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I. INTRODUCTION

Let a set of objects, phenomena or processes is considered. Certain information (for
example results of measurements) is available about each element of the set, and there is some
feature, possessed only by a part of the elements. If possessing this feature by an element does
not present evidently in the information available, then a problem arises to distinguish
elements that possess this feature. This problem could be solved by construction a model on
the basis of mechanical, physical, chemical or other scientific laws which could explain the
connection between the available information and the feature under consideration. But in
many cases the construction of such model is difficult or practically impossible. In this case it
is natural to apply pattern recognition methods.

1.1 Examples of Problems to Apply Pattern Recognition Methods

Recognition of earthquake-prone areas (for example Gelfand et al., 1976). A seismic
region is considered. The problem is to determine in the region the areas where strong (with
magnitude M > Mo where Mo is a threshold specified) earthquakes are possible. The objects
are the selected geomorphological structures (intersections of lineaments, morphostructural
knots, etc.) of the region. The possibility for a strong earthquake to occur near the object is the
feature under consideration. The available information is the topographical, geological,
geomorphological and geophysical data on the objects.

The problem as the pattern recognition one is to divide the selected structures into two
classes:

• structures where earthquakes with M > Mo may occur;
• structures where only earthquakes with M < Mo may occur.

Intermediate-term prediction of earthquakes (for example Keilis-Borok and Rotwain,
1990). A seismic region is considered. The problem is to determine for any time t will a strong
(with magnitude M > Mo where Mo is a threshold specified) earthquake occur in the region
within the period (t9 t + T). Here x is a given constant. The objects are moments of time. The
occurrence of a strong earthquake is the feature under consideration. The available
information is the values of functions on seismic flow calculated for the moment t.

The problem as the pattern recognition one is to divide the moments of time into two
classes:

• moments, for which there is (or will be) a strong earthquake in the region within
the period (t, t + x);

• moments, for which there are not (or will not be) strong earthquakes in the region
within the period (t, t + x).

Recognition of strata filled with oil. The strata encountered by a borehole are
considered. The problem is to determine what do the strata contain: oil or water. The objects
are the strata. The filling of the strata with oil is the feature under consideration. The
geological and geophysical data on the strata are the available information.

The problem as the pattern recognition one is to divide the strata into two classes:
• strata, which contain oil;
• strata, which contain water.

Medical diagnostics. A specific disease is considered. The problem is to diagnose the
disease by using results of medical tests. The objects are examined people. The disease is the



feature under consideration. The available information is the data obtained through medical
tests.

The problem as the pattern recognition one is to divide examined people into two
classes:

• people who have the disease;
• people who do not have it.

1.2 General Formulation of the Pattern Recognition Problem

One may give the general abstract formulation of the problem of pattern recognition as
follows.

The set W= { w1 } is considered, where objects w1 = (w\\ W21, ... , Wm1), / = 1, 2, ... are
vectors with real (integer, binary) components. Below these components will be called
functions.

The problem is to divide the set W into two or more subsets, which differ in certain
feature or according to clustering themselves.

There are two kinds of pattern recognition problems and methods:
• classification without learning;
• classification with learning.

1.3 Classification without Learning (Cluster Analysis)

The set Wis divided into groups (clusters, see Fig. 1) on the basis of some measure in
the ra-dimensional space w\, W2,..., wm.

Clasle

o o
o

o
o o

r 1

O

O

Claster 3
3 ~i

3 3 3
mm

3

Claster 2 ^

O O
G o

o

o

Claster

o

o

4

A
A

A

A

A

FIGURE 1 Clustering of objects in two-dimensional space

Denote p(w, v) a distance between two m-dimensional vectors w = (wi, W2,.-» Wm) and
v = (vi, v2,..., vm).



To define classification and to estimate at the same time its quality the special function
is introduced. The best classification gives the extremum of this function.

Examples of the functions. Let Wis a finite set. The following two functions can be
used.
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Here K is the number of groups,

r\ Wl/i — 1

mk, mj are the number of objects in the group numbered k and in the group numbered j
respectively; w\w2,.-.,wm* are the objects of the group numbered &; yl

9\
2
9...9\

mj are the
objects of the group numbered/

After the groups are determined the next problem can be formulated: to find common
feature of objects, which belong to the same group.

1.4 Classification with Learning

If it is a priori known about some objects to what groups (classes) they belong, then
this information can be used to determine classification for other objects.

As a rule the set Wis divided into two classes, say D and N.
The a priori examples of objects of each class are given. They are called the learning

set Wo:
W0<zW,
Wo = Do u No.
Here Do is the learning set (the a priori examples) of objects belonging to class D, Âo

is the learning set of objects belonging to class N.
The learning set Wo is used to determine a priori unknown distribution of objects of the

set Wo between the classes D and N.
The result of the pattern recognition is twofold:
• the rule of recognition; it allows to recognize which class an object belongs to

knowing the vector w1 describing this object;
• the actual division of objects into separate classes according to this rule (Fig. 2):
W=DvN
or if there are objects with undefined classification then



Set 1/1/ and learning
subsets Do and A/o

Result of classification
1/1/=

FIGURE 2 Classification with learning

Analysis of the obtained rule of recognition may give information for understanding
the connection between the feature, which differs the classes D and N, on one hand and
description of objects (components of vectors w1) on another.



II. EXAMPLES OF ALGORITHMS

Some algorithms used to solve problems of classification with learning are described
below.

2.1 Statistical Algorithms

These algorithms are based on the assumption that distribution laws are different for
vectors from classes D and N (see Fig. 3). The samples Do and No are used to define the
parameters of these laws.

The recognition rule includes calculating an estimation of conditional probabilities for
each object w1 to belong to class D (TV) and N (PN1). Classification of the objects according to
these probabilities is performed as follows:

We Ut
where e > 0 is a given constant.

N

FIGURE 3 Different distribution laws for classes D and N

Bayes algorithm. This is an example of a statistical algorithm. According to Bayes
formula

P(w = w1 |w e D) P(w G D) = P(w e D|w = w1) P(w = W)

It follows from (1) that

(1)

P'D = P(wD \

Similarly

= w'|we£>)P(we£>)
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piW = W1WG N)P(W G JV)

Estimations of probabilities in the right side of these relations are given by following
approximate formulae, in which the samples Do and No are used:

P(w = w1 |w G D) « P(w = w1 |w G Do),

P(w = w1 |w G AO ~ P(w = w1 |w G Afo),

P(w = w1) « P(w = w1 |w G Do) P(w G D) + P(w = w1 |w G Â o) P(w G AO.

Probability P(w G D) is a parameter of the algorithm and has to be given,
P(w G AO = 1 - P(w G D).

2.2 Geometrical Algorithms

In these algorithms surfaces in the space wi, W2,...» Wm are constructed to separate
classes D and N (see Fig. 4).

o

FIGURE 4 Separation of objects from classes D (rhombs) and N (circles) in two-dimensional
space by a straight line.

Algorithm Hyperplane. This is an example of a geometrical algorithm.
The hyperplane P(w) = ao + fliWi + <Z2W2 + ..• +cimwm = 0 is constructed in the space wu

W2,.-> wm to separate the sets Do and Âo by the best way. It means that some function on the
hyperplnane has to have extremum value.



