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1. — Introduction

The term plasma was first used by Tonks and Langmuir in a paper in the Physical
Review in 1929 referring to a gas with a sufficient ionization degree and noticing that the
presence of free charges modifies the behavior of matter with respect to the hydrodynamic
limit by enforcing a collective behavior by long-range electromagnetic forces. Crookes
had already analyzed this effect in experiments on gas discharges since 1879 and called
the configuration a fourth state of matter, although the passage from the neutral gas to
the ionized gas state is not a sudden phase transition.

The plasma state forms when a substantial population of free charges is present, and
this happens:

1. for systems in thermodynamical equilibrium at T > 104K;

2. for non-equilibrium systems when typical particle energies are above an ionization
limit, E > 10"2 eV.

These values clearly show that the objects in the Universe are almost everywhere in
the plasma state, the only exceptions being in fact cold planetary surfaces. Stars are
dominated by gravitation, but their surface activity is due to electromagnetic forces.
Similarly the interstellar and the intergalactic matter are shaped by plasma forces; and
galaxies also show a plasma collective behavior where long-range forces are gravitational
forces acting on a gas of stars. Active stars (pulsars, X-ray binaries, transient sources,
etc.) and active galactic nuclei appear also to be dominated by plasma effects.
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2 A. FERRARI

1*1. Characteristic parameters. - The characterization of a plasma state requires the
definition of a few basic parameters.

1. Debye length AD, the distance over which electromagnetic long-range forces prevail
over short-range electrostatic effects and yield the collective behavior:

V = ^ - ( ^ D H I + Z ) 1 / 2 (z average ionic charge),
r

For a thermal plasma the Debye length is obtained by balancing electrostatic and
thermal pressures:

which for electrons, the high-mobility component in a plasma, becomes (ne is the
free-electron density)

AD = 740W — c m .

2. Plasma parameter A, a measure of the number of free charges in a Debye volume,
that must be necessarily large to allow the collective forces to be dominant:

4TT
A = 3iVD = 3—nAJ} > 1.

o

3. Quasi-neutrality, astrophysical plasmas are globally quasi-neutral:

ne —

4. Plasma frequency CJP, the characteristic frequency of oscillation of a system of
charges connected by collective electrostatic forces; the link is due to the field
over a Debye length and the typical velocity of moving particles is their thermal
velocity:

vth /4irq2n

. A D V m

cjpe = 5.6 x 104
v/n^rad s"1 (for electrons).

5. Electric conductivity a, defined by the short-range collision frequency uc

ne2
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TABLE I. - Astrophysical plasmas parameters. §

L (cm) ne (cm"3) T (K) ADe (cm) cr (s"1) H (gauss) i/g (Hz) upe (Hz) i/c (Hz) >

Ionosphere 107 103-106 102-103 7 x 10"2-7 6 x 10 9 -10 n 0.1 3 x 105 3 x 105-107 10-103 s
an

Solar 1013-1015 1-104 102-103 0.7-2 x 102 6 x 10 9 -10 n 10"6-10"5 3-30 104-106 2 x 10~2-6
wind

Solar 6 x 10 9 -10 n 108-1012 106-107 10~2-2 7 x 1015 10~5-l 30-3 x 106 108-1010 8
corona

Stellar 1010-1012 1027 4 x 107 10""9 7 x 1018 — — 3 x 1017 2 x 1016

interiors

Neutron 106 1042 106-109 I ( r 1 7 - l ( r 1 6 1017-3 x 1021 1012 3 x 1018 1025-3 x 1026 1023-1028

stras

Interstellar lO^lO2 2 10~3-10 102 20-2 x 103 6 x 1012 10"6 3 3 x 102-3 x 104 9 x 10~5

gas

Intergalactic > 1024 < 10"5 105-106 > 2 x 106 1014 < 10~8 < 3 x 10"2 < 30 < 10"11

gas

Galactic < 1015 < 1012 > 108 7 x 10~2 > 4 x 1018 > 105 > 3 x 1011 < 1010 30
nuclei

Thermonucl. 102 1016 108 7 x 10~4 6 x 1018 105 3 x 1011 1012 2 x 105

plasma
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6. Cyclotron frequency ft, in the presence of an external or induced magnetic field:

qB

fL =
e~B

m~c
= 1.8 x 107£?Grad s x (for electrons).

