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Fluid description of relativistic, magnetized plasma

R. D. Hazeltine and S. M. Mahajan
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Abstract

Many astrophysical plasmas and some laboratory plasmas are rel-
ativistic, in that either the thermal speed or the local flow speed in a
convenient reference frame approaches the speed of light. Conventional
fluid theories of magnetized plasma are not consistent with special
relativity; indeed the usual definition of what constitutes a magne-
tized plasma must be reformulated in the relativistic case. Beginning
with exact moments of the kinetic equation, we derive a closed set of
Lorentz-covariant fluid equations. The system allows for anisotropy of
the pressure tensor as well as heat flow along the magnetic field. When
anisotropy and heat flow are suppressed the closed set of fluid equations
becomes a manifestly covariant expression of relativisitic MHD.

1 Introduction

Relativistic, magnetized plasma

A relativistic plasma is one in which either the thermal speed—the rms
speed of individual particles—measured in the fluid rest frame, or the lo-
cal bulk flow measured in some convenient frame, can approach the speed
of light. Various astrophysical and cosmic plasmas (galactic and extra-
galactic plasma jets [1], electron-positron streams in pulsar atmospheres and
in the accretion disks of active galactic nuclei [2],electron-positron plasma
and electron-positron-ion plasmas in the Mev era of the early universe [3]),
as well as hot electrons in some laboratory experiments (especially fusion
experiments), are relativistic in this sense.

Many relativistic plasmas of interest are magnetized—that is, their dy-
namics is dominated by the magnetic field. (An appropriate definition of
"magnetized" is given in Subsection 2.) The conventional description of
magnetized plasma dynamics, magnetohydrodynamics (MHD), captures key
features of a magnetized plasma, including the electromagnetic nature of its
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flow (E x B drift), and its peculiar closure of Maxwell's equations (com-
puting the perpendicular plasma current density from the fluid equation of
motion). Relativistic versions of MHD are known [4]. However, MHD is
based on the use of a stress tensor (or energy-momentum tensor) that does
not reflect the dominant electromagnetic force. Indeed the stress tensor of
MHD assumes thermal equilibrium; it is set by thermodynamics rather than
electrodynamics.

A more consistent treatment determines the stress tensor by electrody-
namics, in precise analogy to the determination of the plasma flow velocity.
A special case of this tensor is the "gyrotropic" tensor introduced by Chew,
Goldberger and Low [5], which we denote by CGL. The CGL tensor, be-
ing determined by electrodynamics, displays the characteristic anisotropy
between directions parallel and perpendicular to the magnetic field. But
we will find that this tensor (and its relativistic generalization) is not the
most general one consistent with a dominant electromagnetic force. Fur-
thermore the ("double-adabatic") laws used to advance the CGL tensor are
not obviously physical, especially since heat flow along the field lines of a
low-collision-frequency plasma can be rapid.

The object of this work is to derive a closed fluid description of a rela-
tivistic, magnetized plasma. The stress tensor that we derive is the general
solution to the relevant moment equation in the limit of vanishing gyrora-
dius. This fully general tensor differs from the two special cases of MHD
and CGL, in particular by allowing for both anisotropy and heat flow along
the magnetic field.

Our general framework determines the form of the plasma flow and the
plasma stress tensor using only the exact fluid equations, together with
the orderings characterizing a magnetized plasma. Unfortunately (and pre-
dictably) this framework does not by itself yield a closed description: the
scalar functions that appear—such as enthalpy density, and the perpen-
dicular and parallel pressures—outnumber the field equations. To achieve
closure we use a representative distribution function for each plasma species,
chosen consistently with relativity, magnetization, anisotropy and heat flow.

It is worth noting that the covariant analysis of fluid equations for mag-
netized plasmas is simpler and more transparent than the nonrelativistic
version found in many textbooks. In particular the relativistic derivation
suggests straightforward means for the inclusion of finite gyroradius physics.
Such generalization will be the subject of future work.