The example of the function is

Here w \ w 2 , . . . , w n i are objects of Do, v1 ,v2 , . . . ,v / l 2 are objects of M).
The recognition rule is formulated as follows:

w*e D,ifP(W)>s9

We N,ifP(W)<-z,
w*e U,if-e<P(W)<E,

where 8 > 0 is a given constant.

2,3 Logical Algorithms

In these algorithms characteristic traits of classes D and TV are searched using the sets
Do and No- Traits are boolean functions on wu W2,...» wm. The object w1 has the trait, if the
value of the corresponding function, calculated for it, is true, and does not have the trait, if it
is false. A trait is a characteristic trait of the class D, if the objects of the set Do have this trait
more often than the objects of the set No- A trait is a characteristic trait of the class N9 if the
objects of the set No have this trait more often than objects of the set Do.

Using the searched characteristic traits the recognition rule is formulated as follows:
w1 e D, if no1 - W > A + 8,
w1 e N, if nv - TIN1 < A - 8,

w1 G £/, if A - 8 < riD1 - /IN1 < A + 8.
Here n^ and n^ are the numbers of characteristic traits of classes D and N9 which the object
w1 has, A and 8 > 0 are given constants.

Logical algorithms are useful to apply in cases then the numbers of objects in sets Do
and No are small.

As a rule logical algorithms are applied to vectors with binary components. An
example of logical algorithm is the algorithm CORA-3. It is applied to geophysical problems
in particular to the problems of recognition of earthquake-prone areas and intermediate-term
prediction of earthquakes. The detailed description of this algorithm can be found in Gelfand
et al. (1976) and is given below.



III. PRELIMINARY DATA PROCESSING

As it was mentioned above some pattern recognition algorithms (for example CORA-
3) do classify the vectors with binary components. Therefore, if the set W initially consists of
vectors with real components (functions) then prior to an algorithm application, the coding of
objects in the form of vectors with binary components has to be carried out. To do it, the
characteristics should be discretized, i.e. their intervals of values should be represented as the
union of disjoint parts. Each of these parts is given accordingly by the value of a component
of a binary vector or by the combination of values of its several components.

After discretization the data become robust. For example if a range of some function is
divided into three parts only three gradations for this function ("small", "medium", "large") are
used after the discretization instead of its exact value. Do not regret the loss of information.
This makes results of recognition stable to variations of data.

3.1 Discretization

Let us consider some component (function) Wj of vectors (objects), which form the set
W. Let the range of the function variation is limited with the numbers x3

0 and xJ
f (JCJ < xJ

f).

The procedure of discretization for the function Wj consists of dividing the range of its
variation into k} intervals by thresholds of discretization (Fig. 5):

Assume that the value Wj1 of the function numbered j of the object numbered / belongs
to the interval numbered s, if xJ

s_{ < Wj < xJ
s, where xJ

k+l = xj
f. In a process of discretization

we substitute the exact value of the function by the interval, which contains this value.

0 1 2 k -I jfc "— f
j j

FIGURE 5 Discretization of the function wy

Usually we divide the range of function variation into two intervals ("small" and
"large" values) or into three intervals ("small", "medium" and "large" values).

Thresholds of discretization can be introduce manually on the basis of various
considerations for the nature of the given function.

The other way to define the thresholds is to compute them so as to make the numbers
of objects within each interval {xj

s_x, x
J
s), s = 1, 2, ..., £j, are roughly equal to each other. In

this case one has to specify the number of intervals h} only. Then the thresholds of
discretization may be calculated by using a special algorithm. All objects together or only
objects of Do and A^ can be considered. This type of discretization is called here and below as
objective ox automatic.

Our purpose is to find such intervals where values of the function Wj for objects from
one class occur more often than for objects from another class.



How informative is the function Wj in a given discretization can be characterized as
follows.

1. Let us compute for each interval (xJ
s_x, x

J
s) the numbers PS

D and PS
N (s = 1, 2, ...,

£j), which give for the sets Do and No respectively the percent of objects, for which the value
of the function Wj falls within the interval numbered s.

Let us denote = max
\<S<ki

In other words PS
D and PS

N are empirical histograms of the function Wj for the sets Do

and M), and Pmax is the maximal difference of these histograms.
The larger is Pmax, the more informative is the function wy

Functions for which Pmax < 20% are usually excluded.

2. Let k} = 3. Let us denote:
nD pD
r2 rx

pN _pN

+ r3 r2

pN_pN\
r 3 M I

If PS
D changes monotonously with s, MD = 1; the larger is MD, more jerky is PS

D. This

is clear from Fig. 6. Similar statements are true for MN, PS
N.

The smaller are MD and MN, the better is the discretization of the function wy

Functions with both MD, MN ^ 3 are usually excluded.

IP D P D U p D p D | - p D p D|
| r 2 " r l | T r 3 " r 2 | ~ r 3 ~ r l I '

MD=1, PS
D changes monotonously

|P?
D-P

Ip D p D I | P D P DI-IP D P Dl
| r 2 "r 1 |"|r3 " r 2 h l r 3 " r 1 I'
MD>1, PS

D does not change monotonously

FIGURE 6 Monotonous and non-monotonous changing of Pf

3. Samples Do and A^ are often marginally small, so that their observed difference may
be random. Therefore the relation between functions PV

D and P* after discretization should

be not absurd according to the problem under consideration, though they may be unexpected
indeed.
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3.2 Coding

With discretization thresholds determined, a procedure of coding of vectors w1 into the
form of binary vectors is undertaken. For coding only the functions selected at the stage of
discretization are considered. At the stage of coding /j components of binary vectors are
determined for the function Wj. Number /j depends on the number of thresholds as well as on
the type of coding procedure applied to the function wy

For coding the following two procedures are used. In the case of / ("impulse")
procedure /j = ky i.e. the number of binary vector components allocated for the coding of the
function Wj is equal to the number of intervals into which the range of its variation is divided
after discretization.

Let us denote as coi, 01)2,..., coy the values of binary vector components, which code the
function wy If the value Wj1 of the function w} for the object numbered i falls within the s-ih
interval of its discretization, i.e. xJ

s_x < Wj1 < xJ
s , then we set

COi = CO2 = ... = COs-i = 0 , C0s = 1 , COs+l = 0 = ... = COij = 0 .

In the case of S ("stair") procedure /j = k} - 1, i.e. the number of binary vector
components, allocated for the coding of a function, is equal to the number of the thresholds of
discretization. If the value Wj1 for the object numbered / falls within the s-W\ interval of its
discretization, then we set

COi = CO2 = ... = COs-l = 0 , C0s = ( 0 s + i = ... = COij = 1 .

Below the case when the codes of the function w} are constructed for k} = 3 is
considered.

If the value Wj1 belongs to the first interval (xJ
Q < Wj1 < x( ) /-coding has the form: 100.

S-coding for the same value Wj1 has the form: 11. For the second interval (x{ < Wj1 < xJ
2) the

codes are 010 (/-method) and 01 (5-method). For the third interval (x{ < Wj1 < x^) they are

001 and 00 respectively.
Discretization and coding procedures transform the set of vectors W= { w1 }, / = 1, 2,

..., n, which correspond to all objects into a set of vectors with / binary components. Here / =
27/j, where summation is implemented only over the functions left after discretization.

