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1 Relativistic mechanics

1.1 Notation

We use the metric tensor r/ap with 7700 = — 1, % = 1; Greek indices vary
from 0 to 3, Roman indices vary from 1 to 3. Boldface indicates a 3-vector,
so that

and
y\iy _ y2 _ (yO)2

We consider two reference frames, the "lab frame" S and a frame S1 that
moves at velocity v relative to S (that is, the velocity of 5', measured in
5, is v). Coordinates of a particular event, as measured in S and S1', are
denoted by x and x1 respectively.

The Lorentz transformation matrix is denoted by A, so that a 4-vector
transforms according to

yff — (^ y

We recall that

7 ~7^i -7^2 -7^3

-7^2 6162(7 - 1) 1 + 6 2 ( 7 - 1 ) 6263(7 - 1)
-7^3 6163(7 - 1) 6263(7 - 1) 1 + 6|(7 - 1)

where v = v/v. An alternative expression for A is

A°o = 7 (2)

A^ = -yVj (4)

It is useful to consider the special case in which v is aligned with a coordinate
axis. We choose v = (0, v, 0) and find

7
0

— 'JV

0

0
1
0
0

0

7
0

0
0
0
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The speed of light is equated to unity, c —>• 1, so that the 4-momentum
of a particle of mass m and 3-momentum p is given by

with p° — A/P2 + m



1.2 Invar iance

Suppose that (x,p) are the coordinates, measured in a frame 5, of some
point in phase space (x and p are 4-vectors). The same point as measured
in a different Lorentz frame, S", has coodinates (xf = Ax,p* = Ap) and a
function F(x,p) is a Lorentz scalar if its value as measured by an observer
in S' is given by

F'(x',p')=F(x,p). (6)

That is, F has the same value to both observers when measured at same
phase-space point. Similarly a 4-component object V is a Lorentz vector or
4-vector if its components in the two frames are related by

and so on. Tensors (of whatever rank) that transform according to these
Lorentz rules, with the number of A-factors corresponding to the rank, are
Lorentz tensors.

Notice that being a Lorentz tensor puts no constraint on the function
form of the tensor components; it only specifies the transformed components.
There is a distinct property, however, that does constrain the functional
dependence. We say that a function G(x,p) is invariant under Lorentz
transformation if

G'(x',p') = G(x',pl)

In other words the functional form is preserved. Notice that this definition
is meaningful only when a rule for determining G1 from G is given. For
example, if G is a Lorentz scalar, then the invariance property becomes
G{x',p') = G(x,p) or

G(Ax, Ap) — G(x,p),

which does indeed constrain the form of G. An example of an invariant
(scalar) function is

p . x = p^x^

In this sense the 4-dimensional volume element is invariant,

d4x = d V

because volume elements transform with the Jacobian, and the Jacobian of
a (proper) Lorentz matrix is unity:

For the same reason,



1. dAp, where p denotes 4-momentum, is invariant;

2. the 4-dimensional Dirac delta functions,

64{x -x) = Six1 - xl)5{x2 - x2)S(x3 - x

and SA(p — p) are invariant.

Here x^ and p^ are specified four vectors.
The mass-shell restriction

(p0)2 - p2 = m2

involves only the invariant function pmupmu^ so that the 5—function

02 _ p2 _ m 2 } = _^_s{p0 _ ^ + m2)

is scalar. (Here we have discarded the negative energy root.)

1.3 Equat ions of mot ion

The relativistic Hamiltonian for a single particle having position x and mo-
mentum p is expressed in terms of the 4-vector potential

where A is the vector potential and (j) the electrostatic potential. We intro-
duce the canonical momentum

which is obviously a 4-vector, in order to write the Hamiltonian as

fT(x,P) = P° = Jm? + (P - <?A)2 + $ (8)

where $ = qcf) is the potential energy. Notice that

dH P-qA
x — 2 + (P - qA)2

so that the relation between velocity x and momentum p is independent of
the magnetic field:

xym2 + p2 = p



After solving this relation for p, one finds that

P — rn^vic (Q)lib Y-A. I £7 I

where

Notice that 7 has the equivalent expression

7 =

which implies
pQ = my. (10)

The other set of Hamilton's equations

reproduce the Lorentz force law, as follows:

Hence we have

f + ^

We next use a standard vector identity for V(P • A), and then eliminate
P = p + qA in favor of p. The resulting quadratic terms in A precisely
cancel,

A x V x A + A - V A - V(A2/2) = 0,

p + qA - ~r(p • VA + p x B) -
pv

leaving

or, in view of (10 and (9),

p — g(x x B — V</>) — q(A — x • VA)

In the last term here, A is the total time derivative

A = —- + x • VA
at



Hence we have
a A i - (ID

where F^ = g(E + v x B) is the usual Lorentz force.
Next we write the equations of motion in covariant form. This requires

the "4-force" F^ satisfying

dr
where r is the proper time. Since

dt = 7G?T

we see that the spatial components of the 4-force are

Fl = 7** (12)

(Thus the ordinary 3-vector force is not part of a 4-vector.) For the re-
maining component, we equate dp0^ the energy change, to the work done by

dp0 = FL • vdt.