2 Electromagnetic field

Faraday tensor

We use the summation convention, with greek indices varying from 0 to
3, and roman indices from 1 to 3. We occasionally use boldface for the
i = 1,2,3 components ("vector" components), writing an arbitrary four-
vector C^ as

We also measure all speeds in terms of the light speed, so that c = 1.
The Faraday (or field-strength) tensor is defined by

where A^ — (0, A) is the four-vector potential and

Here ifv — diag{ —1,1,1,1} is the Minkowski tensor.
The tensor dual to F^v is

z

where e^VKX is the antisymmetric tensor. We recall that T is dual to F in
another sense:

^(E, B) = F(E -> B, B -> - E ) (1)

Here of course E and B are respectively the electric and magnetic fields.
It is also useful to recall that the action of the Faraday tensor on an

arbitrary four-vector C^ is given by

FpVCv = ( -E • C, EC0 + C x B) (2)

The Lorentz force is a special case of this formula.
The well-known Lorentz scalars (relativistic invariants) formed from F

and its dual will be denoted by W and A:

and
-T^F^ = E • B = XW (3)
2

This last relation is especially important because A, or E^ is a small pa-
rameter of our theory.



Magnetized plasma

We will consider a plasma system to be magnetized if two criteria are satis-
fied:

1. The two electromagnetic field invariants, W and A, must satisfy

W > 0 (4)
A < 1. (5)

2. The thermal gyroradius must be small compared to any gradient scale
length:

5 < 1 (6)

where 5 is the ratio of the thermal gyroradius of any plasma species
to any gradient scale length.

A convenient ordering turns out to be A ~ 8.
This definition of a magnetized plasma will be used implicitly through-

out the following analysis. One example of its significance can be seen by
considering the well-known relation

Thus the Faraday tensor and its dual are inverse tensors, up to a multipica-
tive constant. However in the magnetized case (A —» 0), the relation (7)
plays a very different role. It no longer provides a useful inverse, because of
the small denominator that would occur. Indeed, in the magnetized case T
becomes an annihilator for F rather than its inverse.

That the Faraday tensor and its dual have (two-dimensional) null spaces
in a magnetized plasma plays an important role in our argument.

Quasi-projectors

A covariant meaning is given to "perpendicular" and "parallel" by the op-
erators

e; = -F^F^/W (8)

V = < - < (9)
These tensors become approximate projection operators in the magnetized
limit, A ~ S —> 0. Indeed, from the easily verified identity



one can show that

and similarly for b£. Furthermore one can show that, in the rest-frame (R),
the action of e and b on an arbitrary four-vector C = (Co, C) is given by

V*CK\R = (C0,C,|) (11)

e^CK\R = (0,C±) (12)

Here the J_ and || subscripts have the usual three-dimensional meaning:
C|| = BBC/B2 = bb-C, Cj_ = C—Cy. Notice that we use the abbreviation

b = B/B.

Exact projection operators have been introduced previously by Frad-
kin [9]. Because the exact operators are extremely complicated, it is fortu-
nate that the quasi-projectors defined above are sufficient for our purposes.

3 Fluid closure

Closing Maxwell

A plasma is distinguished from other physical systems by its strong cou-
pling to the electromagnetic field. This coupling enters a fluid description
through the second moment equation, the conservation law for energy-
momentum [7]. If the total (summed over all plasma species) energy-
momentum tensor for the plasma is denoted by T, then we have

= 0 (13)
L/'JL

where Ju is the four-vector current density.
All fluid descriptions of magnetized plasma evolution use this second mo-

ment as a constitutive relation, determining the four-vector current density
in terms of the fields, and thus providing closure relations for Maxwell's
equations:

dx?



We next review the procedure for computing the current density in a
magnetized plasma, in part to display its relative simplicity in the rela-
tivistic case. By multiplying (13) with F**K and using the definition of the
perpendicular projector, we obtain

expressing the two perpendicular components of the current density in terms
of the stress. (Because the perpendicular quasi-projector has a 2-dimensional
null space, (16) constitutes only two independent equations.) The remaining
components of JM are found from charge conservation

and quasi-neutrality, which has the covariant expression

r\Jv = 0. (18)

Here C/M = (7,7V) is the local four-velocity of the fluid, with

7
2 = (l - V2)-1 (19)

the relativistic dilation factor.
In a relativistic plasma the charge density can be presumed to vanish

only in the instantaneous rest-frame, as (18) evidently requires. Note in
this regard that the (local) instantaneous rest-frame is an inertial frame
whose velocity, measured in the laboratory frame, equals the fluid velocity
at some arbitrarily chosen space-time point x.)