Thus, discretization and coding transform the initial problem in the form of the
classification within the finite set of /-dimensional vectors with binary components. These
vectors will be called objects of recognition.

11



IV. ALGORITHM CORA-3

Algorithm CORA-3 operates in two steps:
- selection of characteristic traits (learning);
- voting.

4.1 Learning

The sets of characteristic traits for classes D and TV are constructed at this step on the
basis of sets Do and iVb-

Traits. Matrix

A =

is called by a trait. Here i\, i2, h are the natural numbers such as 1 < i\ < i2 <h<l and 5i, 82,
83 are equal to 0 or to 1.

We say that the object, which is the binary vector CO1 = (CO11, CO21,..., CO11), has the trait A
if

co{=Sv < = ( 5 2 , (Ol
h=8v

Characteristic traits. Let W c W. We shall denote by K(W, A) the number of objects
CO1 G W, which have the trait A.

The algorithm has four free parameters kvk\,k2,ki, which may take integer non-
negative values. While the values of the free parameters are specified, the notion of
characteristic traits is introduced.

The trait A is a characteristic trait of class D if
K(D0, A) > h and K(N0, A) < h.
The trait A is a characteristic trait of class TV if
K(N0, A) > k2 and #(D0, A) < k2.
Parameters k\ and k2 are called by selection thresholds for characteristic traits of

classes D and N respectively. Parameters k\ and ki are called by the contradiction thresholds
for characteristic traits of classes D and N.

Equivalent, weaker, and stronger traits. The number of characteristic traits of each
class may be large enough. Among them groups of traits, which occur on the same learning
objects of their class, may be. There is no reason to include all traits from such group in the
final list.

Let Q(A) be a subset of the set W consisting of the objects, which have the trait A. Let,
also, Ai and A2 be two characteristic traits of class D. We say that the trait Ai is weaker than
the trait A2 (or A2 is stronger than Ai), if

£2(Ai)nD0 c Q(A2)nD0 and (Q(A2)nDo)\(fl(Ai)nDo) * 0 .
In other words it means that all objects from Do, having Ai, possess also A2. At the

same time there is at least one object from Do, which, having the trait A2, does not have Ai.
A similar definition is introduced for characteristic traits of class N. Let Ai and A2 be

two characteristic traits of class N. Then the trait Ai is weaker than the trait A2 (or A2 is
stronger than Ai), if

Q(Ai)nN0 c Q(A2)nN0 and (Q(A2)n7V0)\(^(Ai)rW0) * 0 .

12



If two characteristic traits Ai and A2 of class D are both found in the same objects of
the set Do i.e.

we call Ai and A2 as equivalent.
Similarly, characteristics traits Ai and A2 of class N are called equivalent if

The lists of characteristic traits of classes being formed as a result of the learning step
by definition include no any trait, which is weaker than any trait in the list of its class. Only
one trait (selected first) is included from each group of equivalent ones to the final list.

Thus, the learning step results in the set of qv characteristic traits of class D and the set
of #N of ones of the class N. These sets containing no weaker or equivalent traits in relation to
any one from the same set.

4.2 Voting and Classification

The second step of the algorithm involves voting and classification. For each object CO1

e Wthe number n^ of the characteristic traits of class D, which the object has, the number n^1

of ones of class N9 and the difference Ai = n^ - n^1 are calculated.
Classification is performed by the following way.
Class D (the set D) is formed from the objects CO1, for which Ai > A. The objects, for

which Ai < A, are included in class TV (the set N).
Here A is a parameter of the algorithm as well as kv &i, k2, and ki.

This recognition rule corresponds to 8 = 0 in the description of logical algorithms
given above.

4.3 Algorithm CLUSTERS

Algorithm CLUSTERS is the modification of algorithm CORA-3 (Gelfand et al.,
1976). It is applied in the case when the set Do consists of S subsets (subclasses):

Do = D o 1 u D o
2 u . . . u D o S ,

and it is known a priori that each subclass has at least one object of class D but some objects
of the set Do may belong to class N.

At the learning step algorithm CLUSTERS differs from CORA-3 in the following.
First, by definition a subclass has a trait if at least one object among those, which

belong to this subclass, has this trait.
The trait A is a characteristic trait of class D if
KS(DO, A) > Jfci and K(N0, A)<ki.

Here Ks(Do, A) is the number of subclasses, which have the trait A.
Second, the definition of the weaker and equivalent traits for characteristic traits of

class D changes to the following.
A characteristic trait Ai of class D is weaker than a characteristic trait A2 of this class

if any subclass having the trait Ai has also A2, and there is at least one subclass, which has the
trait A2 but does not have the trait Ai. Traits Ai and A2 are equivalent if they are found in the
same subclasses.

Algorithm CLUSTERS forms the sets of characteristic traits of classes D and N like
CORA-3.

The step of voting and classification is the same as in algorithm CORA-3.

13



V. ALGORITHM HAMMING

Another algorithm applied to geophysical problems is algorithm HAMMING
(Gvishiani and Kosobokov, 1981). There are also other possible applications of this algorithm
(for example Keilis-Borok and Lichtman, 1981).

The application of this algorithm consists also in two steps.

5.1 Learning

At the first step (learning) for each component 0)k (k = 1, 2,..., 1) of binary vectors the
following values are calculated:

- the number of objects of the set Do, which have C0k = 0,
- the number of objects of the set Do, which have G)k = 1,
- the number of objects of the set NQ9 which have C0k = 0,
- the number of objects of the set No, which have C0k = 1.

Then the relative number of objects, which have this component equal to 1, is
determined for the set Do:

and for the set No:

Then components of a binary vector K = (K\, K2, ..., K\), which is called as kernel of
class D, are determined as follows

* [O,if aD(/c|i)<^A/(/c|i).

Values of the components of the kernel of class D are more "typical" for the objects of
the set Do than for the objects of the set No. The calculation of the kernel K completes the first
step of applying the algorithm.

NOTE: It may be more reliable to eliminate the components, for which
|OCD(&|1) - 0CN(&|1)| < B, where 8 is a small positive constant.

5.2 Voting and Classification

The voting and the actual classification are carried out at the second step. The voting
consists of calculating for each object a Hamming's distance pi to the kernel of class D. It is
calculated by the formula:

k=\

Classification is performed as follows.

14



Class D (the set D) is formed from the objects CO1, for which pi < R.
The objects, for which pi > /?, are included in class N (the set N).
Here R is a parameter of the algorithm.
Hamming's distance may be calculated considering the weights of the components

k=\

Here £k > 0 (k = 1,2, ...,/) are the weights associated to the components of the binary
vectors. The weights may be assigned intuitively or computed by the formula:

\aD{k\l)-aN(k\l)\

where maximum is taken among the components used in the given run of the algorithm.

15



VI. EVALUATION OF THE CLASSIFICATION RELIABILITY

Reliability of results of recognition is evaluated by several methods including control
experiments, statistical analysis of the established classification and other techniques. These
tests are necessary to be sure in the obtained results. It is especially important in the case of
small samples Do and No. The tests illustrate - how reliable are the results of the pattern
recognition. However they do not provide a proof in the strict statistical sense if the learning
material is small.

