier

transforming these equations in the usual manner leads to the dispersion relation w=k,V, where
the Alfvén speed is defined byV, =B,/ ~/4np . Note as well that the velocity and magnetic field

perturbations are related in a similar manner as v=Fb/./4mp , where the top sign (negative)

applies for propagation parallel and the bottom sign (positive) for propagation anti-parallel to By,
To look at the wave properties, note first that the electric field is given by the ideal
Ohm’s Law:

VB _y BBy _ 4 Vapyys (50)
c c\/41tp c

Thus, it can be seen that the ratio of the electric field to the magnetic perturbation is just V4 / ¢,

and that the electric field is perpendicular to the magnetic field perturbation. Note also that the

perpendicular current can be calculated from Ampere’s Law:

E =-

c c 0
j, =-—Vxb=——(ixb 51
L 47 3z (2xb) G
Assuming the magnetic field is then uniform, we can write a relation between the current and the

electric field:

__ ¢’ OE,
-7 4nV, oz
The coefficient in this expression can be written in terms of an effective conductance knows as

i (52)
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the Alfvén conductance,Z, =c*/4nV,.
If we then consider the parallel component of the current, Ampere’s Law implies that:

c (ob, 8bxj

. C
J,,:Z;(be = =~ (53)

4\ ox 9y
Note that unlike any of the wave properties listed before, the field-aligned current depends on the
perpendicular wavelength of the wave. Thus, in the limit of infinite perpendicular wavelength,
there is no field-aligned current; however, in any real system, there must be a finite size to the
wave in the perpendicular direction, and so the field-aligned current is non-zero.

Let us consider what happens when the Alfvén wave is incident on the ionosphere. If the
conductivity is uniform, then the field-aligned current is related to the perpendicular electric field
in the ionosphere by equation (43), which can be written in this case as:

i=ZpV,E, (54)
Using equation (50), we can writeb =x(c/V,)ZxE , and inserting this into (53), we can write
the field-aligned current in the wave as:

c2

-
M=y,

Now, consider the northern hemisphere situation where the background magnetic field is into the
ionosphere. Then, the incident (downgoing) Alfvén wave will have the plus sign in (55), while
the reflected (upgoing) wave will have the minus sign. Writing both sides of (54) in terms of a
sum of the two waves, we have:

iR =2V, (Bl -EY )=1,V,-(E' +EV) (56)

which can be written as:

V, x(2xE,)=+%,V ‘E, (55)

V. [(Z4-Zp)El - (2, +2,)EY |=0 (57)

Assuming a localized wave with fields that go to zero at some boundary, we can integrate (57)
and write it in terms of a reflection coefficient for the electric field:
R= ipr iy
E" Z,+Z,
This reflection coefficient was first derived by Scholer (1970) and was extensively used by
Mallinckrodt and Carlson (1978) in their modeling of Alfvén wave interactions with the
ionosphere.

Equation (58) is rich in consequences. First of all, it can be seen that the reflection is not
present if the Pedersen and Alfvén conductivities are equal. This has a direct analogy with the
termination of a transmission line by a resistor: if the impedances match, there is no reflection.
In general, however, these conductivities are not matched. The most typical case is that the
Pedersen conductivity, which is generally 1-10 mho in the ionosphere, is larger than the Alfvén
conductivity, which is usually less than 0.5 mho (Lysak and Hudson, 1987; Lysak, 1990). It is
easy to see that in this case, the reflection coefficient is negative, implying that the electric field
in the reflected wave is in the opposite direction as the electric field in the incident wave. Thus if
these two waves are superimposed, the net effect is to reduce the electric field strength. Indeed,
in the extreme limit of infinite ionospheric conductivity (X, > X, ), the reflection coefficient is

-1 and the reflected electric field cancels the incident field. In this case the ionosphere can be
said to short out the perpendicular electric field.

(58)
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On the other hand, the reflected wave magnetic field has a relative minus sign with
respect to the incident field, and so if the reflected electric field is in the opposite direction as the
incident field, i.e., R <0, the reflected magnetic field reinforces the incident wave magnetic field.
Thus the high conductivity ionosphere tends to enhance the perpendicular magnetic field and
thus the field-aligned current. Of course the opposite conclusions can be drawn in the case when
Xp < Z4 such as could happen at night or in the winter in the absence of any particle
precipitation, when the conductivity can be as low as 0.1 mho. This type of highly resisting
ionosphere tends to restrict the flow of current and enhance the electric field.

When there is a mismatch between the conductivities, it is difficult for an Alfvén wave to
quickly establish a steady-state current system. If one were to arbitrarily launch an Alfvén wave
trom the magnetosphere and allow it to propagate to the ionosphere, the wave would begin
bouncing back and forth. Suppose a fixed electric field were imposed at the magnetospheric end
of a flux tube in a generator region (Lysak and Dum, 1983). This electric field would propagate
to the ionosphere as an Alfvén wave, and reflection would occur according to the reflection
coefficient (58), reducing the electric field (assuming Zp > X4) and increasing the field-aligned
current. The reflected wave propagates back to the generator, in which the perpendicular electric
field is fixed, and another Alfvén wave is launched back toward the ionosphere. Each time the
wave interacts with the ionosphere, the net result is that the ionospheric electric field is increased
by a relative amount equal to 1 — IRI. Thus if R is very close to —1, a great number of bounces are
needed to impose an electric field on the ionosphere, while if R is nearly zero, fewer bounces are
required. A similar scenario is found if a fixed magnetic perturbation is imposed at the
generator, although in this case the electric field and field-aligned current overshoot their initial
values and approaches a steady state in an oscillatory manner (Lysak and Dum, 1983). A
detailed study of the differences between these voltage and current generators is found in Lysak
(1985).

The reflection of Alfvén waves is modified if a parallel electric field occurs along auroral
field lines. In this case, the ionospheric and magnetospheric potentials are related by the Knight
(1973) relation, which can be written in its linearized form as given by equation (11). Vogt and
Haerendel (1998) have described the reflection of Alfvén waves in this case. They find that the
reflection coefficient can be written in the same form as equation (58), but with a modified
conductivity given by

-2
T4k,
where we have included the M-I coupling scale length defined by equation (45). Since the
Pedersen conductivity is usually less than the Alfvén conductivity, the effect of this change is to
reduce the magnitude of the reflection coefficient. In fact, the reflection coefficient will go to
zero at a scale length

(59)

poE T 3,
A KZ,-Z, K
where the last approximate form holds for the usual case when X, >»2,. This scale size is

typically in the 10 km range. This scale length thus represents the point at which all of the
Alfvén wave energy is absorbed. It is worth noting that for smaller scale sizes, the Alfvén wave
is reflected from the acceleration region and does not even reach the ionosphere. Thus, narrow-
scale Alfvén waves are decoupled from ionospheric drag, and may lead to enhanced flow in the
outer magnetosphere. ‘

(60)
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2. Two-fluid model of shear Alfvén waves

When the perpendicular scale length of the Alfvén waves becomes too small, the ideal
MHD approximation breaks down and additional terms in the generalized Ohm’s Law must be
included. In this case, the momentum equation (48) remains the same, but Faraday’s Law must
be modified to include the effects of parallel electric fields. Thus, (49) becomes:

b (0
Ez_c(a—z(szL)wlen] ©1)

Let us consider the first term in this equation by using the ideal Ohm’s Law to write:
0 ov
ZzxE )=B,—(Zx(vxZ —+
( _L) a ( ( )) 0 az
in agreement with the orlgma] f01m of (49). The parallel electric field can be determined from
the generalized Ohm’s Law:

(62)

m, g, 1 dp,

E.= ne* 3t ne oz (63)
where we have assumed an isotropic electron pressure. Note that the perpendicular electric field
is not strongly affected by the non-ideal effects, since the vxB electric field is dominant. We
next must determine an equation for the electron pressure. In this model, the electron motion is
predominantly along the magnetic field (with the exception of the ExB drift, which doesn’t have
a divergence), and so, assuming isothermal electrons, the density change can be written as:

