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0. Preliminaries
Consider

iftV> = A ^ , (1)

where A: TV x TV-matrix, tp(t): TV-dimensional vector.

Scalar product

(4> | V ) = <t> • V> ( 2 )
Eigenvalues and eigenvectors

= *j<Pj (3)

If A is Hermitian (selfadjoint), we can span whole vector

space by orthogonal eigenvectors (TV eigenvectors)

= 0 for i^ j (i, j = 1 , . . . , TV) (4)

Projection

(6)

for any V7 (7)

Spectral resolution
N

(8)



Evolution equation becomes

N

N

E
3 = 1

XJaJ(t)(pJ

Taking a scalar product with

Solution

at(t) = a,i(0) exp(—i\it)

N

i=i

(9)

(10)

(11)

(12)



1. MHD Equations

dtp + V • (pv) = 0, (13)

p(dtv + v • Vv) =j x B-Vp( + pg), (14)

dtp + v • Vp + 7pV • v = 0, (15)

ftJ5 = - V x E, (16)

(17)

, (18)

Comment: We can remove j , p, and 12 from the system,

seven waves



2. Linearized MHD Equation
Linearization

(19)

where |V?i

Equilibrium is written by dt = 0 in all equations.

Displacement vector

Linearized MHD equation

+ —(V x Bo) x [V x (£ x JB0)]

+ —[V x (V x (£ x Bo))] x
Mo

Hermiticity of force operator T

Stability theory

1. Energy principle

2. Spectral analysis [

(20)

(21)

(22)



2. Linearized MHD Equation
All eigenvalues of force operator T are real.

(23)

A = A
i) = Ki \ 0

Now the eigenvalue is A = — UJ1 with exp(—icut).

If we have any positive eigenvalue,

co2 = A > 0 id =

exp(=pvAt) : 1 unstable!

If we have all eigenvalues negative,

- c o 2 = A < 0

exp(dii\/—At) : [stable



3. Reduced MHD Equations1

Low-/3 tokamak ordering (e = minor r./major r.)

Bz

e, p ~ e2,

Static fluid, uo = 0.

Stream and flux functions

vi = V</> x ez,

V± - 1, J3j. ~ dz~ e,

ĉ  ~ 1? • V|_ ^ e, ^ ^ 0. (24)

Vip x ez. (25)

Two-fields RMHD equations (after linearization)

= BQ • + (Vjo x ez) (26)

(27)

Boundary conditions: </» = ^ = 0 at the edge.

'E. R. Strauss, Phys. Fluids 19, 134 (1976).
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About norm
RMHD equation for homogeneous plasma

dtu = Auy

A =
0

B •
J3-VA

0

State vector u = (A(j), ijj).

Norm should be taken with the metric

- A " 1 0

0 - A

as

(u

where denotes simple norm.

(28)

(29)

(30)

- A | ̂ ). (31)

Physically, this norm corresponds to energy bilinear form

{u\u)= (32)

(33)

where v = V</> x e2, B = V-0 x ez.



About norm
Difficult for state vector u in inhomogeneous case.

Combining two equaitons

d? A(j> = AuA(j)

+ (Vj x ez) • VB

Define a scalar product as

(Acf)

then Au becoms Hermitian

(34)

(35)



4. Spectrum for Static Plasmas (VQ = 0)
(a) Continuous spectra in slab geometry
Equilibrium magnetic field

B = (0,By(x),Bz) (36)

Alfven equation for eigenvalue u

dx

dcf>

-cb
- kj(w>-wl)4> = 0, (37)

where COA(X)
 = k ' B(x)/y/[iQp.

Regular singularity appears at x = xs when cu

Solution is (due to Frobenius)

=aigi(x) log x - xs • (38)

where g\(x) and g2(x) are analytic functions around xs.

Note: this solution is non-square-integrable under previ-

ous norm

- xs\)dx

1
(x - xs)

2 dx (39)
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There is no other solution in slab Alfven equation.

UJ\ = inf w\(x) : lower bound, (40)

Dividing the singular factor

.2

0
A VI

(41)

multiplying </>, and integrating with respect to x
r

- col) f d</>
dx

a
(42)

(43)

Spectrum is

to mino;A < u < maxwA k (44)
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Solving by Laplace transform

[
c

Branch cuts appear on OJ = a;A

(45)

(46)

AAAA)

Continuum damping

1
cc - e

1
- exp[
v

(47)
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(b) Instability in cylindrical geometry
Equilibrium magnetic field

(48)

Alfven equation for eigenvalue

rdr
r(to2 - to\

dr
m
ri

= 0,

(49)

Point spectra (kink modes) appear due to extra term.

Boundary conditions for m > 1 are

= 0 at r = 0, a (50)

r

13



Simple ODEs

u" - ( - = 0, v"-(-4)v = 0

( -1 > -4)

have solutions

u ~ sin a:, v ~ sin2x,

-Ij- generalize

Oscillation theorem (Sturm)

For the ODE in the real domain

dr
d

dr
K2(r, u)

du
dr
dv
dr

— G\(r,uj)u = 0

(51)

(52)

(53)

(54)

If K^ > Ko^> 0 and Gi > G<?. for any r, then v oscillates

more rapidly than u.