Characteristic values of the above quantities in astrophysical plasmas are given in
table I.

2. — Plasma models

The treatment of plasmas has been developed following three basic descriptions:

1. kinetic equations, that provide a detailed study of multibody systems in terms of
phase-space distribution functions, and apply also to non-equilibrium, anisotropic
conditions;

2. fluid equations, that take the moments of the distribution functions of kinetic equa-
tions over momentum space and therefore apply to equilibrium situations which can
be described by average macroscopic quantities as density, pressure, temperature,
etc.; in this category are included the two-fluid model, in which negative and posi-
tive charges are dealt with separately and coupled through energy and momentum
exchanges, the magnetohydrodynamic (MHD) model, in which a further averaging
is done on the two charge components in the assumption that they are strongly
coupled by collisions, and the cold plasma model, in which thermal dispersion is
neglected and the particles interact only through long-range electromagnetic forces;

3. orbit theory, that applies to the dynamics of systems dominated by external fields
so that all particles follow the same trajectories.

21 . Kinetic equations. - The distribution function in phase space of a system of
particles of the same type is defined as

number of particles in d3q d3p = /(q, p, t) d3q d3p

normalized through the space number density

/ d3v = n.1
This function is not directly measurable, but its macroscopic measurable moments in
velocity space are well-known measurable quantities:

- space mass density -» p — J mf d3v,
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- flow velocity —>> V = fvfd3v,

- thermal velocity -> u = v — V,

- pressure tensor —>• 11^ = / mviVjfd3 — J muiUj d3u +
thermal + kinetic pressure,

- thermal energy density -^ e — J ^mu2fdsv,

- thermal flux —» q = J | rnu2u/d3^,

- force density -> T = /F /d 3 ? ; .

The evolution of the distribution function is governed by the Liouville equation, a
continuity equation in phase space:

or

where

'dQi

When short-range collisions are present, the possibility of discontinuous trajectories
in the phase space must be taken into account:

When the forces acting upon charges of charge q and mass m are only electromagnetic,
with potentials A and </>, the conjugate momenta are

e .
q% — Xi, Pi — mvi + -Ai

c
with Hamiltonian

+ecf>.
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The Liouville equation becomes the Vlasov equation

8£ df_ Fid^__Q

dt l dxi m dvi

where

= eE+-vxB,
c

1 dA

and with short-range collisions the Boltzmann equation

dt dxi mdvi \dtJcoU'

The system of kinetic equations in the electromagnetic case is very complex as it
must be coupled with the full system of Maxwell equations to define fields through the
distribution of charges and currents. In fact solutions can be obtained only in some
relatively simplified cases.

2*2. Macroscopic fluid equations. - From the system of kinetic equations we can derive
moment equations averaging over the velocity distribution and obtain the evolution of
macroscopic measurable parameters. We calculate the first three moments of the Liouville
equations multiplying by

° - i - 1 2

2

and integrating over the velocity space from 0 to oo. Taking into account that electro-
static forces are independent of velocity and the Lorenzt force has the form v x B, and
assuming that short-range collisions are binary and elastic, one obtains

'rndvi m J ^dvi m

m(%) d3vc [mv(%) d3v ~ f Imv2 (%) d3v ~ 0.
^ J dtJcoU J 2 V^7

) [(%)
coll J \dtJcoU
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Correspondingly the moment equations are:

1. Continuity equation

2. Linear momentum equation or motion equation

DV
Dt + v n =

where D/Dt = (d/dt + V • V) and II is the pressure tensor; for homogeneous and
isotropic plasmas V • n —»- Vp; T are electromagnetic and non-electromagnetic
forces;

3. Energy equation

v + n*vv = o.

The system is not closed; closure assumptions are typically:

- by an equation of state p = p(p),

- by the adiabaticity condition t = 0, or (D/Dt)(pp~~b//3) = 0.