3n__ v, 19,

ot 9% eoz
Now we can write an equation for the time derivative of the parallel electric field:
E mo LY (©)
of ne” dt° ne” Iz
The curl of this equation will give:

(64)
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Let us now take the time derivatwe of (61), and use (62) and (66):
a°b d*v 0
—=B — V, xE
orr  ozor ar( 1) &
=v282—b+ Cz o 2 V- 9 v )
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Now we have an equation for only the magnetlc perturbation. If we Fourier analyze in the usual
manner, the dispersion relation can be written as:

2 _ 212 1+kip;

YA T

where we introduce the electron inertial length, A = ¢ / ., and the ion acoustic gyroradius,

(68)



19

=cA, 1V, =c, /Q,, where ¢; = w,; Ap is the sound speed (recall thatc/V, =® ,/Q.).
p‘\ D A s i (; A pi i

We may note a number of properties of this solution. First of all, it can be seen that there
could be two different polarizations of this wave that have identical dispersion relations since
(67) does not distinguish between perturbations in the x and y directions. The two-fluid effects
also change the relationship between the various quantities. The relation between the velocity
and magnetic field can be found from (48) and (68) to be:

B, k,,b 1+kA° A2 b

y=——0—

69
4mp 1+klp ,/41t (69
and similarly, the perpendicular electric field becomes:

242
E,L_+V_ 1+kA _bxi
1+kip?
This relationship between the electric and magnetic perturbations has been recently verified in
Freja data by Stasiewicz et al. (2000). Equation (63) gives the parallel electric field in terms of

the magnetic perturbation. Equation (70) can then be used to give the parallel electric field in
terms of the perpendicular field:

(70)

ckIA2
E,=— ok, xb——"2
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6‘2 1+ k2
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c 1+klpl 0 , 0
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Note that these expressions hold for both direction of propagation.

It may be noted that the first term in each of these expressions gives the electron inertial
effect, while the second term gives the effect of finite electron pressure. It is interesting to note
that the direction of the parallel electric field is different for these two cases. In the inertial limit,
the parallel electric field acts to accelerate the electrons in the direction required to carry the
field-aligned current, while it acts to retard the electrons in the warm plasma limit. It should be
asked which of these two effects is most important. From the dispersion relation (68), it can be
seen that the inertial effect is more important when A is large, while the pressure effect is
important when p, is large. The ratio between these two terms is:

p, cAplV, \/T/m
_: C/(D (72)

where in the last line we have defined the plasmaB=41tnT8/B§. Thus, in cold and strongly

magnetized plasmas, the electron inertial length is dominant, while in warm or more weakly
magnetized plasmas, the electron pressure is the most important effect. Lysak and Carlson
(1981) showed that on auroral field lines, the region below about 4-5 Rg is inertia dominated,
while above that altitude the pressure dominates. More recently, Lysak and Lotko (1996) have
considered the same question using a slightly different profile with a similar conclusion.
Physically, equation (72) shows that the pressure effect is dominant when the electron
thermal speed is greater than the Alfvén speed, i.e., when the Landau resonance of the Alfvén
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wave is well within the bulk of the electron distribution. Conversely, in the inertia dominated
regime the electron Landau resonance is far out on the tail of the distribution. From the
dispersion relation (68), it can be seen that the pressure effect increases the wave phase speed
while the inertia effect decreases it; thus, roughly speaking, it could be said that the electrons
accelerate the wave in the pressure regime and that electron inertia effects slow down the Alfvén
wave in the cold regime. It may be noted that in the inertial regime, the electrons act as a cold
fluid to the Alfvén wave and can be accelerated in bulk. It can be said that in this regime, the
Altvén wave carries a parallel electric field in order to accelerate the electrons up to the point
where they can carry the current required by the Alfvén wave.

3. Kinetic theory of the Alfvén wave

The fluid model described above does not take Landau damping into account, and does
not describe the dispersion relation accurately in the transition region between the two regimes.
Thus, we need to examine the full kinetic Alfvén wave dispersion relation, and to attempt to
evaluate the importance of the kinetic effects on the propagation of the wave. The following
derivation of the kinetic Alfvén wave dispersion relation is taken from a recent paper by Lysak
and Lotko (1996).

The starting point for any linear kinetic theory of electromagnetic waves in a plasma
begins with finding the determinant of the 3X3 matrix equation that arises from the coupled

Vlasov-Maxwell system. For low frequency (w<< Q.) waves in an isotropic plasma in which
kip? < 1 andkjp’ < 1, the solution to this equation yields the three MHD wave modes, which
in a low-B plasma can be written as the fast mode, @” =&’V +k}c?, the shear Alfvén mode,
w=k\V,, and the slow, or ion acoustic mode, = k,c,. When large perpendicular wave number
is assumed, the fast mode decouples from the others since ®,, >k,V, =k,p Q. (V,/c,), which

is greater than the ion gyrofrequency when k p, >c /V, =\/B- (Hasegawa and Uberoi, 1982).

The kinetic Alfvén wave is then the result of the coupling between the shear Alfvén mode and
the ion acoustic mode. Considering only the regime3 « 1, we find to first order that the ion
response is primarily perpendicular to the background magnetic field, while the electron
response is predominantly parallel. Then the dispersion relation for the kinetic Alfvén wave is
given by the determinant of the 2x2 matrix:

c? 1-T Y, 2 :
ger| 4 M =0 (73)
Iy (u,
mny koziz ) (1 + gZ (&))— ni
It ¥ De

In this dispersion relation, it has been assumed that ¢*/V; > 1 and thatk/A2, < 1, so that the

unit terms in the diagonal elements can be dropped. Herenm, =kc/®, n, =k, c/®, W, =k;p’,

w,=k2p?, E=w/ka,, anda, =/2T,/m, , Ty is the modified Bessel function (1) = e ™/, (L) ,

and Z is the usual plasma dispersion function (Fried and Conte, 1961). Definitions of other
symbols in equation (73) and a detailed derivation of this equation are given in Lysak and Lotko
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(1996).
The solution to this dispersion relation can be written as:
2 2.2
Y — p“i + k_l_px (74)
kY, 1-T,(n,) T, (b, )[1 +E8Z (&)]
Note that for small ion gyroradius, we have Ty (i, )= 1—p, +(3/4)u?, and so we have:
U, 1 3

~ =1+2p, 75
T, () 1-G/an, 4 (73

Also note that for hot electrons, £ < 1, and for small electron gyroradius, Ty (1, )=1; thus, the

denominator of the second term of equation (74) is approximately unity. Therefore, in the hot
electron and small ion gyroradius limits, we have:

2
W 2o 2.3 5
=1+ki| p;+—=p; 76
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This expression is in agreement with the warm plasma limit of equation (68), with the addition of
an additional term due to the ion gyroradius effect that was not included in the two-fluid picture.
For cold electrons, the electron gyroradius can again be ignored and we can

write 14£Z (£) = —1/28” = ~(kv,/ ®)*, where we definev’=T,/m,=a’/2. Thus, we can

write (74) as:
2 2
0 1 o 2.2
= L - kip;
[kIIVA ] 1-T (ui) [kuve j al

2
_ B | @ kicz
1-To (1) | kVa ")ie

2
0} n 1
= ' 78
(k,,VAj 1-T, () 1+kic? /o) 7

(77)

which becomes:

pe
This result reduces to the cold plasma limit of equation (68) when the ion gyroradius is taken to
be zero, in which case the first factor is 1. Thus, the hot and cold limits of the fluid dispersion
relation follow from equation (74).
The real part of the dispersion relation for the kinetic Alfvén wave has been plotted in
Figure 1 of Lysak and Lotko (1996) as contours of the parallel phase velocity w/kV, as a

function of the normalized perpendicular wave number k ¢/, and a parameter proportional to

the electron pressure v2/V; =Bm, /m,. Note that the value B=m,/m, denotes the boundary

between the kinetic and the inertial regimes. Figure la shows the results based on the fluid
theory given by equation (68) with zero ion temperature, while the other 3 panels of the Figure
show results from solutions of the full dispersion relation given by (74) for ion-to-electron
temperature ratios of 0, 1, and 10. It can be seen from these figures that the basic topology of the
fluid dispersion relation is preserved by the kinetic dispersion relation, with the boundary
between Kinetic and inertial type of dispersion occurring approximately at the point
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where v:j(] +3T,/4T) = VA2 . At this point, the numerator and denominator in the fluid dispersion
relation given by equation (68) are equal, and the phase velocity is exactly the Alfvén speed.
Note that the phase velocity increases more strongly with increased perpendicular wave number
for higher ion temperature.