The following simplest tests are useful.
1. To save the part of objects from Wo for recognition only, not using it in learning.
2. To check the conditions: Do cD,iVoC N.
NOTE: Sometimes these conditions are not valid because the sets Do and No are not

"clear" enough. For example in the case of recognition of earthquake-prone
areas objects of Do are structures where epicenters of earthquakes with M>Mo
are known and objects of iVo are structures where epicenters of such
earthquakes are not known. Objects of No may belong to the class D, because
in some areas earthquakes with M>Mo may be possible, though yet unknown.
Objects of Do may belong to the class N due to the errors in the catalog (in
epicenters and/or magnitude).

The examples of some other tests are listed below. These tests include some variation
of the objects, used components of vectors, numerical parameters etc. The test is positive if
the results of recognition are stable to these variations. Since the danger of selfdeception is not
completely eliminated by these tests the design and implementation of new tests should be
pursued.

6.1 Using a Result of Classification as a Learning Set (RLS Experiment)

This experiment is an attempt to repeat the established classification W=DKJ N, using
the resultant sets D and TV as the new learning sets instead of Do and TVo- We usually consider
this experiment as successful if not more than 5% of the total number of objects are classified
in the experiment differently comparing with their initial classification. The "physical" idea of
the experiment is rather obvious and natural: if our classification is correct then such changing
of learning material should not change the result of classification. The use of CORA-3
algorithm enables usually to repeat the initial classification, if making the experiment we

assume k\ -ki = 0 and specify sufficiently small values for thresholds k\ and fe. Thus if
CORA-3 algorithm is used then the experiment should be executed with non-zero thresholds
k\ and ki. For instance, k\ = ki = 1, or k\ = ki = 2, or k\ and ki have the same values as in

the initial classification. In the case of k\ - ki = 0 the substantial information is carried with
maximum values of k\ and £2, under which the initial classification can be repeated.

In the case of any algorithm used to obtain the initial classification, it's advisable to
repeat it in making the experiment by using HAMMING algorithm. We consider success of
RLS experiment as the necessary condition for the classification obtained to pretend to be the
problem solution. In this sense RLS experiment is obligatory to check the reliability of the
classification.

6.2 Stability Testing (ST) Experiments

These experiments generalize RLS experiment. Their goal is to obtain the initial
classification W= D <u N, using the various subsets Do' c D, No' c N as Do and No learning
sets. The experiment is considered successful if the initial classification is rather stable while

16



we change learning material. Usually we accept the result if not more than 10% of the total
number of objects change their classification in the result of the experiment. The choice of the
subsets A / and No', which are used as the learning sets to play the role of Do and No in the
experiment, has to be in sufficiently natural way. For instance, in the case of recognition of
earthquake-prone areas the region can be divided into two geographical parts, southern and
northern or western and eastern. The subsets ZV and No' then may be formed correspondingly
from objects of the sets D and TV fallen within one of the parts selected in the region. The
subsets A / and No' may be also selected on the basis of the voting results in the initial
classification. If algorithm HAMMING is used, the objects w1 e D, remaining in the set D
with smaller value of /?, may be assigned to Do'. The objects from the set N, which remain in
the set N with greater value of /?, are assigned to the new learning set No'. If CORA-3 or
CLUSTERS algorithm is used, objects from the set D, which remain in the set D with greater
value of A, can be assigned to Do'. Analogously the objects w1 e N, remaining in the set N
with smaller value of A, can be assigned to No'.

Successful results of ST experiments, especially in the case when Do' does not contain
the whole Do set, are convincing arguments for the validity of the established classification. At
the same time the success of this experiment with any choice of Do' and No' can not be
considered as necessary condition for the result of recognition to be valid.

6.3 Sliding Control (SC) Experiment

This experiment is designed for establishing classifications on the basis of the learning

sets (Do\w') and (A^o\W/+A?1), i = 1, 2,..., max(ni,W2). The idea of SC experiment is very clear.
We just want to check weather classification of the objects belonging to the learning set is
stable while they are excluded from the learning set. The first variant discards the objects W1

G Do and w1+r?1 e No, the second variant resets them but discards the objects w2 e Do and
w2+"1 G No, etc. If one of the sets Do or No (with a smaller number of objects) has already all
its objects discarded once, we proceed only with the other set. With applying CLUSTERS
algorithm, the whole subclasses are excluded in turn from the set Do.

Formal criteria of success of the experiment is small value of the ratio —^- or

T-A—pY Here mo and m^ show how many objects of Do and No respectively change
| M ) | ~*~ | ^ o |
classification after they were eliminated from learning. We usually consider SC experiment as
successful if not above 20% of objects in each of Do and No sets change their classification
while neglecting.

This experiment is very similar to the well-known "Jack-Knife" procedure, under
which each variant discards only one object, first from Do, and then from No. On the other
hand SC is preferable because it needs executing less variants of classification.

6.4 Voting by the Set of Equivalent Features (VSEF)

This experiment is applied only if classification is obtained by CORA-3 or
CLUSTERS algorithms. In both cases the result of classification depends, generally speaking,
on the choice of traits from the groups of equivalent. The chosen traits then are included in the
sets of characteristic ones resulted from learning. VSEF experiment pursues the goal to
evaluate how much the classification obtained is stable toward such choice. Let us denote by
ul

Dj the number of traits, which the object w1 has from the group of ones equivalent to y'-th trait
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of class D. Analogous ul
Nj is the number of traits, which the object w1 has from the group of

ones equivalent toj-th trait of class N. Let us define on the bases of numbers ul
Dj and ul

Nj the

numbers of "votes" in favor of classes D and N respectively. They are defined by the formulas

f u f
L j ' UN 2j j '
y=i PD j=l PN

Here pJ
D is the total number of traits equivalent to y-th trait of class £>, pJ

N - the number of

traits equivalent to y'-th trait of class TV. In calculation of both numbers pJ
D and pJ

N y-th trait

itself is obviously included. In the experiment the set D is formed from the objects, which

satisfy the condition ul
D - ul

N > A and the rest of objects forms the set N.
We usually assume that the experiment is successful if this classification differs from

the original one in less than 5% of objects. According to the construction the success of this
experiment has to be considered as necessary condition of the validity of the result if CORA-3
or CLUSTERS algorithm is applied.

6.5 Experiments with Random Data

These experiments (Gvishiani and Kosobokov, 1981) are designed for estimating
probability of a classification error and for verifying the classification to be non-random. Let
us consider the sequence of intermixed problems. An intermixed problem is formulated on the
basis of initial one by a random choice of rt\ objects from given n objects of the set W and also
by a random choice ri2 objects from the rest of n - n\ objects of the set W. These two new
random learning sets we symbolize as ZV and No'. Coding of the objects in the form of binary
vectors remains the same for an intermixed problem as it is in the real one. In other words it
means that we preserve the relationship between the characteristics, which organic one to the
set Was a whole.

Therefore Cn
n

xCn^ -n\ln^n2\{n-nx -n2)\ of intermixed problems may be defined.

On the next stage a pattern recognition algorithm is applied to an intermixed problem. This
way the classification W= D u Nbased upon the learning sets Do' and No' is obtained in the
given intermixed problem. In the random case we require the condition that |D| is not greater
than the number of objects in the set D obtained in the initial classification.