The only condition for applying these equations to a real plasma is that the averaging
procedure corresponds to the measurable quantities. This requires that the plasma be
close to an equilibrium state. Further assumptions must be used to make the fluid
equations more tractable analytically.

2*2.1. Two-fluid model. The typical particle species in a plasma are: i) neu-
trals, / ° , ii) electrons, / " , hi) ions, //", and for each of them a set of fluid equations
must be solved. In astrophysics most plasmas are fully ionized and this allows to use
two-fluid models with / " and / + only.

We discuss the model equations for a plasma in thermodynamic equilibrium, so that
the energy density can be written for the two species as e^ — c^T^.

The system of equations for the two distributions with momentum and energy ex-
change terms Ap^^, A£^± is

J + V vdt J

V • (p*V=F) = 0,

V)c*T* + cfT^V • V T + V •
J
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Averaging over the two distributions with

- mass density —> p = p+ + p~ = n + m + + n~m~,

- average flow -> V = (p+V+ + p~V~)/(p+ + p~),

- charge density -> Q = n + e + + n~e~,

- current densities —» J = n + e + V + + n~e~V~,

-> Jconv = QV = (n+e+ + n"e")V,

-^ j = J - Jconv - n+e+(V+ - V + n -e" (V- - V),

- total pressure tensor —>• n = n + + n ~

and assuming elastic binary collisions

Ap~+ + Ap+~ - 0, A£~+ + A£+~ - 0

yields the following set of equations:

1. Mass continuity equation

2. Charge continuity equation

3. Equation of motion

4. Generalized Ohm's law (in the limit m~/m+ <C 1, isotropic scalar pressure p, no
thermoelectric currents VV̂  « 0, and Ap ^ ~ —m~vcj/e~)

77 + fieJx T ^ V p + i/c j = E +
at B 2m~ m~~ \ c

5. Energy equation (cvT = c~T~ + c+T+)

cvT + cvTV - V + V - t + n
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6. Maxwell's equations

4TT 1 <9E 1 <9B
c c dt ' c dt

V • E = 4TTQ, V • B = 0

(the last two equations are in fact boundary conditions).

With the closure condition t = 0, the two-fluid model has 15 scalar equations in 15
scalar unknowns p, V, Q, J, p, E, B.

2'2.2. MHD equations. Plasmas dominated by short-range collisions and with
large electric conductivity are quasi-neutral and Maxwellian:

n + « n~', (? « 0, p = p + + p~ « 2p+ « 2p~,
o

Scaling over the characteristic time u~1 — L/V (L plasma extension, V flow velocity)
one derives the MHD system with 14 scalar equations in 14 scalar unknowns p, V, J, p,
E, H:

J =o[ EH x B I,

2*2.3. Ideal MHD equations. In the limit of infinite conductivity a -» oo

E+— x B ) =0
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and the electric field can be explicitly eliminated; the ideal MHD system is then formed
by 11 scalar equations in 11 scalar unknowns p, V, J, p, H:

This is the plasma model most commonly used in astrophysical applications.

2*2.4. Applicability of a fluid t reatment . Consider a plasma with spatial and
temporal scales A and r, and short-range collision mean free path and frequency Ac and
r"1 , respectively. In a gas the collective behavior is maintained by short-range collisions

A > Ac, r--^rc.

In a plasma electromagnetic long-range collisions contribute:

Tc'lr o;

where log A = 81og(AD/&o) > 10. Correspondingly, an MHD treatment is allowed for:

r > Tc,ir5 A > Ac,ir = Vrc^r.

2'2.5. Cold plasma equations. Long-range electromagnetic forces allow a coher-
ent behavior even for plasmas with very low thermal velocities, u <C V, i.e. low collision
frequency. Equations for a cold plasma are obtained from the two-fluid model neglecting
pressure, temperature and transport terms, yielding a system of 14 scalar equations in
14 scalar unknowns p, Q, V, J, E, B:

0 E + I J x B ,
c

0 E +

Dt c
V x B = ^ J + I f , VxE = f

c c at c at
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23. Orbit theory: the strong magnetic field limit. - In non-collisional plasmas, Ac 3> A,
a coherent behavior can be insured by a strong (external) magnetic field:

TTIVC

Ac > rgyr = —— (rgyr Larmor radius).