Figure 2 of Lysak and Lotko (1996) shows the Landau damping rates, normalized to the
wave frequency, for the three kinetic cases considered (of course, the damping in the fluid model
is zero). It is interesting to note that there is not a strong enhancement in the Landau damping
rate atv, =V, , as might be expected, but rather the damping rate for a given k,c/®,, increases

monotonically with increasing electron temperature. For a given value ofT,/T,, the damping
rate is basically a function of k p, at lower electron temperature. For the higher electron
temperature regime, the damping rate becomes nearly independent of the electron temperature
and is just a function of k,¢/®,, until the electron gyroradius effect becomes important. It may
be noted that the damping rate is less than about 0.1 of the wave frequency whenever the wave
number satisfies both k,p <1 andk,c/®,, <1. The other clear point from these plots is that the

damping rate is suppressed by high ion temperatures, which may seern surprising at first glance.
This result is due to the ion effects on the dispersion, as can be seen by considering the
behavior of the parameter& = ®/k,a,. This parameter is the important parameter for the Landau

damping term, since for weak damping the damping rate will be proportional to §e'§z , a function
that maximizes at& =1/ J2=07. For7, =0, this maximum point does indeed occur forv? =V},
but for higher ion temperatures, the §=0.7 value is confined to regions in whichk c/ o, <l,

which are associated with small damping rates. Thus, the ion dispersion minimizes electron
Landau damping by moving the Landau resonance point into the tail of the electron distribution
when the perpendicular wave number is large.

In order to determine the polarization characteristics of the kinetic Alfvén wave, we
should consider the dispersion relation of (124) in more detail. Recall that this expression is
really the solution to the matrix equation:

2
e, —m mng | E,
) =0 (79)
mpy & -ng | E,
where the dielectric tensor elements are:
2
< l—ro(ui) 0(”6)
€ =VA2"‘T‘ & = Py [] &.Z({Z)] (30)
The wave polarization characteristics can be found from the first row of equation (79):
2
-€
E, _hTE _% 1)
E, my n, y
while the magnetic perturbation can be written using Faraday’s law
B, =nE, —n.E,=LE, (82)

|
Full numerical solutions of these expressions can be found in Lysak (1998). The field
ratios given by equation (82) has been used together with Polar data by Wygant et al. (2001) in
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order to estimate the perpendicular wavelength of strong Alfvénic fluctuations at the plasma
sheet boundary layer. These authors then used this perpendicular wavelength to estimate the
parallel potential of the wave by using equation (81). These results were consistent with the
energy of counterstreaming field-aligned electrons observed by the spacecraft. In addition, there
was an asymmetry in the electron distribution, with more electrons going in the direction of the
wave propagation. It has been suggested that this tail represents the Landau resonant tail of the
electron distribution.

To evaluate these expressions analytically, it is useful to note that the dispersion relation
(73) can be written in the form:
. & (3" - ”i)
ny = ———=

&

Let us consider this expression in the cold and hot electron limits. For cold electrons, we

haveg, = —’, /@’ . In this case, equation (83) can be evaluated to find:

pe

(83)

n =g, (1 +kIA? ) (84)
Inserting this expression into (81), we can write:
E Kk
£ _ A J_z _ (85)
E. 1+kA

Note that although this expression includes the full ion gyroradius effect, this does not enter into
the expression for the parallel electric field. It is also worth noting that for very short
perpendicular wavelength, k,A > 1, the wave becomes electrostatic, i.e., E,/E, =k, /k,. The

magnetic field ratio in this case becomes:
i _< (1-T )/,
E. V,\ 1+k°

RY

(86)

Note that since (1-T';)/p is a function that decreases from 1 to 0 with increasing [, both the ion
gyroradius and electron inertial effects decrease the magnetic field from the ideal MHD value.
In the hot electron limit, €, =1/k/A}, and the solution to the dispersion relation can be
written as:
, (v (I-Ty)/n,
ny = 5 (87)
I+kip; (1-T, )/ m,
In this case, inserting this expression into (81) yields:

E ,1-T
R X
£ 1Py

(88)
Note that this parallel electric field primarily depends on the electron pressure effect; in fact,
finite ion gyroradius reduces the parallel electric field. It is sometimes mistakenly stated that the
ion gyroradius effect causes the parallel electric field in kinetic Alfvén waves. It can be seen
from equations (85) and (88) that this is not the case, and that it is electron inertia and pressure
that give rise to the parallel electric field. In the warm plasma limit, the magnetic perturbation
satisfies:
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B, _ R
e e PRVt (89)
E. V. M,
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An interesting special case of this dispersion relation occurs in the regime
where3 << m, /m;, but with the ion gyroradius being large, so that p, > 1 applies. In this

situation, the function Ty (W, ) goes to zero. If we also assume thatk,c/ ®,, > 1, then equation
(78) reduces to:

2 2
2 2,2 kip; 2 T
o =k'V, 22/’3 =k, —
kic W, m,

(90)

Note that in this case, the dependence of the frequency on the perpendicular wave number goes
away, and so the wave propagates strictly parallel to the field. This wave is called an “electron
acoustic wave,” since its dispersion relation is like that of the ion acoustic wave, but with the
roles of electrons and ions reversed. This situation arises since for very short perpendicular
wavelength, the ions become demagnetized and act as an equilibrium Boltzmann population,
while the electrons are a cold fluid restricted to moving along the magnetic field. This wave is
strongly damped unless the ions are much hotter than the electrons, since for comparable
temperature this wave has a parallel phase velocity equal to the electron thermal speed. Such a
situation can arise in the auroral zone in when the ions have already been heated by wave-
particle interactions. Evidence for such waves has been seen on the Freja satellite at 1700 km
altitude in the auroral zone (Boehm et al., 1995; Seyler and Wahlund, 1996).

4. The ionospheric Alfvén resonator

We have already introduced the idea that the ionospheric conductivity can affect auroral
current systems, both in the electrostatic picture and in the reflection of Alfvén waves. By
assuming that the ionosphere is a uniform slab, we showed that only the height-integrated
Pedersen conductivity was significant. Now we would like to develop a more realistic model of
the ionosphere that can deal with the horizontal and vertical structure of the ionospheric
parameters. We will do this in three parts: first, we will consider the parallel inhomogeneities in
the Alfvén speed, which give rise to a resonant cavity sometimes referred to as the ionospheric
Alfvén resonator. Secondly, we will treat the time variations of the ionosphere as the result of
the electron precipitation that can change the ionospheric conductivity. Finally, we will take into
account the vertical structure of the ionospheric conductivity, relaxing the assumption that the
ionosphere is a height-integrated slab. This will allow a discussion of the propagation of Alfvén
waves through the ionosphere and atmosphere and down to the ground.

Our previous analyses of the reflection of Alfvén waves from the ionosphere assumed
that the Alfvén speed, and equivalently the Alfvén conductivity, was constant along the field
line. Except for the special case where the density scales as the square of the magnetic field, this
is not in general true, and there are Alfvén speed gradients. If these gradients are weak enough,
WKB theory may be used to follow the propagation of the Alfvén waves. This situation may
apply in the outer magnetosphere, but in the inner magnetosphere, the Alfvén speed gradient may
become steep enough so the WKB theory is not valid. In such a circumstance, the Alfvén wave
may be reflected by the gradient in the Alfvén speed.