But (10) implies that vdt = m - 1 pdr , so

dr m E ' v '

or F° = F • v, (Note that F without the CL' subscript refers to the spatial
components of the 4-force.)

It is helpful to recall here that

It follows from (12) that the spatial components of the 4-force satisfy a
slightly different condition:

(£)•(§)-»
since E — my.
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1.4 Field strength tensor

It is helpful to express the electromagnetic force in terms of the field strength
tensor,

or, in Schutz' language, F = dA. Here

' dxnu y dt' }

Explicitly,
0 Ex Ey Ez

pill/ _ —Ex 0 — Bz By , ,
—ii/y £>2 U — r>x

—Ez —By Bx 0

Since lowering the first index reverses the sign of the 0th row, and lowering
the second reverses the sign of the 0th column, we have

0 -Ex ~Ey -Ez

j-, _ Ex 0 ~BZ By , v

^V Ey Bz 0 — Bx

Ez —By Bx 0

The action of F on any four-vector K can be seen from direct multipli-
cation:

F^KK = (E • K, EK0 + B x K) (17)

In particular we consider the product

A) - (p

(17) we see that
Til

F^pu = —F". (18)
q

1.5 Energy-momentum tensor

Landau and Lifschitz show from symmetry considerations that the energy-
momentum tensor of an ideal fluid, when measured in the rest-frame of the
fluid, will have the form

u

0

7

0

0

0

0

0

p



where u is the energy density, p is the pressure and the O-argument refers to
the state of rest. Notice that this definition makes p and u Lorentz scalars.
The fact that the symbol 'p' has more than one meaning will rarely cause
confusion.

When the energy-momentum tensor of the moving fluid is measured in
the lab frame, its components will be boosted by —v, the velocity of S as
measured in Sr. Denoting the tensor of the moving fluid, measured in the
rest frame, by T(v), we have

T(v)=A(-v)-A(-v) .T(0)

where A(—v) = A(v)"1 is the Lorentz boost inverse to the A(v) of (1); its
components are denoted by

Straightforward, albeit lengthy, calculation yields

Toi(v) = A0
QA^T^(0) = <y*Vi(u +p);

and
T" (v) = A^A^T^O) = SijP + 7

2(w + p)viVj.

Recall that the combination U + pV, where V is the volume, is a ther-
modynamic potential called enthalpy. Therefore the quantity appearing in
the energy-momentum tensor

u + p = h

is enthalpy per unit volume, or enthalpy density.
A simpler expression for T(v) is

Ta$ (v) = r]a0p +(u+p) Ua U13 (20)

where
U = (7,7V)

is the obvious 4-vector for fluid flow. It is not hard to verify the two expres-
sions for the energy-momentum tensor agree.



2 Kinetic theory

2.1 Scalar distribution function

The distribution function /(x, p, t) is defined such that

n(x,t) = jd3pf

is the density of particles at x at time t. Here we show that / is a Lorentz
scalar.

We begin with the particle trajectories given by x^(t) and Pi(t). Then
the distribution function can be expressed as the ensemble average of the
micro-distribution (Klimontovich-Dupree)

We next introduce a separate time variable t{ for each i in order to write

/• = £ fdUS(t - U)53(x - xi{
i J

or, choosing x\ — t^

Now the proper time interval for the ith particle is

i
li

where 7* is the relativistic factor for the ith particle. We recall (10) in order
to write

o^dn (21)
m

whence

m

We multiply this function by the Lorentz scalar appearing in (7):

,p,t) = itf(p° - V
/p2+rn2)/,(x,p,i)

9



and note that the mass-shell factor can be put inside the sum and then
evaluated at each p^:

F = ^Jdri:^84(x - xt)8
3(p -

1E/
m ^ J

or

This quantity is manifestly a scalar. Since it differs from /* by a scalar
factor, and since the physical distribution / (x , p, t) is the ensemble average
of /*, we conclude that / (x , p,£) is a Lorentz scalar.