We conclude that the four-current density is determined, closing Max-
well's equations, once the plasma stress tensor is known. The remainder of
this paper is devoted to computing that tensor. Recall that conventional
MHD obviates most of the following analysis by assuming the stress tensor
to have the thermodynamic form,

T^ =prf + hU»Uy (20)

in terms of the pressure, p, the enthalpy density, /i, and the fluid velocity
four-vector U^. This form would pertain if thermal relaxation due to colli-
sions occurred more rapidly than any other process of interest. Hence, the
present work can be described as an extension of MHD into regimes of much
lower collisionality. In fact we ignore collisions altogether, and find the form
of the stress tensor for a plasma subject to the electromagnetic force alone.



Small gyroradius

We compute the plasma stress tensor T^v in terms of a sum over the stress
tensors T^v of individual species,

species

suppressing a species subscript on T^v'. Our analysis is based on the three
exact (collisionless) conservation laws, for each species,

= 0 (22)

= 0 (23)

Here F^ is the four-vector measure of the fluid particle-flux density and
M^P 5 which we will call the "stress-flow" tensor, is the third-rank moment.
For explicitness we express each moment in terms of the (Lorentz-scalar)
distribution function /(#,p), where p represents the four-momentum p^:

( 2 4 )

(25)

( 2 6 )

These formulae use the invariant momentum-space volume element d3p/p°.
Recall that four-momentum p^ satisfies the mass-shell condition

p° = ^Jm2 + p2. (27)

where m is the particle mass.
In (22) and (23) the first term involves the macroscopic scale, while

the remaining terms—those proportional to the charge e—contain the short
gyro-scale (gyroradius or gyroperiod). Thus the small-gyroradius limit is
obtained formally by allowing the charge to become arbitrarily large, e —> oc.
We next consider the forms of the F^ and T^v in this limit.



Magnetized flow

We express the flux density as

(o)

where F/L denotes the lowest order (S —> 0) flux density and F^x ~ 5. Then
(22) implies

i^T ( 0 ) M = 0 (28)

a relation that fixes the two perpendicular components of the flow. For the
two remaining flow-components, we have the particle conservation law, (21)
and an additional equation to be derived presently. Recalling (2), we see
that (28) implies the MHD law Ff0)E + r ( 0 ) x B = 0.

We avoid trivial complications by now restricting our attention to a
plasma with a single ion species, and by assuming that the ions and electrons
share, approximately, a common rest-frame (see below). Then (18) requires
the ions and electrons to have the same rest-frame density, which we denote
by n#, and the flux density is related to the flow velocity by

F" = nRU» (29)

Also at this point we simplify notation by using the symbols F^ and
to refer to the zeroth-order vector fields, suppressing the (0) subscript. In
other words, F^ and U1* represent fields that satisfy (28), and (2) implies

r " = 7 n a ( l , V | | + V £ ) (30)

where V^; = E x b/B and Vy = bb • V. Note in particular that all factors
of 7 are evaluated at the lowest-order flow V = V|| + V#.

Equation (30) shows that the perpendicular flows of both plasma species
are the same. Note that otherwise the perpendicular current would be larger,
J^ ~ 5"1, than allowed by (16). We do not force the (lowest-order) parallel
flows of the two species to coincide. However, we require that the relative
velocity of the rest-frames of any two species s and sf be nonrelativistic:

Thus we allow arbitrarily large plasma flow, but not arbitrarily large current
density. Only in that case does it make sense to refer to a fluid rest-frame,
in which the flows of both species can be assumed small.

In this regard, notice that we can choose an approximate rest-frame, in
which the lowest-order flow, rather than the total (exact) flow, vanishes.
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Such a choice makes it clear that the electric field is negligibly small (E <C
B) in the rest-frame, since E\\ has been neglected and the lowest-order
perpendicular flow is E x B. It should also be noticed that a true rest-
frame in which the electric field exactly vanishes cannot occur in a plasma
that is dominated by the electromagnetic field: if there were such a frame
the Lorentz force would vanish in every frame.

For later application we point out that (22) has become, in view of (28),

> = 0 (31)

an equation in which all terms are formally of the same order in S. Notice
that T^j , can be characterized as the perpendicular flux density in the
approximate rest-frame.