To illustrate this reflection, consider the extreme case of a discontinuity in the Alfvén
speed. If the wave is incident from the side with Alfvén speed V41, and is transmitted to the side
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with speed Va», then an argument analogous to that for the ionospheric reflection yields:
R= & - Ty —Zay
Ein(' 2Al + 2’AZ
Thus, propagation into increasing Alfvén speed (decreasing Alfvén conductivity) leads to an
enhancement of the wave electric field and a decrease in the magnetic field, and vice versa. This
model has been used to calculate the propagation of Alfvén waves in inhomogeneous media by
Mallinckrodt and Carlson (1978).

In general, as noted above, a strong inhomogeneity in the Alfvén speed implies that we
cannot use the WKB approximation and that we need to solve the complete wave equation for
the wave fields. In the topside ionosphere, there is such a strong inhomogeneity due to the sharp
exponential decrease in the plasma density with increasing altitude above a few hundred
kilometers. This decrease takes place with a typical scale height of less than 1000 km. Since the
magnetic field varies only weakly on such spatial scales, the Alfvén speed increases
exponentially with a comparable scale height above the ionosphere. Above about 6000 km
altitude, the density decrease becomes more gradual, and the decrease in the magnetic field leads
to a slow decrease in the Alfvén speed.

In order to analyze the eigenmodes of this system, it is useful to use a formulation of the
Alfvén wave equations using scalar and vector potentials. The fundamental starting point of the
analysis is the Maxwell equations in a dielectric medium:

oD

%]%=-chE (92)
%(gn):mn (93)

It is useful here to introduce vector and scalar potentials in the usual way by B=VxA
andE=-V®-(1/c)dA/dt. If we restrict the analysis to transverse waves with 8B, = 0, where
OB. is the perturbation in the component of B parallel to the background field, we can describe
the magnetic perturbation totally by the z component of the vector potential. This implies that
the perpendicular electric field is described totally by the perpendicular gradient in the scalar
potential E; = -V ®. If we assume the ideal MHD case, so that the parallel electric field goes to
Zero, we can write:
0A. cacp
ot oz
The system must be closed by a gauge condition. The appropriate gauge condition for this case
is the macroscopic analogue of the Lorentz gauge:
d(e, P)
or
Note that we use the perpendicular component of the dielectric tensor since the scalar potential is

(94)

+cV-A=0 (95)

directly related to the perpendicular electric field. Inserting €, =¢*/V,; and noting that only the
parallel component of the vector potential is non-zero, equation (3) becomes:

00 VoA

P Wele 4 96

ot ¢ 0z ©0)
It is easily verified that the perpendicular gradient of equation (96) yields the electric field

equation (93).
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Equations (94) and (96) then represent a complete set of equations describing the shear
mode Alfvén wave. The inhomogeneity of the flux tube enters through the Alfvén speed in (96).
In order to simplify the problem to the point where we can find analytic solutions, we shall adopt
the simple profile (Greifinger and Greifinger, 1968; Trakhtengertz and Feldstein, 1984):

2

Vi) oy o)
where V,; is the Alfvén speed at the 1onospheuc altltude, h is the ionospheric scale height, and ¢
is a small parameter. Here it should be recognized that the coordinate z increases in the upward
direction, in contrast with our previous discussion in which z was in the direction of the magnetic
field. Note that at high altitudes, z>> A, the Alfvén speed simply becomes V4y, = Vy;/ €. Thus
the smallness of the parameter € represents the fact that the Alfvén speed in the magnetosphere is
much larger than that in the ionosphere. Note that while the density profile given by (97) does
not take into account the decrease of the Alfvén speed at high altitudes, it does give a reasonable
representation of the Alfvén speed profiles in the region above the ionosphere.

The system given by (94) and (96) with the Alfvén speed profile (97) can be analyzed
for its eigenmodes by Fourier transforming in time and in the perpendicular dimensions, leading
to the wave equation:

2
o q’+2—(a +&) D=0 (98)
a’ vy

This equation can be transformed by switching to the independent variable x = x e *'*"

’

where x, = 2hw/V,, . This transformation leads to the equation:
pd’® 4o
dx? dx

This equation can be recognized as being Bessel's equation; however, in the ordinary form of
Bessel's equation:

(¥ +x3¢7 )@ =0 (99)

2
,d :v dw (x2
(lx_

it can be seen that the square of the order enters with a minus sign. Thus, in this case, the Bessel
function solutions have an imaginary order, and the solutions to the wave equation take on the
form:

v )w=0 (100)

D=A",  (X)+AT (%) (101)

It can be shown (Lysak, 1991) that these two solutions correspond to the downgoing and upgoing
waves, respectively. This follows from considering the large z limit of the Bessel functions,
which corresponds to x < 1. In this limit:

(x/2)

= e (1)~ T(1ixg)

where I' is the gamma function (not the modified Bessel function as before). Writing this in
terms of the original variable z we find that
Ot e¢i(,\1,€/2h)z—iwt - e—im(fizl\/,w) (103)

tix,e

(102)

where we have inserted the time dependent phase factor e implied by our Fourier
transformation. Equation (11) shows that the two solutions are down and upgoing plane waves

at large altitudes.
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Determination of the eigenfrequencies for these waves requires the application of the
boundary condition at the ionosphere. Noting that the field-aligned current can be written as:

C C 2
. =—(VxB) =—-—V A 104
J./ 4TC( )z ar 1% ( )

If we now insert this into equation (1.36), noting that there is a sign change due to changing the
direction of the z coordinate, the ionospheric boundary condition becomes:

Vi(f—A_+z,,cDj:o (105)
4

The Fourier transform in time of equation (10) implies that:
A =-ldD e X gy (106)
' o dz V, x,
where @ = d®/ dx , and evaluating the condition (105) at the ionosphere, which corresponds to x
= Xp, We can write:

i@ +od=0 (107)
where o = p / Z4; measures the Pedersen conductivity in units of the Alfvén conductivity at the
ionosphere. The boundary condition (107) can be considered to be an eigenvalue equation for
the parameter xo, which is essentially the mode frequency scaled by the fundamental frequency
in the problem, which is V4, /2h. The upper boundary condition can be taken to be a radiation

boundary condition, which picks out the J, . solution for inward propagating waves and the
J

parameterized by €, which is always much smaller than one, and o, which may be small or large.
The eigenvalue equation (107) can be easily solved in the limits of high and low
conductivity. First, note that forx,e < 1, the Bessel function solutions can be expanded in

solution for outward propagating waves. It can be easily seen that the solutions are

—ix,€

order, noting that the derivative of Jy (x) with respect to v evaluated for v= 0 is (n/2)Y,(x)
(Abramowitz and Stegun, 1964, equation 9.1.68). Thus, the solutions can be written:

Lo (6)= 5 ()20, (x) (108)

When the scaled conductivity oo — 0, the second term in (107) can be ignored, and the
eigenvalue condition just yields @ = 0. Thus, to lowest order the eigenvalues are given
by x, = j,,» where the values j, ; are the zeroes of J; (x) , since J; is the negative of the derivative

of Jo. To first order in the small parameters ¢ and €, it can be easily seen that the scaled
eigenfrequency yieldsx, = j,  +in, wheren=7%j e(n/2)Y, (jl,.\' )/ Jy (jl,s). Note that n is
proportional to the growth rate,n=2hy/V,,. Note here that ¥, and J; always have opposite sign
when J| is zero, since by a Wronskian condition:

1@ ()= (% ()= 109)

(Abramowitz and Stegun, 1964, equation 9.1.16). Thus, the incoming solution has a positive
growth rate, since energy is entering the system, while the outgoing solution is damped.
In the limit of high conductivity, o> 1, the derivative term in (107) is negligible, and

the eigenvalues are now the zeroes of Jyo. Expansion to the next higher order yields:
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where by equation (109) we have Y, / J; > 0 when evaluated at a zero of Jy. Thus again the
incoming solution has a positive growth rate while the outgoing solution is damped. For
arbitrary values of the conductivity, the eigenfrequencies make a transition from the zeroes of J;
to the zeroes of Jy as the conductivity is increased. The transition takes place at o ~ 1, which
also corresponds to the maximum damping of both modes. This is not surprising since it
corresponds to the point where the Alfvén conductivity at the ionosphere matches the
ionospheric conductivity, which corresponds to no reflection in the uniform case as we saw
earlier.

