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Topology and Nonlinear Theory
— mathematical concepts to explore the complexity of plasmas —

Zensho Yoshida
Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0033, Japan

This lecture is addressed to a basic question: How can we construct a "rigorous" theory for
complex system (like a plasma) with a small number of exact information? We study some math-
ematical concepts that may provide us a methodology to explore fundamental nature of plasmas.
The theory of "topology" is the main theme of this lecture.

I. TOPOLOGY (GEOMETRIC THEORY)

How can we construct a rigorous theory with a smal-
1 number of exact data? Since many complex systems
are not "integrable" (see Sec. II.A), we cannot expec-
t that we could obtain a complete understanding of the
system. If we have some exact information that can be
measured or estimated, what rigorous assertion can we
derive? This question may be answered by studying the
concept of "topology", a general notion of characteristics
that is insensitive to details.

A. Degree theory

The degree theory is to characterize what we can know
about "nonlinear system" from the "outside".

For example, let f(x) be a continuous function on [0, L]
to R. If we have "boundary data"

f /(0) < 0,
I f(L) > 0,

then, there must be a point x G [0, L] such that f(x) — 0.
To generalize this trivial but profound fact for general

maps, we must quantify what we can estimate from the
observation at the boundary. That is the "degree".

• O C R 1 :

Let / be a smooth map (or a limit of smooth map)
on ft (c R) to R. For some y (G R), we find
Xj (j — l,---,ra) such that f(xj) = y. Then, we
define

(1)
•i=i

0 C R^:
Let / be a smooth map (or a limit of smooth map)
on ft (C R^) to R^. We denote by J(x) =
detdxf(x) the Jacobian. For some y (G R^), we
find Xj (j — l,---,m) such that f{xj) — y. We
define

t/XSl
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(2)

It is shown that deg is uniquely determined by the bound-
ary value / | r and y, and independent to any continuous
deformation of / in ft° (homotopy invariant).

B. Fixed point

We can apply the degree theory to prove the "fixed
point theorem". For a map /(#), we call x0 a fixed point,

f(xo)=xo.

In the one-dimension case, it is obvious that a continuous
function / that maps [a, b] into [a, b] has at least one fixed
point.

In TLN, we have

Theorem 1. [Brouwer] Let ft be a bounded convex set
in R^ ; and f be a continuous map on ft into ft. Then,
f has at least one fixed point.

(proof) Let the origin 0 be included in ft (after appropri-
ate coordinate transform). We define

gp(x) = x-pf(x) (3)

It suffices to show that 0 G g1 (ft). We denote the bound-
ary of ft by F. If 0 E </i(r), then the theorem is proved.
So, we assume otherwise; 0 sjL <7i(F). Then, we find that
0 ^ <7P(r) (0 < Vp < 1) (see figure). Hence, we find

For go(x) = x, it is obvious that deg (go,ft,O) = 1.
When we change p, the "boundary value" gp(T) does
not meet 0 for all p (0 < p < 1). Hence, deg (gp, ft, 0) is
conserved against the change of p from 0 to 1;

deg = deg = deg (<7o,ft,O) - 1.

f(x) = 0 must occurWe thus conclude that g\(x) = x
at least one point x (G ft).

(QED)

We note that the existence of a solution to a nonlinear
problem gi(x) — x — f(x) = 0 is concluded by a linear
problem go(x) — x = 0. The used fact is 0 ^ <?P(r)
(0 < Vp < 1), that is an observation of the "boundary
vale".

This theorem is generalized to infinite-dimension topo-
logical vector spaces.

Application 1. Consider an evolution equation of dissi-
pative type:



d

u(0) = u0,

J(u),
(4)

where the initial value satisfies ||uo|| < M with some
M (> 0). We assume

(̂ )11 < IMI (contraction map).

Condier a convex domain of functions u{t);

[0,71, sup
i€[0,T]

Then, (4) has a solution in ft.
To prove this, we write (4) in an equivalent form of

u = e tuo / e8'1 J(u(s)) ds.
Jo

We define a map

f(u(t)) - e-*u0 4- / es~£ J(w(s))

(5)

ds,

and show that f(u) — u has a solution (fixed point).
Since / is continuous map, it suffices to show that ft C

). Let

- sup ||x(t)||.
[]

We observe

< sup \e
te[o,T\

< sup
tG[0,T]

- sup
*6[0,T]

-t IKII+ / ' .

Hence, we find £2 C /(ft).

• Using another version of fixed point theorem, that
is the contraction map theorem, we can prove that
the solution is unique.

It is easy to generalize (4) to

(6)

• The evolution equation (6) is the "Yosida approxi-
mation" of

dt
u — A(u). (7)



The Yosida approximation of the operator A is

(8)

If we write

Jx = (1 + XA) - i

which is called the "resolvent operator", we may
write A\ — \~1(I — J^), and hence, the Yosida ap-
proximation of (7) reads as (6). We study the limit
of A -» 0 for a general class of evolution equation.

C. Linkage

Study of magnetic fields leads to an interesting topo-
logical concept of "linkage", which, introduced by Gauss,
was the start of the degree theory.

We consider a stationary magnetic field that obey

VxB=j, (9)

where j corresponds to the electric current density. Let
us consider a wire that carries a total current / . Let C be
a loop circulating around the current, and S be a surface
span by C. We have

(b B - dx — \ j • n ds — I.
Jc Js

(10)

If C does not link the current, the integral (10) vanishes.
We can invert (9) by using the Biot-Savart integral;

B(x) = curr1:,' = J K(x, y) x j(y)dy, (11)

where the kernel is

yv >»J~ 47r\x-y\*'

Using (11), we rewrite (10) as

K(x,y) xj(y) -dxdy.II

(12)

(13)

Assuming the current / is unity and carried by a loop C;,
the integral (13) reads

l(C,C')= (f (f
Jc Jc

K(x,y) x dy • dx, (14)

which we call the "Gauss linkage number". Following the
above argument, we easily find that £(C,C) is an integer
that depends only on the linkage of two loops C and C,
i.e., £(C,C) is a homotopy invariant.

Application 2. The so-called "helicity" reduces into the
constant multiple of the linkage number, when the flux-
es are localized into two filaments. For a solenoidal

C

\J
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(divergence-free) 3D vector field u, we define the helicity
by

H — u - (curl 1u) dx. (15)

Suppose that u is localized in two loop filaments C and
C, and they carry fluxes $ and $', respectively. Then,
we obtain

H — \£\£' f (b K(x,y) x dy + 6 K(x,y) x dy\ - dx
Jc Uc Jc J

+ * * ' f 6 K(x, y) x dy+ <k K(x, y) x dy • dx
Jc Uc Jc J

For a general (smoothly distributed) field tt, the helic-
ity H gives a sum of the linkage. It also detects other
geometric characteristics like twist.

D. Singularity

The Gauss linkage number (14) is defined by a singular
integral. Singularities can be detected from outside by
an appropriate integral. Here, we see a most beautiful
example of homotopy invariant integral.

Let A be a bounded linear map. The Cauchy-Dunford
integral gives an analytic function of A;

(16)

where A is a complex number and / is a certain complex
function that is analytic inside the loop C. The loop must
include whole singularities of A (which is a bounded set
on the complex plane, if A is a bounded operator). We
note that (XI — A)~x is the "resolvent" operator, and its
singularity is the spectrum of A.

Application 3. If we take /(A) = etx in (16), we can
define the exponential function of the operator A

e = etx(XI - (17)

which is the "inverse Laplace transform". The etA gives
the solution operator to the autonomous evolution equa-
tion

d A

—u = Au,

dt

u(0) — u0.

The solution is given by
u(t) = etAu0.



II. CONSERVATION LAW

The idea of the physics of dynamics is to find "un-
changed quantities" in the system. Once one finds as
many unchanged quantities (constants of motion) as the
degree of freedom, the dynamics is totally understood;
The system is seen as stationary. In general, however,
the quest for constants of motion falls short, and in many
nonlinear systems, a very small number of such quanti-
ties can be found. Even if we have a small number of
such "information", they provides us a profound insight
into the complex system.

A. Integrability

Dynamics of a system is represented by an orbit (curve)
in the phase space, and the position on the curve is pa-
rameterized by the time t. Geometrically, a curve in any
N dimensional space is defined by the intersection of sur-
faces.

In an TV-dimensional space, we need Nr — N — 1 in-
dependent real-number valued functions Fj(xi, • • • , x;v)
(j — 1,---,JV') to determine a curve. The level set of
each function defines an N' dimensional hyper-surface
(manifold). A one-dimensional curve is formed by the
intersection of these surfaces, and is obtained by solving
Fj(xi, • • •, XJV) = Pj (j = 1, * • •, Nf) simultaneously.