Magnetized stress

The stress tensor is computed in close analogy to the flow. Again allowing
e-^oowe find that (23) reduces to

FWT/ + FPuTv
a = 0 (32)

To find the general solution to (32), we use the indicial symmetry of the
stress tensor and antisymmetry of the Faraday tensor. Then properties of
the projection operators can be combined to show that T^v must have the
form

(33)

where py, p± and h are Lorentz scalars corresponding respectively to parallel
pressure, perpendicular pressure and enthalpy density, and where the four-
vector q^ must satisfy

eaPqa = 0 (34)

in order to satisfy force-balance, and

Uaq
a = 0 (35)

in order to preserve the significance of pn and p±. Thus there is only one inde-
pendent component in g ;̂ this represents parallel heat flow in the rest-frame
and is denoted by q\\. It is then convenient to introduce the dimensionless
four-vector ka such that



That q^ represents heat flow will be clear from the fluid equations to
be derived presently. It is noteworthy, however, that it can also be demon-
strated from general physical considerations, based on (33) alone. Thus de
Groot [6] shows that the heat flow is generally related to the stress tensor
by

<f = (TJVTV(T - hUa

which is consistent with (33).
We emphasize that (33) represents the unique, general form of the stress

tensor in a plasma dominated by the electromagnetic force. It is instructively
compared to the special case (20) used in MHD; evidently collisional dissi-
pation has been allowed to remove stress anisotropy in the latter. Compared
to the CGL stress tensor, (33) differs in allowing heat flow. The fact that
the electromagnetic field appears in the stress tensor only through quasi-
projectors b^v and e^v is a reflection of guage-invariance and the indicial
symmetry of T ^ ; recall (25).

The stress tensor contains eight unknown scalar functions: n#(a;,£),
pj|(a;,£), p±(x,t)1 /i(rr,t), the three independent components of r^(#,£), and
the single independent component of q^(x^t). Since (21) provides the evolu-
tion of the density, and (28) determines the two perpendicular components
of the flow, closure of our system requires five additional equations (for each
plasma species); deriving those equations is our remaining task.

Two of the needed equations are derived from (31). We multiply this
relation by T, use (7) and consider the A ~ S -> 0 limit to find

0 (36)
oxv

which constitutes two independent equations. These can be taken to advance
the parallel flows and parallel pressures of each species.

Advancing the remaining variables in T^v is less straightforward. Indeed,
finding a closed fluid description of a magnetized plasma is more complicated
than the neutral gas case. For the latter, external forces are presumed
known, and only the stress components themselves need to be advanced in
time. But the key "external" force acting on a plasma comes from J x B, and
this force must be computed, as we have shown, from the stress tensor, rather
than being used to advance that tensor in time. Thus only two components
of the energy-momentum law—the two components of (36)—are available
for calculating the stress tensor.

An equivalent statement is the observation that (31) is useless as an
equation for T^v—because we have no independent equation for I'm—unless
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the term involving T^ is annihilated. But such annihilation leaves only two
independent equations. It is this circumstance that forces us to consider the
higher-rank tensor Ma/31.

Magnetized stress-flow

We study the tensor MQ^7 in a magnetized plasma by following the pro-
cedure used for Ta and Ta/3. We use curly brackets to indicate indicial
symmetrization; for example

It is straightforward to see that the £ —>> 0 limit of the fourth-rank conser-
vation law is

an equation that determines the form of the stress-flow in the magnetized
case. Assuming that the only four-vectors in Ma/3/y are Ta and qa (or,
equivalently, Ua and ka), and using identities implied by (27), we find that
it must have the form

£ (37)
k

where

f (38)
(39)
(40)

(41)

and the m& are arbitrary scalars. Here it should be kept in mind that the
quantity C/M refers to the lowest-order flow velocity, given by (30).

It can be seen that the M\~ satisfy

so that

as follows from its definition: compare (24) and (26).
The evolution of the magnetized stress-flow is governed by two equations,

analogous to (36), that are obtained by annihilating the right-hand side of
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(23). Appealing as usual to indicial symmetries and properties of the quasi-
projectors, we find two exact constraints:

- = ° (42)
dMK/3a

Recall here that U*1 — T^/UR refers to the lowest-order flow, satisfying (28).
An explicit derivation of these constraints is the subject of Appendix A.

We will find in Section 5 that (42) can be expressed as a conservation

A (**&" +m*r\ = 0 (44)

In other words the four-vector

G» = W-l'2{mlU
v + m3k

u) (45)

is conserved in the same manner as, for example, F^. The new conservation
law

dx» ~
replaces, in a sense, the double-adiabatic assumption of previous literature
[5]. What is especially interesting is that the new conserved four-vector is
not simply a fluid quantity, like F^ or q11. Because of the factor W~~1/2 in
(45) as well as such electromagnetic constraints as (34), G^ depends crucially
upon the electromagnetic field.

