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Inverse Problems and Uncertainties in Science and
Medicine

Gottfried Anger and Helmut Moritz

Introduction

This article considers some general aspects of the relation between theory and experi-
ments in general, and its impact on science and medicine.

The basis will be the theory of inverse problems. Direct and inverse problems are re-
lated like deduction and induction. The well-known difficulties of induction are mirrored
onto the fact that many problems in science and most problems in medicine are difficult
inverse problems. Thus many applications of sciences, technology, and medicine have the
proverbial "skeleton in the cupboard". Rather than pretending that this skeleton does
not exist, we shall squarely face it and try to examine it. In the use of measurements,
we shall try to outline their proper use, their achievements as well as their limitations.

The sections 1 to 3 are a preparation for the central topic (section 4), the relation of
man and nature where basic principles of the use of measurements in this context are
outlined. The Appendix is only for mathematical readers and may be omitted by the
general readers.

1 Inverse problems

An inverse problem is the opposite of a direct problem. The inverse problem usually is
much more difficult than the underlying direct problem.

A few examples will help to understand this.

1. Weather. By creating weather, nature solves the direct problem. In forecasting
weather, meteorologists have to solve a difficult and notoriously unstable inverse
problem.

2. A broken leg. By breaking his leg, a person suffers a direct problem, which happens
easily. The task of the surgeon is to heal the broken leg, which is the corresponding
inverse problem, which is certainly much more difficult.
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3. In medicine in general, direct problems occur without much effort: the patient
falls ill. The task of the medical doctor is to diagnose the illness and find a cure,
which may be very difficult, even impossible.

4. An unknown physical phenomenon occurs (direct problem). The physicist wants
to find a theoretical explanation. This may be easy or difficult, or may lead to a
new theory; this is an inverse problem.

5. Two problems in informatics. First, someone writes a computer program and
makes a mistake. This is direct, and happens all the time. Then one must try
to find the mistake, and this may be a very frustrating inverse problem. Second,
one writes a source code, having finally succeeded in weeding out all errors. The
compiler converts it into a executable file. This is direct: source code (e.g. in the
computer language C) is compiled to give an exe-file. The inverse problem, finding
the source code from the exe-code, is usually unsolvable. (Commercial software
makes money by this fact.)

There is one profession, engineering, which thrives on direct problems: construct-
ing roads, buildings, engines, computers . . . Here, inverse problems are relatively less
frequent: finding the reason why a building collapses or why a car suddenly fails. In
these "inverse problems", one also speaks of reverse engineering, implying that normally,
engineering solves direct problems.

In medicine, it is the other way round. Every diagnose must solve an inverse problem,
so most medical problems are inverse. Direct problems in medicine are, e.g., surgery.

The fact that difficult inverse problems are so prominent in medicine, is also the
reason for the use of so much medical technology which again leads to inverse prob-
lems of a physical-mathematical nature, from primitive X-rays to sophisticated NMR
tomography, which we shall discuss later. Diagnosis is also helped by modern expert
systems which try to solve inverse problems in logic.

Engineering and medicine, on the one hand, are frequently compared with science,
on the other hand. Science is thought of as the study of nature, whereas engineering
and medicine are intended to change nature, hopefully for the better. This is certainly
a gross simplification, and we see that engineering and medicine differ by the role of
direct and inverse problems. Constructing an automobile may be incomparably simpler
than curing a cancer patient or an alcoholic.

The set of all solutions. This is a key concept. Usually inverse problems have several
or even infinitely many solutions. Knowing the set of all possible solutions, we can select
out of them a solution that is most suitable for us.

Let us illustrate this by comparing this situation to a simple example. A company
needs a new secretary. It advertizes the vacancy and gets a number of applications.
From this "set of all possible candidates, the most suitable candidate is selected.

Important as it is, there a few cases in which such a set of all possible solutions of
an inverse problem can be found explicitly (cf. Appendix). Nevertheless, this concept is
of fundamental theoretical importance.



2 The problem of deduction and induction in sci-
ence

Let us start with a ridiculously simple reasoning: "If it rains, then the street is wet"
is an almost "logical deduction" from basic facts of physics (exceptions are hot desert
roads where rain, if it falls, dries up almost immediately). The inverse reasoning: "If
the street is wet, it has rained" is less convincing: a watering engine may have passed
or a waterpipe broken instead.

The first sentence is a very primitive case of deduction, and the second, of induction.
In this example (and also generally), induction is much more difficult and uncertain
than deduction.

As a first preliminary definition, let us speak of the rain as cause, and the wet
street as effect, then deduction is the reasoning from cause to effect, and induction is
the reasoning back from effect to cause. If the first is a direct problem, induction is an
inverse problem.

Given the cause, the effect can be deduced automatically by pure logic provided the
laws of physics are presupposed as axioms. For the present context, axioms are simply
the starting point of a logical deduction.

Since the procedure is automatic, it can be expressed by a computer program, or in
other words, by a computer algorithm. (An algorithm is just a mechanized or mecha-
nizable logical-mathematical procedure.) Deduction is algorithmic reasoning. (This is
already a quite general and useful definition, although logicians and mathematicians are
asked to be benevolent and indulgent about our simplemindedness.)

Induction, the inverse problem of deduction, is much less simple, as we have already
repeatedly seen. It usually has several or even infinitely many solutions and thus cannot
be directly converted into a computer program. To get a reasonably correct solution,
one must have additional information and include previous experience, which are incor-
porated using arguments of probability. A good physician performs this complicated
reasoning intuitively. Trying to computerize such a procedure leads to medical Expert
Systems which are based on logic and data, but should also include the experience of
the best medical doctors and some probabilistic reasoning (experts use such incompre-
hensible terms as non-monotonic reasoning and Bayesian inference; never mind). Still
expert systems will be inferior to a physician of the highest class. (In the same way,
a chess-playing machine may beat average chess players and even grand masters, but
the very best champion will usually beat the best available machine.) The key word in
this context is intuition, whose logical standing will be discussed later, in the context
of artificial intelligence and Goedel's theorem.

Let us thus continue here in the usual informal way. The problem of induction has
been one of the most famous and most difficult problems of philosophy, from David
Hume (1711-1776) to the present day. Let us start with some simple examples.

(1) Succession of day and night. This has been observed since mankind came into
existence, and there was never a single exception Can we conclude that tomorrow the



sun will shine again — at least above the clouds? Pragmatically we all believe that
there will be another day, but this cannot be proved logically. Induction is not a purely
logical problem. If logical procedures such as deduction are called analytic, induction is
not analytic. It is a physical problem: there will be no tomorrow if the Earth or the Sun
explode during the night, or if the Earth has been destroyed by the impact of a huge
meteorite. But still we may consider that with high probability there will be another
day.