Assume that F of intermixed problems have been formed and f\ among them
succeeded to include Do' c D. Then/i/F ratio may be used as the measure of the result to be
non-random. If the values of f\IF are small it obviously means that, it is complicated to obtain
a random result of the same quality as the real one. In this sense the small values of f\IF speak
for the fact that the real result obtained is non-random. On the other hand it cannot of course
be used as necessary condition to proceed with the classification.

As it is shown by Gvishiani and Kosobokov (1981) under some natural additional
requirements classifications in intermixed problems offer to define the upper estimate of
classification error probability for the original problem. This upper estimate is calculated by
the formula

Here J Â  | is the mean number of objects allocated to class N in the intermixed problems: vD

- the mean number of objects from sets Do' allocated to N for different intermixed problems.

It is obvious that a small value of p is the argument for the validity of the

classification in the original problem. If the estimation results in a sufficiently large value (p

> 0.5), it is advisable to analyze again the statement of the original problem. For instance,
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large value p can be related with an insufficiently large size of Do. On the other hand one

should remember that p gives only the upper estimation of the error probability. In fact might

really have much smaller value than p .

6.6 Result Replication Experiments

These experiments are the attempts to replicate the obtained result by altering the
solution procedure starting with some intermediate stage. The application of another pattern
recognition algorithm is used in the simplest example of such experiment. In other words
classification was established by performing CORA-3 algorithm, then, using that same coding
of objects, an attempt may be made to repeat the classification by applying HAMMING
algorithm. This experiment is usually considered as satisfactory one if not more than 20% of
objects change their classification.

When application of a simpler algorithm results in repeating almost entirely the initial
classification, its validation rises, of course. On the other hand replication of the classification
by another algorithm cannot be considered, of course, as the necessary condition for the result
to be valid.

The set of used components of binary vectors may be changed. In particular this may
include elimination of each used component in turn.

An attempt may be also made to repeat the classification altering discretization
thresholds for the functions describing the objects. Corresponding changes in coding of the
objects should be also made. New functions may be included in the description of the objects.
Then by replication of all subsequent stages of the problem consideration, a new classification
is established and its comparison with the initial is made.
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VII. APPLICATION OF PATTERN RECOGNITION METHODS TO
GEOPHYSICAL PROBLEMS

Application of the pattern recognition methods to the problems of earthquake-prone
areas determination and intermediate-term earthquake prediction is considered below.

7.1 Recognition of Earthquake-prone Areas

The problem under consideration is to determine in the region the areas where strong
(with magnitude M > Mo where Mo is a threshold specified) earthquakes are possible. The
basic assumption is that strong earthquakes associate with morphostructural nodes, specific
structures that are formed around intersections of the fault zones. This gives possibility to
apply the pattern recognition approach.

The nodes are considered as objects of recognition. They are identified by means of
the morphostructural zonation method and described by characteristics determined on the
basis of the topographical, geological, geomorphological and geophysical data. When these
characteristics are measured the objects are represented by vectors, components of which are
values of the characteristics.

The problem as the pattern recognition one is to divide the vectors into two classes:
vectors D (Dangerous) and vectors N9 which represent correspondingly the nodes where
earthquakes with M > Mo may occur and the nodes where only earthquakes with M < Mo may
occur. Application of the pattern recognition algorithms requires a learning set of vectors, for
which we know a priori the class they belong to. The learning set is formed on the basis of the
data on seismicity observed in the region. It consists of vectors Do and No representing
correspondingly the nodes where strong earthquakes occurred and the nodes, which are far
from the known epicenters of such earthquakes.

Formulation of the Problem and the Main Stages of Its Investigation

Let Mo is the selected threshold for earthquake magnitude. The problem of earthquake-
prone areas determination is informally formulated as follows. To separate the territory of the
region under consideration into two parts: the area D where epicenters of earthquakes with
magnitude M > Mo may be situated and the area N where only epicenters of earthquakes with
magnitude M < Mo are possible.

The first question, which arises concerning this formulation of the problem, is how to
select the region and the magnitude threshold Mo. The following criteria could be
recommended to do this selection:

• at least 10-20 epicenters of earthquakes with M > Mo have to be known in the
region under consideration;

• the environs of the known epicenters of earthquakes with M > Mo cover not
overwhelming part of the region territory (otherwise the problem has no sense: the
whole region belongs to part D);

• the region has to be enough uniform to possible causes of origin of earthquakes
with M > Mo.

These criteria establish some dependence between size of the region and the threshold
Mo. For instance, for Mo = 5.0-6.0 linear sizes of the region are hundreds of kilometers; for Mo
= 7.0-7.5 - thousands of kilometers; for Mo = 8.0 - tens of thousands of kilometers.

The following examples illustrate selection of the regions and corresponding
thresholds Mo: Italy, Mo = 6.0 (Caputo et al., 1980); California, Mo = 6.5 (Gelfand et al.,
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1976); the Pacific Coast of the South America, Mo = 7.75 (Gvishiani and Soloviev, 1984); the
whole Pacific seismic belt, Mo = 8.0 (Gvishiani et al., 1978).

The existing experience shows that pattern recognition methods and algorithms may
be applied to investigate earthquake-prone areas (Gelfand et al., 1972, 1973, 1974a, 1974b,
1976; Gvishiani et al., 1978, 1987; Caputo et al., 1980; Zhidkov and Kosobokov, 1980;
Gvishiani and Kosobokov, 1981; Kosobokov, 1983; Gvishiani and Soloviev, 1984; Cisternas
et al., 1985; Gorshkov et al., 1987; Zhidkov et al., 1975).

After selection of the region and threshold magnitude Mo the objects of recognition
should be defined in the region.

First time pattern recognition methods were applied to earthquake-prone areas studies
in the Pamirs and Tien Shan by Gelfand et al. (1972). Since then several important studies for
determination of earthquake-prone areas have been developed by pattern recognition methods.
In principal three types of objects are used in such recognition studies: plane areas, points and
their vicinities and segments of linear structures.

Morphostructural knots are an example of area objects. They are the most fractional
areas characterized by the most active tectonic movements. The boundaries of the knots are
determined by using geological and geomorphological criteria and data of field investigations.
Necessary condition to use knots as objects of recognition is the fact that all epicenters of
earthquakes with M > Mo known in the region are located inside knots (according to the
accuracy of their determination). If it is so the further study is based on the assumption that all
epicenters of earthquakes with M > Mo are located inside morphostructural knots.
Geomorphological basis of this assumption is formulated by Ranzman (1979). Pattern
recognition algorithms are applied in this case to classify the finite set of morphostructural
knots of the region into two classes: D-knots, inside which earthquakes with M > Mo may
occur and N-knots, inside which only earthquakes with M < Mo are possible. According to this
classification the area D is formed as the part of the territory of the region covered by D-knots
and the area N is the rest of the region. The examples of using morphostructural knots for
earthquake-prone areas investigations can be found in Gelfand et al. (1972, 1973, 1974a).

Disadvantage of this approach to the choice of objects is the fact that determination of
boundaries of morphostructural knots is a difficult problem. The necessary data are not always
simply available. This is especially true for not well studied regions. In such cases it is
recommended to use the intersections of axes of morphostructural lineaments as the point
objects of recognition.

