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1 Relativistic mechanics

1.1 Notation

We use the metric tensor 1,4 with 199 = —1, 7;; = 1; Greek indices vary
from 0 to 3, Roman indices vary from 1 to 3. Boldface indicates a 3-vector,
so that
VE=(VO,V)
and
VEY, = V2 — (V9)?

We consider two reference frames, the “lab frame” S and a frame S’ that
moves at velocity v relative to S (that is, the velocity of S’, measured in
S, is v). Coordinates of a particular event, as measured in S and §’, are
denoted by z and z’ respectively.

The Lorentz transformation matrix is denoted by A, so that a 4-vector
transforms according to

VH = ALY,
We recall that
Y —Yu1 —Yv2 —YU3
Ao Y 1+9i(y=1) diba(y—1)  drds(y - 1) (1)

—yve  O12(y—1) 14+05(y—1) D203(y —1)
—yvg  Did3(y—1)  Dads(y—1) 1+82(y—1)

where v = v/v. An alternative expression for A is

Aéo =7 (2)
Ay o= 8+ (v — 1) (3)
Aoj = —yv; (4)

It is useful to consider the special case in which v is aligned with a coordinate
axis. We choose v = (0, v,0) and find

¥y 0 —yv 0O
0 1 0 0

T -y 0 oy 0 (5)
0O 0 o0 1

The speed of light is equated to unity, ¢ — 1, so that the 4-momentum
of a particle of mass m and 3-momentum p is given by

»* = (p°,p)

with p? = +/p? + m2.



1.2 Invariance

Suppose that (z,p) are the coordinates, measured in a frame S, of some
point in phase space (z and p are 4-vectors). The same point as measured
in a different Lorentz frame, S’, has coodinates (2’ = Az,p’ = Ap) and a
function F'(z,p) is a Lorentz scalar if its value as measured by an observer
in S’ is given by

F'(«,p") = F(z,p). (6)
That is, F' has the same value to both observers when measured at same
phase-space point. Similarly a 4-component object V is a Lorentz vector or
4-vector if its components in the two frames are related by

V'(z',p') = AV (z,p),

and so on. Tensors (of whatever rank) that transform according to these
Lorentz rules, with the number of A-factors corresponding to the rank, are
Lorentz tensors.

Notice that being a Lorentz tensor puts no constraint on the function
form of the tensor components; it only specifies the transformed components.
There is a distinct property, however, that does constrain the functional
dependence. We say that a function G(z,p) is invariant under Lorentz
transformation if

G'(2,p") = G, p)
In other words the functional form is preserved. Notice that this definition
is meaningful only when a rule for determining G’ from G is given. For
example, if G is a Lorentz scalar, then the invariance property becomes
G(z',p') = G(z,p) or

G(Az, Ap) = G(z, p),

which does indeed constrain the form of G. An example of an invariant
(scalar) function is

p-z=pz,
In this sense the 4-dimensional volume element is invariant,

diz = da’

because volume elements transform with the Jacobian, and the Jacobian of
a (proper) Lorentz matrix is unity:

A =1

For the same reason,



1. d*p, where p denotes 4-momentum, is invariant;
p b) p ? )

2. the 4-dimensional Dirac delta functions,
8z — %) = 8(z' — 2")é(z® — °)0(2° — 2°)d(z* — z*)
and §*(p ~ p) are invariant.

Here z* and p* are specified four vectors.
The mass-shell restriction

0)2 _ p? — 2

(p

involves only the invariant function p™*p,,,,, so that the d—function
p

5((®")? = p* —=m?) = 560" — \/p? + m?) (7)
|2 |

is scalar. (Here we have discarded the negative energy root.)

1.3 Equations of motion

The relativistic Hamiltonian for a single particle having position x and mo-
mentum p is expressed in terms of the 4-vector potential

AF = (4,A)

where A is the vector potential and ¢ the electrostatic potential. We intro-
duce the canonical momentum

P# = ph 4 gAH

which is obviously a 4-vector, in order to write the Hamiltonian as

H(x,P) =P’ = \/m?+ (P — qA)2 + & (8)
where ® = q¢ is the potential energy. Notice that

OH P - ¢A
OP — /m? + (P — qA)?