The orbit theory is used to describe these plasmas as all particles of the same type
follow the same paths. We shall not discuss here these plasma model equations, but
simply mention that one can derive fluid equations in the assumption Aj_ >̂ rgyr.

However a fluid behavior is guaranteed in the two space coordinates perpendicular
to the magnetic field only. For the third coordinate, along the magnetic field, the cold
plasma approximation is used. Such a plasma is essentially anisotropic with p± / py,
T ± /T | | , e t c .

The fluid theory of anisotropic plasmas has been developed by Chew, Goldberger
and Low; the energy equations assume adiabaticity in the perpendicular and parallel
coordinates that can be written in terms of adiabatic invariants in the orbit theory:

Dt\pB) ' Dt\ ffi )

2*4. The plasma-magnetic-field interaction. - MaxwelPequations and Ohm's law pro-
vide the so-called MHD equation

=7 ? VB + V x ( V x B ) ,

where rj = c2/(47rcr) is the electric resistivity. Two limiting solutions are:

1. Plasma at rest, V = 0:

B varies by diffusion on a time scale

L2

Tdiff = = o •
7] Cz

In table II examples of diffusion time scales for astrophysical situations are given.

2. Plasma in motion, V ^ 0, with negligible resistivity, 77 —> 0 (infinite conductivity):

- = V x ( V x B ) .

The form of this equation is similar to the equation for vorticity in turbulent fluids
and, as shown by Alfven, can be interpreted as plasma tying to magnetic lines, or
conversely magnetic lines freezing in the plasma.
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TABLE II. - Diffusion time scales for astrophysical plasmas.

Gas discharges

Earth's nucleus

Sunspots

Solar corona

Interplanetary space

L (cm)

10

10s

109

1011

1013

Tdiff (s)

10~3

1012

1014

1018

1020

The applicability of the two solutions can be defined in terms of the magnetic Reynolds
number 1ZM:

| V x ( V x B ) | » | r ? V 2 B | , ^ » 7 ? - ^ , n

For TZM 3> 1 the freezing-in condition applies.

3. — Waves in plasmas

The collective behavior of plasmas supports many types of waves and oscillations
characterized by complex gas and electromagnetic field couplings. Waves provide energy
transport and radiation emission; at the same time they represent a diagnostic tool for
measuring plasma parameters.

The analysis of dispersion relations of waves is an important chapter in the study of
plasmas. We here summarize some of the basic elements.

3*1. MHD waves. - Using the ideal MHD equations in the incompressible limit

V - V = 0,

— = V x (V x B) = (B • V)V - (V • V)B,

one derives

£ -i
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Starting from an initial equilibrium state with Vo = 0 andpo? Po? Bo spatially uniform
and applying perturbations of the form

V = 0 + V ; , p = po + p', B = B o + B' ,

one obtains the following linearly perturbed equations:

Choosing Bo = BQZ one gets the typical wave equations

<92V Bl d2V 02Bf Bl d2Bf

dt2 Airp dz2 ' dt2 4np dz2 '

corresponding to velocity and magnetic field oscillations transverse to B o with phase
velocity:

Fourier-analyzing the perturbations V ; , B7 oc ex-p[i(uit — kz)] one gets the dispersion
relation for the Alfven waves

that are clearly non-dispersive.

For compressible plasmas one obtains three types of MHD waves (9 angle to Bo):

1. fast magnetosonic =5 u2 ~ (V2 +V£)k2,

2. slow magnetosonic = > to2 ^ ( y2
s *$ )k2 cos2 6,

\ s A. /

3. Alfvenic = > u2 = Vlk2 cos2 9.

Non-ideal MHD waves are dispersive:
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3*2. Waves in the two-fluid model. - A general discussion of waves in plasmas can be
done using the two-fluid equations. One starts from an equilibrium state with n+ = n~~,
Q — 0, V + = V~ = 0 and uniform BQ. Further assume thermal equilibrium between
positive ions and electrons T+ = T~, p + = n+kT, p~ = n~kT. With linear perturba-
tions 8n~, 5n+, 5V~, 5V+, etc. one obtains the linearized equations