We are thus able to demonstrate that given an appro-
priate set of functions Fj(xi,- • • ,£JV) {j' — 1, • • • ,Nr), we
can always find a one-dimensional set of points (a curve)
common to them all.

These functions Fj are the constants of motion, be-
cause the orbit is included in each levelset of Fj. Hence,
the analysis of the dynamics is attributed to the quest
for the constants of motion.

Let us now consider the inverse problem. For a giv-
en smooth curve in an TV-dimensional space, can we
find an appropriate set of functions Fj(x\, • • •, XN) (j =
1, • - •, N') such that the intersection of their level sets co-
incides with the given curve? As far as we consider this
problem "locally", the answer is yes. Let P be a point on
the curve. We consider a neighborhood V of P where the
curve looks like a straight line. Changing the coordinates
to align the x^ axis to be parallel to the line, we obtain
the equations Xj = Pj (constant) (j = 1, • • • ,iV') whose
simultaneous solution represents the curve locally in V.

In trying to solve the "global" problem, however, we
meet the following difficulty. The global problem con-
sists in finding the hyper-surfaces that include the curve
throughout their trajectory. For a curve that moves
about in a certain domain of space, such hyper-surfaces
must have a highly complicated structure. In fact, for
a sufficiently complex dynamics, well-defined smooth
hyper-surfaces that contain the complicated streamlines

erht



may not actually exist. This thought experiment gives
us a glimpse of the pathway leading to the concept of
"chaos" in dynamical systems.

B. Hamiltonian system (classical mechanics)

1. Hamilton's equation of motion

Let x and p denote a pair of coordinate and (canonical)
momentum variables in a v dimensional space. Although
our primary interest is in the ordinary physical space
[y = 3), we will develop the formalism in a more general
space. We begin with the Hamilton's equations of motion
which can be jointly written as

!L(X\ = ( dPn

dt\p
(18)

where 7i is the Hamiltonian (assumed to be a smooth real
function of x, p and £), and dx and dp are respectively
the gradients with respect to x and p. With the notation

X = (19)

Hamilton's equation (18) reads as the streamline equa-
tion in 2i/ dimensional canonical phase space,

dt
(20)

Application 4- For a given magnetic field JB(SC), the field
line equation is

(21)

where r is an abstract variable that indicates the position
on the streamline. This r and the time t are totally
different.

We consider the simpler case, in which B(x) is homo-
geneous with respect to z, one of the trio forming the
Cartesian coordinates x-y-z. Because of this symmetry,
and of the divergence-free property of B(x), we can write
B{x) in the form

(x, y) = BzVz (22)

where ip(x,y) and Bz(x,y) are two scalar functions.
From (22), we deduce

x Vz) • 4- Bz(Vz) = 0,

(23)

implying that the vector field B(x) is tangential to a
level set of the function i/>(x,y). The level set in the
x-y-z space of i]j(x,y) is a column whose section by an



x-y plane is the contour curve of ip(xjy) in the plane.
Hence, I/J is constant along the streamline of the flow
(magnetic filed) B(x), viz., \j) is a constant of motion of
the dynamics defined by B(x).

We have, thus, shown that every streamline of an in-
compressible stationary flow (such as a magnetic field)
with an "ignorable coordinate" must be integrable. This
important result can also be derived as a straight for-
ward implication of Hamiltonian dynamics. For B(x) of
(22), the x and y components of the streamline equation
become

dx r,

dt y '

dlJ rj

dt x '

which read as Hamilton's equations of motion with the
coordinate re, the momentum y, and the Hamiltonian
ijj(x,y). In this two dimensional phase space, one in-
tegral of motion suffices for integrability, and we have
already shown that the Hamiltonian ^ is a constant of
motion. The integral surfaces (curve) of this system are
the level sets of -0-

Application 5. Consider a stationary incompressible flow
B{x) in a three dimensional toroidal domain H, which is
a general three-dimensional flow (magnetic field) without
any symmetry.

Such a vector field can be represented in the form *

W , (24)

where £ and d are, respectively, the appropriate toroidal
and poloidal angles, and ^ and x a r e scalar functions of
C, $ and f (a radial coordinate). Since

\£ and x a r e really nothing but the toroidal and poloidal
components of the vector potential.

If we replace the radial coordinate £ by the function x,
and assume that the Jacobian

n ^ 9 xD(x,y,z)

(with the implication that the streamline does not turn
back in circulating the toroidal domain), the streamline
equations read

d( VC B'

dx ^x • B
I dC = V( B

(25)

simce.

lZ. Yoshida, Phys. Plasmas 1 (1994) 208.



After using (24) to evaluate the right-hand side of (25),
we find

W • B = Vi? • (V* x VC) = - V x • (W x
VX - B = Vx • (V* x VC) = Vx • (W x VC)(0*/&?),

Plugging these relations in (25), we obtain the set of
canonical equations

(26)

for which the toroidal angle C parallels time, the poloidal
angle $, is the angle coordinate, x> niimics the canonical
momentum (action variable), and \P = *(x>^>0 plavs

the role of the Hamiltonian.
For a general flow (magnetic field), the Hamiltonian

^(#> X> 0 depends on all three of its arguments, i.e, there
is no ignorable coordinate and hence no constant of mo-
tion. The Hamiltonian system (26), then, is not inte-
grable. If \£ were independent, say, of the toroidal angle
C, a constant of motion will emerge, and the system (26)
becomes integrable. In the next section, we show an ex-
ample of a non-integrable streamline.

2. Liouville equation

Through Hamiltonian dynamics, an arbitrary field
u(X,t) evolves as

^•u{X,t) = dtu + {V -V)u

- dtu + (dpH) - (dxu) - (dxn) • (dpu)

= dtu + {H,u}, (27)

where, the bilinear operator,

{H,u} = {dpU) • (dxu) - {dxU) - (dpu)

u). (28)
3=1 3=1

is the well-known Poisson bracket. When u(X,t) is con-
stant along every streamline, it satisfies the transport
equation

dtu + {H,u} = 0. (29)

This is the Liouville equation, which gives the intrinsic
rate of change of a "constant of motion (first integral,
constant along the streamlines)" of the Hamiltonian dy-
namics.



Hamilton's equation of motion (18) is said the "char-
acteristic ordinary differential equation (ODE)" of the
Liounville equation (29) which is a hyperbolic partial d-
ifferential equation (PDE). Solving (18) to obtain every
orbit starting from an arbitrary initial position, which
is called the "characteristic curve", we can find the so-
lution of the transport equation (29). On the contrary,
if we find sufficient number of the constants of motion
from (29), we can integrate the equation of motion (18).
Hence, the ODE (18) and the PDE (29) are equivalent.

Application 6. In Sec. ILE.l, we will see some examples
of nonlinear Liouville equations that describe transport
of vortex.

3. Hamilton-Jacobi equation

We have another important PDE that is equivalent to
Hamilton's equation of motion (18). Here we assume that
the Hamiltonian V, does not include t. The Hamilton-
Jacobi equation is

(30)

This equation is derived by the following consideration.
To integrate (18), we want to find a canonial transform
such that H -> T-L = 0, which stationarize the dynamics.
The transform relations are, with a generating function
S(x,p,t),

(=0),
P = dxS,

x = —dpS.

(31)

(32)

(33)

Using (32) in (31) yields the Hamilton-Jacobi equation
(30).

Because % does not include t, we may write

S — S(x,p) — u)t (u> = constant),

and (30) reduces into

H{x,VS) =w. (34)

This is a classical-mechanical energy spectrum equation.
We note that (30) and (34) are PDEs in the space-time

(x-t), so that the solutions are given as functions S(x,t)
and S(x,t). If these solutions can be parameterized by
p = k (constants) as

these solutions are called "complete solutions". As shown
in (31), they give a canonical transform to integrate
Hamilton's equation of motion (18).

Because of the general nonlinearity of (30), the ODE
dx/dt.= dpH does not close (compare with the Liouville

10



equation), because the right-hand side may still include
p zz: dx7i. Hence, we need the ODE to determine the p,
that is second part of Hamilton's equation.

In optics, the S is the phase of a wave. The unitary
transform

solves the classical Schodinger equation

(35)

(36)

In this expression, we have a relation between LJ and k
(good quantum number), which is the "dispersion rela-
tion".

In general, we do not have the complete solution to
(30) or (34). This "non-integrable" case is the so-called
"quantum chaos".

In writing (35), the phase S is regarded as a 2ir-
modulo function, and we may consider a multiple-valued
S. Hence, a loop integral

27r/r
VS-dx (37)

may take a certain integer value, which is called a "topo-
logical charge". The loop encircles the singularity of <S,
where V«S is not defined. This is the phase singularity,
the origin of an "angular momentum".