It is worthwhile to recall the significance of this fact. Suppose that
the distribution function of some fluid is known in the fluid rest frame, R:
f'(x',pr) = fii{xfipf). Then, if the local fluid velocity (as measured in the
"lab frame" S) is V, we have xf = A(V)x, p1 = A(V)p and the distribution
observed in the lab frame is, according to (6),

/ ( s ,p) = /«(As,Ap). (22)

In the presence of an electromagnetic field, / # can depend on position
both directly (through its, density, for example), and also through the (rest-
frame) field variables Af/1(x'). It is natural to express the lab-frame distri-
bution in terms of the lab-frame fields AfJl(x)^ and therefore to write the
transformation law in the form

f(x,p, A(x)) = fR(Ax, Ap, AA(Ax)) (23)

2.2 Momentum-space volume

We have found that the quantity d3p/E is an invariant. An alternative
derivation of this fact is instructive, albeit tedious. The idea is to compute
the metric tensor gij measuring distance on the mass shell. The volume
element on the mass shell is then given by the Jacobian y/\g\, and it will
turn out that

\f\9\ = ™/E. (24)
Thus we recall the four velocity u^ — dx^/dr where r is proper time. It

follows that

u° = 7,
u = 7V

10



Note that the 3-vector v determines a 4-vector u11 = (7,7V) essentially
because of the implicit mass-shell restriction. That is, if we define

then we find that
Z / Z/11 — 1 3 * 1 3 — i/L jf

or
m 2

7
2 = E2 = m2 + p 2 (25)

Next consider the infinitesimal length dp^dp^ = dp2 —(dp0)2, constrained
by (25). Thus we make the substitution

J o P * dP
dp" =

and find, after some algebra,

dp^dp^ = gijdpldpj

with

1 - pi ~pxpy -pxp
9= -PxPy 1 - P 2 -PyPz (26)

~PxPz -PyPz 1-P%
and pi = Pi/E. Now a straightforward calculation gives

z

as was to be demonstrated.

2.3 Kinetic equation

An invariant kinetic equation with the correct nonrelativistic limit is easily
written down:

where C is a collision operator, and F^1 is the 4-vector force constructed in
Sec. 1. The form of (27) seems obvious when one notices that it can be
written as

dx^d£^ dp» df
dr dx*1 dr d^

11



To see how this equation reduces to the familiar version, we write it more
explicitly as

m ot ox1 pu opu

and then observe that the mass-shell restriction

p° — \jm2 + p2

allows us to write
, P ) dp0 df df

dp dp dp0 dp
by the chain rule. Hence, since

dp p
~d^ = ^

the p°-derivative in the kinetic equation can be considered part of the p-
derivative and suppressed, giving an obvious relativistic version of the usual
kinetic equation,

C (28)
m ox^1 op1

3 Moments of kinetic equation

3.1 Tensor moments

It is clear that the density n(x, t) is not a scalar, since d3p is not. To con-
struct moments of / that are Lorentz tensors, we use the scalar momentum-
sapce volume element d?p/E, where, as before,

E(p) = y p 2 + m2 = p°(p) = mj

Thus the moment

(29)

is a Lorentz tensor—the general tensor moment of the distribution / .
Next consider the quantity (not a 4-vector)

E

12



Recalling (21) we see that

E = ir
Hence our tensor can be written as

/

showing that it measures the flow of pP ... pv.
When necessary we indicate the rank of our moment tensor with a sub-

script: Mr is the tensor with r-factors of 4-momentum in the integrand.
Examples are

1. MQ = p is the scalar mass density,

E(p)

2. Mf = TQ is the flow 4-vector

* = fJ
whose time-component is the density,

p / = n, (31)

and whose spatial components give the fluid mean-flow vector

Tk = nVk = Jd3pvkf (32)

3. M<2 = TaP is the energy-momentum tensor,

E(p)

which we have already considered.

13



3.2 Lorentz transformation of moments

Here we confirm that the scalar property of / is consistent with the tensor
character of its momentum-moments. Thus consider the moment M a ' "7

measured by an observer in the lab frame:

Usually the simplest function will be /# , so it make sense to express the
integral as

and then to change the integration variable p —> p'. Since p = Ap', and since
d3p/E is invariant, the result of this change is

or

so that the rth moment is indeed a tensor of rank r.

3.3 General moment

We return to the kinetic equation (28)

P"df ,0/
1" r -r—r = O

and recall the tensor moment

Here we operate of (33) with

to obtain a sequence of equations for the moments M.
The moment of the first, convective term in (33) is simply

a ^
P P mE P P m dxv m

14



In the second term

dp1

we integrate by parts and use (14) to obtain

or, in view of (18),

After performing the derivative we find that

m

Here

and the curly brackets instruct us to symmetrize by exchanging the super-
script a with each of the superscript indices on M:

It is clear that M transforms like a mixed tensor.
We denote the corresponding moment of the collision operator by

Ca "7 = r>
E^

Then the general moment of the kinetic equation can be expressed as

(35)qFM/ = C

3.4 Examples

1. The zeroth moment describes particle conservation:

= 0 (36)
v

Here we have noted that Mv — 0 when the rank of M is zero, and that
the zeroth moment of the collision operator vanishes for any operator
that conserves particles.