V x 5 E - ld61
VXdE c dt

V - < J E =

d5n±

dt

dt ~U ° \ ' c
SQ =

V = n~

Sp±

3

4nSQ,

= Sn~e

•eSV-

Vxffi-

V-SB

~ +Sn+e+

(V±)25n±,

fSkf
V ™± '

4TT

c

; =

o,

3

j +

o,

1 dSE
c dt

c

A plane wave analysis for propagation vector along z with Sf = /o exp[— i(o;t +
yields a fourth-order homogeneous algebraic dispersion relation in k2, F(u,k) = 0. In
principle a;, k can be both complex: usually the choice is k real and LJ complex to study
the local amplification or decay of waves of given wave number. The solution of the
dispersion relation provides four modes propagating in opposite directions: 1 electronic
mode, 1 ionic mode, 2 electromagnetic modes (ordinary and extraordinary).

We first analyze the solutions in the limit of positive ions at rest, me/m\ <C 1. In this
case the dispersion relations becomes of third order, without ion modes.

3*2.1. No external magnetic field, fte — 0 (/?T = Vr/c). Two basic types
of waves exist (Vr thermal velocity, Vf phase velocity, Vg group velocity, n2 = uo2/k2

refractive index):

1. Longitudinal electrostatic oscillations (k || E) or electron plasma waves:

u2 = uZp + V^k2, n2 = fiZ

Ape = 2TT = 2TTV3AD ~ 10AD,

k \ UJ
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2. Transverse electromagnetic waves ( k l E l B ) :

3*2.2. Longitudinal magnetic field k || Bo , 0 = 0. The dispersion relation
splits into two branches:

1. Longitudinal electrostatic oscillations or electron plasma waves:

2. Transverse electromagnetic modes:

- ordinary waves, left circularly polarized, gyrating with electrons:

- extraordinary waves, right circularly polarized, gyrating opposite to electrons:

2 -,

n — 1 —

in the limit of strong magnetic fields the two waves reduce to well-known
results (jj2 = c2k2 electromagnetic, UJ2 = 0^ electron cyclotron;

cut-off frequencies (n -> 0): u;min = (cjpe + fig/4) — (fie/2) for ordinary modes
and cjmin = (cjpe + fie/4) + (fie/2) for extraordinary modes.
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3*2.3. Transverse magnetic field k _1_ Bo, 0 — TT/2. Again we have two
branches:

1. Electromagnetic transverse ordinary waves:

2. Hybrid electromagnetic modes:

•'pe

- upper hybrid resonance (n —>• oo) for u;res = (^pe +

- cut-off (n -^ 0) for LJC = (±fte/2) + (cu2
e +

3*2.4. Generic field orientat ion, cold plasma. The dispersion relation in this
case is known as the Appleton-Hartree equation:

n2 = 1 -
2 ( l - u ; 2 / u ; 2 ) - B 2 s i n 2 # ± r '

4 sm4 0 + 4B2(1 - u2
e/cj2)2 cos2 ̂ .

3*2.5. Ion modes. If one takes into account the mobility of ions, in addition to
some modifications in the above dispersion relations, ion modes are also found.

1. Alfven transverse shear waves (k || Bo):

k2r2

2. Ion cyclotron waves (k || Bo) gyrating with ions:

k2c2 _ ZUpi
~^2~ - flfZ^2

Anm+n- '
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3. Compressible Alfven waves (k J_ Bo):

k2c2 . c2

4. Ion sound waves (ion plasma oscillations):

2 2
P i P e, ,2

In fig. 1 we present the dispersion relations of plasma waves for a specific choice of
the plasma parameters.

4. — Plasma instabilities

The study of the time evolution of a plasma starting from an equilibrium configuration
is important in astrophysical applications to understand the stability of configurations
and the excitation of transient phases. An analytic linear approach based on perturba-
tions developed in orthonormal Fourier modes / a exp[iut] allows to define the following
situations:

- perturbations grow monotonically, Imo; < 0, Reu; -» 0: the plasma configuration
is unstable;

- perturbations perform oscillations of increasing amplitude, Re a; ^ 0, Ima; < 0:
the plasma configuration is overstable;

- perturbations perform oscillations of decreasing amplitude, Re a; / 0, Ima; > 0:
the plasma configuration is stable.