Selection of lineament intersections as objects of recognition is caused by the fact that
blocks, lineaments and knots, which are the basic elements of morphostructural zoning are
characterized by successively increasing tectonic activity (Ranzman, 1979). This selection is
also based on the hypothesis about clustering of epicenters of sufficiently strong earthquakes
to intersections of morphostructural lineaments (Gelfand et al., 1974b). This hypothesis seems
to be highly truthful for a region if the following two conditions are valid. The distance from
all well determined epicenters of earthquakes with M>Mo known in the region to the nearest
intersection does not exceed r. The area covered by circles of radius r with centers in all
intersections of the region is a small part of the total area of the region.

By application of pattern recognition algorithms the finite set of lineament
intersections is separated into two classes: D-intersections, near of which earthquakes with M
> Mo may occur, and N-intersections, near of which only earthquakes with M < Mo are
possible. According to this classification the area D is formed as the part of the territory of the
region covered by vicinities of D-intersections. The area N is the rest of the region. As a rule a
circle with a center in an intersection is understood as the vicinity of the intersection. The
circle radius R is selected so that all well determined epicenters of earthquakes with M > Mo
known in the region are located within the circles.
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The example of objects defined on linear structures is segments of recent active
geological faults. In this case linear structures are divided into the set of segments of about
equal length. By means of pattern recognition algorithms the finite set of segments is
separated into two classes: D-segments, in the vicinities of which earthquakes with M > MQ
may occur, and N-segments, near of which only earthquakes with M < Mo are possible. A
vicinity of a segment is usually a zone with the segment as an axis line or a circle around a
center of the segment. In the last case a radius usually is about half of the segment length.
According to this classification the area D is formed as the part of the region covered by
vicinities of D-segments and the area N is the rest of the region.

Segments of linear structures as objects were used for recognition of earthquake-prone
areas in California (Gelfand et al., 1976), in the whole Pacific Ocean seismic belt (Gvishiani
et al., 1978), and in the Western Alps (Cisternas et al., 1985). In the first case the basic linear
structure was the San-Andreas fault. In the second case it consisted of the axes of the deep-
water trenches or (in their absence) the bottom lines of the continental slopes situated along
the Pacific Ocean belt. In the third case the segments of linear structures, forming a
neotectonic scheme were considered.

Pattern recognition algorithms with learning are applied to investigate the problem.
Selection of the learning subjects Do and No depends of course on the type of the objects of
recognition. In case of area objects, usually all those, inside which known earthquake
epicenters with M > Mo do exist, are included in Do. The subset No is either constituted by all
other objects from W or belonging to it are objects from W, which have no known epicenters
of earthquakes with M > Mo - 8 (8 > 0) where 8 is usually considered to be equal to 0.5. It is
necessary to emphasize that in both cases set No is not "pure" in the sense that among its
objects can be those, inside which earthquakes with M > Mo are possible. Moreover, in the
first case where No = W\ Do the problem indeed is to locate such objects. Such specific fussy
type of learning material represents a specific difficulty in locating possible earthquake-prone
areas by pattern recognition techniques.

If the period of seismic observations in a region under consideration is long enough
then it is possible to assume that the percentage of objects to be reclassified from No into class
D is relatively small. Let us note that introducing 8 > 0 to include in No set only the objects,
which have no epicenters of earthquakes with M > Mo - 8 reduces the above percentage. It is
natural to require the condition Do c D. In other words all known places of strong earthquakes
should be recognized. If the number of objects in the set Do is large enough then it may be
used not entirely as the learning set and the part of its objects may be left for examination to
verify the reliability of decision rule obtained.

In the case of point objects, the set Do is constituted by the objects situated at a
distance from the known epicenters of earthquakes with M > Mo not exceeded a fixed
threshold r. Value of r is a function of Mo: for instance, for earthquake-prone areas
recognition in the Eastern part of the Central Asia (Mo = 6.5) value of r has been chosen 40
km (Zhidkov and Kosobokov, 1980), for the Pacific coast of South America (Mo = 7.75) r =
100 km (Gvishiani and Soloviev, 1984) etc. Value of r has to satisfy the following condition:
all sufficiently well located epicenters of earthquakes with M > Mo in the region have to be at
a distance not above r from the nearest object. The set No is either constituted by the
remaining objects or by the objects not included in that part of the region covered with the
circles of radius r\ (r\ > r) and the centers in the epicenters of known earthquakes with M >
Mo - 8 (8 > 0). In this case the set No also can contain objects that potentially are objects of
class D.

Let us emphasize the following difficulty: the same epicenter may be at a distance not
exceeded r from several objects. Therefore, among these objects, which belong to the set Do
by definition some objects may be reclassified into class N. The algorithm CLUSTERS, which
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takes into account this specific feature of the set Do is used to overcome this difficulty. In case
when the necessity arises of applying CLUSTERS algorithm, instead of Do c D condition, it
is quite natural to require the following condition: each known earthquake with M>Mo has an
object of class D at a distance not exceeded r from its epicenter.

In the case of objects in the form of segments of linear structure, the set Do is
constituted by segments, on which the epicenters of earthquakes with M > Mo are projected.
The set No consists either of all the rest segments (No = W\ Do) or contains the segments from
W, which have no the joint borders with the segments belonging to Do. The other example of
No is the set of the segments, on which no projection of an epicenter of earthquake with M >
Mo - 8 (8 > 0) takes place. Since in the case of linear structures one epicenter, as a rule,
produces only one object to be included in the set Do, it is quite natural to require the resulting
classification satisfying the condition Do c D.

For applying pattern recognition algorithms the objects defined in the region have to
be described in the uniform set of geological-geomorphological and geophysical
characteristics. As far as the earthquake-prone area problem is considered it is natural to use
the characteristics, which describe the intensity of recent tectonic activity in the objects'
vicinities. Experience obtained in recognition of earthquake-prone areas enables us to
establish the most typical of such characteristics. Among them are:

• the characteristics related to the description of topography inside the area of the
object and in its vicinity such as maximum altitude above see level HmSLX inside the
object's area, altitude range AH; dominating combination of geomorphological
structures in the object's vicinities, percentage of the object's area with existing
Paleogene Quaternary sediments, etc.;

• the characteristics related to the schemes of neotectonic and morphostructural
lineaments of the region, maps of recent faults etc. such as number of lineaments
forming the object, the highest rank of lineament among those which form the
object, etc.;

• the characteristics related to description of gravity field anomalies inside the area
of the object.

In case of area objects the used notion of "area" is obvious. In case of point objects -
the "area" is a circle of the fixed radius for all the objects and with the center in the object. In
case of objects being in the form of linear structures' segments - the "area" is a circle of the
fixed radius for all the segments and with the center in the middle of the segment. Area
objects may under the above definition have various values of area. Thus area of an object
area may be used as a characteristic for the object description.

All available information related directly or indirectly to seismicity description may be
in principle used while the object characteristics are selected. The key condition for a
characteristic to be introduced is the possibility to measure uniformly its values for all the
objects in the region. After measuring the values of selected characteristics for all the objects
the set of corresponding vectors w1 = {w\\ W21, ..., Wm1,}, / = 1, 2, ..., n, can be constructed.
Here m is the total number of characteristics; n - the total number of objects in the set W\ w^ -
the value of £-th characteristic measured for i-th object.