15



2. The first moment describes conversion of particle momentum and en-
ergy into electromagnetic field energy-momentum and collisional dis-
sipation (friction),

Tv = C° (37)

4 Maxwellian case

4.1 Maxwellian distribution

A local Maxwellian distribution function is given by

fM{x,p) = NMe-H^'T (38)

where NM ls the normalization, T measures temperature and

is the energy (Hamiltonian) associated with the point (x, p). Here $ is the
potential energy; for electromagnetic interaction it can be written in terms
of the electrostatic potential <fi(x) as

<E> = qcfr

where q is the particle charge.
It is significant that the Hamiltonian is the sum of the time-components

of two 4-vectors, p^ — (p, v^P2 +m2) and A^ — (A, 0). Thus, in terms of
the canonical momentum PM = pM + qA^ we can write

fM(x,p) = NMe-p°^^T (39)

Because JM must be scalar, f'M(x',pf) = / M ( ^ 5 P ) ? the constants NM and
T are scalars. And because H is a constant of the motion, JM obviously
satisfies the kinetic equation.

4.2 Maxwellian moments

Using (29) we can compute the Maxwellian tensors

fS
= NMmr+2e-^T I

J v 1

16



where sa — pa/m.
z = m/T (= mc2/T)

and r is the rank of the tensor. The isotropy of / M implies that odd-rank
tensors vanish and that the second-rank tensor is diagonal.

The scalar mass density p(x) =

p =

= mT iis given by

= 47r7VMm4e-$/T / - 2
./ v l

In addition one is interested in the stress tensor, or energy-momentum tensor
(r = 2). For a general ideal fluid at rest, we know from (19) that this tensor
has only diagonal components, the mean energy

and the pressure

In the Maxwellian case we have

u =

and

= —SijNMe *fl m

The integrals are performed using the formula

f°° ds

where Kn is the MacDonald function. Notice that

17



Therefore

r°° ds

Jo vTT
As Bessel functions the Kn satisfy

d
-(znKn{z)) = z"irB_

= -z-nKn+1(z)

Their limiting forms are given by

Kv(z)

for z —>> 0, a n d

2 \z

1 + 0(0

(40)

(41)

(42)

(43)

(44)

for z —> oo.
Our formulae have become

4 - $ / T {Ki ,e ' 1
V

3X2

z z
2 J

4

(45)

(46)

4.3 Normalization

n{x) =

Io= f

The normalization is conveniently expressed in term of the density (not a
scalar and not an element of

where

It can be seen that
_ d

dz \ z
so (42) implies IQ = K^/z and we have

NM =
Airni2TK2(z)

18
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Thus our Maxwellian can be expressed in terms of its density as

with E = p° = sjp1 +m2.
The fact that p and n are both proportional to K2 may seem surprising,

so we digress to verify it. The point is that the two integrals

J» - IIdsvi

= I dss2e~zVTTr2

4
-^Vl+s2

are both equal to K2/Z. To see why, we note that

d_e-zy/i+s* =
 zs

 p-zVI+^
ds vTT^2

whence
1 r

.3 —e

and partial integration shows that, indeed, IQ = IQ.
Finally we substitute (47) into our expression for the moments and find

p = nT (50)

„ = m n |g (51)

4.4 Nonrelativistic limit

The nonrelativistic limit has z —> 00 and is therefore characterized by (44).
Since

'Tf "1 [ / Q / Q _, \ Q
X\. I JL "x~ 1 0 / o>2» # O

X2 ~* 1 + (15/8z) "^ X~~ Yz

we see that
3 T \ / 3 T \

u -> mn I ^ ^ H = mn 1 H
m) \ 2m J

19



Note here that, in dimensional units,

vt

m 2c2

where vt = \j2Tjm is the usual thermal speed and c the speed of light.
However neglecting the corrections would be the same as neglecting the
(l/2)mv2 energy correction to rest mass. Indeed replacing m by me2 yields

2 3 „
u —» mnc + -nT

2 3
p —> mnc nT

4.5 Moving Maxwellian

Again S' is a frame moving at the local fluid velocity V and S is the lab
frame. If the distribution of the fluid as measured in its rest frame is /# ,
then, according to (23), the lab-frame distribution is

f(x,P:A)=fR(x',p',A').

In the Maxwellian case,

fR(x',p',A')=fM(P'O(x',pr,A')),

can be expressed in terms of P / 0 = p'° + qAf0 where

[It can be seen that this rule coincides with the non-relativistic version

—mv —> —m(v — V)

through terms quadratic in V, but not beyond the quadratic terms.] The
moving Maxwellian is therefore described in the lab-frame by

or
f(x,p) = 7 V M e - ^ - v - A ) / T e - ^ £ - v P ) / T (52)

Note that in this formula 7 = 7(V) is associated with the fluid velocity, not
the phase-space point; recall (22).
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