Let us assume

H(x,p) = -P
2 + <l>(x).

Denoting V«S(#,£) (= p) — v and assuming it is a "flow
velocity", the gradient of (30) reads as

dtv + V ( ±v2
</>) = 0 , (38)

which is the standard ideal irrotional fluid equation (the
potential energy </> parallels the pressure). Kelvin's cir-
culation theorem warrants the conservation of the topo-
logical charge (37) as far as the v = VS is well defined.

Application 7. Let us consider a nonlinear Schrodinger
equation (in some generalized version)

(39)

Writing ip = aetS (a and S are real functions) and \ip\2 —
a2 = p, (39) reads

dtS + h f(p)

[(V<S)p] - 0.

= 0, (40)

(41)

The gradient of (40) resembles (38). The (41) describes
the conservation of the energy density p.

11



C. Von Neumann theorem (quatum mechanics)

Let us consider an abstract Schodinger equation

(42)

Here H is a Hermitian operator in a function space; com-
pare with (36). Solving the eigenvalue problem [compare
with (34)]

(ul -H)<p = 0 (43)

we can obtain the complete orthogonal basis to span the
total function space (Von Neumann's theorem). This
task is equivalent to find the singularity of the resolven-
t operator (LJI — %)~l [see (16)]. Unlike linear algebra
of finite dimension vector space, "continuous" spectrum
occurs when (LUI — %)~l exists but is not continuous.

Denoting <pk the eigenfunction (may be singular) be-
longing to the spectrum ujky we may write

= / {u,(pk)(pk dfc,
J — oo

(44)
oo

/•+00

= uk(u,(pk)vk dk, (45)
J —

r

J —

— oo

+oo
e-ituJk(u,ipk)ykdk. (46)

Since the eigenfunction belonging to the a continuous
spectrum is a singular function, it is more appropriate to
define a "projector" Ek to write

(.,<pk)<pkdk = dE(k). (47)

The propagator e~im given in (46) gives the solution
of (42); for a initial condition ^o, the solution is

W) = e-itHiP0-

It is remarkable here that the quantum mechanical rep-
resentation of the wave (42) is "integrable", if the spec-
trum is "point spectrum" (eigenvalues). This is the case
for "trapped (or quantized)" waves. Von Neumann's the-
orem warrants the existence of the complete spectrum
which consists of the constants of motion uk. However,
the continuous spectrum part does not represent a sta-
tionary mode; it describes dynamical processes such as
scattering and/or phase mixing.

D. Statistical mechanics and relaxed states

1. Kinetic theory and statistical distribution

Let f(x,p,t) be the distribution function. We as-
sume that the evolution of / obeys the Liouvill equation
(Vlasov equation)

12



(48)

where H is the Hamiltonian of a test particle moving in a
mean field. The mean field A and <j> containd in H must
be consistent to / through Maxewll's equations.

The steady states for (48) is given by (we consider a
stationary state and assume that H is independent to t)

{H,f} = (49)

Let aj be a constant of motion, i.e., {H, aj} — 0. The H
itself a constant. Suppose that we know N of constants
of motion, and consider a distribution (F is a certain
smooth function)

= F(au--,aN). (50)

For an arbitrary F, we easily verify that (50) solves (49).
If N is equal to the degree of freedom, the system is
"integrable".

The aim of this section, however, is to find a special
class of solutions that are robust (rugged) against var-
ious perturbations. We invoke only a small number of
constants of motion that are robust in a sense that the
ensemble averages (or the total sums) of such quantities
are conserved. The most robust steady state is the Boltz-
mann distribution

f — ae (51)

where a (normalization factor) and f3 (inverse temper-
ature, or a Lagrange multiplier) are positive constants.
We obtain this equilibrium by maximizing the entropy
— J f(x) log f(x)dx over an ensemble that is character-
ized by a given total energy (i.e., a constant-energy set).

If we know that another quantity G is conserved (in an
ensemble average sense), we cannot maximize the entropy
on a constant-energy set. With restricting the totals of
H and G, we obtain

J - ae , (bZ)

where 7 is the second Lagrange multiplier. Including
some additional constants of motion, we can obtain an
equilibrium (maximum entropy solution) that is slightly
more restricted than the Boltzmann equilibrium, but is
still robust as far as the additional constraints are valid.

2. Momentum conservation

A symmetry of the system yields a constant of motion
that is the canonical momentum corresponding to the
ignorable coordinate. Suppose that the Lagrangean L
is independent of a coordinate #o, as well as t. Then,
p0 = dL/dx'o is conserved (; is the time derivative). With
an arbitrary constant c, we define

13



H = H- CPo, (53)

and consider a distribution

/ = a e - ^ = ae -« f f - c w » . (54)

As far as the collision-less dynamics is concerned, this
/ solves (49); see (52). Moreover, this solution has the
following important meaning, and the physical meaning
of the parameter c becomes clear.

When we discuss a distribution function / , we consid-
er an ensemble of particles, which is characterized by the
sum of the Hamiltonian over the all particles. We invoke
the conservation of the total energy, but not the energy
of each particle. We apply the same framework for the
momentum po in (54). When we consider a "relaxed s-
tate", we give up the conservation of individual H or po,
while we demand the conservation of the totals of these
quantities. Then, the physical meaning of H becomes
essential. Indeed, we can interpret H as the Hamiltonian
in a moving frame, and hence, / = ae~^H is an invari-
ant of the collision operator (the average momentum is
unchanged by collisions). This robustness of po warrants
the use of p0 in determining the ensemble.

Let us first revisit the change of variables in general
inhomogeneous coordinate transform. Let U be a certain
temporary-constant velocity field. We write the velocity
v of the laboratory frame as

v = v + U, (55)

and set xr — v. The Lagrangean of a charged particle (q:
charge, m: mass) can be written as

L = ~ \v ~f U\2 + q (v + U) • A - q</>.

The canonical momentum is
pi j

p — 7— = m (v + U) + a A = rnv 4- qA,
ov

and the

where

Hamiltonian

A-

4> =

reads as

_ 2

= A+ — I
q

= </>-U -

m 2

A.

+ #, (56)

(57)

(58)

The effective vector potential A includes an additional
term that yields the Coriolis force. The scalar potential
d> has received the (nonrelativistic) Lorentz transform. In
(56), —mU2/2 is the centrifugal potential.

The transform of the Hamiltonian and the momentum
can be written as

14



H = H - U • (mv + qA)

= H-U-p,
p = p = mv 4- qA.

(59)

(60)

Application 8. Let us consider an axisymmetric cylin-
drical single-species plasma confined in a homogeneous
magnetic field (JB — Bez). We assume that the density is
small so that the magnetic field produced by the internal
current is negligibly small. Hence, we solve (49) simul-
taneously with the Poisson equation of the electrostatic
potential. By the symmetry d/dO — 0, the canonical an-
gular momentum pe = rnrvg +qrAo is conserved. Hence,
H = H — ujpo (u = constant) is a constant of motion.
This H is the Hamiltonian in a rigid rotation frame. In-
deed, setting U — ujree (a; is the angular velocity of the
rigid rotation), (56) reads

m 9 m, x9

The equilibrium f(H) = ae~@H represents a drift
Maxwellian with a constant angular velocity LJ.

The potential (j) in the Hamiltonian must be deter-
mined consistently to the field equation. Here, we seek
a solution that has no spatial inhomogeneity inside the
plasma, i.e.,

2m
p~qA (61)

The vector potential A is an externally given function,
because we neglect the magnetic field produced by the
electron flow. Let us consider a infinitely long plasma col-
umn. The vector potential for the homogeneous longitu-
dinal magnetic field B = Bez is given by A = (rB/2)ee.
For the distribution function with the Hamiltonian (61),
the density n is constant for the radius r < a. Then,
the potential is </> = —(gn/4eo)r

2. To satisfy (61), we
demand

J1 + a;ca; + -u2
p = 0, (62)

where uc ~ qB/m and UJ^ = nq2 /meo. This is the equi-
librium condition for the non-neutral plasma column.

Similar treatment for electromagnetic neutral plasma
reads to the "Harris sheat" (slab geometry) and "Bennet
pinch" (cylindrical geometry) solutions.