(2) All swans are white. Let us assume, for the sake of argument, that, so far, only
white swans have been observed. Can we say (a) that the next observed swan will also be
white and (b) that all swans are white? Obviously we can expect event (a) to occur with
much higher probability than the general law (b) to be true. Even if zoology claimed
that all swans are white (which it does not), a black swan could still occur: a student
might have painted the swan black in order to fool his professor.

It is sometimes said that induction works if there is a certain uniformity of nature.
This certainly applies to Example 1: the laws of earth rotation guarantee the succession
of day and night if there is no perturbation by a collision with a large meteorite or by
an explosion as mentioned above. But will these laws also hold tomorrow?

Here we have used the book (Moritz 1995). From this book we also take two quota-
tions:

To ask whether inductive proce-
dures are rational is like asking
whether the law is legal.

Jonathan Cohen

Induction simply does not exist.

Sir Karl Popper

These extreme statements from two philosophers are typical for the attitude of the
philosopher and the scientist towards induction.

Verification and falsification. Scientists, especially physicists, don't like induction.
They try to reduce induction to deduction.

To understand this, let us reformulate the definitions. Deduction proceeds from the
general to the particular, using a general law to compute particular observable quantities
which then may be compared with actual observations. Induction is said to proceed from
the particular to the general, using particular observed data to derive the general law.

In simple cases in science, induction may indeed be used. For formulating the grand
theories of physics, however, such as Newtonian classical mechanics, Einstein's theory
of relativity, or the quantum mechanics of Heisenberg and Schroedinger, physicists pro-
ceed quite differently. They first formulate a provisional theory, based on experiments,
experience, mathematics, physical intuition, and good luck. They use this provisional
theory as a working hypothesis, and try to derive, by deduction, possible outcomes of



experiments. If they are in agreement with many different actual experiments, and
no instance to the contrary is found, scientists consider the theory as correct. This is
verification of theory by experience.

Note that all above-mentioned theories, from Newton to Heisenberg, have been
found in this way. All these theories are very simple and beautiful to the mathemati-
cian. Discoverers, from Kepler to Schroedinger, have thus been guided also by esthetic
considerations. Usually, great theories are also beautiful. The converse is not true: there
have been beautiful theories which have not been found to explain the observed facts.

Thus a theory must be thoroughly verified. The excellent philosopher Sir Karl Pop-
per, has maintained, however, that no amount of verification can ensure the validity of a
theory, whereas a single falsification is sufficient to overthrow it. Therefore, falsification
is logically more important than verification.

However, this holds for pure mathematics and pure logic. Actual data are almost
always affected by uncertainties and errors. Thus even Popper's falsification is not
absolute: the falsification may only be apparent, caused by a measuring error, whereas
in reality, the theory is true. This is not a theoretical speculation: many modern
experiments operate in the gray zone between error and reality: it may be difficult to
decide whether a certain small effect is "real" or due to measuring errors.

In practice, there is no big difference between verfication and falsification. If a new
interesting theory is presented, the discoverer (or inventer) of this theory need not worry
about verification or falsification: his experimental friends will try to verify it and his
opponents will be most happy to falsify it.

In all these cases, measuring errors play an essential role; so they will be discussed
in the next section.

3 Uncertainties in science

3.1 Measuring errors
Measurements are inexact. If I measure the length of my desk, I may get 1.41 meters.
Is this true?

If we apply the logician's alternative, true or false, then the answer must invariably
be that the measurement is false. A more careful measurement may give a length of
1.407 m. Is this mathematically true? It is also false because the length is certainly not
1.407000000... but perhaps 1.40723....

Well, this is logical hairsplitting because everyone knows that a length of 1.41 is only
approximate. We thus must, in some way, take measuring errors seriously.

After earlier attempts by R. Boskovic and A.M. Legendre, C.F. Gauss (1777-1855)
created a theory of errors in a perfect and comprehensive form which is valid even
today, in spite of the great progress of statistics since then. The principle is that every
measurement or empirical determination of a physical quantity is affected by measuring
errors of random character, which are unknown but subject to statistical laws.



Error theory has always been basic in geodesy and astronomy, but has been less pop-
ular in physics. Here it is frequently thought that, at least in principle, the experimental
arrangements can always be made so accurate that measuring errors can be neglected.
This is, usually implicitly, assumed in any book on theoretical physics. You will hardly
find a chapter of error theory in a course of theoretical physics.

In medicine, assume that I (H.M.) measure my own blood pressure with one of these
popular home instruments. I may get 135/85, which probably is fine at my age. Half an
hour later I get 145/95, which is less acceptable. I am getting frightened, so I measure
again and get 160/105. The next measurement gives a reassuring 140/85. Is there a
real change of my blood pressure, or is the outcome simply the incorrect reading of my
cheap blood-pressure instrument which, furthermore is operated by a layman, namely
myself? Such questions can be of vital importance.

The answer given already by Gauss is that every measurement should be accompa-
nied by a measure of its accuracy, which is called standard error or r.m.s. (root mean
square) error. In the first case, the result may be

length = (1.41 ± 0.004) meters,

in the second case, say,

blood pressure = 150 ± 8/90 ± 8

which explains all measurements to be the same within a prescribed accuracy. (If the
standard error is 1.0, then a measurement of a quantity of value 45.1 may well be

44.2 or 46.5

but also

43.0 or 47.1 ,

or even slightly smaller or larger values are possible, but with smaller probability.)
In fact, if a medical expert system receives as input not only certain measuring data,

but also their accuracy, then the outcome would be better and more reliable.
Taking inaccuracies into account, rather than glossing over them, is in a way a matter

of honesty and wisdom.
Effect on verification and falsification. In the present section we have seen that a

theory must be verified or falsified by experience. Popper considers falsification to be
better because a theory can be falsified by one counterexample, whereas any number of
measurements cannot completely verify a theory: the next measurement may already
contradict it. This is true in principle; because of measuring errors, even the falsification
may only be apparent: the theory may still be true, the measurement being in error. In
the language of statistics, this is an error of second kind: rejecting a hypothesis although
it is true. Verification is subject to errors of first kind: a hypothesis is accepted although
it is false.



3.2 Heisenberg uncertainty in quantum physics
Unavoidable observational errors came to the attention of physicists first around 1925
when W. Heisenberg established his famous uncertainty relation (if you don't like the
mathematics, forget it!)