14



some more considerations...

t about the boundary condition at r = a\

d

dr
x)-u,')4,-~F4> = 0,

r dr
(55)

Suppose two neighboring solutions

solution for UJ\ with </>i(0) = 0

(j>i + (50 : solution for oof + Sou2 with 0i + (50(0) = 0

If Sou2 > 0, then

2 > if (a/2 , G(OJ2) > G{OJ2 + 5u2) (56)

0i + (50 oscillates more rapidly than 0

Spectra are

iGoedbloed and Sakanaka, Phys. Fluids 17, 908 (1974).
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(c) Interchange Instability in Stellarators2

Stellarator ordering

RMHD equations for stellarators

where

dt
dp

= -B • Vj2

d
dt

2ra

Jz

A,

= - A A

= '0 +

x Vp

-V,

L\C*^V

x

(58)

(59)

(60)

(61)

(62)

(63)

(65)

2Tatsuno, et a/., Nucl. Fusion 39, 1391 (1999).

Carreras et a/., Phys. Plasmas 8, 990 (2001).
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Eigenvalue equation

1 2mi'(n — mi
dr2 r 72 + (n — mi)2 dr

m 1

21
r2 72 + (n — mi)2

(mi! ,\ . , ID
f- mi [n — mi) — ^a-

. \ /

m(n): poloidal(toroidal) mode numbers,

t: Rotational transform,

Ds = —j3oNp'(4ri + rV): Instability drive,
: central toroidal beta,

: toroidal period number of the helical coils.
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Numerical solution for the (m, n) = (2,1) mode

Equilibrium profiles are

i = 0.499 + 0.2r2 (resonant),

^ = 0.501 + 0.2r2 (non-resonant),<

>̂ = _po(l — r4) (for both).

Beta dependence of growth rate
6e-02

£ 3e-02
2
CD 2e-02

1e-02

Oe+00
Oe+00 2e-03 4e-03 6e-03 8e-03 1e-02

Rvalue

Eigenfunction near the beta limit

Resonant
Non-resonant

0 0.2 0.4 0.6 0.8
Normalized Radius

18



5. Spectral Studies for Shear Flow Plasmas
(a) Linear Shear Flow Profile and Kelvin's Method3

Consider linear shear flow profile in a slab plasma

v0 = (0, ax, 0) . (66)

Non-Hermiticity only enters from VQ • V operator

dtu -f v0 - Vw = An (67)

y \
coordinate transform [ spectraf resolution\

A: Hermitian (selfadjoint) operator

Suppose we have a set of 'shearing modes' satisfying two

conditions

Characteristic equation^

dt<p{t\ k, x) + v0 - V(p(t; k, x) = 0. (68)

•feigenequationl

(69)

3Volponi, Yoshida, & Tatsuno, Phys. Plasmas 7, .2314 (2000).

Tatsuno, Volponi, & Yoshida, Phys. Plasmas 8, 399 (2001).
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We can decompose any function as

u= (70)

Plugging this expression into eq. (67),

[dtuk(t)] <p(t\ k, x)dk = / uk(t)Xk(t) ip(t] k, x) dk,

(71)

we can obtain the following ODE on time for each mode

due to the orthogonality of the eigenvectors;

Xk(t)uk(t).

This is no longer a simple exponential evolution.

Kelvin's mode

(72)
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Transients and Secularities of Kelvin's modes

X
13

O

CD
C
O)
05

50 100 150 200 250 300
Transformed time

Aujt n

o
o
c

CU

s

5 10 15 20 25 30 35 40 45 50

Time t
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(b) Kelvin-Helmholtz Instability with Surface
Wave Model
Consider 2-D Euler fluid

v0 = (Q,v(x))

v

O a

Generalized Rayleigh equation

with

w(x)

• • x

(Kf)(x) = -A
»+oo e-k\x-

-
2k

= — A</>: vorticity.

v"(x) gives ordinary Rayleigh equation.

(73)

(74)

(75)
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Norm again
In enstrophy norm

dx

opeartor kv(x) Hermitian

operator kw(x)JC non-Hermitian

In energy norm

dV

= - [(AkvA-1*?)

1!?1 dx

dx

dx

operator fcv(x)

operator kw{x)K

non-Hermitian

Hermitian

23
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(77)

(78)

(79)



Dividing vorticity field as

a(t)S(x — a)

Evolution equation

-oo

?, t) -

Eigenvalue problem

\ip(x) = Acp(x)

, t)

kv(x)ip(x)
II

--S(x-a) °°
oo

(80)

(81)

(82)

(83)

Two kinds of eigenmodes exist

eigenvalue eigenfunction

\ l = kU- U/2a ipx = <J(a; - a)

where fi < a A /J, ^ a — l/2k

e-k(a-fi)

- ^ -
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When /j, = a — 1/2/:, frequencies overlap (kUfi/a =

Eigenfunction in a wider sense: cf2 — 5(x —

m" ~~ 2a
- 0 .

/I
Taking basis vector by S(x — a) and S(x —

(84)

(85)

A =

I

\

\

0

Including fi = a — l/2k\

For an initial condition &(0) = ipi,

(86)

ov&yy^V

^ (X—

(87)
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