Pattern recognition algorithms, used to investigate the problem, do classify the vectors
with binary components. Therefore, prior to an algorithm application, the discretization of the
characteristics and the coding of objects in the form of vectors with binary components has to
be carried out.

The next step of the problem investigation is applying a pattern recognition algorithm
to obtain classification W = D *u N where D is the set of objects, in which known and future
epicenters of earthquakes with M > Mo may be located; N is the set of objects where only
epicenters of earthquakes with M < Mo may occur. As it was pointed out above the resulting
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classification should satisfy the condition Do c D in cases of area objects and objects in the
form of linear structures' segments. In case of point objects this condition was reformulate in
the way that in the vicinity of each epicenter of an earthquake with M > Mo an object
belonging to the set D should be present. In order to avoid trivial classification the following
condition for resulting classification has to be introduced:

\D\ < 0 |W|.
Here as everywhere \D\ and \W\ denote the numbers of objects in the sets D and W
respectively; P (0 < (3 < 1) is the real number, which gives a priori upper evaluation of spatial
pattern of the region's seismicity as far as earthquakes with M > Mo are concerned. The value
of the parameter P has to be definite prior to the application of pattern recognition algorithms.
The choice of this value should proceed from the expert evaluation of all geological,
seismological and other available information concerning the region under investigation.

The quality and reliability of the classification obtained are verified by control
experiments. The successful ones produce arguments in favor of the fact that the resulting
classification represents well the actual division of objects into the classes related and not to
possible prone-areas of earthquakes with M > Mo* The verification of the classification
obtained also follows from the comprehensive analysis of the result involving additional
information not applied in the problem tackling. Of course the most important in this sense are
non-instrumental epicenters data. Let there are some objects, which are able to be among Do
set but not included in learning material and only classified. Therefore their classification as
objects of the set D is a convincing argument in favor of the classification reliability.
Unfortunately we operate with small samples. But the volume of Do set offers, as a rule, no
possibility for the checking of the result in such a way.

If necessary control experiments were unsuccessful, then the classification obtained
cannot be taken even as a possible solution of the problem. In this case we should return to the
procedure of recognition. Furthermore sometimes even the region under consideration and
threshold of considered magnitudes Mo have to be corrected. The necessity of returning to the
earlier stages of the recognition procedure may arise not only due to the results of verification.
It may occur at any stage of classification if the results appear to be unsatisfactory.

Summarizing the following stages of the recognition of earthquake-prone areas may be
formulated.

1. Definition of the region under consideration and the threshold of magnitude of
strong earthquakes in this region for investigation of earthquake-prone areas.

2. Choice of the type of objects of recognition and their definition in the region. This
stage requires detailed geological, geomorphological, and seismotectonic
observations. By using these data a scheme of lineaments as the basis for definition
of objects has to be constructed.

3. Construction of learning material Wo = Do u No for "dangerous" (Do) and "non-
dangerous" (No) classes.

4. Selection of object description characteristics and measurement of their values.
5. Discretization and coding of the characteristics.
6. Application of a recognition algorithm to obtain classification W = D u N into

dangerous (D) and non-dangerous (N) objects.
7. Control experiments. Evaluation of the reliability of classification obtained.
8. Definition of D and N plane areas in the region on the basis of the classification

W=DvN.
9. Geological and geomorphological interpretation of the obtained division of the

region into dangerous and non-dangerous zones and their recognized features.

24



The key among the above problem tackling stages is the validation of the results and
evaluation of their reliability. This stage is also the most time consuming but should be carried
out very detailly and carefully.

After the definition of D and N areas on the region's territory it is advisable to do a
statistical analysis of the locations of the known epicenters of earthquakes with M < Mo
relative to the located areas (as e.g. in Kosobokov and Soloviev, 1983). The result of such
comparison can lead, in principle, to the conclusion that the obtained D and N areas are
actually earthquake-prone areas for earthquakes with M < M'o where Mo is a smaller
magnitude threshold than Mo.

Recognition of earthquake-prone areas for the Western Alps

The problem of recognition of places in the Western Alps where earthquakes with M >
5.0 may occur (Cisternas et al., 1985) is briefly considered below.

The objects are the intersections of the morphostructural lineaments obtained as the
result of the morphostructural zoning of the Western Alps. The scheme of the
morphostructural zoning of the Western Alps and the objects are shown in Fig. 7. The total
number of objects in the set Wis 62. The problem is to classify these objects into two classes:
objects where earthquakes with M > 5.0 may occur (class D) and objects where earthquakes
with M > 5.0 may not occur (class AO.

Table 1 contains the list of characteristics, which describe the objects. The components
of vectors w1 are the values of these characteristics.

The epicenters of earthquakes with M > 5.0 or / > 7 (/ is maximum macroseismic
intensity) are shown in Fig. 7 by dark circles with years of occurrence. The learning set Do of
class D consists of 14 objects, near which instrumental epicenters of earthquakes with M > 5.0
are known (earthquakes in the 1900-1980 period): 3, 12, 13, 14, 20, 30, 31, 35, 40, 41, 42, 44,
51, 57. The objects (1, 5, 6, 8, 53, 55, 56, 58, 60, 61), which have historic earthquake
epicenters (events prior to 1900) with / > 7, were not included both in Do and No learning sets.
These objects and objects 18, 19, which are located near the epicenter of 1905, were voted
only. The remaining 36 objects constituted the learning set No of class N.

The following characteristics (Table 1) ought to be considered as the most
informative: maximum altitude Hm3iX, altitude gradient A////, the portion of the soft
(quaternary) deposits <2, the highest rank of the lineament in the intersection /?h, distance to
the nearest second rank lineament p2. For all these functions Pmax > 20%.

Coding of all the functions, except the combinations of relief types (Table 1), was
performed by S-method with the thresholds given in Table 1. Their values have been obtained
by the method of objective discretization. Functions describing relief pattern need no
additional discretization and coding since they take values 1 (yes) or 0 (no).

Value of (3, which gives a priori upper evaluation of spatial pattern of the region's
seismicity for earthquakes with M > 5.0, was estimated as 0.6. Therefore classifications with
\D\ < 0.6 |W| were considered only.

Algorithm CORA-3 was applied with the following values of its parameters:
kx = 3, hi = 2, k2 = 11, &2 = 1, and A = 0. The selected sets of characteristic traits of classes D
and TV (£>- and Af-traits) are given in Table 2. The traits are given in the table as conjunctions
of inequalities in the values of the object description characteristics.