ApA, ^ A

where h is Planck's constant basic in quantum theory. It states that a coordinate q and
a momentum p (mass times velocity) cannot both be measured with arbitrary precision.
If q is very accurate (Aq —• 0), then the error Ap in p will be very great:

h/2ir

that is, an accurate measurement of position q makes the momentum p very uncertain.
Heisenberg's uncertainty relation is of fundamental conceptual importance and thus

has become justly famous. In fact, Heisenberg's relation is much more popular with
natural scientists and natural philosophers than Gauss' error theory, although the lat-
ter, as Jeifreys (1961, pp. 13-14) remarked, is certainly more important in everyday
experimental practice than Heisenberg's uncertainty relation. Ordinary observational
errors are usually much larger than Heisenberg's quantum uncertainties.

What makes Heisenberg uncertainty so interesting is that it reflects the influence of
the observer on the observed quantity: if you observe an electron under a powerful light
microscope (say), then the measurement involves a collision of the measuring photon (the
particle equivalent of a light wave) with the observed electron, which usually disturbs
the electron unpredictably.

Quantum effects are very small; they belong to the world of molecules, atoms, elec-
trons, protons etc. Nevertheless mental processes in the brain may be quantum ef-
fects rather than effects of classical physics, so that the simplistic materialism of "neu-
rophilosophers" and neuroscientists such as Churchland (1988) or Edelman (1989) is
most certainly inadequate. Mental activity and quantum phenomena seem to be in-
terrelated in a very remarkable way, see (Lockwood 1989), (Margenau 1984), (Moritz
1995), (Penrose 1989, 1994), (Squires 1990), or (Stapp 1993).

Classical physics (including relativity theory) claims that the material world is es-
sentially independent of the observer: a train moves through the countryside in the same
way whether it is observed or not (except by the engine driver). An apple falls from a
tree without the least regard to its being observed or not.

Quantum physics claims that the observer interacts with the material microworld,
changing it by the very act of observation.



3.3 Heisenberg-type uncertainties in psychology, medicine,
and biology

Physicists are justfied in considering quantum physics, together with the Heisenberg
uncertainty relations, as highly relevant philosophically.

Curiously enough, disturbing of the surrounding world by observation, has been
a well-known fact in life-sciences, long before the arrival of quantum theory, but its
philosophical implications have hardly been noted.

If a man observes a girl, the very act of observation changes the "object": the girl
blushes, touches her hair, comes closer or walks away. In medicine, this is the placebo
effect which is so important that great care is needed to take it into account (or rather
to eliminate it) in testing a new medicament. The very fact that the patient thinks that
a new medication being tested on him may relieve his symptoms, makes the medication
possibly effective even if it is only a placebo (a medically inactive substance).

If you observe a dog, he may wish to play with you or bite you. He will certainly
not remain passive under observation. If you don't know the dog, you may suffer from
a very unpleasant "Heisenberg uncertainty" concerning the behavior of the dog in the
next second. Dogs may be as dangerous as quantum theory!

3.4 Uncertainties in logic: the logical paradoxes
Around 1900, the German logician Frege tried to derive mathematics from logic, thus
putting mathematics on a firm and exact logical basis. Unfortunately, his (at that time
the only) follower, the British philosopher Bertrand Russell, discovered a paradox which
made Frege so unhappy that he considered his life work useless. Russell tried to minimize
the damage by finding a way to avoid his paradox, which led to the monumental work
"Principia Mathematical^ by B. Russell and A.N. Whitehead, published around 1910.

What is this paradox? It concerns the set of all sets which do not contain itself as
a member. Most people, including the present authors, have great difficulties under-
standing this abstract formulation. Russell himself gave it a popular formulation which
anybody can understand. In a small village there is only one barber, but a remarkable
one: he shaves all male persons in the village who do not shave themselves. Does the
barber shave himself? Yes, if he does not belong to the persons who do not shave them-
selves. The opposite is also true. Thus the barber shaves himself if and only if he does
not shave himself . . .

A ridiculous logical children's play? Not quite, it has shattered the very foundations
of logic and mathematics, a shock from which these "most exact" sciences have not
recovered to the present day, and no way is seen for recovery in the foreseeable future.
The very fundament of logic and mathematics, set theory, remains in doubt. Probably
it works, nobody has found a devastating failure yet, but this is not excluded in the
future. As a mathematician said: "God exists because mathematics is consistent, and
the devil exists because we cannot prove it."



A second paradoxon is known from classical antiquity: the paradox of the liar. Some-
one writes a sentence on the blackboard: "This statement is false". Is it correct? Yes,
if the sentence is correct, then the statement holds and says it of itself. The opposite
can also easily be seen. Thus, this sentence is correct if and only if it is false. If we call
the statement L, then L is correct if and only if it is false. This paradox is used by the
logical and mathematical genius, the Austrian Kurt Goedel, to prove a highly important
statement, which throws doubt not only on the absolute, all-embracing and provable
exactness of mathematics, but is also basic for understanding artificial intelligence.

3.5 Uncertainties in mathematics: GoedePs theorem
Of all sciences, mathematics has always been the most exact. All valid mathematical
theorems must, and can, be derived from a finite set of axioms. Crudely speaking,
axioms are fundamental truths which are immediately recognized as correct, even self-
evident. For instance, statements such as "1+1=2" or "Through two given points there
passes one and only one straight line". Euclidean geometry is based on the historically
first set of axioms, which were formulated already in the 3rd century B.C.

It is necessary that the axioms be consistent. For instance, possible axioms "1+1=2"
and "1+1=1" are inconsistent. From inconsistent axioms, all propositions, even logically
contradictory ones, could be derived. For instance, "2+2=4" and "2+2=3" could be
derived as follows

To 1+1=2 To 1+1=2
add 1+1=2 add 1+1=1
to get 2+2=4 (true) to get 2+2=3 (false)

This, of course, is nonsense because the axioms are inconsistent and the "axiom"
"1+1=1" is manifestly false.

There are, however, more complicated instances of this general principle.
In 1931, the young mathematician and logician Kurt Goedel, then living in Vienna,

published a paper with the formidable title "On formally undecidable propositions of
Principia Mathematica and related systems". The paper is extremely difficult and very
few people understood its importance. Nevertheless it soon became famous among
specialists.

Principia Mathematica is the work by Russell and Whitehead mentioned in the
preceding section, which claimed to furnish a complete system of axioms, by which all
mathematics can be derived from logic.

What did Goedel do? He considered a proposition similar to (L) above:

(G) This statement is unprovable.

He then proved that G is derivable from the axioms if, and only if, its contrary, not-G,
is also derivable! Thus, with "provable" being the same as "derivable from the axioms",

(GG) G is provable if and only if not-G is provable.