Of course the conservation law implies that G° is a conserved density: if
there is some closed, space-like surface S on which G vanishes, then

£ f
dt Jdt

where the integration volume is the region enclosed by S.
If the rrik were known, the relations (42) and (43) would determine the

evolution of the perpendicular pressure and the parallel heat flow. Thus we
have found dynamical equations for the variables

which we therefore take as the basic dynamical variables of our system. It is
convenient to consider the remaining four scalars—the enthalpy h and the
three ra^—as 'auxilliary parameters.'
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We have reduced the closure problem to that of relating the auxilliary
parameters to the dynamical variables. The desired relations cannot be
found from moment equations but, as noted in Section 1, require separate
information about the distribution function.

It is convenient to take note here of the form of the tensor Ma^7 in the
(approximate) instantaneous rest-frame of the fluid. For convenience, we
orient this frame so that B = (0,0, B); also recall that E is negligible in the
rest-frame. It is then straightforward to show that the only non-vanishing
components of the rest-frame tensor MR are

M£ 0 0 = m2nR + 3mi (46)

M°R
03 = 5 m 3 (47)

M£33 = m1+m2 (49)
Ml

R
13 = m s = M2

R
23 (50)

M 3 3 3 - 3m3 (51)

4 Distribution function

Relation to kinetic theory

Our analysis has begun with exact (coUisionless) moments of the kinetic
equation. After defining what is meant by a magnetized plasma, we have
used the limit S ~ A -> 0 to find magnetized fluid equations for advancing
the dynamical variables of the system. However this description requires
additional auxilliarly parameters, not fixed by moment equations. We next
compute these parameters from a distribution function.

The key properties of the lowest-order distribution function in a magne-
tized plasma are well known: it is gyrotropic (independent of the velocity-
space angle corresponding to rotation about the direction of B) and it solves
a 'drift-kinetic' equation. The first requirement is easily implemented ex-
actly, but a fully general fluid implementation of the second is difficult,
especially in nonlinear regimes. For this reason, the only fully rigorous mag-
netized system, so-called "kinetic MHD," abandons the fluid point of view at
this point, making the drift-kinetic equation an essential part of the closed
system[10].

Note however that the details of the distribution are not relevant to clo-
sure: any one of the countless distributions that reproduce the general stress
tensor (33) would yield the same closure of Maxwell's equations and there-
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fore the same dynamics. In other words, what is needed is a representative
of the equivalence class of distributions that are consistent with (33).

With this in mind, we replace the drift-kinetic equation by a para-
metrized distribution that reproduces the form of the magnetized stress
tensor and is sufficiently flexible, through its space-time varying param-
eters, to consistently represent the fluid equations of motion. Indeed, the
parameters in the distribution are proportional to the dynamical variables of
the fluid system, and therefore evolve according to the fluid equations. Be-
cause the distribution function allows evaluating the auxilliary parameters
in terms of the dynamical variables, it closes the system.

The assumed form of our respresentative distribution will describe a wide
variety of physical conditions. On the other hand, as a function with mod-
erate velocity-space gradients, it will poorly represent situations, involving
for example beams or velocity-space boundary layers, where the actual dis-
tribution is not smooth.

It is clear that this approach agrees in spirit with the "thirteen-moment"
closure due to Grad[ll, 12]. However, we point out that the thirteen-
moment approximation is significantly modified by relativity, which rules
out the polynomial expansion used in non-relativistic theory, and by mag-
netization, which imposes new symmetries on the distribution and makes
half of the conventional closure equations unavailable; recall the discussion
following (36).

Explicit form

Our assumed distribution is the simplest Lorentz-scalar distribution that is
gyrotropic (and therefore consistent with lowest order kinetic theory), and
that allows for both stress anisotropy and heat flow. It has the form

f(x,p) = /M[1 + A + Apae
a% + Qab

aPpp(l + QUa
Pa)} (52)

where / M is a relativistic Maxwellian, discussed presently. It can be seen
that the scalar A measures the anisotropy, while Qa oc qa measures heat
flow. Note in particular that Qa satisfies the constraints (34) and (35) and
therefore has only one independent component.