This effective resonant cavity also influences the reflection coefficient of Alfvén waves
on auroral field lines. The reflection coefficient may be defined as the ratio of the amplitudes of
the upgoing wave to the downgoing wave, R = A~ / A*. This ratio must be determined by
applying the boundary condition (107) to the combined wave solution at the ionosphere (i.e., at x
= xp). This condition implies:

(110)

— 14___ - i']/;,,s: (xo )+O(Ji,\;,e (XO)
A+ i‘]:i.\;,e (XO )+ a‘]—ix(,s (‘XO)
This relation has been calculated numerically for a number of cases by Lysak (1991). This
relationship reduces to the usual condition (58) in the limit of low frequencies, x, < 1. In this

(111)

limit, it can be seen by expanding (109) for small argument that J, . (x)=1

and J, . (x))=ie, so thatR=(e—o)/(e+0)= (T, —Z4 )/ (Zay +Z, ), as in the uniform

case. At these very low frequencies, the wavelength of the Alfvén wave is so long that it
effectively does not see the cavity. On the other hand, for very large frequencies, the numerical

results suggest that R — (1-a)/(1+a)=(Z,, —-Z,)/(Z,, +Z,). (It would seem that an analytic

result of this limit should be possible to find; however, this would involve the uniform
asymptotic expansions of the Bessel functions, which are quite complicated.) This high
frequency limit corresponds to the case where WKB theory is valid, and thus the reflection
coefficient is described by the ionospheric Alfvén speed, rather than that in the magnetosphere.

In general, the reflection coefficient shows features at the resonant frequencies of the
cavity. When the cavity is very deep (i.e., € very small) and the conductivity is high, the
reflection coefficient shows a sharp decrease at the resonant frequencies. This may be
interpreted in terms of the trapping of the wave in the cavity, so that, after multiple interactions
with the ionosphere, the wave is eventually absorbed. When € is not so low, e.g., € ~ 0.1, these
features can still be seen, although they are not so sharp. When the conductivity is lower, the
wave does not reflect as strongly; however, in this case the presence of the cavity can lead to an
enhancement of the reflection compared with the low frequency limit, which may be interpreted
in terms of a direct reflection of the wave from the Alfvén speed gradient above the ionosphere.

Although this model was calculated using the ideal MHD approximation, it is an easy
matter to introduce the two-fluid effects. First of all, it can be noted that the strong gradients in
the Alfvén speed occur at low altitudes, where the electron inertial effect is dominant. This
effect implies that the parallel electric field is given by the first term in (63):
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where the last step introduces the vector potential as in (4). Writing this parallel electric field in
terms of the scalar and vector potentials in the usual way modifies equation (129) to read:

12 | OA od
1-AV | J—%=—c— 113
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where A =c/®,, as before. In Fourier space, this equation can be written as:
0P iw 2m2
—=—(1+k{A")A, 114
aZ ( 4 ) z ( )
Combining this relationship with equation (62), we can generalize equation (66) to read:
d ! do ?
+—2 =0 (115)

| 1+2A (2) dz | VE(2)
This equation does not have analytic solutions in general, but numerical solutions have been
presented (Lysak, 1993). Note that the profiles of the Alfvén speed and of the electron inertial

length are important in equation (67). In fact, even the perpendicular wave number should be
considered to be a function of z since it will change due to the changing size of the flux tube,
indicating roughly thatk’ o B,. The results of Lysak (1993) were obtained by integrating
equations (48) and (68) up from the ionosphere, starting with the ionospheric boundary condition
(4). The resulting solution was then decomposed into incoming and outgoing wave solutions at
the assumed upper boundary, and the reflection coefficient could be determined by their ratio.
More recently, Lysak (1997) has presented solutions for the wave polarization by constructing
the B, / E, ratio (or equivalently, A. / ® ratios) in order to make comparisons with spacecraft
data.

It is interesting to consider the behavior of the compressional MHD mode in the presence
of the ionospheric Alfvén resonator discussed previously. The compressional MHD mode
propagates isotropically in a cold plasma, with the wave equation given by

9’B,

or*
If we Fourier transtorm in time and in the perpendicular coordinate, and adopt the profile given
by equation (97) for the Alfvén speed, then we find:

-VIV’B, =0 (116)
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It may be noted that this equation is identical to equation (98) if the right hand side is set to zero.
Equation (117) may be solved by the same coordinate transformation, with the result that the

magnetic field perturbation can be written as B, ~ J,, (x), where x is defined as in equation (99)

but withv = \/4k?h*> —xje* . Note that the solution (101) corresponds to k; — 0. The order v
becomes real whenk, > x,e/2h=w/V,,, . Performing the expansion for z — oo, i.e., x < 1, as
in (102) we see that:

(x/2)"

Fvz/2h 118
r(1+v) ¢ (18)
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Thus we see that real v corresponds to the evanescent solutions found for a uniform Alfvén
speed when k. > ® / V4. Note that we also could have the interesting situation that
V., <wo/k, <V, . In this case, the magnetosonic wave can propagate close to the ionosphere

where the Alfvén speed is low, but is evanescent at higher altitudes. This situation effectively
traps the magnetosonic wave in the topside ionosphere, and the magnetosonic wave can then
transport wave energy perpendicular to the field line through this cavity. The consequences of
this type of cavity have been explored by Greifinger and Greifinger (1968), Fraser (1975), Fujita
(1988) and Fujita and Tamao (1988). Recent modeling of the coupling between the shear and
compressional modes has been given by Lysak (1997, 1999) in two dimensions and Lysak and
Song (2001) in three dimensions.

D. Wave-Particle Interactions in the Auroral Zone

Auroral particle distributions such as those given in Figures 1 and 2 contain a number of
features that can potentially give rise to instabilities. Strong gradients in the distribution function
are likely to occur at each of the phase space boundaries. For the electrons, a beam of
magnetospheric electrons can occur in the downgoing loss cone region. In practice, the region
just inside the acceleration ellipse is filled with backscattered ionospheric electrons. These
electrons reduce the positive slope in the distribution function, but there is generally still a
positive slope in the electron distribution at the location of this ellipse. The electron distribution
can also contain strong perpendicular gradients at the loss cone boundary as well as gradients in
the trapped population that can also give rise to instabilities. For ions, the upgoing ion beams are
the strongest source of free energy for plasma instabilities, but the ion loss cone can also
contribute.

1. Beam-driven instabilities

There are a variety of instabilities that have been attributed to the presence of electron
and ion beams in the magnetospheric plasma. The auroral electron beam is a prime example of a
beam that can give rise to waves at a wide range of frequencies, which will be discussed in detail
below. The auroral acceleration process also accelerates ion beams out of the ionosphere that
can enhance EIC instabilities. Ion beams accelerated in the tail reconnection region have also
been invoked to explain broadband electrostatic noise in the plasma sheet boundary layer. After
a brief discussion of these ion instabilities, we will discuss the WKB theory of lower hybrid
waves proposed by Maggs (1976) in some detail.

Ton beams have been closely associated with the presence of EIC waves (Kintner et al.,
1979) as well as weak double layers (Temerin et al., 1982; Koskinen et al., 1990). Since these
ion beams typically have speeds less than the electron thermal speed, they may excite the EIC
instability (Recall that for the EIC instability, the electrons are treated as hot,
therefore w/ kja, < 1). A difficulty with the ion-beam driven instability is that the growth due to

the ion beam must overcome damping due to the electrons. It has been suggested, however, that
the simultaneous presence of electron drifts and ion beams may be particularly unstable (Hauck
et al., 1976). This instability is caused by a coupling between the negative energy wave of the

ions (0=kv, -0, , where v, is the ion beam speed and @y, is the plasma frequency of the ion
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beam) and the usual EIC wave driven by the drifting electrons. Considering a simple model of
the dielectric constant for the EIC waves assuming hot electrons, cold magnetized background
ions and an ion beam, we would find:

I o kY o
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Kh, o -QF [k ] (u)—k,,v,,)z (19)
In the absence of the beam term, this dispersion relation describes the fluid EIC mode. With the
beam present, it can be seen that this dispersion relation becomes a fourth order equation such as
that found for the two-stream instability.