The reader will note the similarity to the paradox of the liar, discussed in the pre-
ceding section, about a proposition L: "This statement is false". We saw that L is true
if and only if it is false, or in other terms,

(LL) L is true if and only if not-L is true.

Clearly, the sentence (LL) is ridiculous and pretty useless. Not so, if we consider
Goedel's sentence (GG) which differs only in replacing "true" by "provable".

If G were provable, then not-G would also be provable. If a proposition is deriv-
able together with its contrary, then the axioms of Principia Mathematica would be
inconsistent. Hard to swallow, but possible.

There is, in fact, another possibility: neither G nor non-G are provable. Then (GG)
would also be true because it does not say that G is provable, but only that G is provable
if not-G is also provable. If neither G nor non-G are provable, fine.

At present it is generally assumed that the axioms of mathematics are consistent.
Then the second alternative says that there is at least one proposition, namely G, which
can never be derived from the axioms, but neither is its contrary, non-G, derivable. The
proposition G is undecidable (see the title of Goedel's paper).

But now comes the sensation: though neither G nor non-G can be derived, it can be
seen by higher-level "informal thinking" that G must be true. In fact, let us rephrase
what we have just said:

- neither G nor non-G can be derived,

- hence, trivially, G cannot be derived,

- hence, G is unprovable.

This means that the proposition G above, which says exactly this, must be true (pro-
vided, of course, that our axiom system is consistent). Clearly, this proof is not a simple
derivation from the axioms but involves "metamathematical" reasoning.

This proof is tricky indeed, but the reasoning, though oversimplified, is basically
correct. From the darkness of undecidability there arises, at a higher level, the light of
truth!

Thus there is at least one true proposition that cannot be derived from the axioms.
This is admittedly a somewhat difficult argument. (Never mind, Goedel's paper with

all the details is even incomparably more difficult. The best "popular" presentation ist
still (Nagel and Newman 1958).)

As we have seen, deduction from the axioms is a typical activity of a computer
working "algorithmically" by fixed axioms and rules of deduction. The way by which
G is seen to be true is a typical flash of intuition, no less rigorous than algorithmic
deduction. However, this kind of rigorous intuition is typical for the human mind able
to reflect "from a higher level" on the algorithmic work of the computer.

Perhaps a medical example can serve to illustrate the situation. A patient suffering
from compulsory neurotic thinking always repeats to himself a certain argument. (It

10



is said that an antique "philosopher" got such a compulsory neurosis by taking the
antinomy of the liar too seriously, day and night repeating: L implies non-L implies L
implies non-L . . . Had he been able to think about this from a higher level, he would
have recognized that this argument is really nonsense, and he would have regained his
normal thinking.) In fact, one way of curing a neurotic is raising his thinking to a higher
level to make him recognize the futility of such an "infinite loop" of thinking.

We have used this word purposely because also in a computer there are infinite loops,
which must be avoided by good programming and having built-in mechanisms that stop
the computer before an infinite loop occurs. Alas, all programmers know that computers
nevertheless fall quite frequently into an infinite loop, and often it may be necessary to
stop the computer and start it again .. .

Whereas the loop (LL) is deadly but irrelevant, Goedel's formula (GG) is logically
acceptable and incredibly fruitful.

Two results of Goedel's theorem should be pointed out.

1. Mathematics cannot be completely derived "algorithmically", although computer
algorithms are very useful, not only in numerical computation but also in com-
puter algebra and computer logic (e.g., theorem proving). Hopefully, mathematics
is consistent; to the present day no case to the contrary seems to have been found.
However, we can never be absolutely certain; an element of "Goedelian uncer-
tainty" remains, as we have mentioned in the preceding section.

2. Computers working algorithmically can never be intelligent as humans are, because
they cannot reflect about themselves, about their own thinking: they cannot dis-
play "creativity" or "intuition". To repeat, "intuition" in the sense used by Goedel
is to recognize as true a proposition that cannot be derived from the axioms. There
is nothing mystical in this, and it is as rigorous as algorithmic thinking.

Thus, computers can think only "algorithmically". Man, in addition, can think "nonal-
gorithmically". ("Nonalgorithmic thinking" is but another expression for "intuition" or
"creativity", but it sounds less mystical.) Since computers cannot think nonalgorithmi-
cally, they can never replace human thinking.

Goedel's proof shows something which is absolutely remarkable: in contrast to a ma-
chine, man can think "at two levels": a lower level, "algorithmic thinking", is accessible
to computers as well as to humans, but a higher level, "nonalgorithmic thinking", is
reserved to man only.

Other terms for "nonalgorithmic thinking" are "reflexive thinking", "self-referential
thinking", as well as "selfconsciousness" or "creativity", even "metathinking".

This thinking in two levels is not a useless hairsplitting, but the basis of Goedel's
proof, which has been seen to have enormous theoretical and practical importance for
artificial intelligence. By replacing "true" by "provable", Goedel has tamed the destruc-
tive energy of the paradox of the liar, turning it into a highly sophisticated logical proof
(some people regard Goedel's proof as the most important achievement of mathematical
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logic and Goedel himself as the greatest logician of all time, with the possible exception
of Aristotle).

Such a thinking uat two levels" occurs, whenever I reflect about the possible value
or insignificance of my latest scientific work. Such self-critical thinking is impossible
to a computer (unfortunately also to some human persons . . . ) . A computer will never
spontaneously write on the screen "Thank you, dear programmer, your program has
really been great" or "It is a shame that I must work with such a stupid program".

Multilevel thinking is quite common in philosophy. One of the most famous philo-
sophical statements is "Cogito, ergo sum", "I think, therefore I am". This conclusion
is not a deduction of formal logic, which could be done algorithmically by a computer.
Instead, the conclusion follows by reflecting on the meaning of the fact that I am think-
ing, by reflecting on thinking at a higher level. This cannot be done by a computer!
By the way, this is perhaps the simplest example of "nonalgorithmic thinking" and thus
may help understand Goedel's argument. In fact, we may say: With Descartes, from
low-level thinking or even doubting ("cogito" or "dubito"), there follows high-level cer-
tainty of existence ("sum"). With Goedel, from low-level undecidability there followed
high-level truth.

Another example, perhaps less known, has also played a great role in philosophy. It is
due to the Greek philosopher Plotinus (around 200 A.D.). He formulated the statement
"The thinking thinks the thinking". You may say: "Of course, what else?". But try
to program this statement in a computer! As far as I know, this statement cannot
be formulated in any known computer language but if it could, a horribly destructive
infinite loop would follow. We know the reason: a computer can work at one level only,
whereas Plotinus' sentence comprises no less than three logical levels: one for the subject
"The thinking", a lower level for the verb "thinks" and a still lower level for the object
"the thinking".