E. Navier-Stokes system

1. Navier-Stokes equation and cousins

The Navier-Stokes equation is a paradigm of nonlinear
nonintegrable system.
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An incompressible flow v in a three dimensional
domain (we assume a bounded domain ft with a
smooth boundary T) obeys

+ (v • V)t; = - Vp +
(63)

where p is the pressure and e is the kinematic vis-
cosity. Boundary conditions are

v|r = 0, p|r = given. (64)

In the ideal limit, we assume e = 0 in (63);

tv 4- (v • V)v = — Vp,
(65)

V-v = 0

Then, the boundary conditions are

n - v\r — 0, p|r — given. (66)

• The ideal vortex equation is derived by taking the
curl of (65). Denoting the vorticity V x v — W,
we obtain

dtW - V x (v x W) - 0 . (67)

We impose a boundary condition, as well as a circu-
lation condition (resulting from Kelvin's theorem)

n - v\r = 0, / n W ds — given, (68)

where S is a cross section of fi.

• In two dimension, we denote W {— — A$) and $
the vorticity and the Hamiltonian (stream func-
tion) of an incompressible flow v — t{dy^1—dx^).
The vortisity equation (67) reduces into

atW
r + {*,Wr} = 0. (69)

The Poisson bracket is

{a,b} = (dya)(dxb) - (dxa)(dyb)

= -(Va x V6) -ez,

where ez = Vx x \7y. The circulation of the flow
must be conserved (Kelvin's theorem);

(p n • V<I> dj — K (given constant). (70)

We assume that the flow V<I> x ez is confined in O,
demanding

$ | r — C (unknown constant). (71)
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The Hasegawa-Mima equation is a close cousin of
(69). To represent the drift wave in a plane perpen-
dicular to a homogeneous magnetic field, we con-
sider a generalized vorticity

which obeys (69)-(71).

2. Constants of motion (e — 0)

The "energy" and "enstrophy" are the most important
quantities in the study of fluid mechanics. They are,
respectively, defined by

H0 = \\v\\2, H1=\\Wf.

Here we use the conventional notation

||a|| = (a,a)1/2, (a,6)= / a-bdx.

The ideal incompressible flow obeying (65) conserves the
energy Ho • The change of the enstrophy is given by

at

In two dimensional case, the right-hand side (which is
called the vortex-stretching effect) vanishes, and H\ is
also conserved. This fact can be directly derived by tak-
ing the inner product of (69) with W. The constancy of
if i is the most essential characteristic of two-dimensional
flow, distinguishing three-dimensional flows.

3. A priori estimates (e > 0)

If a finite viscosity is included, the above-mentioned
constants of motion receive a dissipation. In two dimen-
sion case, we observe

H0(t) = ffo (0) - 2e f ||V x v(t')f dt',

H1(t)=H1{0)-2e [ \\VW(t')\\2 dt'
Jo

which imply monotonic decreases of both quatities.
In three dimension case, the energy HQ satisfies the

same equation, while the enstrophy is estimated by

t) = 2Ji(0) - f 2e||V x W\\2 - (W, (W • V)u) dt'
Jo

(72)
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4- Existence theorem

The existence of a smooth solution to the three-
dimensional Navier-Stokes equation is a long standing
open problem of mathematics. The key to resolve this
problem is the derivation of a bound for the enstrophy
H\. As we have seen in the previous section, the two
dimension case is very different from the three dimension
case, because we have a bound for Hi.

A possible approach of finding a solution is to write
(63) in the form of

v(t) = Ttvo + / Tt-s[-(v - V)v] ds, (73)
Jo

where Tt = e~tA with A — -VeA (Stokes operator; the
projection of —eA of onto the space of solenoidal fields).
Denoting the right-hand side of (73) as /(#(£)), we seek
for the fixed point of the map / ; see Application 1. For
this task, we need bounds for Ho and H\. For a short
enough time t < T, we can manipulate (72) to derive a
limitation for Hi, and we can conclude the existence of a
temporally localized solution. It is still an open question
whether the T can be extended to infinity.

F. Relaxed states in fluid mechanics

We have seen that the constants of motion (and their
variations in a dissipative system) are used to show the
existence of solution. We can derive from these quantities
a more interesting information about the dynamics.

Let us consider a two dimensional flow with a small vis-
cosity e. Asa general tendency of nonlinear fluid motion,
the mixing effect yields smaller length scales in the vortic-
ity distribution. Let L be the characteristic length scale
of vortices. We estimate ||VW||2 « L-2 | |W||2. Through
the length scale reduction, we find that Hi receives a
stronger damping than Ho- This expectation leads to
the concept of "selective dissipation" of a certain con-
stant of motion, relative to the other constants, through
a weakly dissipative nonlinear process.

If we assume that H± achieves the minimum while Ho is
approximately conserved, the relaxed state may be given
as the minimizer of a functional

F(v)=H1(v)-nH0(v). (74)

This problem will be solved in the next section.
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III. TOPOLOGY (ANALYTIC THEORY)

The topology in analysis is the concept to quantify the
distances among different points. The simplest example
is the Euclidian norm that measures the distance between
two points in the conventional metric. The concept can
be much generalized by introducing an abstract axiom to
distinguish whether two points are within a "neighbor-
hood" or not. In many physics applications, the topolo-
gy induced by a "norm" plays essential roles. In a finite
dimension vector space, every norm, such as the Euclid-
ian norm or the sup norm, defines the same topology.
However, in an infinite dimension vector space, such as
a function space, one can define different topologies de-
pending on the choice of norm. This fact is the central
theme of functional analysis. In this section, we study
the topology of function spaces, and analyze structures
and stability of rather complex nonlinear systems with
the help of conservation laws.

A. Topological vector space

Let {aj} be a sequence of points in a vector space (pos-
sibly infinite dimension) V. To see the convergence

lim aj — a
j->oo

(75)

we need a measure to detect the distance. Here we con-
sider a "norm" || • ||, and define (75) by

l im \\CLJ — a\\ — 0. (76)

In many theories, we normally demand that any Cauchy
sequence {aj} [lim^oo \\ak — a,j\\ — 0 (k > j)] must con-
verge. If the vector space V endowed with the norm || • ||
satisfies this condition, we say the space V is complete,
and call such a vector space a "Banach space".

When the norm is defined by an innerproduct

and if the space is complete, we call V a "Hilbert space".
Let us consider two different norms || • ||5 and \\ - \\w

such that

\\a\\s>c\\a\\w (VaGV) (77)

with some c (> 0). Then, we say that \\-\\s is coercive with
respect to || • H^. Obviously, convergence with respect to
the norm || • ||s warrants convergence in || • \\w. In this
sense, the topology induced by || • \\s is stronger than that

by II • lU-
The following Hilbert spaces are frequently used.
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• Lebesgue space L2(Q): For (vector or scalar/real
or complex) Lebesgue-measurable functions on H C
RN , we define

(a,6) = / a-b dx
Jn

with the Lebesgure integral. The totality of func-
tions such that ||a|| = (a^a)1^2 < oo is denoted by
L2(f£), and called the Lebesgue space.

• Sobolev space Hn(Q): We denote

We define

<a,6)n =

The totality of functions such that ||a||jy^ =
(a,a)l/2 < oo is denoted by Hn(ft)1 and called the
Sobolev space.

Obviously iJn+1(ft) C Hn(n). The norm || - ||/f- is not
coercive in Hn+1(Q).

B. Variational principle

The coerciveness represents the preciseness of the sight
defined by the topology. Here, we see some interesting
examples where the topology of vector space plays an
essential role in variational principle.

1. Well-posed variational principle

Let ft be a bounded domain in R^ with a smooth
boundary V. Let us consider two functional

Q(u) - / \Vu{x)\2dx, H{u) - [ \u{x)\2dx
Jn Jn

with a boundary condition u\r — 0.
We seek for a minimizer of Q{u) with a constraint

%(u) — 1. This is a well-posed problem. Indeed, if H
is bounded and if it|r = 0, we have the Poincare inequal-
ity

IIVull > clltill

with some positive constant c (determined by the size of
ft). Hence, y(u) > c!\\u\\2

H1 (coercive). The minimization
sequence of Q(u) ( denoted by {^n}) is, thus, bounded in
a space H^(Q) = {u G ^ ( f i ) ; ^ = 0 on T}. This {un}
is compactly embedded in L2(fl), and hence, there exists
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a subsequence of {un} that converges to a minimizer in
the topology of L2 (ft).