The linear analysis of plasma instabilities, that corresponds at some level to deriving
the mode dispersion relation, is limited because it is cumbersome to prove the orthonor-
mality and completeness conditions. In addition, given the large number of oscillations
and waves allowed in plasmas, non-linear effects of mode coupling and saturation are
crucial in defining the condition of instability beyond its initial development stage.

As an alternative to mode analysis, global variational models are often used in plasma
theory.
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4 1 . MHD instabilities. - In this brief review we shall only comment upon the study
of instabilities in the framework of the MHD theory and discuss two instabilities of wide
astrophysical application.

In MHD theory one starts from an equilibrium configuration as

1 4TT
Po = - Jo x Bo + pog, V x Bo = —J o .

c c

£-•*• He

c cs

Fig. 1. - Dispersion relations of waves in magnetized plasmas.
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Assuming for instance an adiabatic equation of state pp~1 — const, and applying a linear
mode analysis, one obtains the perturbed equations (perturbed quantities are indicated
with an apex)

<9V 1
~^~ = -Vp +-(J'xBo+Jox B'),

= V x (V x Bo),

V x B' = ^ J ' .
c

It is customary to introduce the Lagrangian variable £(ro,£) = r — ro, SO that V =
Dr/Dt — d£/dt. With this variable the above equations are combined in the single
expression

d2£ 1
p0~di = V^ *Vpo + m V" ^ + i^^ V x v x ^ x B ° ^ x B°^ +

+ i-[(V x Bo) x (V x [£ x Bo])] = Q[^(r,a;n)].

The normal mode analysis with £(r, £) = ^2n^(^j^n)^l<JJnt leads to the equation

with appropriate boundary conditions. The mathematical conditions to satisfy by eigen-
functions are: orthonormality, completeness and limitation in amplitude. Singularities
in Q can also arise that give rise to localized unphysical unstable modes.

4*1.1. Rayleigh-Taylor instabil i ty. This instability gives rise to mixing when
heavy fluids are located above light fluids in a gravity field or in the presence of non-
inertial effects yielding an effective gravity.

We assume (fig. 2) a plasma with a density gradient along the x-axis and a homo-
geneous gravitational field along the negative x-axis; a magnetic field is present in the
(y, 2:)-plane. The equilibrium condition for an inviscid, incompressible fluid is

that is perturbed in the form of plane waves:
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0 "0

Fig. 2. - Rayleigh-Taylor instability in magnetized plasmas.

The local analysis with CJ, £ complex and k real provides the following:

(k • Bof±1
dx\

4TT dx

Applying the condition ^ -> 0 at the physical domain boundaries, and assuming further
BOy = 0, kz = 0, one obtains

d
TI IPO dx da;

with ^x = 0 at x = ±oo. This is a typical Sturm-Liouville problem, allowing non-trivial
solutions if

requiring

- CJ2 < 0, where dpo/dx > 0,

- u)2 > 0, where dpo/dx < 0.

Therefore the condition for stability is that dpo/dx < 0 everywhere. The growth rate for
incompressible fluids separated by a discontinuity at x = 0 (pi above, pi below) is

2 1 P i - P2
OT — —gk .

Pi + P2

More generally with k • B o ^ 0 the growth rate is

2 7 Pi ~ P2
UJZ = -gk-

pi +P2 2?r(pi + p2)gk'

For compressible fluids with an equation of state pp~7 — const,

S = g±(ioe«'
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B

27T/k

Fig. 3. - Kelvin-Helmholtz instability.

This last result corresponds to the Schwarzschild criterion for convective instabil-
ity: instability arises (LJ2 > 0) when logpo increases more rapidly against gravity than
(I/7) logpo- Magnetic fields do not change the instability criterion, they simply con-
tribute to the total pressure.

Effective gravity can be substituted by inertial forces: for instance, supernova shells
expanding into the circumstellar gas decelerate and become Rayleigh-Taylor unstable to
mixing with external gas.