By the way, Plotinus' theorem was very influential in philosophy: from providing the
basis of St. Augustinus' theory of the Christian trinity to the dialectic triad of Fichte,
Hegel and followers.

3.6 Artificial intelligence
Artificial intelligence is considered to comprise activities which are performed by
computer-type systems and which previously were thought to be performable only by
human beings, such as language recognition (a speaker dictates a letter and the com-
puter prints out the letter automatically in an almost perfect form), computer vision
(image processing similar to the activity of the eye), expert systems, robotics and similar
operations.

They have reached a high state of perfection and are very useful indeed. An advanced
medical expert system, in addition to performing "logical reasoning", is also able to
acquire data from measuring systems (possibly including language and image processing)
and to incorporate knowledge from the enormous body of previous experience of the
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most prominent medical experts. If expert systems are "intelligent", the incorporated
intelligence is provided by the physicians, programmers and by other human experts.

Robots no longer belong to science fiction. They largely have replaced human workers
at the assembly line for automobiles etc., relieving man of monotonously recurring simple
operations. There are, however, also "intelligent robots" capable of performing surgery
in cases where high precision is needed, such as replacement of hip joints or even brain
surgery. The robot not only performs surgery, but also measures, processes his measuring
data, and performs automatic image processing to assure that he is working at the right
place within the patient. Naturally, everthing must be done under the supervision of an
experienced surgeon, who can also direct or stop the robot if necessary.

This is certainly an impressive feat of "artificial intelligence".
Is it possible that robots get more and more and more intelligent, behave more and

more like human persons, and finally are tired of their subordinate role so that they
make a revolution, enslaving or finally eliminating humankind?

GoedePs theorem tells us not to fear this. Robots can only think along an algorithm,
however complex it may be. They have no self-consciousness: they do not know what
they are doing, and cannot be made responsible for it. Thus strikes, frustration and
fights of robots against mankind belong to science fiction.

Finally, a few words on the relation between "natural" and "artificial" intelligence.
We "naturally" use our legs to walk from one place to another. If the two places are
far apart, such as Berlin and Graz, it is better to take an automobile (if possible). The
car, so to speak, is an "artificial" extension of our legs, increasing their power to cover
distances. An automobile certainly is not a replacement for our legs, which we need
even to operate the car. In the same way, artificial intelligence is not a competitor,
but an extension of our mind, greatly increasing its power and opening new fascinating
possibilities.

3.7 How accurate are laws of nature?
Laws of nature are never absolutely exact. The reasons partly are based on the various
uncertainties discussed in previous sections, and partly they are considered in (Moritz
1995, sec. 6.5). For most practical purposes — engineering, medicine etc. — they can
be considered practically exact.

Classical physics is usually sufficient. Quantum physics may be necessary in the
study of brain processes. It should be understood, however, that tomography (magnetic
resonance, positron emission etc.) involves quantum phenomena and the usual books
explaining this theory to physicians, for instance the excellent booklet (Horowitz 1989)
must be regarded with a grain of salt.

On the crude materialism of "neural philosophers" we have already talked in sec. 3.2.
Generally, we have the curious phenomenon that biologists have a naive trust in physics
(more exactly, in the kind of physics they had learned at their university studies);
chemists take physics, especially quantum theory, for granted (justly); physicists have a
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naive belief in mathematics, and the most rigorous mathematician usually does not like
to hear about the uncertainties of set theory, and hardly knows much about Goedel.

Reductionism, reducing thinking to neuronal activity, biology to chemistry and
physics, etc. has been a highly important and incredibly successful working hypoth-
esis. To accept it at full face value is difficult because quantum theory, in some way,
seems to be related to mental activity, so that there is a strange loop of reductionism
(Fig. 1).

c

c
Figure 1: The self-reference loop of reductionism according to E. Wigner

Again it is curious that biologists are usually the most fervent partisans of reduction-
ism, whereas most great physicists of this century, such as Schroedinger and Wigner,
have expressed their doubts in this regard.

But nevertheless, in medicine the trust in science and technology is practically jus-
tified, if measuring errors are duly taken into account and if inverse problem structures
are handled appropriately.

In fact, the greatest enemy to exactness in the application of technology etc. does
not come from science, but from mathematics. It is the instability of inverse problems,
which applies to NMR tomography as well as to long-time weather forecast, in spite of
the high development of both medical technology and meteorology.

3.8 Uncertainties in inverse problems
The theory of inverse problems is very difficult even for mathematicians. Therefore we
shall relegate the mathematical theory to the Appendix. In this place we shall only try
to outline some of the most fundamental aspects in a very simple and informal way.
Fortunately, this can be done.

Instability. In sec. 1 we have seen the fundamental importance of inverse problems in
medicine etc. Now inverse problems are frequently instable. Instability can be succintly
formulated: Stability means that small causes have small effects. Instability means that
small causes may have large effects.
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A typical example of instability occurs in meteorological weather prediction. A small
inaccuracy in the meteorological data may change the predicted results completely. This
is the reason why weather prediction over more than a few days is extremely unreliable.

The American mathematician and meteorologist Edward Lorenz made a detailed
mathematical investigation of this phenomenon. His work made popular what today
is known as chaos theory (see sec. 3.9). It has the advantage that it can be easily
programmed and produces beautiful pictures, so it is popular with computer fans. Ap-
plications to biology and medicine are discussed in (Glass and Mackey 1988).

Discretization. This is a main reason why methods such as NMR tomography may
have difficulties. Fortunately it can be understood very easily.

For simplicity, consider the onedimensional analogue of a twodimensional computer
picture. This is a curve representing a certain function, for instance a diagram of
body temperature which plots temperature against time. What is measured is body
temperature (say) at 7 a.m., 12, and 5 p.m. every day. The curve is interpolated by
hand to get the full curve.

Usually this poses no problem except if the body temperature changes very rapidly
and irregularly. Of course, in this case temperature will be measured more often, and
this will cause no problem.