Another aspect of ion beam interactions is that frequently both hydrogen and oxygen ion
beams are observed simultaneously in the auroral zone. If one considers that these jons are
accelerated by the same potential drop, these two different beam species should have the same
energy. This fact implies that the hydrogen streaming velocity should be 4 times greater than
that of oxygen. In fact, this relationship is approximately observed (Collin et al., 1981).
However, more careful analysis has revealed that the oxygen beam is frequently more energetic
than the hydrogen beam (Collin et al., 1986), with the potential drop as implied by the electron
loss cone intermediate between the two beam energies.

These observations can be accounted for by noting that the relative streaming velocity
between the hydrogen and oxygen ions can give rise to a two-stream instability (Bergmann and
Lotko, 1986; Kaufmann et al., 1986; Dusenbery and Martin, 1987). This instability is directly
analogous to the two-stream instability discussed during the first quarter of this course, and, for
parallel propagation, may be considered to be the interaction of a slow hydrogen beam mode and
a fast oxygen beam mode. Again assuming hot electrons, this dispersion relation can be written

for parallel propagation as:
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which again leads to a fourth order equation for the frequency that can have complex roots.
These modes, however, can also propagate at an angle to the background magnetic field, and in
this case, there is also the possibility of coupling to slow and fast cyclotron waves, with
frequencies kv, £, (Bergmann et al., 1988). It is found that the parallel propagating modes

=0 (120)

dominate for small relative beam speeds, but become stabilized for larger beam speeds, where
the oblique modes dominate.

Turning now to electrons, it seems likely that the auroral electron beam could excite a
variety of instabilities. Since the beam has an energy much larger than the thermal velocity of
the electrons, the most likely modes to be excited are those with phase velocities greater than the
electron thermal speed; i.e., those waves in which the background plasma can be considered
cold. This suggests that the prime candidates for such excitation would be waves on the upper
hybrid and lower hybrid resonance cones, and for multi-ion plasmas, waves near the ion-ion
hybrid frequency. (Note that the electron beam speed is usually less than the Alfvén speed, so
Alfvén waves can not be excited by Landau resonance.) It should also be noted that although the
primary auroral electron beam propagates down the field line, these considerations should also
hold for electrons streaming up the field lines such as those recently observed by FAST.

An interesting calculation on these instabilities was performed by Maggs (1976, 1978;
see also Lotko and Maggs, 1979; Maggs and Lotko, 1981). Maggs performed a first principles
calculation of the wave spectra in the lower and upper hybrid resonance cones by calculating the
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thermal fluctuation levels due to the beam, calculating the growth rate, and then determining the
total wave amplitude by considering the WKB propagation of the wave in a simple model of the
auroral magnetosphere. The calculation is based on the model equation:

oP{® -
afn )=jdk,, " dsEF e (121)

where dP/dw is the differential wave power observed per unit frequency, E is the incoherent
wave power due to the Cerenkov emission of the beam, F is a geometric factor representing the

divergence of ray paths and M = ' ds'(y/v g) is the amplification factor that indicates the

obs

growth the wave due to the instability. In the second quarter of this course we calculated the
incoherent emission due to an unmagnetized beam of particles; a similar calculation for a
magnetized plasma yields the expression:

2
E=—L_[4,Y V] (k)-57" (K ky, +1Q)-V, (k) (122)
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where V, =(iv, J/,(IQ/k,)J,,v,J,) is the generalized velocity that was introduced during our

discussion of the magnetized dispersion relation. The geometric factor F can be found by noting
that these wave modes are essentially radiated out along a cone (Recall that on the resonance
cone the group velocity is perpendicular to the phase velocity, and is just a function of the wave
frequency). Thus, we can take F =1/2xs, , where s, is the perpendicular distance between the

observer and the wave emission point.

The amplification factor M is dependent on the propagation characteristics of the wave.
Maggs assumed that the auroral electron beam took the form of a sheet, limited in latitudinal size
but extended in longitude, following the typical form of the aurora. The wave was assumed to
propagate by means of the WKB equations:

=99 =20 (123)
ok ox

In order to calculate these factors without the need for a detailed model of the plasma, it
was assumed that the density and magnetic field scale lengths, which determine how the
dielectric constant changes in space, were constant over the ray path. In this limit, k is constant
and the ray path is parabolic. (Note that in the plane perpendicular to B, the group velocity is in
the same direction as k;.) Maximum growth is then achieved by considering the ray path that
spends the most time in the unstable region; under this geometry, this is a path which enters one
side of the unstable region, just grazes the other side of the region, and then exits from the same
side it began. If we let x be the coordinate on the thin side of the region (the latitudinal
direction), and y be the coordinate on the extended side, this parabolic path will have the

formx =ay* /2, wherea =(1/k, )dk, /dy = k, IV, iky) . If we let d be the width of the region,
and L be the distance in the y direction that the ray propagates from one side of the region to the
other, then L =+/2d/a =1/2v cikid/ k, . Then the amplification factor can be written in the

form M = (y/ v, )2L=\[8Y*k,d /v, K,

Propagation out of the unstable region is not the only way in which the wave growth can
be stopped. As the wave propagates in the vertical direction, the parallel wave number also
changes. This implies that the parallel phase velocity of the wave changes, and so the wave may
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become “de-tuned” from the beam. In fact, for lower hybrid waves, as the wave goes to lower
altitudes its phase velocity increases, so that it becomes faster than the beam velocity. Roughly

speaking, the parallel phase velocity can change on the time scale k,/k, , and so the

amplification factor due to this effect can be written as M = YBk, / k,, where B is a factor of order

unity. In practice, the smaller of the two possible amplification factors will determine the
amount of wave growth.

Using this simplified model of wave excitation and propagation, Maggs was able to
achieve a rather remarkable agreement between the computed and observed power levels. It
should be noted that this calculation proceeds totally from first principles, using observed beam
parameters and typical scale lengths for the density and magnetic field, and so any similarity
with observed results provides a good deal of confidence that the proper physics is being
included. A primary result from this work is that the relative amplitude of the spectral peak in
the upper and lower hybrid bands is primarily a function of the ratio of electron plasma
frequency to gyrofrequency. When this ratio is less than 1, such as occurs at higher altitudes, the
lower hybrid band is favored with maximum altitude near 2 ®;y, while at lower altitudes,
where ®,, > €, the upper hybrid band is stronger. This altitude dependence is qualitatively

similar to observations, since the lower hybrid waves are generally seen at high altitudes while
upper hybrid waves are seen mostly in the ionosphere. Another important result of this model is
that, except for very strong beams where growth is quite large, the waves propagate out of the
unstable region before quasi-linear processes can significantly flatten the beam. This has helped
solve a long-standing puzzle of how the auroral electron beam can persist with a positive slope
all the way to the auroral zone.

In a multi-ion plasma, there are also waves near the ion-ion hybrid resonance that can be
excited in a similar manner. Lysak and Temerin (1983) and Temerin and Lysak (1984) have
analyzed these waves using a model based on that of Maggs. It was found that, in this case, the
parallel de-tuning effect was primarily responsible for the limitation of wave growth since the
group velocity for these waves was primarily parallel to the magnetic field. Two features of the
data were noteworthy: first, the waves were very narrow-banded in frequency, and second, the
peak amplitudes were similar to those in the lower hybrid band. Both of these features can be
explained if the unstable beam region is very narrow (~200 m). The sharp peak arises due to a
sharp transition between the two limiting mechanisms. The second feature is a consequence of
the fact that the lower hybrid band, which has a larger growth rate than the lower frequency ion
hybrid waves, is much more sensitive to the width of the beam that the ion hybrid waves. Thus,
narrow beams limit the lower hybrid waves more than the ion hybrid waves, allowing them to
reach similar amplitudes despite a lower growth rate.