The minimizer is found by the corresponding variation-
al principle

S[G(u) - XU(u)] = 0 (78)

(A is a Lagrange multiplier). The Euler-Lagrange equa-
tion reads as an eigenvalue problem —Au — Aw, where
A is an eigenvalue of the Laplacian —A with the above-
mentioned boundary condition (we easily find A > 0).
Let Xj be an eigenvalue and cpj be the corresponding
normalized eigenfunction (||<Pj||2 = 1). With setting
u — cupj, and demanding 7i(u) — 1, we obtain a = 1
and G(u) — Xj. Hence, Xj must be the smallest eigenval-
ue Ai-

2. Ill-posed variational principle

Next, we consider a reversed problem and try to find a
minimizer of H(u) with restricting Q{u) — 1. This is an
ill-posed problem, because it assumes a constraint using
the functional Q that is not continuous in the topology
of L2(tt) (the map to the boundary value u\r neither is
continuous); 2 the constraints are not detectable in the
minimization sequence. If one observe the minimization
process in the topology of iJ1(O), the target functional
7-L{u), that is equivalent to the norm of L2(H), is not
coercive, and hence, its minimization sequence may not
be bounded in the topology of jfirl(O).

For pathological analysis, let us proceed with for-
mal calculations. The Euler-Lagrange equation seem-
s to be —Au = /J,~1U. Let fj,~1 = Xj (an eigenval-
ue of —A), and u — cupj. The condition Q{u) = 1

XJyields a — XJ , and l~L(u) — 1/Aj. Hence, the mini-
mum of H{u) is achieved by the largest eigenvalue that
is unbounded, viz., inf H{u) — 0 and the minimizer is

i /2

limA^oo Aj ipj = 0 that is nothing but the minimizer
oiH(u) without any restriction. The constraint Q{u) — 1
does not work in this minimization problem.

These examples teach that constraints must be ro-
buster than the target functional. This is not the case
when the constraint includes higher-order derivatives rel-
ative to the target, because an infinitesimal perturbation
with a small length scale can contribute any value to the
constraint.

2J.L. Lions and E. Magenes, Non-Homegeneous Boundary
Value Problems and Applications /, Springer Verlag, Berlin,
1970.
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C. Beltrami fields (two dimensional)

Let us study the relaxed state model of two dimen-
sional vortex dynamics (Sec. II.F) using a variational
principle. The equation was [see (69)]

0, (79)

with the circulation and boundary conditions

n • V<I> o?7 = K (given constant), (80)i
— C (unknown constant). (81)

The general stationary solution (equilibrium flow) is
given by {$,1^} — 0 that implies W — w($) with a
certain smooth function w. Amongst them, the simplest
nontrivial equilibrium is the "Beltrami flow" defined by

- A * ( = W) = /x* (// = real constant). (82)

The Beltrami equation (82) with the circulation and
boundary conditions (80)-(81) reads as an inhomoge-
neous equation (writing 3> — </? -h C, C is a certain con-
stant)

= 0, (p n - = K.

If ji is the eigenvalue of the Laplacian —A with the
Dirichlet boundary condition, we demand C — 0 to ob-
tain a solution. Otherwise, with C ^ 0, we have a solu-
tion ip — — /i(A+^)~1C The constant C can be matched
to give the prescribed K. We, thus, have a nontrivial so-
lution for every complex number fi. (This implies that
the point spectrum of the Laplacian operator with the in-
homogeneous circulation and boundary conditions (70)-
(71) is the totality of complex numbers.) In what follows,
we assume that // is a real number (then ip is a real func-
tion).

The evolution equation (69) has two essential constants
of motion (see Sec.II.E.2);

= / \W\2

Jn
dx, (83)

Ho = {W,V$) = / W- (P$) dx, (84)
Jn

where V§ — $ — C (C is chosen so that P$|r = 0) is
a projecton to homogenize the boundary condition (71).
The Hi and Ho — \\ V#||2 are, respectively, the enstrophy
and the energy of the flow.

The Beltrami equation (82) is reproduced as the Euler-
Lagrange equation of a variational principle

6{HX - fMHo) = 0 (85)
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with the circulation and boundary conditions (70)-(71).
This variational principle can be regarded as a minimiza-
tion of the enstrophy Hi with restricting the energy HQ
(see the relaxation model of Sec. II.F). Similar to the ex-
ample of Sec.III.B.l, this gives a well-posed variational
principle.

D. Stability theory

1. Two-dimensional Deltrami flow

To study the stability of a Beltrami flow (denote the
Hamiltonian by $0), we linearize (79) with writing $ —
$0 + V a n d — Aip — UJ (the circulation j^uodx must be
zero);

Using (82), we can write

We easily verify that

G{<p) = {u>,u> - uVu

{<p,-A

o) = M

$0} = 0.

= 0.

P-H|Vd|2

(86)

(87)

(88)

is a constant of motion (dG(tp)/dt = 0) associated with
the linearized dynamics (87). In a bounded domain, we
have an inequality

with A being the smallest eigenvalue of the Laplacian
—A with the Dirichlet boundary condition (one easily
find A > 0). We, thus, have

G M > ( A - / i ) | | V ^ | | 2 . (89)

If fi < A, the a priori estimate (89) gives a bound for the
energy ||V</?||2, because G(<p) is a constant determined by
the initial condition of the perturbation (p. The bound of
the Beltrami parameter fi < A gives a sufficient condition
for the stability of the Beltrami flow.

We can generalize this argument to a variety of second-
order nonlinear systems. We first cast the method in an
abstract theorem.

2. Abstract theory

Let /(a, b) be a bilinear map. We define T{u) =
f(u,u), and consider an abstract nonlinear evolution e-
quation

dtu = T(u). (90)

Suppose that there are symmetric bilinear forms hj(a,b)
(j = 1, • • •, v) such that
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(91)

With writing Hj(u) = hj(u,u), we observe, for the solu-
tion of (90),

d .
Jt

(92)

Hence, Hj(u) (j — 1, • • •, v) are the constants of motion
associated with the evolution equation (90).

Let uo be a stationary point (equilibrium) of (90), i.e.,
T{UQ) = 0. We assume that no also solves

= 0 (93)

with some fixed real numbers JJ,J (j = 1, • • •, u); cf. (85).
We call such uo as a "Beltrami field".

Theorem 2. Suppose that u = u$ + u (uo is a Beltrami
field) satisfies either (90) or its "linearized" equation

Then,

(94)

(95)

is a constant of motion.

(proof) Using (91), we observe

+ tt, u))

(96)

Since (93) implies ^ / i j / i^Mci i ) = 0 (VJ), the first sum
of (96) vanishes. Hence, if u solves (90), we obtain

= 2

We can rewrite (96) as

0 = X^iM

= 0. (97)

-f

(98)

By (91), the second term of (98) vanishes. If u is a solu-
tion of (94), we obtain

jtG{

(QED)

= 0 . (99)
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3. Application for MHD

An interesting application of Theorem 2 is made in the
stability analysis of a three dimensional plasma equilib-
rium with a flow. Let 0 be a bounded three-dimensional
domain with a smooth boundary F. We assume that 0 is
multiply connected with cuts S^ [I = 1, • • • ,m (the first
Betti number)], i.e., 0 \ U(E^) is simply connected.

When the domain ft is multiply connected, we can as-
sume that the Beltrami parameters fij are arbitrary real
numbers [see (107)]. This fact is in analogy with the
previous example (82). Here we remark an interesting
characteristic of the eigenfunction of the curl operator. 3

In a multiply connected domain O(c R3), the curl oper-
ator has a point spectrum that covers the entire complex
plane. This is because of the existence of a non-zero har-
monic field (V x h — 0, V • h — 0 in fi, and n • h — 0
on F), which plays a role of inhomogeneous term in the
eigenvalue problem

V x u — Xu.

We decompose the solenoidal field u into the harmonic
component h and its orthogonal compliment UY, . We can
show that the latter component is a member of a Hilbert
space

L|(fi) = {V x a e £2(Q); n x a - O o n T } .

The eigenvalue problem now reads as

V x UT, ~ A(ti£ + h).

If we take h = 0, we find a nontrivial solution only
for Xj G crp, where ov a countably infinite set of re-
al numbers. The ap is the point spectrum of the self-
adjoint curl operator that is defined in the Hilbert space
L|.(O). For A' ^ crp, we set h ^ 0 and find a solution
UY, — (curl — X')~1Xlh^ where curl is the self-adjoint curl
operator.

We consider an ideal plasma (magnetofluid) which
obey

dtv + (v • V)w - (V x B) x B + Vp = 0, (100)

dtB -V x(v xB) = 0, (101)

where B is the magnetic field, v is the incompressible
flow velocity, and p is the pressure. We have normalized
B by its representative value B*, v by the Alfven speed
B* I\fnop (ion mass density p is assumed to be a con-
stant), p by B*2/f.i0i and t by the ion gyration time. The
length scale is arbitrary. We assume boundary conditions

n-v = 0, n • B = 0 on F (102)

3Z. Yoshida and Y. Giga, Math. Z. 204, 235 (1990).
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and flux coditions

n-Bds = Ki (t=l,---,m), (103)L
where the fluxes through the cuts are given constants.