X =

so that the relation between velocity x and momentum p is independent of

the magnetic field:
xy/m?+p?=p
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After solving this relation for p, one finds that

p = myx 9)

where
y=(1-%%)"12

Notice that v has the equivalent expression

v =4/1+p?/m?

which implies

p° = my. (10)
The other set of Hamilton’s equations
: OH
P=—-—
Jx

reproduce the Lorentz force law, as follows:

Vi(y/(P — gA)? +m? + g¢) = I—j%(Pj — qA;)V;A; — qVid.
Hence we have
P+ qA; = 2;5Vz'(PjAj) - E)'AjviAj - qV;¢

We next use a standard vector identity for V(P - A), and then eliminate
P = p + qA in favor of p. The resulting quadratic terms in A precisely
cancel,

AxVxA+A-VA-V(AZ/2) =0,

leaving
1')+qA:£5(p-VA+p><B)—qV¢

or, in view of (10 and (9),
p=g(kxxB-V¢)—gA-%x VA)

In the last term here, A is the total time derivative

. OA
A=—+x-V
5 +x-VA



Hence we have

) ) O0A
p:q(xxB—V¢——5{>EFL (11)

where F, = q(E + v x B) is the usual Lorentz force.
Next we write the equations of motion in covariant form. This requires
the “4-force” F* satisfying

dp*

= _pm

dr
where 7 is the proper time. Since

dt = ~ydr

we see that the spatial components of the 4-force are
Fi = F} (12)

(Thus the ordinary 3-vector force is not part of a 4-vector.) For the re-
maining component, we equate dp®, the energy change, to the work done by
Fr:
dp® = Fr - vdt.
But (10) implies that vdt = m~pdr, so
po_9 _Fip_F-p
dr m E "’

(13)

or F® = F - v, (Note that F without the ‘L’ subscript refers to the spatial
components of the 4-force.)
It is helpful to recall here that

d
(35) Fe=0

It follows from (12) that the spatial components of the 4-force satisfy a

slightly different condition:
0 F
_—). (=) = 14
<3p) (E) ° (14

since B = my.



1.4 Field strength tensor

It is helpful to express the electromagnetic force in terms of the field strength
tensor,

FH = VHAY — VY A*
or, in Schutz’ language, F = dA. Here
o (- 9
ozne ot

VH = it V)
Explicitly,

0 E., E, E,
-E, 0 =B, By
-E, B, 0 -B;
~-F, -By B, 0

P = (15)

Since lowering the first index reverses the sign of the 0%

the second reverses the sign of the 0 column, we have

0 -E, -E, -E,
E, 0 -B, B,
E, B, 0 -B
E. -B, B, O

row, and lowering

F = (16)

The action of F' on any four-vector K can be seen from direct multipli-
cation:

F**K,=(E-K,EK; + B x K) (17)
In particular we consider the product
FHp, = —FHp) 4 VE(p- A) — (p- V) A*

jFrom (17) we see that
Fivp, = %Fﬂ. (18)

1.5 Energy-momentum tensor

Landau and Lifschitz show from symmetry considerations that the energy-
momentum tensor of an ideal fluid, when measured in the rest-frame of the
fluid, will have the form

(19)

oo ©
oV OO
N oo o



where u is the energy density, p is the pressure and the 0-argument refers to
the state of rest. Notice that this definition makes p and u Lorentz scalars.
The fact that the symbol ‘p’ has more than one meaning will rarely cause
confusion.

When the energy-momentum tensor of the moving fluid is measured in
the lab frame, its components will be boosted by —v, the velocity of S as
measured in §’. Denoting the tensor of the moving fluid, measured in the
rest frame, by T(v), we have

T(v) = A(=v) - A(-v) - T(0)

where A(—v) = A(v)~! is the Lorentz boost inverse to the A(v) of (1); its
components are denoted by

A%, = (ATHE,
Straightforward, albeit lengthy, calculation yields
T®(v) = A%A%T(0) = 7*(u + v?p);

T%(v) = A% AT (0) = v*vi(u + p);
and .. —_ _ -
TY(v) = KA T (0) = 835 + v*(u + p)vv;.

Recall that the combination U + pV, where V is the volume, is a ther-
modynamic potential called enthalpy. Therefore the quantity appearing in
the energy-momentum tensor

u+p=h

is enthalpy per unit volume, or enthalpy density.
A simpler expression for T'(v) is

T (v) = n*p + (u + p)UU® (20)

where
U= (7,7v)

is the obvious 4-vector for fluid flow. It is not hard to verify the two expres-
sions for the energy-momentum tensor agree.



2 Kinetic theory

2.1 Scalar distribution function

The distribution function f(x,p,t) is defined such that

nx,t) = [ dpf

is the density of particles at x at time ¢. Here we show that f is a Lorentz
scalar.