The damping of these VLF waves or EIC waves at the cyclotron resonance can result in
strong ion heating. Since these instabilities grow due to electrons and are damped by the ions, it
provides a conduit for the exchange of parallel momentum and energy between the two species.
The momentum transfer gives rise to the anomalous resistivity, while the energy transfer will
give transverse ion heating that can result in ion conics. EIC waves have the advantage over
lower hybrid waves in that they can heat the bulk of the distribution since the perpendicular
wavelength is comparable to the thermal ion gyroradius; however, the heating rate is generally
lower. This mechanism may be enhanced in downward current regions with downward pointing
parallel electric fields, since the electric field will counteract the mirror force, keeping ions in the
heating region (Gorney et al., 1985). In such a model, the energy the heated ions achieve is that
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which gives them a sufficiently large mirror force to overcome the parallel potential drop, and is
independent of the details of the heating mechanism. Such a model appears to be supported by
preliminary data from FAST.

Lower hybrid waves have been a prime candidate for the heating of ion conics (Lysak,
1980; Chang and Coppi, 1981). Evidence that VLF hiss can interact with ions was found from
S3-3 data by Gorney et al. (1982) who showed that VLF hiss near the lower hybrid frequency
sometimes had absorption features due to ion cyclotron damping. However, they concluded that
the resulting heating was too little to account for ton conics. Theoretically, the difficulty with
lower hybrid wave heating is that these waves generally have a rather long perpendicular
wavelength. The resonant contribution to the ion heating rate was given by (4.130) of the second
quarter:

7’ ¢ dk |z p ‘ J ,I1Q 9
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Lower hybrid waves typically havew/k, > a;, and so havek,p, < ®/Q~![. At such small

values of its argument, the Bessel function factor in (124) becomes small, limiting the ion
heating. Thus, it has been stated that a pre-heating mechanism must be required for lower hybrid
waves to be effective at heating ions.

However, more recent results both from sounding rockets (LaBelle et al., 1986; Kintner
et al., 1992; Vago et al., 1992) and the Freja satellite (Eriksson et al., 1994) show the presence of
lower hybrid cavities, i.e., narrow-scale density depletions driven by the ponderomotive force of
electron-beam driven lower hybrid waves. These waves are subject to a modulational instability
such as that discussed in the second quarter of this course. This instability results in the lower
hybrid pump wave decaying to waves with shorter perpendicular wavelength, as we saw in the
second quarter. Sotnikov et al. (1978) showed that the lower hybrid wave is susceptible to such
an instability when the wave energy density satisfies the condition:

e

pi

K, (125)

For such strong waves, the ponderomotive force depletes the background density, which traps
the waves increasing the wave energy density, causing a further density depletion. This process
intensifies the wave power and decreases the perpendicular wavelength, which enhances the ion
heating rate. These heated ions further contribute to the density depletion since they are
accelerated up the field line by the magnetic mirror force. These observations may indeed be the
“smoking gun” to explain the ion conic formation; however, it is still not clear whether such
waves are sufficient to explain all observations of ion conics.

2. Cyclotron maser instabilities: Auroral kilometric radiation

Both electrostatic and electromagnetic instabilities can be excited by anisotropies and/or
loss cone distributions. As we have seen, there is a strong loss cone feature in the auroral
distribution function, and this loss cone is enhanced in the presence of parallel electric fields. In
addition, it has been recently noted that the downgoing auroral electron beam becomes
“defocused” as it propagates into the magnetic mirror, creating a horseshoe-shaped distribution
(Delory et al.,, 1998). These features give rise to an electromagnetic instability called the
cyclotron maser instability which gives rise to radio emission in the 200 kHz range. This
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emission is known as auroral kilometric radiation, since it is generated in the auroral zone and
has a wavelength the order of a kilometer. This instability depends on an interesting and
somewhat surprising relativistic effect, as we shall see shortly.

The auroral kilometric radiation (AKR) was first identified by Gurnett (1974), although it
had in fact been seen earlier, as a radio emission propagating outward from the earth into
interplanetary space. Gurnett originally termed it terrestrial kilometric radiation (TKR), but its
clear association with the aurora has led to the term AKR being the more widely used. These
waves were in the frequency range from 50-500 kHz, and were observed mostly over the poles at
distances up to 30 Rg. The lack of observations at equatorial latitudes suggested that this wave
emission was generated at relatively low altitude (<3 Rg) in the auroral zone, since the relatively
high plasma frequency in the plasmasphere prevented the waves from propagating through this
region. The power in this emission is very high, 10° Watts, which compares to the 10'" Watts
carried by the incoming auroral particles. This suggests, first, a very efficient wave production
mechanism, and second, that these waves were produced in the so-called “free space” modes,
i.e., the (R,X) and (L,0) branches which connect directly to the vacuum light waves. This second
conclusion follows since if these emissions had to tunnel from some other branch of the
dispersion relation, they would not be expected to have such a high observed wave power. Of
these modes, the (R,X) mode is expected to be favored since the electron gyromotion is also
right-handed. Indeed, the observed waves are primarily polarized in the extraordinary mode,
although ordinary mode waves are also sometimes observed.

These free space modes, as we have seen, have a phase velocity greater than the speed of
light, and so it is clear that the Landau resonance is not able to produce these waves. Thus, it is
clear that the cyclotron resonances must be involved in their production. As we have seen, in
order for the cyclotron resonances to be destabilizing, we must have a positive perpendicular
slope in the distribution function, df /dv, >0, such as may occur at the loss cone boundary.

The cyclotron maser instability caused by this loss cone was first described by Wu and
Lee (1979) and has been described in detail in a review by Wu (1985). Assume first
thatw>Q, > o, , thatk, > k;, and that the emission takes place due to the first harmonic.

pe?
Then the X mode dispersion equation can be simplified by noting that the electric field is
polarized perpendicular to both the wave vector and the background magnetic field, and by
assuming waves near the cyclotron frequency. Thus, in terms of last quarter’s notes on the
electromagnetic dispersion relation (equations 1.42 and 1.43), the X-mode can be written as n* =
€, which becomes:

2 " Q, VI (A
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where A =k v, / Q.. The ordinary mode dispersion relation takes on a similar form, but with
v,,J (K)rather than v LJ 2(A)in the numerator. Since ky is small compared to k;, the parallel

derivative term can be neglected, and, using the cold plasma dispersion to calculate the real part
of, we can write the growth rate using the usual formula:

2
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for the extraordinary mode. The ordinary mode has a similar growth rate but with a factor
vi /¢? inserted into the velocity integration.
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On first sight, it appears that the growth rate given by (3) is always negative, since an
integration by parts on the perpendicular velocity yields
)
fav, vii=—jdvl 2v,f <0 (128)
ov,
However, there is a way out of this situation. The electrons in the auroral zone which excite this
instabilities have kinetic energies the order of a few kilovolts, which is roughly 1% of the rest
energy of the electron. At this energy, relativistic effects are usually not considered important.
However, the resonance condition in the delta-function of (128) is very sensitive to the exact
resonant velocity, and should be written in general as:

2
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where we have generalized to the n” harmonic and written the gyrofrequency based on the rest
mass of the electron as €,. Note that, in strong contrast to the non-relativistic resonance
condition, this resonance condition depends on both vy and v, through the Lorentz factor y. In
general, this condition represents an ellipse in velocity space. The equation for this ellipse can
be found by taking the term with the square root over to the right hand side of the equation and
squaring both sides. The result of this algebra is that the resonance condition can be written as:

i_'_(vu_vo)2 -1
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where:
Vo _ N @ _1+N -’ b _1+N’-w (131)
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and we define N =k,c/nQ, and® =®/nL2,.