We have three important constants of motion;

Ho = \\v\\2 + \\B\\2 (energy), (104)

#1 = (PA,B) (magnetic helicity), (105)

H2 = 2(v, B) (cross helicity), (106)

where A is the vector potential of B and V is the orthog-
onal projection in L2(Vt) onto L|(H). Taking VA as the
vector potential makes the helicity H\ gauge-invariant.

The variational principle

= 0 (107)

gives Beltrami fields defined by

( l - ^ ) V x J3 = /xiB, (108)

v = fjL2B. (109)

The B satisfying (108) is the "force-free field". We have
a field aligned flow v whose magnitude is scaled by ji2 in
the local Alfven speed unit.

Due to Theorem 2, the integral

G(B,v) = \\v\f + \\B\\2 -

(110)

is a constant of motion for the perturbations B and v
satisfying the nonlinear equation (100)-(101), or their lin-
ear lized equations.

We have an inequality

(•pA,v x A) < lAr1]]^!!3,

where |A| = minj{|Aj|} [Xj (j = 1,2, •••) are the eigen-
values of the self-adjoint curl operator]. To prove this re-
lation, we invoke the spectral resolution theorem due to
Yoshida-Giga to expand u = ^(u^tpj^j (Viz G L|(n)) ,
where tpj is the eigenfunction of the self-adjoint curl op-
erator belonging to an eigenvaule Xj. We, thus, can write

and

Hence, we have

(VA,B) = (VA,VB)

< \\PA\\ • \\VB\\
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Using

2{v,B)<a\\v\\2 + a'l\\B\\2 (Va > 0),

we observe

G(JB, S) > (1 - a\&\) \\v\\2

an)
Taking a = 1/|//2|, (HI) reads

(112)

If 1 - $ - \fJLi\/\X\ > 0, then (112) gives a bound for
the energy of B. Under this condition, we write 1 — /J^ —
|/ii|/|A| = 1/P (> 0), and set a = \[i2\- Then (111) yields

(113)

If 1 — \i\ > 0, (113) gives a bound for the energy of v.
This condition is weaker than the previous condition.

Now, we have sufficient conditions for the stability;

(114)

When both conditions are satisfied, the constant of mo-
tion G(B,v) bounds the energy of perturbations, imply-
ing the stability. In (114), a stands for the eigenvalue
of the Beltrami equation (108). The stability condition
means that a must not exceed the minimum of |Aj| (Xj
is the eigenvalue of the self-adjoint curl operator). The
second condition implies that the flow velocity must not
exceed the local Alfven speed; see (109).
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1. Introduction

This paper studies an eigenvalue problem

rot</> = A<j!> in f2d(R 3 , (1.1)

with a boundary condition

n-0 = O ondQ, (1.2)

from a rigorous mathematical point of view. Here, 0 = (^>1(x1, x2, x3),
(j>2(xi,x2yx3)y (j)3{xli x2 ,x3)) is a 3-vector function, Q is a 3-dimensional bounded
domain with a smooth boundary <?£>, and n is a unit normal vector on dQ, The
rotation operator rot is defined, in Cartecian coordinates, by

[ r o t 0 ] =
 dpll _ dJl±± {j: integer mod 3) .

J dxj+l dxj+2

The operator rot is one of the most important first-order differential operator,
which frequently appears in many different physics models. For example in the
Maxwell equations of electricity and magnetism, the operator

4° - rot
rot 0

acting on functions (<j>, \j/) with boundary conditions n x (j> = 0 is known to be
a self-adjoint operator in the L2 Hilbert space; see Duvaut-Lions [4]. The eigen-
functions of A are eigenmodes of electromagnetic waves. In fluid and plasma
physics, rot appears to measure the volticity of various flows. This paper studies the
spectra of rot, and give fundamental remarks on eigenfunctions of rot. This
problem has important applications in plasma physics; see Appendix. The eigen-
functions of rot are called free-decay fields, which have been studied by
Chandrasekhar-Kendall [3] for astrophysical plasmas. They give explicit calcu-
lations of the eigenfunctions for a periodic straight cylinder region when X is real. In
the theory of fusion plasmas, a free-decay field is called Taylor state that is
considered to be the ultimate minimum-energy plasma equilibrium [9]. The
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free-decay fields are also useful to study turbulences in plasmas; for example see
Ref. [7]. So far, mathematical backgrounds, however, was not studied.

In this paper, we study spectral properties of rot operator in various function
spaces. We show that (1.1), (1.2) has a nontrivial solution for all complex A, when
Q is multiply connected (Theorem 2). Eigenfunctions corresponding to different
eigenvalues are not always orthogonal; otherwise, it contradicts to the separability
of the Lebesgue space L2 (Q). It turns out that there is a subset A of real eigenvalues
such that the set {4>x\ XeA) of the corresponding normalized eigenfunctions is
a complete ortho-normal basis Ll{Q) that is the orthogonal complement of the
irrotational fields in L2(Q); cf. (2.3). To prove this fact, we introduce a self-adjoint
operator S in L2(Q) associated with rot by choosing suitable additional boundary
conditions. The spectral resolution is given by

where Q is the standard inner product of L2(Q)\ see Theorem 1.
In Section 2, we give a concise summary of basic function spaces. Section 3 is

devoted to the study of a self-adjoint definition of rot. In Section 4, we extend the
space and domain of rot, and study the original problem (1.1) and (1.2), with a help
of the theory developed for the self-adjoint rot, and prove Theorem 2.

2. Basic Fraction Spaces

Throughout this paper, we consider linear spaces over the complex number field C.
We denote by L2 {Q) the Lebesgue space of square integrable functions on Q, which

we equip with the usual inner product (a, b) = j* a-b dx, where b is the complex
Q

conjugate of b, and the norm \\a\\ = (a,a)112. Here and hereafter we do not
distinguish between function spaces of vector-valued and sealer-valued functions.

The Sobolev space of order s(s ^ 0) is denoted by HS(Q). We denote by HS
O{Q)

the closure in HS(Q) of the space CQ (Q) of compactly supported smooth functions.
The negative order Sobolev space H~S(Q) is the dual space ofHs

0(Q). The Hs-norm
||w||s of a vector function u is estimated as

+ |/i-w|s-1/2 + | |u||5-1 > (2.1)

where C is a certain positive constant, n*u is the trace onto dQ of the normal
component of vector u> and \n%u\s-lj2 denotes the norm of n*u in Hs~ll2(dQ); see
Bourguignon-Brezis [2], and Foias-Temam [5].

The Weyl decomposition of the space L2{Q) of 3-vector functions is

I2(Q) = Ll(Q)® {grad p; peH1 (Q)} , (2.2)
with

L2(Q) = 2 }
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We also derive another direct-sum decomposition of the space L2(Q) of
3-vector functions (see Foias-Temam [5]);

L2 ((2) = L\ (Q) 0 Ker (rot), (2.3)

where Ker(rot) is the kernel of rot in L2(Q\ viz.,

Ker (rot) = {u e L2 (Q); rotu = 0 in 0} ,

and L2(Q) is the orthogonal complement of Ker (rot). Explicitly, we have an
expression

Ll{Q) = {ueL2{Q);div u = 0, n-u = 0 ,

Jv * u ds — 0 (for any E)} ,

where J v • u ds is the integral of the normal component v • u of « over an arbitrary

smooth simple surface Z in Q whose boundary curve is on dQ, By the
Hodge-Kodaira decomposition theory, we have

L\{Q) = {rot w; weH1 (fl), div w = 0, n x w = 0} , (2.4)

where n x w is the trace onto dQ of the tangential component of the vector
function w.

The zero-flux condition J v * u ds = 0 is not trivial when the domain £> is
i

multiply connected. Therefore, in general, the space L\{Q) is smaller than Ll{Q).
We write

2 L2
Z(Q)@L2

H(Q), (2.5)

where LH(Q) is the orthogonal complement of L|(f2) in Lj(Q) (see Morrey [8],
Chap. 7, Theor. 7.7.7). By the definition, we see

The dimension of the space L%(Q) is finite and equals the genus of dQ (see eg. [1]).
If Q is simply connected, the dimension dim(Lj(i2)) = 0, so L2(Q) = L|(i2).

For w e L | ( ^ ) n i f 1 (i2), the estimate (2.1), together with a Poincare-type
inequality

c I M I ^ H r o t u U ,

c ' | |« l l ,^ l | ro t t< | | , (2.1')

where c and cr are certain positive constants (Foias-Temam [5], Lemma 1.6).