Assume now, however, that the patient (unrealistically) always has a constant tem-
perature of 36.0 degrees Celsius, say. The temperature is again measured, or "sampled"
at constant intervals (Fig. 2) The "true" curve will coincide with the horizontal straight

body temperature

. interpolated curve

< • time

Figure 2: A fictitious temperature curve

line.
Let us assume that we know the function only at the discrete sample points. The

function between the sample points is not known. The reconstruction of the entire
function is done by interpolation. Thus:

direct problem —> sampling
inverse problem —> interpolation

Sampling is also discretization, because samples are taken at discrete points only.
Now you will say, for interpolation take the simplest interpolation function, and you

will exactly get the true initial straight line.
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This is true, but from a mathematical point of view, all interpolated functions are
equally possible, as long as they are zero (or rather 36.0) at the sample points. Thus
from a mathematical point of view, also the "crazy" interpolation curve of Fig. 2 is
perfectly legal.

Again you will say: just program the computer such that it gives you a straight line.
If the real curve is not straight, however, this will not work. You will then say: tell
the computer to find an interpolation curve that is as smooth as possible. This will
work in most cases, but assume that for other reasons (e.g. to be applicable to realistic
non-straight curves) the computer is programmed so (intentionally or accidentally) that
it does give the interpolated curve of Fig. 2, which is less unrealistic than it looks.

The patient will be scared to have such a wild temperature curve and may think he
or she is seriously ill. It may help if the doctor patiently explains that the computer
has solved his inverse problem poorly, and that the picture is not reality but rather a
"ghost". Hopefully he can convince the patient, but the patient may also consider this
as an unconvincing evasion.

Now let us turn to the twodimensional images of tomography. Since the computer
can work only with discrete data, discretization and interpolation must be done also
here. Let us now again assume that all sample values are zero (no tumor). For some
reasons, the computer nevertheless produces a nonzero "ghost image", which is the
twodimensional analogue of Fig. 2. The patient may be scared to death, thinking he
has a tumor which in reality he does not have . . . This is not science fiction but "ghosts
in tomography" may really occur (Luis 1981).

We may also repeat: Measuring errors and discretization errors are blown up in
inverse problem because of instability.

These conclusions are independent of a detailed mathematical understanding. The
mathematically interested reader will find the details in the Appendix.

We have, however, seen very clearly that the inverse problem structure may be the
most dangerous aspect in medical problems, from expert systems to various methods
of tomography. In spite of (or because of) advanced medical technology, the experience
and wisdom of the medical doctor are as necessary, and even more necessary, now than
they were ever before.

3,9 Complexity and reductionism
Simplicity. It is said that all great physical theories (from classical mechanics to quan-
tum theory) are simple. This is generally true, and great theories are selected with a
view to beauty and simplicity (Section 2).

Chaos theory. For this reason, it was very surprising that even "simple" nonlin-
ear classical mechanics applied to planetary motion has solutions which exhibit a very
chaotic and "complex" behavior, although some order is usually present (Fig. 3), as first
shown by Poincare (1890).

Nowadays nonlinear dynamics has become very fashionable by the name of chaos
theory. It describes phenomena as different as perturbed planetary motion in astron-
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Figure 3: The change of a certain parameter converts, even in classical mechanics,
"regular" into "chaotic" motion. All dots belong to one trajectory!

omy (H. Poincare), the essentially irregular behavior of weather in meteorology (E.N.
Lorenz); a turbulent mountain stream as well as human heartbeats. Fractals with their
strange "complex" beauty, arising solutions of very "simple" equations, are closely re-
lated (Briggs 1992). The fascinating interplay between complexity and simplicity is
described in the very readable book (Cohen and Stewart 1994).

The well-known condensed-matter physicist Philip Anderson believes that complex-
ity is getting increasingly important also in physics (Schweber 1993), and a whole issue
of Physics Today (February 1994) is devoted to the topic "Physics and Biology" where
complexity comes natural.

Static complexity. Most crystals have a simple structure. Snowflakes, etc. have
more complex structures, combining symmetry and randomness. The genome of any
living organism is known to consist of DNA which is an extremely complex arrangement
(Schrodinger's "aperiodic crystal") of 4 very simple amino acids (A, G, C, T). These 4
amino acids are the same for any organism, from bacteria and algae to man! DNA, so
to speak, supplies the genetic information. Information is related to a complex order,
whereas negative information (entropy) is characteristic for disorder.

Dynamic complexity. It is difficult, if not impossible, to define complexity, especially
if it is not static but dynamic, such as in a living organism. Nevertheless, we shall try
to list some features of complex systems.

- A great number of elements seems to be necessary but by no means sufficient. A
heap of sand contains many grains, but this does not yet make it a complex system.
A biological organism consists of many cells and is a prototype of a complex system
because:
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- A complex system possesses a rich structure at each level (from the macroscopic
to the microscopic level), an order which is intrinsic rather than imposed from the
outside, e.g., an animal versus an automobile.

- The intrinsic order of a complex system is dynamic rather than static: it must
always defend itself against chaos. Think of a warm-blooded animal: it must
permanently strive to keep its bodily temperature constant, in spite of the usually
colder environment with all its random temperature changes. Another example
is a person who must constantly strive to maintain mental equilibrium in spite of
many disturbing impressions and experiences.

- A picturesque description of this situation is to say that complexity lies at the
edge of order and chaos (Waldrop 1992).

A typical complex system encompassing order and randomness is also the terres-
trial environment consisting of atmosphere and hydrosphere, which is governed by
"orderly" laws but is subject to chaotic fluctuations going as far as hurricanes.

- The element of chaos is by no means only negative: frequently it provides sponta-
neous novelty and creativity. Natural selection in Darwinian evolution is based on
random mutations that occur spontaneously. (The "survival of the fittest" then
restores order, possibly on a higher level.)

- The antithesis to Darwin's "struggle for survival" is " cooperation for survival", e.g.
between algae and fungi to form lichens. Similar to cooperation is adaptation to the
environment. An important example of self-organization, struggle, cooperation
and adaptation is the market economy which is, however, beyond the scope of the
present paper. An exemplary case of cooperation between natural scientists and
socio-economists is the Santa Fe Institute, cf. (Waldrop 1992; general) and (Lewin
1992; emphasis on biology).

Complexity and reductionism. Let us now consider the problem of complexity from
a different angle.

In biology there have been essentially two opposite opinions:
(A) Vitalism: A living organism is not determined by the laws of physics only; there
exist special "vital forces" which cause the purposeful behavior of living organisms, their
special structure, their ability to heal wounds and even to regenerate lost organs (this
is in particular conspicuous in lower animals such as polyps or starfish), etc.
(B) Reductionism: a living organism is nothing else than a very complex and well-
structured system, which is completely governed by the ordinary laws of physics and
chemistry. Since chemistry, through the laws of quantum mechanics, is thought to be
reducible to physics, also the laws governing the apparently so special behavior of living
organisms are reducible to the laws of physics. This is reductionism or physicalism.