These resonant ellipse appear to be much different from the usual set of resonance lines
that we found in the non-relativistic case, which raises the question of how they relate to each
other. The non-relativistic limit corresponds to the limit of large index of refraction, i.e.,
ke/w> landkc/€, > 1. In terms of the variables used above, these two conditions are

N> ® andN > 1, respectively. It can be seen from (131) that under these limits, we
havev,/c=®/N, a/c=1,andb/c=1/N . In usual units, this implies that vo = @/ kyand b =
n€. / ky. Thus the resonance ellipse is centered on the phase velocity, extends to the speed of
light in the perpendicular velocity direction, and intercepts the parallel velocity axis
at(w+n€,)/ k,, corresponding to both the positive and the negative n harmonic. (Note that when

we derived (4) we had to square (129), and so each ellipse corresponds to both £x.) Thus, in the
vicinity of the parallel velocity axis the resonance ellipse is a straight line at the usual resonance
velocity, and the ellipse deviates from a straight line only whenv, —¢. Therefore, our
discussion of plasma waves in magnetized plasmas that have parallel phase velocities much less
than the speed of light is unaffected.

Waves such as the free space waves considered here have ® / k > ¢, and for nearly
perpendicular propagation, w/k, > c. Thus here we should take the limit NV <« 1. In this case,

we havev,/c=BN, ie, vo = ® / ky, and(a/c)’ =(b/c)* =1+ N> ~®>, which can also be
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written asa/c =b/c = (kjc’ +n’Q} -’ /nQ, . Thus, if the wave frequency is greater than the

gyroharmonic, there must be a finite k; for the resonance to exist. It is worth noting that in this
limit, the resonant ellipse becomes a circle, which can be obtained from the weakly relativistic
limit of the resonance condition (129):

2
®— kv, —n<, [1- A ):o (132)
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As a sidelight, we may note that in the case ky =0, i.e., N =0, such as we have encountered for

the Bernstein modes, we stated previously that there was “no cyclotron resonance.” Now it can
be seen that in this limit, there are cyclotron resonant circles that are centered at the origin and

have a radius in velocity space of c¢\/1—®/nQ, (Of course, this can only be true for waves just

below a gyroharmonic). As far as I know, the consequences of this fact for loss cone instabilities
of the electron Bernstein modes have not been considered; however, it can be seen that for
weakly relativistic electrons with y ~ 1.01 such as the auroral electrons, this resonance circle is
only important for frequencies within 1% of a cyclotron harmonic.

Let us now return to the emission of free space extraordinary mode radiation in the
auroral zone. First of all, we note that the frequency of this radiation is greater than the electron

gyrofrequency, since the X mode cutoff is given by (equation 3.62 of the first quarter notes):
2
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where the last form gives the low-density limit. In addition, the electrons are only weakly
energetic, and so the resonance condition given by (132) for a weakly relativistic plasma applies.
This implies we should have a small ky; however, we cannot let k;, — 0 since we must have

kic* > > —Q] for there to be a resonant ellipse. This same condition implies that we want the

frequency to be as close to the gyrofrequency as possible. Considering equation (133), we
clearly want the ratio of plasma to gyrofrequency to be as small as possible. Thus, the instability
is most effective in a low-density plasma.

Fortunately, the auroral zone provides for such a low-density plasma, since, above the
region of parallel electric field, the ionospheric electrons cannot overcome the potential barrier.
As noted by Calvert (1981), the density in the auroral zone above the acceleration region can

achieve low enough values so that®,, /€2, =0.05. The theory of Wu and Lee (1979) predicts
that growth can occur near the electron gyrofrequency wheneverw , /€2, <0.3. Thus the auroral

cavity plays an important role in the formation of AKR. In addition, this localized low-density
region can also trap the X mode radiation, since outside the cavity, the plasma density and thus
the X-mode cutoff is higher. When the X-mode cutoff outside the region is greater than the
wave frequency, the waves are reflected back into the source region and can thus be further
amplified.

Recent FAST observations have concluded that the emission of AKR is associated
primarily with a horseshoe type distribution rather than the loss cone (Ergun et al., 1998b;
Delory et al., 1998). These emissions favor the k; = 0 mode, which means that the resonance
condition (129) describes a circle in velocity space. The emissions are found just under the
electron gyrofrequency, consistent with the relativistic decrease of the gyrofrequency of the
energetic electrons.
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A final interesting aspect of observed AKR waves is that they are emitted in a series of
very narrow-banded bursts (Gurnett and Anderson, 1981; Benson et al., 1988; Menietti et al.,
1996) that drift generally downward in frequency, although upward drifts are also sometimes
observed. This drift implies that the source region moves up (and sometimes down) the field
line, since the wave frequency is closely tied to the electron gyrofrequency. Menietti et al.
(1996) suggest that these drifts are associated with the triggering of the AKR by another, low-
frequency wave mode that propagates up the field line, such as electromagnetic ion cyclotron
waves. As a final point, there have also been ground observations of waves near the harmonic of
the electron gyrofrequency observed from the ground, which have been termed “auroral roar”
(Kellogg and Monson, 1979; LaBelle et al., 1995). These waves may be generated by a similar
mechanism as the cyclotron maser instability, but details of this excitation are still unclear.

3. Electron and lon Phase Space Holes and Solitary Waves

Current or beam-driven waves in the auroral zone can potentially grow into nonlinear
structures, often referred to as phase space holes or solitary waves. Unstable plasma waves will
cause fluctuations in the potential along auroral field lines. These fluctuations could grow due to
a mechanism suggested by Lotko (1983) for negative polarity ion acoustic soliton. In the
presence of a current, a negative potential fluctuation represents a barrier to the flow of electrons,
and electrons with an energy (in the hole frame) smaller than the potential barrier will be
reflected from the barrier. In the presence of a net drift between electrons and ions, there will be
more electrons reflecting from the hole from one side than from the other. Thus, there will be an
excess of electrons on one side of the barrier and. a deficiency on the other. Therefore, in a
procedure much analogous to Landau damping, the hole will gain momentum and grow. In
addition, the space charge will lead to a net potential drop across the hole since the side with
more electrons will be more negative than the other side. In this way a double layer can form
from this ion hole mode.

While the weak double layer model was initially a very promising mechanism for the
auroral potential drop, further investigations have case doubt on this model. Milkki et al. (1993;
see also Koskinen and Mailkki, 1993; Eriksson and Bostrom, 1993) have investigated the plasma
environment of weak double layers on the Viking satellite, and found that most solitary wave
structures observed had very little (< 1 V) or no parallel potential drop associated with them, and
that both upward and downward potential drops were almost equally likely. The total potential
drop inferred from these observations was no more than 1 kV, at the lower end of that necessary
to explain auroral acceleration. Nevertheless, such holes are interesting plasma physics objects
in their own right.

Both electron (positive potential) and ion (negative potential) holes are found along
auroral field lines. FAST results (Ergun et al., 1998) show that ion holes are associated with
upward ion beams in the upward current regions, while electron holes are associated with
upward electron beams in downward current regions. These results have been confirmed with
Polar data by Bounds et al. (1999). These results would indicate that these solitary waves are
driven by the beams in these two cases.

The theory of such structures is not yet very well developed. The primary means of
describing them theoretically are BGK modes or through computer simulation. Muschietti et al.
(1999) have constructed a BGK model for electron holes. This model predicts that the amplitude
of the mode should increase with its scale size, in contrast, for example, with the usual ion
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acoustic solitons where the reverse is true. They also performed two-dimensional simulations on
these structures, showing that they maintained their one-dimensional character despite
perturbations in the other direction. These properties are consistent with Polar data of these
structures (Cattell et al., 2001). In another approach to dealing with these structures, Goldman et
al. (1999) have performed two-dimensional simulations of the nonlinear evolution of the
electron-electron two-stream instability, and showed that repetitive hole structures formed in
their simulations. In these simulations, however, the holes eventually decayed due to the
emission of whistler mode emissions.

Ion hole structures have been also been addressed through simulations. Crumley et al.
(2001) have performed simulations based on the ion-ion two-stream instability discussed above.
Their results showed that ion holes formed with velocities between the speeds of the hydrogen
and oxygen ion beams, consistent with the ion-ion two-stream mechanism. The formation of
holes in this case was enhanced by the lack of a cold electron background in the simulations.
Thus, this instability and the formation of ion holes would be favored above the auroral potential
drop, where they are in fact found, since this potential drop excludes the cold electrons.
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