The remaining scalar parameters will be chosen presently for conve-
nience. Thus our distribution can be parametrized by the density n#, the
two pressures p\\ and p±, and the parallel heat flow </|j.

At this point we recall the relativistic definition of a Maxwellian distri-
bution. The canonical momentum PM = p^ + eA^ allows us to define the
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invariant energy ; then we have

where x and p represent the correspoinding four-vectors and the normaliza-
tion NM(%) and temperature T(x) are Lorentz-scalars. In the rest-frame
this becomes

IMR = NMe-p°lT

Because of the mass-shell condition (27), moments of the rest-frame
Maxwellian have the form

l - 2 - - - ( 2 n - l ) g n ( O

where if2 is a MacDonald function, s = |p|/m, and £ = m/T. We use this
formula to find the normalization

NM =

where $ = 4̂° is the electrostatic potential.
Thus the rest-frame Maxwellian is

fMR = ( 5 3 )

Returning to (52), we now choose the parameters A and Q to insure
that the rest-frame density coincides with that of the Maxwellian alone, and
that the rest-frame flow velocity vanishes. The result is

Here and below all MacDonald functions are evaluated at £. Choosing the
same coordinate orientation as in (46), we find the form of our distribution
in the instantaneous rest-frame:

(54)

Here Q3 is the only non-vanishing component, in our special reference frame,
ofQQ.
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Scalar moment s

Since any scalar can be computed in the rest-frame, we use (54) to compute
the various scalar parameters of interest. In particular we find that the
dynamical variable

P\\ = j —o-JRPs

turns out to be
P|| = nRT

It follows that the parameter £ has a simple expression,

in terms of the dynamical variables nR and p\\.
Next we relate the two parameters A and Q3 to dynamical variables.

First we compute

^ (56)

allowing A to be expressed in terms of the density and pressures. Similarly,
by computing the (0,3)-component of the stress tensor in the rest-frame,
we find that

^ 3 (57)

where we use the abbreviation

K = K-2-ITZ
 (58)

Finally we turn to the auxilliary parameters h and the m/-, which are
also scalars and therefore computable in the rest-frame. For the enthalpy
density we find

K ( 2A \
JC) (59)

This expression generalizes a well-known isotropic (A —> 0) result [3]. In view
of (55) and (56), it expresses h in terms of the dynamical variables nR, p\\ and
p_i_. Computing the rrik is more complicated but still straightforward; one
first solves (46) — (51) for the m^ in terms of components of the rest-frame
stress-flow. Then, after conputing those components from their definitions
and (54), one finds that

mi = w[K^ + {p^~p±){K3~2wK2)} (60)

16



m2 = m(p| |-pj.)-^- (61)

77i/C
( 6 2 )

5 Alternative forms

Gradients of projectors

For many applications it is convenient to express the fluid equations in
terms of three-vectors, sacrificing manifest Lorentz covariance. We display
the three-vector versions here. Since the three-vector form of the plasma
flow coincides with the conventional MHD result and is given by (30), we
need consider only the relations (36) for the parallel pressure and parallel
flow, and the two contstraints on stress-flow, (42) and (43).

Making our results explicit will require expressions for the gradients of
the quasi-projectors b^v and e^v. To this end we recall the Maxwell stress
tensor

\

and observe that

2 W
Then, since Maxwell's equations (15) and (14) imply

it is not hard to show that

(64)

W

dx» W

New conservation law

It is now straightforward to show that the conservation law, (44), follows
from (42). We need to compute

(TOl Mf + mzMf + m3M^) (67)
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where the M^1 are given by (38) - (40). Observing first that neither ka

nor Ua survive perpendicular projection, we have

= 0,

= 0

It is similarly straightforward to show that

On the other hand (66) and (21) can be used to show that

A similar calculation gives

Substituting these results into (67) we obtain

which is equivalent to (44).
To express the conservation in terms of three-vectors, we first need to

consider the four-vector q*1 — q\\k^. Using the constraints (34) and (35) one
finds that

Then, returning to (45), it is straightforward to find explicit forms for the
temporal and spatial components of the conserved vector G^:

W1/2G° = (mi7 + ™ 3 | F ^ | J (69)

/ B2 \

W1/2G = b(mi 7 + m 3 ) + V E Imi7 + m 3 — ^ | ) (70)

where the ra& are given by (60) and (62).
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Other equations

The remaining three equations can be treated similarly to (42); we omit the
details and show only the results.