The main empirical data are clear:
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(1) The behavior of animals and plants is completely different from any mechanisms
or similar man-made automata.

(2) All physical experiments performed with living organisms or with living tissue
have never indicated any measurable deviations from the ordinarily known laws of
physics and chemistry.

(3) There seems to be no sharply defined boundary between highly-organized macro-
molecules and the most elementary organisms, between chemistry and biology.

It is safest and least controversial to consider living organisms as very elaborate and
highly organized complex systems.

Thus complexity is a "complex" collection of interesting ideas and mathematical
models rather than a unified scientific theory such as, for instance, quantum mechanics.
It is a field that contains many fascinating open problems.

Nowadays, reductionism is fashionable in biology, and vitalism is considered obsolete
or even nonscientific. The famous biochemist and Nobel laureate A. Szent-Gyorgyi once
wrote: "When a molecular biologist calls you a vitalist it is worse than when an FBI
man calls you a Communist" (quoted after W.M. Elsasser's autobiography).

This topic is thus very emotional. An objective approach may be to compare a living
being to a highly complex computer. Is a computer governed by the laws of physics?
Undoubtedly, yes. Is it fully governed by the laws of physics? No. Let me explain.

For the work of a computer, not only the hardware (which is fully governed by
physical laws), but also the programs (called software) are essential. The programs are
written by humans and are not fully determined by physics, but also by the intelligence
of the programmer, who provides essential non-physical information.

With no input, the computer will not work in the sense of producing a useful output.
As soon as the software is introduced, the computer starts to work and produces a useful
output.

The input may consist of a complicated program which in itself may contain a law:
for instance a sequence of highly complex mathematics. Or the program for computing
income tax may contain a mathematical-logical form of the income tax law (Davies
1988, p. 144). Hence we may well speak of software laws.

Thus, the operation of a computer is governed by the physical hardware laws and the
non-physical software laws! (Nobody would claim that the income tax law is derivable
from the laws of physics . . . )

Using our simplified model of an animal as a computer, we may say

life = matter + information

(Kiippers 1987, p. 17).
Thus, in addition to the physical "hardware laws", there are "software laws" based

on information. Both kinds of laws are, so to speak, complementary, that is, they
complement each other.
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This has been drastically formulated as follows ("Bohr's paradox"): in order to de-
termine whether a cat is fully governed by physical laws, it is not sufficient to determine
its weight or its bodily temperature. One must use an X-ray equipment, which has to
be very powerful to determine the cat's exact internal structure, so powerful that it may
well kill the cat or damage it irreversibly. This is not sufficient, however: to get other
physical parameters, we must implant physical equipment in the cat's body, and finally
we must dissect it. By then, the cat is surely dead. Thus, life and a "full" physical
examination are incompatible with each other!

A living organism is an individual "whole". This is what the concept "holism"
means: the whole is more than the sum of its parts.

Reductionism may be defined as the opposite of holism (Hofstadter 1979, p. 312): it
is the view that "a whole can be understood completely if you understand its parts, and
the nature of their 'sum' ". This concept is more general than the usual reducibility to
the laws of physics. We shall call it "H-reductionism" (H because it is the opposite of
i/olism or because it is due to i/ofstadter).

Holism versus reductionism. Most scientists are reductionists: they believe that
biology can be reduced to chemistry and physics. This approach is very useful as a
working hypothesis. It is, however, not the whole truth because the "software laws" are
neglected. Cf. (Hofstadter 1979, pp. 310-336; Popper 1982, pp. 131-132; Davies 1988,
p. 142);

Strictly speaking, the universe must be considered as one complex system. This
is what "strong holism" asserts. In practice, however, some part of the universe: the
Earth, a tree, or a patient are considered without regard to its environment. This is
a typical case of H-reductionism as defined above. This approach, common in science
and medicine, is necessary because we can study a finite system only. It also works
frequently, but not always, as we shall see in the next section.

4 Conclusion: the relation between man and na-
ture

4*1 General remarks
The Earth, where the basic forces of physics act, is a tiny part of the Universe. We know
four basic forces: gravitation, electromagnetism, and the strong and weak interactions
of atomic physics.

We are able to test the fundamental laws of physics basically only on the Earth's
surface and, recently, in interplanetary space. If these laws hold at all, we a rigorously
permitted to apply them only to this limited space and to our limited time.

It is believed that the laws of physics hold throughout the universe from its very
beginning, the famous "big bang" of creation, to its end. Is this extrapolation to the
infinite realms of space and time justified? The only answer we can give is that this
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assumption is the simplest one and has not so far been obviously contradicted by astron-
omy, astrophysics, paleontology etc. The assumption thus certainly serves as a working
hypothesis, but we shall probably never be able to confirm it exactly.

Even our Earth is a very complex system. As we have seen in sec. 3.9, the laws of
biology cannot be completely reduced to the laws of physics and chemistry, although
this "reductionism" serves as an excellent working hypothesis.

The biosphere, that is, the environment in which life exists, must be treated as a
whole. This is holism (sec. 3.9).

It is theoretically impossible to exactly consider only a part of the whole, neglecting
the rest. Every partial system is only an open system, exchanging energy, information
etc. with the whole system. Only the whole system is closed] any partial system is open
to the environment.

In practical science and medicine we must consider incomplete partial systems which
nevertheless are regarded as closed. For instance, if a scientist performs an experiment,
the experimental system must be considered closed. E.g., the laboratory in which the
experiment is performed, is considered closed (not only by putting a sign "Do not
enter" at the door). Activities performed in Nigeria are practically neglected in an
experiment performed in Berlin, but the experiment is shielded, as well a possible, even
from activities going on in other rooms of the same building. Physics and chemistry are
based on the assumption that this "reduction" of the whole to a laboratory subsystem
is possible. This is "H-reductionism" as defined in sec. 3.9.

Purposely exaggerating, we may say: In medical technology, such as MR tomog-
raphy, the patient is "reduced" to a limited physical object, only the factors relevant
for tomography being of relevance. In surgery, what is relevant is only the part of the
patient from which something is to be removed (apart from considering the patient's
behavior with respect to anesthesia). This does not mean that, for the supervising doc-
tor, the patient as a whole person is of no importance, but there are some tendencies
along this direction (Ulrich 1997).

Generally an adequate scientific treatment of a problem requires a careful synthesis of
H-reductionism (the experiment) and holism (influence of the environment). Similarly in
medicine: the data furnished by technology, must be subordinated to the "holistic" view
of the supervising physician. This distinguishes true medicine from "health engineering"
(Ulrich 1979, p. 26).