The obtained classification of the objects is shown in Fig. 7: 34 objects are attributed
to class D, and 28 objects are attributed to class N. All the objects of the learning set Do are
classified as objects of class D. The number of objects of No, classified as objects of class D,
is roughly 30% of the their total number in No.
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FIGURE 7 The morphostructural scheme of the Western Alps and the result of recognition.
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TABLE 1 Characteristics of objects of the Western Alps

Functions Discretization
thresholds

first
2686
325
490
32

2500
51

| second
4807

-
900
42
-

91

Maximum altitude //max, m
Minimum altitude //min, m
Altitude in the lineament intersection point //o, m
Distance between points where //max and Hm[n are measured /, km
A// = //max - //mim m
Altitude gradient A////, m/km
Combinations of relief types (yes, no)

mountain slope/mountain slope (m/m)
mountain slope/plain (m/p)
mountain slope/piedmont/plain (m/pd/p)
mountain slope/piedmont (m/pd)
piedmont/plain (pd/p)

The portion of the soft (quaternary) deposits <2, %
The highest rank of the lineament in the intersection /?h
Number of lineaments forming the intersection n\
Number of lineaments in the circle of radius 25 km N\ (3 thresholds)
Distance to the nearest intersection pint, km
Distance to the nearest first rank lineament pi, km
Distance to the nearest second rank lineament P2, km
Maximum value of Bouguer anomaly 5max, mGal
Minimum value of Bouguer anomaly Bm[n, mGal
A5 = 5max - 5min, mGal
B = (5max + flmin)/2,mGtf/
HB = 0.1 //max [m] + flmin [mGal]
Number of Bouguer anomaly isolines Afe
Number of closed Bouguer anomaly isolines NBC
Minimum distance between two Bouguer anomaly isolines with
values divided by 10 mGal (Vff)"1, km

10
1
2
2
20
0
0

-82
145
45
110
153
4
1
2

-
2
-

3,4
31
32
40
-8
-85
65
-44

-
7
-
3
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TABLE 2 Characteristic traits selected by algorithm CORA-3 for recognition of objects of the
Western Alps

J+ 1 Q (XL 1

D-traits
1
2
3
4
5
6
7
8
9
10 >10

iV-traits
1
2
3
4
5
6
7
8

* 1

2
2

>2

2

2
2
2

>3
>4

<3
>3

<3

1 Pi, &m

<32
>0

<32

>32
>32

0

1 P2, km |

0
0

>0;<40

<40

>0

>40
>40
>40
>0

AB,mgl

<65
<65
<65
<65
>45
>45
>45

<45
<45
<45
<45

| (WBy\km

<2
<2

<3

<3
<2

>2

>2

7.2 Intermediate-term Prediction of Earthquakes

The pattern recognition methods were used to develop the intermediate-term
earthquake prediction algorithm CN (Keilis-Borok and Rotwain, 1990). This algorithm was
initially applied to California-Nevada region and is called algorithm CN.

Objects of Recognition

The objects are moments of the time. These moments are described by the functions
defined in the lecture "Functions on Catalogs ..." (Kossobokov and Novikova, 2001). The
selection of the moments and the forming of the learning sets Do and TVo are described below.

If the earthquake catalog of some region covers the time from to to 7k the three types of
time periods can be defined between £o and T^:

• periods, which precede strong earthquakes, - periods D\
• periods, which follow strong earthquakes, - periods X;
• periods, which are not connected with strong earthquakes, - periods N.
The formal definition can be formulated as follows.
Let t\912,..., fm (*o < h < h < ... < tm < 7k) be the moments of strong earthquakes of the

region under consideration. Here strong earthquakes are the main shocks with magnitude M >
Mo, where Mo is a given threshold.

Periods D are time intervals from tx - Afo to t\ (i = 1, 2,..., m).
Periods X are time intervals from t\ to t\ + Â x out of periods D.
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Periods N are intervals from to to 7^ which remain after exclusion of all periods D and
X.

Here / = 1, 2,..., m; Afo and Atx are given constants.
Example of periods D, X, and N is shown in Fig. 8. The moments tu tl+u A+2, and ti+s, in

this figure are the moments of four strong earthquakes.

.D .

.Atr

D

•Atr,

- X .

-A/v

i+2

FIGURE 8 Periods D, N, and X.

Moments of time are considered as objects of recognition. For time period from to to
Tk three types of moments are defined: Do, No, and X.

Moments Do (the set Do) are the moments before strong earthquakes. For each strong
earthquake with origin time t\ the interval from t\ - AfD to t\ - 8t is divided into k equal parts of
the length Afe = &t\lk where A*i = Afo - &. Here 8r > 0 and £ are specified so to satisfy the
relationship bt « Afe.

Moments Do are the moments

where 7 = 0, 1, 2, ..., &. The moments Do, which are earlier than the origin time t\.\ of the
preceding strong earthquake, are eliminated (see Fig. 9b).

Moments N are selected within periods N with equal steps, unless there is not specific
reason to do otherwise.

Moments A^ (the set A )̂ are selected from moments N to be regularly distributed
among them. The number of moments TVo is usually selected about the same as the number of
moments Do.

Moments X are selected from periods X with step Ar2.

Subclasses

Among the moments Do subclasses are formed. One subclass includes moments Do,
which precede the same strong earthquake.

Let t[-\ and t\ are origin times of two consecutive strong earthquakes. If t\ - t{.\ > Afo
then the subclass connected with the strong earthquake numbered i consists of the following
moments Do:

wherej = 0, 1, 2, ..., k. If t\ - A-i ^ Afo then only moments tj, which are after fa (^ > fa), are
included in the subclass.

In Fig. 9a the subclass connected with the strong earthquake occurred at time fa
consists of three moments Do: fa0, fa1, and t\.\. The subclass, connected with the strong
earthquake, occurred at time t\, consists also of three moments Do: t\, t\, and t\.
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In Fig. 9b the subclass, connected with the strong earthquake, occurred at time ^_i,
consists also of three moments Do: A-i°, *i-i\ and t\.\, and the subclass, connected with the
strong earthquake, occurred at time t[, consists only of two moments Do: t\ and t\ .

• * -

t}

-*-

FIGURE 9 Moments Do (marked by 0 ) , k = 2.

Algorithm CN

The earthquake catalog of the Southern California for the time period 1938-1984 was
used to determine the learning set. The threshold magnitude for the strong earthquakes was Mo
= 6.4. Table 3 contains the thresholds for discretization of the functions on the earthquake
flow, calculated for these moments. The coding was performed by 5-method with these
thresholds.

The algorithm CLUSTERS was applied to obtain the characteristic traits of classes D
and N. These traits are listed in Table 4. The parameters had the following values:
ky =7,k\= 2, k2 = 10, &2 = 4. The moments defined for the Southern California are classified
by using these traits and A = 5. If a moment t is attributed to class D then this moment is
considered to belong to a period of the time of increased probability (TIP) of a strong
earthquake. Formally if t is attributed to class D then a TIP is diagnosed from t to t + T where x
is a given constant. For the Southern California x = 1 year was used.
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TABLE 3 Thresholds for discretization of functions on the earthquake flow
(Southern California)

Function
N2
K
G

SIGMA
Smax
Zmax

N3
q

Bmax

Thresholds
0
-1
0.5
36
7.9
4.1
3
0
12

-
1

0.67
71

14.2
4.6
5
12
24
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TABLE 4 Characteristic traits of classes D and N obtained by algorithm CLUSTERS for the
moments of the Southern California

(traits of the algorithm CN)

Traits D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

N2

0

K
0

0
1

0
0

1
0 1

1
0
0
0
0

G

0

1

SIGMA

0

0

Smax

0

1
0

Zmax

0

0
1

0
0
0

0

N3

0

1

q

0
0
0

Bmax
0

0

0
0
0
0

Traits N
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

N2

1

K

1

1

1
1

1
1

1
1

G

1

SIGMA

1

1

1

1

Smax
1

1

1

1
1

1
1

Zmax

1

1
1

1

1

N3

0

0

0
0

q

1
1
1

1
1

Bmax
1

1
1
1
1
1
1
1
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