A more explicit form of (43) is

d _ ( rni\ m2 d , {m2W\ 5 dkms „ rm

Here and below we use the identity

u»A.=
dxv 1dt

where d/dt = d/dt + V • V is the conventional convective derivative.
Finally turning to (36), we introduce the abbreviations

to express the temporal component as

+ ^ V , | log W + jnRb • ~ + ̂ qi]b • £>||(7V) = 0 (72)

and the spatial components as

(73)

6 Closure summary

Maxwell's equations are closed in a magnetized plasma by expressing the
four-vector current density in terms of the stress tensor of the plasma,

species

19



where T^u is the stress of a single plasma species. This closure procedure [10]
is implicit, at least, in most textbook descriptions of a magnetized plasma;
its relativistic expression is given by (16) et seq.

A closed fluid description of plasma dynamics is therefore contained in
a set of equations that fix the evolution of the stress tensor T^v of each
plasma species. The crucial step in our closure is the observation that the
electromagnetic force imposes a certain form on the stress, given by (33):

F1U"
e»vk

v

Uuku

= 0

= 0

= 0

il n (74)

Here b^v and e^v are quasi-projection operators defined in Section 2, while
the fluid four-velocity U^ and heat flux density q\\k^ are constrained by

(75)
(76)
(77)

We have noted that (75) reproduces the familiar E x B drift for the
motion perpendicular to the magnetic field. Thus F^ has two independent
components, corresponding to the rest-frame density UR and the parallel
flow Vj|, while q^ has a single independent component, corresponding to the
parallel flow of heat in the rest-frame, gy. The remaining three parameters
in the stress tensor—py, p± and h—are Lorentz scalars.

The relativistic expression of quasineutrality, (18), forces n# to be the
same for both species; the other quantities appearing in T^u will generally
differ between species. Thus the stress tensor for each species is determined
by six parameters. Five of these,

nR, pj|, p_L, V\\ and q\\

constitute the basic dynamical variables of our system. For reasons of con-
venience the enthalpy h is classified as an auxilliary parameter.

The evolution of the five dynamical variables is set by the following five
evolution equations:

a* = ° (78)

8TKV

~K = ° <79)

- = 0 (80)
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where (79) constitutes two independent equations, and where Ma^7 is the
stress-flow tensor of (26). These relations hold to lowest order in the small-
gyroradius ordering; they follow directly from the definition of a magnetized
plasma (Section 2) and the neglect of collisions. (Including collisions will be
the subject of future work.)

The magnetized form of the stress-flow tensor depends on three ad-
ditional scalar functions, m/-, which are grouped with h in a set of four
auxilliary parameters. These quantities are computed (that is, expressed in
terms of the dynamical variables) from a representative distribution func-
tion, which is chosen to have the simplest form consistent with magneti-
zation, anisotropy and heat flow. The distribution is parametrized by the
dynamical variables, and therefore evolves according (78) - (81).

The parametrization of the distribution is displayed in (52) et seq.; the
enthalpy is expressed in terms of the dynamical variables by (59),

and the mk by (60) - (62).
Our fluid description of a magnetized plasma is relatively simple; it in-

volves only two additional variables, the anisotropy and heat flow, beyond
ordinary MHD. (If the anisotropy and heat flow are equated to zero, the re-
sulting equations coincide with relatavistic MHD.) The entire closed set, in
manifestly covariant form, fits on a single page. Even the more complicated
three-vector form, given by (69) - (73), is hardly forbidding.

One of the equations in our closure, (80), is found to be expressible as a
conservation law,

The conserved four-vector,

+ m3k^) (83)

involves a novel combination of fluid and electromagnetic variables.
The system derived here is intended to allow detailed studies of astro-

physical and cosmic plasmas at a level more realistic than MHD. Its nonrel-
ativistic limit, now under investigation, should similarly assist 'post-MHD'
investigations of magnetized laboratory plasmas.
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Appendix A

Here we verify the constraints (42) and (43) by appropriate operations on
the right-hand side of (23). Consider first

where we have used the (exact) identity (10). However the first term on the
right-hand side is

FfTj* = F^TuP = 0

because the first factor is antisymmetric in its indices and the second sym-
metric. Applying the same argument to each term, we conclude

Hence (23) implies (42).
For the remaining constraint, we recall (28) to see that

a p { ^ Tu
a) = 0

and (43) follows.
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