We begin with the particle trajectories given by x;(¢) and p;(¢). Then
the distribution function can be expressed as the ensemble average of the
micro-distribution (Klimontovich-Dupree)

fo2 38 - %) - pil)
We next introduce a separate time variable ¢; for each ¢ in order to write
fo= 3 [ dtiste - 1656 - %) — pit)
i
or, choosing z{ = t;,
fo= Y [ dtid (x - x:(t)( - pilt)
i

Now the proper time interval for the ith particle is

dt;
dT,; = —
Y

where +; is the relativistic factor for the ith particle. We recall (10) in order
to write

pQ
dt; = —>d7; (21)
m

whence

0
fo= % [ arPist(o - ai(m)6*(p - pi(r)

We multiply this function by the Lorentz scalar appearing in (7):

F(x,p,t) = 1%5(190 ~/P? +m?) fi(x,p, 1)

9



and note that the mass-shell factor can be put inside the sum and then
evaluated at each p;:

9
F=Y [ anliot@ - 208 - p)oG° - o)
?

or

F= %;/dm"(w - z;)6*(p — ps)

This quantity is manifestly a scalar. Since it differs from f. by a scalar
factor, and since the physical distribution f(x, p,t) is the ensemble average
of f., we conclude that f(x,p,t) is a Lorentz scalar.

It is worthwhile to recall the significance of this fact. Suppose that
the distribution function of some fluid is known in the fluid rest frame, R:
f'(2',p) = fr(z’,p’). Then, if the local fluid velocity (as measured in the
“lab frame” S) is V, we have 2’ = A(V)z, p’ = A(V)p and the distribution
observed in the lab frame is, according to (6),

f(z,p) = fr(Az, Ap). (22)

In the presence of an electromagnetic field, fr can depend on position
both directly (through its, density, for example), and also through the (rest-
frame) field variables A'#(z'). It is natural to express the lab-frame distri-
bution in terms of the lab-frame fields A#(x), and therefore to write the
transformation law in the form

2.2 Momentum-space volume

We have found that the quantity d3p/FE is an invariant. An alternative
derivation of this fact is instructive, albeit tedious. The idea is to compute
the metric tensor g;; measuring distance on the mass shell. The volume
element on the mass shell is then given by the Jacobian +/[g], and it will

turn out that
\/1gl =m/E. (24)

Thus we recall the four velocity u* = dz*/dr where 7 is proper time. It
follows that

10



Note that the 3-vector v determines a 4-vector u* = (7,7yv) essentially
because of the implicit mass-shell restriction. That is, if we define

p* = mut

then we find that
P'pu=p-p-m’y
or
m2y? = E? = m? + p? (25)

Next consider the infinitesimal length dp#dp, = dp?—(dp°)?, constrained
by (25). Thus we make the substitution

p-dp
dp® =
P ="F

and find, after some algebra,

dptdp,, = g;;dp*dp’
with " o X

1 —-pz —Paby —Pab

g= _ﬁxﬁy 1- ﬁgzl _ﬁyﬁz (26)

_ﬁxﬁz “ﬁyﬁz 1- 133

and p; = p;/E. Now a straightforward calculation gives

2 2
P m
lg| = det(g) =1 — B

as was to be demonstrated.

2.3 Kinetic equation

An invariant kinetic equation with the correct nonrelativistic limit is easily
written down:
of

Tl PR = (27)

where C is a collision operator, and F* is the 4-vector force constructed in
Sec. 1. The form of (27) seems obvious when one notices that it can be
written as

de# of  dp* Of c
dr Oz+ = dr Op*

11



To see how this equation reduces to the familiar version, we write it more
explicitly as

0
pof , .0f pFOf L Of
mat“L'Y‘” 3xi+ p0 8p0+F 8p_C

and then observe that the mass-shell restriction
p’ = y/m? + p?

of(’(p).p) _ dp° 0f _Of
op dp p® JOp

by the chain rule. Hence, since

allows us to write

dp’ _p
dp  p°
the p®-derivative in the kinetic equation can be considered part of the p-
derivative and suppressed, giving an obvious relativistic version of the usual

kinetic equation,
a . a
p f Fﬂ, f

m dzh apt ¢ (28)

3 Moments of kinetic equation

3.1 Tensor moments

It is clear that the density n(x,t) is not a scalar, since d3p is not. To con-
struct moments of f that are Lorentz tensors, we use the scalar momentum-
sapce volume element d3p/E, where, as before,

E(p) = /p? +m? =p°(p) = my
Thus the moment
d3p
MoB-v = [ —ZgonB o f(x,p,t 29
EpP P P f( ) (29)

is a Lorentz tensor—the general tensor moment of the distribution f.
Next consider the quantity (not a 4-vector)

p_“z(l L)
E "my)

12



Recalling (21) we see that

p*  dz®
5@ (30)
as

Hence our tensor can be written

(83 v dx 14
MOF- E/cl?’p " p f(x,p,t)

showing that it measures the flow of p? ... p".