4*1.2. Kelvin-Helmholtz instabil i ty. This instability leads to mixing between
fluids in relative motion along a contact discontinuity with formation of shear (turbulent)
layers.

Incompressible hydrodynamic case. The classical case is that of the contact layer between
two incompressible, non-magnetized fluids in pressure equilibrium and with absolute
velocities along the x-axis U\^ (fig. 3). We write the perturbed equations in the two
fluids in terms of the perturbations (v i^p i 2) in the (y, z)-plane:

V - v i , 2 = 0 ,

TT d
U

and develop the perturbations in plane waves oc £x exp[i(kyy + kzz + cjt)]. The dispersion
relation is

1/2
r 9 1 1 / 2

+2 U2)±i[k2
ya1a2{U1 - U2) \ ,

where ai52 = Pi,2/(pi + P2)' Unstable solutions always exist for wave vectors with a
non-zero component along the relative velocity.
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n =0

001
M

Fig. 4. - Growth rates of Kelvin-Helmholtz modes. Left panel: frequencies (Re<£) and
growth rates (Im$) vs. wavelengths; right panel: growth rates against flow Mach number
(OM = ordinary modes, RM = reflected modes).

Compressible hydrodynamic case. Introducing compressibility with pp 7 = const and
choosing the relative velocities as U\ = 0 e C72 = U ^ 0, we write the perturbations in
the form p\^ oc expfig.i^x] and obtain the dispersion relation

Uky)

with

Uky 2 1 1/2

In adimensional form:

UJ
M =

Uky _ UcosO
W2~ Vs2 '

the dispersion relation is

1/2
= $2 [($ - M)2 - ll - ($ - M)2($2 - 1)1/2 = 0.
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MHD relativistic case with plane interface. Introducing magnetic fields and using rela-
tivistic dynamics as applicable to some astrophysical applications (relativistic jets with
F = (1 — V2/c2)1//2), the initial equilibrium state must satisfy the following system of
equations:

<9B
_=Vx(VxB),

We then assume

- plasma at rest in x < 0 (plasma 2) and plasma in motion at velocity V in x > 0
(plasma 1),

- (y,z) is the plane contact interface,

- relative motion along z,

- magnetic field parallel to the interface,

- perturbation / oc exp[i(kyy + kzz — ut) ± q(u)x].

The final dispersion relation is again in the form

and must be treated numerically.
The main results are the following:

- frequency of unstable oscillations are in the range UA <Reu < Uf between Alfven
and fast modes;

- magnetic fields reduce instability (M = V/Vsi flow Mach number); the range of
instability is
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- relativistic effects

Re $ « — non-relativistic,

c / 1 \— f l — — jT/ i * r i relativistic.

MHD case with cylindrical interface (jets). Using cylindrical perturbations

/(r, #, z, t) — g(r) exp [i(kz + nO — ut)]

the dispersion relation becomes

A e r 2 (M-$) 2 - (V A i /Vs i ) 2

V-

yielding various types of unstable modes: pinches (n = 0), kinks or helices (n = 1,2,...),
flutes (n > 2, k = 0). In addition two types of unstable perturbations are found (fig. 4):

- ordinary surface modes (ka ~ 1) rapidly decaying away from the contact layer,

- global reflected modes (ka > 1) with finite amplitude inside the cylinder.

Non-linear evolution. The long-term evolution of instabilities, including mode interac-
tions and transition to turbulent mixing, must be studied numerically. In particular
supersonic and relativistic jets in 2D and 3D, with different density ratios with respect
to the surrounding medium, without and with magnetic fields have been studied for
astrophysical applications up to maximum time scales t ~ 40a/Vs. Different phases of
evolution have been found:

1. linear phase, up to the formation of internal shocks,

2. acoustic phase, with formation of shocks at the contact interface leading to energy
dissipation from jets to ambient; light jets transfer more energy to ambient,

3. mixing phase, heavy jets become very turbulent,

4. quasi-stationary phase, highly mixed and turbulent end result.

In general magnetic fields tend to slow down the instability, while 3D effects accelerate
the transition to the final turbulent state.