3. Formulation of Self-adjoint Operator and Its Spectral Resolution

For a pair of smooth vector functions ux, w2» integrating by parts yields

(rot ul9 u2) = (M15 rot u2) + J vx x v2-nds ,
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where v( = n x «,.(/ = 1,2), and v2 is the complex conjugate of v2. It is obvious that
rot, with the boundary condition (1.2) alone, is not symmetric. When we assume in
addition vl = 0 on dQ9 the boundary integral vanishes and rot is symmetric,
however, generally the operator is not even closed (see Prop. 2). In this section, we
find an appropriate additional boundary condition that makes rot a self-adjoint
operator. The spectral resolution of the self-adjoint rot operator gives a complete
set of eigenfunctions that spans the space L\(Q).

Definition. We define a space of 3-vector functions:

Hlrjr(Q) = {ueL2
£{Q); rot ueLl(Q)} .

We define an operator S in the Hilbert space L\(Q) by

Su = rot u, for u-e D(S) = H ^(fl) .

Theorem 1. The operator S is self-adjoint in the space L\(Q). The spectrum c(S) of
S consists of only point spectrum op{S) a U. Therefore, the set of eigenfunctions of
S gives an orthogonal complete basis of the space L\(Q).

Before proving this theorem, we prepare the following lemmas concerning the
domain

Lemma 1. Concerning the space Hlzz{Q) we have

(1) The space H^(f l) is a subspace of Hl (Q\ and is dense in L\(Q).
(2) The range R(S) of the operator S is just equal to L\(Q). The operator S has

a compact inverse from L2
L{Q) to H\^Q).

(3) An alternative expression of H\i{Q) is

Hl
LI{Q)= {u = Pjrw; weH l(fi), div w - 0, n x w = 0} ,

where PL is the orthogonal projector from L2 (Q\ onto L2z(Q).

Proof By the estimate (2.1'), we see that Hl
LI{Q) a H1 (Q). The space

Co? (Q) n L\{Q) is dense in L\{Q\ and is contained in Hl
ZL{Q\ therefore H\L{Q) is

dense in L2z(Q); this proves the first part of the lemma.
By the definition of D{S)> it is obvious that R(S) c L\(Q\ Let us write

V{Q) = {u = P£w; weif1 (i2),div w = 0, n x w = 0} .

By the definition (2.3), w - PzweKer(rot). We see that V(Q) czD{S) =
because, for u = P^we Vy we have ueL\{Q) and

rot u = rot weL2
L{Q) .

In view of (2.4), we observe that

S{V{Q)) = {SV;VEV(Q)}

= (rot PjW = rot vv; weHl(Q\ div w = 0, n x w = 0}

which proves that L\{Q) a R(S\ therefore L\{Q) = /?(5). Since L^(i2) is ortho-
gonal to Ker(rot), S has a unique inverse S~l defined on L\{Q). This obviously
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shows that the third part of the lemma:

HVr(Q)= V{Q) .

Finally, we show that S~l is compact. Let yL(i — 1,2, . .) be a bounded se-
quence in L\{Q). By (2.T), the sequence x{ = S"1 yi is bounded in Hl (Q). There-
fore, in view of Rellich theorem, we see that a subsequence of xi is strongly
convergent in the topology of L\{Q\ viz., S~ l is compact. D

By Lemma 1(3), we notice that, for ueHVr(f2), the tangential trace n x u is
equal to n x y with yeKer(rot), We next summarize results for the tangential trace
of ue i f 2z(£2). We identify n x u with an H 1/2-class 1-form v on the boundary dQ.
This form y is shown to be closed and to represent some cohomology class on dQ.
The cohomology class represented by v comes from tangential traces of functions in
L2

H(Q). We write

g-^nxhi ioTh{eL2
H{Q) (i = 1, 2, . . . ,N) ,

where h{ (i = 1, 2,. . . ,7V) is the orthogonal basis of Ljf (£2); #£- is regarded as
a 1-form on dQ.

Lemma 2. Concerning the tangential traces of functions in L|(£3), we have

(1) Ler ueHl
LE{Q), and v = n x u. Then, v is a closed differential I-form on dQ.

Moreover, we have an expression
N

v = da)+ £ aigi , (3.1)

where dco is the exact part ofv expressed by a coboundary of an H312-class 0-form
co on dQ, g{ is the tangential trace ofhieL2

i{Q\ and a£eC.
(2) The tangential trace n x ufor ueH^Q) is a swjection to the space of closed

differential forms such that (3.1) holds, viz., for every closed differential form v of
H112(dQ)-class such that (3.1) holds, we find an extension veHl

EL{Q) whose
tangential trace is identified with v.

Proof. Let UGH^{Q) and v = n x ueH1/2{dQ). Since rot usL\{Q\ we have

n-rot u = dv = 0{eH'll2(dQ)) ,

which proves that v is a closed differential form. Since rot u e Lj{Q), rot u is
orthogonal to the space Lfi(Q). Integration by parts yields

0 = J rot u • /:• dx

= f u • rot /Tf dx + J (u x /i-) • n dS

= J M * rot hL dx + | [(M x n) x (/̂ . x ?i)] * n JS

= f » A £ . (3.2)
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Here, A denotes exterior product of forms on dQ. The final integration is an
integral of 2-form on dQ. Since v is closed, (3.2) implies

« = 1

It remains to show the second part of the lemma. By a standard extension
argument (see Lions-Magenes [6], Chap. I., 3.2 and 8.2), we find weHl(Q)r\
H2{Q) such that n x rot w = (??, grad)(/i x (n x vv)) = v for every 1-form of
Hl!2{dQ) class. Since 11 x w = 0 on dQ, we see that rot weL2(Q). Tracing (3.2)
from bottom to top, we see the condition (3.1) implies that rot vv is orthogonal to
LjjiQ). We thus conclude that rot weH\z(Q) which is the desired extension of
v into Q. D

We now give the proof of Theorem 1.

Proof of Theorem 1. By Lemma 1 (1), the domain D(S) = H]rr(Q) is dense in Ll(Q).
We first prove that S is closed. Let x( (i = 1, 2, . . .) be a sequence in D (S) such that
xt -+x with Sxt-* y in L\(Q). Directly from the definition of D(S\ we see that
xeD{S), so that Sx — y9 which proves that S is closed.

The adjoint operator S* of S is defined by

(Sulyu2) = (ul9 S*u2) for any u1eD(S) ,

for u2eLl{Q) as far as a function S*u2eL|((2) exists. For u2eD(S*) the linear
form ui -+ (Sux, u2) is continuous on D(S) for the topology of Lf(£2). In particular
for uL E Cg (Q) n D (S), we have

(Sul9u2) = (ul9rotu2) .

We thus see that rot u2eL2(Q) for u2eD(S*), which, together with (2.T), implies
that

Let MX eD(S) and M 2 G D ( S * ) . We have tangential traces

n x ux =vxeHll2{dQ\n x w2 = v2eHm(dQ).
We have

(SMJL, W2) = (wl9 rot w2) -f j (jjj x y 2 ) # / 1 ^ s -
dQ

We may consider both vy and y2 are l-forms of Hl/2-class on 3(2, so that we may
write

J (vx x v2)-n ds = § vx A v2 .
cQ P.Q

By Lemma 2 (I) the differential form vx is closed, and permits an expression

v{ = do)! + g ,

where c/co2 is the coboundary of an //3/2-class 0-form coi9 and gf is the cohomology
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part. We now have

(SuXi u2) = ("i, rot w2) + J (rfa>! + g) A V2

= (wx, rot u2) - J coi A JS2 + J g A S2 , (3.3)

where we used an integration by parts

| d(co1 A v2) = j o)1 A y2 = 0 ,

since ddQ = 0 . Because rot u2eL2(i2)>(w1, rot w2) is continuous for wx on D(S) in
the topology of L\(Q); which should also be the case for the surface integral term of
(3.3). By Lemma 2 (2), we see that the surface integral is continuous for ux on D{S)
in the topology of L\{Q) if and only if the differential form v2 satisfies

dv2 — 0, and J g{ A D 2 = 0 , for every g{ .
dQ

By Lemma 2 (1), this implies that rot u2eLl(Q). Therefore we get

which completes the proof of the self-adjointness of S.
Since S~l is a compact operator (Lemma 1 (2)), the spectrum of S~x consists of

only point spectrum which does not accumulate besides 0. The spectral resolution
of S is given by the inverse of the spectral resolution of S"1. Therefore, the second
assertion of the theorem is proved. •

4. Extension to Non-symmetric Operators and Continuum of Spectra

We consider extensions of the self adjoint rotation operator S, and study the
spectra of them. Our goal in this paper is to study the eigenvalue problem (1.1) and
(1.2). Therefore we need to extend the function space L\{Q) to L^(Q), of course
with giving up the self-adjointness of the operator. We first note the following
point:

Remark 1. Every eigenfunction, in the space L\(Q\ of rot is a member of the set of
eigenfunctions of S. The proof is straightforward by the definition of the domain
of S.