When necessary we indicate the rank of our moment tensor with a sub-
script: M, is the tensor with r-factors of 4-momentum in the integrand.
Examples are

1. My = p is the scalar mass density,

/E(p)

2. M =T* is the flow 4-vector

d3p
I\a . O
B

whose time-component is the density,

= [dpf =n, (31)
and whose spatial components give the fluid mean-flow vector

Ik = nVk = /d3pka (32)

3. Mza'6 = T°B is the energy-momentum tensor,

d3p
TaﬁZ/_aﬁ,
5w’ 7

which we have already considered.

13



3.2 Lorentz transformation of moments

Here we confirm that the scalar property of f is consistent with the tensor
character of its momentum-moments. Thus consider the moment M%7
measured by an observer in the lab frame:

d3

MY = _ppa .- f(z,p)

E
Usually the simplest function will be fg, so it make sense to express the
integral as

3
AT = %12 ... pYfr(Az, Ap)

and then to change the integration variable p — p’. Since p = Ap’, and since
d®p/E is invariant, the result of this change is

ca oz [
Mo = AQM L. A’Yy Vil pla . .p”YfR(x’7p’)

or _ _
Mary — Aau . A»YVM[IJ,...U

so that the r** moment is indeed a tensor of rank 7.

3.3 General moment

We return to the kinetic equation (28)

p .
b ﬁ_FF"_a_‘f_—

maor t g = C (33)

and recall the tensor moment
d3p
Ma...ryz/____ (¢ 2 |
% fp%--p
Here we operate of (33) with

Lo 0y
E

to obtain a sequence of equations for the moments M.
The moment of the first, convective term in (33) is simply

P o P8 OF 1 OMET

E mozt m Oz

14



In the second term
3

a.~-’y —
FrE E ap’
we integrate by parts and use (14) to obtain
d*p 0
fa...fy — _ F Q L. Y
f oy 7= (%---p7)

or, in view of (18),

QY q FW/ 1 S
After performing the derivative we find that
m

Here
M = / 22 fppP - p?

and the curly brackets instruct us to symmetrize by exchanging the super-
script a with each of the superscript indices on M:

Flavpg B0t = pov g By o PRV 4L

It is clear that M transforms like a mixed tensor.
We denote the corresponding moment of the collision operator by

d3
Ca"”:m/— “...p’C
gl P
Then the general moment of the kinetic equation can be expressed as

aMua..-fy

o - e = e (35)

3.4 Examples

1. The zeroth moment describes particle conservation:
or#
ozrH

Here we have noted that M, = 0 when the rank of M is zero, and that

the zeroth moment of the collision operator vanishes for any operator
that conserves particles.

=0 (36)

15



2. The first moment describes conversion of particle momentum and en-
ergy into electromagnetic field energy-momentum and collisional dis-
sipation (friction),

oTHe
ozt

— gF™T, = C® (37)

4 Maxwellian case

4.1 Maxwellian distribution

A local Maxwellian distribution function is given by
fu(@,p) = Npyre  HOoPIT (38)

where Ny is the normalization, T' measures temperature and

H(x,p) = y/p? + m? + ®(x)

is the energy (Hamiltonian) associated with the point (x,p). Here ® is the
potential energy; for electromagnetic interaction it can be written in terms
of the electrostatic potential ¢(z) as

¢ =q¢

where ¢ is the particle charge.

It is significant that the Hamiltonian is the sum of the time-components
of two 4-vectors, p* = (p, vp? + m?2) and A¥ = (A, $). Thus, in terms of
the canonical momentum PH* = p* + qA* we can write

Far(@,p) = Npyge P@n)T (39)

Because fir must be scalar, fi,(2',p") = fm(z,p), the constants Njs and
T are scalars. And because H is a constant of the motion, fj; obviously
satisfies the kinetic equation.

4.2 Maxwellian moments

Using (29) we can compute the Maxwellian tensors

af...v _ v
M) = [ ST D)

3
— NMmr+26—<I>/T d’s s¥...g¥ —zV/1452

se
V1 + s?

16



where s® = p®/m,
z=m/T (= mc*/T)

and 7 is the rank of the tensor. The isotropy of fjs implies that odd-rank
tensors vanish and that the second-rank tensor is diagonal.

The scalar mass density p(z) = mT](WO) is given by

3
4 —®/T d’s /¥R

= Npym-e —e
P M V1+s?
d882 2
= 47N m4e—¢'/T _______e—zv 1+s
M V14 s2

In addition one is interested in the stress tensor, or energy-momentum tensor
(r = 2). For a general ideal fluid at rest, we know from (19) that this tensor
has only diagonal components, the mean energy

T = u= [ &*pER)S,

and the pressure
79 = ps; = [ 2L
77 J E(p)

In the Maxwellian case we have

u = Nymie ®/T 4 (1 + s%)e2V1it+s’

V14 s?

ds 3
_ 41rNMm4e_q’/T B (524 ghemaVIFS
V14 82( )
and
d3s . N
) = N e_q’/Tm‘l/———s’s]e_z 143
P M V182

= f]ﬂ(5z'jZ\/'J\/[e_cp/r‘rm‘l *_ds semzVIts?

0 V14 2

The integrals are performed using the formula

°_ds o _z\/rm_l“(n+1/2)(2)"
/0 Vit R 2) Ko

where K, is the MacDonald function. Notice that
n+1/2) 1-3-5---(2n—1)
N 2n

17




Therefore

*° 2n_—zvV1+452 _ 13(2’"‘“ l)Kn(z)
/0 ———___.._1 = 328 e = o (40)
As Bessel functions the K, satisfy
d n
dz( SEn(2) = 2Kna(2) (41)
@(z_”Kn(Z)) = -2 "Knn(2) (42)
Their limiting forms are given by
L(v) [2\”
K,(2) ~——=| -
&)~ (2) (43)
for z — 0, and
m 4% — 1
KI/ ~ AP -1 -2
(2) 5, ¢ 1+ 5 + O(z )] (44)

for z — oo.
Our formulae have become

u = 4nNym e*‘I’/T< (45)

K,
2

K; 3K2)

z 22

p = AnNpe~ ¥ Tm? (46)

4.3 Normalization

The normalization is conveniently expressed in term of the density (not a
scalar and not an element of T)y)

n(z) = 4rm3Nye 2T I,

where
IO_/d882 —zv/1+5s2

d (K,
In = —
0 dz( )

o (42) implies Iy = K»/z and we have

It can be seen that

ne@/T

Ny =
M= 4rm?TK, (2)

18



Thus our Maxwellian can be expressed in terms of its density as

ne—E/T

fur = 4rm2T K (2) (48)

with E = p® = /p2 + m2.
The fact that p and n are both proportional to K> may seem surprising,
so we digress to verify it. The point is that the two integrals

Iy = /dssze°z°1+“"2,

4
Il = _z_ /ds S e—ZV 1+52
0 3 V1 + 52

are both equal to K3/z. To see why, we note that

d 2Vi+s? _ _ %S e—z\/1+s2

ds V1452

whence ) p
1= _g/dsssd_se—zx/us?

and partial integration shows that, indeed, Iy = Iy.
Finally we substitute (47) into our expression for the moments and find

_ Ki(z) 3
= mn (KQ(Z) + z) (49)
p = nT (50)

= mn
p Ks(2)

4.4 Nonrelativistic limit

The nonrelativistic limit has z — oo and is therefore characterized by (44).
Since K, 1+(3/82) 3
1 2
el NI e AN T
Ko 1+ (15/82) = 2z

we see that

(Kl 3T> ( 3T)
u = mn|l——+—|)=mn|l+ —

K2 m 2m
( 3T)
p = mnl|l—-—
2m

19



Note here that, in dimensional units,

2
T_'ut

m 22

where vy = /2T /m is the usual thermal speed and c the speed of light.
However neglecting the corrections would be the same as neglecting the
(1/2)mv? energy correction to rest mass. Indeed replacing m by mc? yields

3
u — mn(32+§nT

p — mnc® - gnT

4.5 Moving Maxwellian

Again S’ is a frame moving at the local fluid velocity V and S is the lab
frame. If the distribution of the fluid as measured in its rest frame is fg,
then, according to (23), the lab-frame distribution is

f(z,p, A) = fr(z',p', A").
In the Maxwellian case,
fr(=',p', A") = fu(P(«, 0, 4')),
can be expressed in terms of P'* = p® 4 gA’® where
P? =A% Pt =~(P'-P.V).

[It can be seen that this rule coincides with the non-relativistic version

1 1
imv2 — Em(v —V)?

through terms quadratic in V', but not beyond the quadratic terms.] The
moving Maxwellian is therefore described in the lab-frame by

f(z,p,4) = fu(y(P° =P -V))

or
f(z,p) = NM6~7q<¢_V'A)/Te_V(E_V'P)/T (52)

Note that in this formula y = v(V) is associated with the fluid velocity, not
the phase-space point; recall (22).
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