Here we consider the eigenvalue problem in the space Ll(Q).

Definition. We define

Hl
Zc{Q) = {UEL%{Q); rot ueL2

a{Q)} .

We consider an operator Tin the Hilbert space L%(Q) defined by

Tu = rot M, for ueD(T) = //^(fl) .
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Remark 2. When dim(L#(£>)) = 0, T= S. Otherwise, T is an extension of S.
Obviously by the definition, Tis a closed operator. When dim(Lfl(£>)) is not zero,
the domain D(T) is not dense in L;(Q\ and T\s not a symmetric operator; for the
symmetry of rot, it is essential that rot u is orthogonal to L2

H{Q)\ see the proof of
Lemma 2(1) and Theorem 1.

Proposition 1. The resolvent set p(T) of the operator T is equal to p{S). For
lep{T\ the resolvent operator (T — X)~l is compact.

Proof. Let us first show the existence of the inverse T~l. We consider a problem

Tu=feLl{Q). (4.1)

We extend the region Q to IR3. Let / be the zero extension of /, viz.,

\f{x) if xeQ
1 0 ifx$Q.

Since/e L2 (Q\f is approximated in L2 sense by smooth divergence-free functions
supported in Q. We thus see div / = 0 in R3 in distribution sense. We denote by
( — A)~l the vector Newtonian potential. Let w0 be the restriction on Q of function
rot( — A)~l f and u0 — P rw0 , where PL is thejprojector onto L2

Z{Q). Since div
commutes with ( — A)~l

9 we have div( — z l )~ 1 /= 0, which deduces rot w0 = / i n
2̂. We see that u0 is a solution of (4.1), which is unique since D(T) is orthogonal to

Ker(rot).
We next consider the resolvent of T. Let Xep{S\ and consider an equation

(T-l)u=feL2.(Q). (4.2)

We write / = # + /i> where g = PJ so that heL2
H{Q). Let uo^T'lh, and

w = u — u0. We no

which is solved by

w = u — u0. We now consider

w = (S - iyl(g + Xuo)eD(S) =

We now have a unique solution to (4.2);

II = HO + ( S - A ) - 1 ( 0 + Xuo) .

An H ^regularity argument, with the Rellich theorem, shows that the resolvent
{T- A)"1 for Aep(T)== p{S) is compact. •

Definition. We consider a further extension of T. We define

Hl
Ga{Q) = {ueL2

a(Q); rot ueL2
9{Q)} .

We consider an operator f in the Hilbert space L2 {Q) defined by

fu = rot u, for ueD{f) = H ^

Remark 3. Obviously by the definition, T is a closed operator. Since a subspace
{w + h\ ueHl

Lr(Ql heL\(Q)} of H*a{Q) is dense in L2
a(Q\ we see that the domain

Hl
ae(Q) of f is dense in L^ (£2).
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Theorem 2. The spectrum of T consists of only point spectrum ap(T)> When
dim(jL£({2)) = 0, f=S, so that ap{f) = ap(S). When dim (Ll(Q)) is not zero,
<rp(f) = C, viz., for every XeC, we have eigenfunction ux:

(f-AK = 0. (4.3)

Proof When dim {L%(Q)) = 0, f = S by the definition. Otherwise f is an exten-
sion of S. First, for AGap(S), the eigenfunction of the operator S is the solution of
(4.3). Next, by Proposition 1, for Xep(T) = p{S\ we have a nontrivial solution

Let ux = u 4- heLl(Q)c\Hx{QY Then uA is a nontrivial solution of (4.3). D

5. Additional Remarks and Summary

We may also consider a restriction of S;

Definition. We define a rotation operator Q in L\(Q) by

Qu = rot u for ueD(Q) = Hl
0{Q)nL%(Q) .

Proposition 2. 777£ operator Q is symmetric, however, is not closed. The resolvent set
P(Q) of Q is equal to p(S). The spectra of Q consists of point spectrum op(Q) and
residual spectrum <rr(Q). We have relations

Proof Obviously Q is symmetric, however is not even closed; to be proved later. By
Remark 1, we see <rp{Q) a cp(S). Let us show that ap{S) - op{Q) c or{Q). Set
Xeop(S) — ap{Q\ and denote by <f>x the eigenfunction of S belonging to the
eigenvalue X. We have, for every ueD(Q),

(«2 - X)u, <(>x) = ((rot - X)u, <j>x) = («,(rot - \)4>x) - 0 ,

which shows that the domain of the resolvent (Q — X)~l is orthogonal to <£A> so
that X is a residual spectrum of £),

It remains to prove that p{Q) = p (S). Let X e p (S). For every fe L\{Q\ we have
u = (S - A r V e H y f l ) . Note that w may not be in Hj(Q). Since D{Q) is dense in
L\(Q\ there is a sequence {u£eD(Q)} converging to u in the topology of
Since D{Q) c D(S), we have

= IKS - A)(w£ - u) y - > o ,

which shows that the domain of the resolvent (Q — X)'1 is dense in L\(Q). With
taking X = 0, this also shows that <2 is not closed, since we may take ueD(S) such
that u does not belong to HQ{Q) (see Lemma 1(3)). For /eD((Q — A)"1), we have
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an estimate

a = m i n | X — X{ \ ,
/..•e<Tp{5)

which shows that (Q — X)"1 is continuous on D((<2 — X)~l\ therefore Xep(Q).
Obviously p{Q) cz p(S\ so the proof is now complete. •

Remark 4. Since the operator Q is not closed, the equation

ro t«= /eL | ( f2 ) (5.1)

may not have a solution ueD(Q) = Ho{Q)nL2
E{Q), although Oep(Q) = p(S).

When we remove the condition that the solution be in L\(Q\ we get a solution in
HQ(Q). We find the solution by changing the gauge of u0 = S~l feHl

£l:(Q). By
Lemma 1(3), we see n x u0 = n x y with some yeKer(rot). We may choose y such
that n ' y = 0 (div y may not be 0). Then u0 — y is the desired solution. Borchers and
Sohr [1] prove the solvability of (5.1) in Ho'r(Q) that is the Lr-Sobolev space.

We summarize in Tables 1 and 2 the results obtained for various definitions of
the space and the domain of the operator rot.

Table 1. Spaces, domains, and spectra of various rot operators. Here, we assume that dim(L£ (£>)) is not
zero, viz., genus of dQ is greater than 0. The operator S is self-adjoint, so that <rp{S) c U

Operator

Q

s
T

T

Space Domain

L\ HlnL\

Ll RlZa

Table 2. Summary of various

Operator

Q
s
T
T

Point spectrum

C

rot operators

Densely defined? Closed?

Yes
Yes
No
Yes

No
Yes
Yes
Yes

Continuous

0
0
0
0

Symmetric?

Yes
Yes
No
No

spectrum Residual spectrum

*,(S) - M2)
0
0
0

Self-adjoint?

No
Yes
No
No

Appendix (Physical Background)

Here we give a short review of the background of the problem (1.1) and (1.2) in the
plasma physics. Ampere's law relates a magnetic field H with a current density j \

ro t / / =j ,
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where we neglected the so-called displacement current term that is small when the
considered system is slowly evolving. The magnetic force acting on a plasma is
given by

j x H = ( r o t H ) x H .

Here the permeability is assumed one for simplicity. When H satisfies

with a sealer function /.i{x), we see that j x H = 0. Such magnetic fields are called
force-free magnetic fields. It is obvious that the scalar function fi(x) should satisfy
(H, grad)/i = 0, because div H = 0. The simplest force-free fields are characterized
by n(x) = X: real constants. These force-free fields are called free-decay fields,
because they have the following significant character, which has been originally
studied by Chandrasekhar-Kendall [3] for astrophysical plasmas. The mag-
netohydrodynamic equations of plasmas are

d H/dt = - rot r] rot H + rot (v x H),

p [dv/dt + (t>, grad)y] = vAv + (rot//) x H — gradp ,

and, for incompressible case,

div v = 0 .

Here rj, v, p, p, v are respectively resistivity, viscosity, mass density, pressure, and
the fluid velocity of the plasma. When Y\ is a constant, a free-decay field Hf gives
a solution;

/ / (x ,0 = //,(*)-e-"A2:, i> = 0, p = 0 ,

which is a simply decaying magnetic field without causing any magnetic force and
fluid motion.
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