In many cases a simple H-reductionism is not applicable because the partial system
under consideration is too complex to "reduce" it to simple physical laws. The partial
system is principally open and cannot be considered closed. This is true for the study
of the Earth's interior by (only) seismic tomography, the study of the patient by (only)
MR tomography, prediction of earthquakes, even prediction of weather, and medical
diagnosis in general.

An exact error analysis in the sense of sec. 3.1 is highly desirable but frequently not
possible.

These facts do not diminish the importance of highly sophisticated mathematical,
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physical, chemical and technological methods. It is only intended to put these methods
into a proper perspective, which by its very nature must incorporate a good amount of
holism.

This is particularly important in biology and medicine. As we have seen in sec. 3.3,
observation of animals and humans frequently changes the result of observation in a
rather unpredictable way (Heisenberg-type uncertainty, placebo effect).

The application of electrocardiography and electroencephalography are based on
Maxwell's equations, fundamental for all electromagnetic phenomena. This application
requires the knowledge of certain physical parameters within the human body, which are
only imperfectly known, although practical assumptions frequently provide quite useful
results.

Modern cosmology, based on Einstein's general theory of relativity, quantum theory
etc., has provided very interesting models of our universe, from the "big bang" to our
present time and even to the future possible end of the universe. Interesting as they
are, they are limited by the (to many scientists questionable) universal validity of the
physical laws throughout space and time and by the imperfect knowledge of essential
parameters such as the amount of invisible "dark matter" in the universe. Depending
on the value of these parameters, we get a set of possible models for our universe rather
than one single model. (This concept of set of solutions is very important for inverse
problems, as we have seen in sec. 1.)

Such a set of possible models may be considered a limitation of science, but as well
it may be regarded a victory of science: a tribute to intellectual honesty which does
not pretend to know more than it really does. (Everyone can then select one's favorite
model, just as from the set of literary authors one may select one's favorite author(s).)

Another contribution to intellectual honesty, was Goedel's theorem (sec. 3.5) and
related undecidability theorems (e.g., on Cantor's continuum hyptheses which are known
only to a small number of specialists). Why pretend that mathematics is "absolutely
exact" if it shares the fate of all our knownledge, namely to be imperfect?

4.2 Methods for the study of problems of science and
medicine

Only one or two centuries ago, the study of nature was based on the data furnished by
our senses. The eyes use visible light (electromagnetic waves of frequency 3.75 x 1014

to 8.4 x 1014 Hertz), the ears analyze acoustic waves (20 to 20.000 Hertz) etc. What
is given is a "projection" of the real world on our senses, rather than the real world
directly (Kant's "thing-in-itself"). Theories, experiments, and technologies permit to
know practically the whole spectrum of electromagnetic waves (from X-rays to radio
waves), and it is frequently believed that no radically new phenomena, beyond the reach
of our contemporary physical theories, exist. The present authors do not share this view.

To return to sense data, bats are able to orient themselves in space by "acoustic
radar" (82.500 Hertz), produced by their mouth. Thus the concept of sense data and
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their use is variable for different animals.
The informations of our senses are analyzed by our brain, which is much more com-

plex than any imaginable computer (see also Goedel's theorem, sec. 3.5). Computer
vision has explained many features of human vision (pattern recognition etc.) but an
unexplained rest will remain.

It is in fact possible and highly important that some features of our senses, and even
some features which are not directly accessible to our senses, such as invisible electro-
magnetic waves or magnetic fields, are at present precisely measurable. The use of these
data frequently requires "hard inverse function problems" which are mathematically very
difficult and complex (sec. 1 and Appendix). (An example is the "geodetic boundary-
value" problem which was solved (partially) only by the famous Swedish mathematician
Lars Hormander.) Inverse problems have recently become fashionable, but they are ex-
tremely difficult. Their introduction into the regular curriculum of applied mathematics
is nevertheless urgently recommended.

In view of this complexity and lack of information, a complete mathematical system
theory, particularly for biological systems, does not exist. Solutions are usually non-
unique, so the concept of the set of all possible solutions comes into focus again. If a
physician gets this set of solutions, he can (by experience, intuition, etc.) select one or
several realistic solutions, thus narrowing down the possibilities.

Already some 2.400 years ago, Hippocrates and his students, based on experiences
of Egyptian, Babylonian and Indian medicine, asserted that it is only possible to elab-
orate the "history" of the various illnesses by observing the symptoms carefully and
tracing them down with great accuracy: the illness itself is unattainable. For the reasons
mentioned above, this is valid even today. In a world determined by "exact" sciences
and engineering, Hippocrates' assertion is largely forgotten. Exceptions are traditional
"holistic" systems such as Chinese medicine. Such and other "alternative" systems
should not be condemned a priori, but their possible use should be studied, with due
mistrust of charlatanry.

4.3 Further thoughts about complex systems
Every real system of nature consists of very many atoms and thus has a very complex
structure. A cubic centimeter of a solid body contains about 1023 atoms, and about 1022

atoms in the case of a liquid. A human person consists of about 1027 atoms in about 1013

cells. For these cells and atoms it can be assumed that they obey physical and biological
laws. No computer can deal with such an atomic system directly; simplifications based
on practical experience and experiments are needed: praxis cum theoria.

A crude measurement of complexity of a living system is the amount of information
necessary to encode its genetic information; see also sec. 3.9: life = matter + information.
The smallest autonomous living beings are the bacteria. However, even their genetic
information comprises four million nucleotides (Kiippers 1988). The human genetic code
consists even of several billion nucleotides. If N is the number of possible alternative
sequences contained in a macro-molecule, if n is the number of nucleotides of a chain
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molecule, and if A = 4 is the number of elements of the genetic "alphabet" (A, G, C,
T) (sec. 3.9), then there are

AT = A4n = 4

alternatives, a number beyond all our comprehension. N obviously is a measure of the
structural and functional richness of a biological system at the molecular level. We see
how complex life and its evolution must have been.

4 A Principal differences between the approaches of engineer-
ing and medicine

As we have seen already in sec. 1, the problems of engineering and medicine are, roughly
speaking, direct and inverse problems, respectively.

In the constructive engineering sciences partial physical systems are combined to
form efficient machines or instruments. Space technology and microelectronics are obvi-
ous examples. These systems frequently have a hierarchical structure which can be more
or less fully understood by logical deduction (sec. 2). The materials used are usually
well known by long-time experience, both concerning their properties and their change
of material parameters with time and stress ("ageing"). This is not completely true as
accidents of airplanes because of material faults show. Fortunately, they are rare. If we
go to the limits of physics and technology, such as with space rockets, our knowledge is
less and accidents are more frequent.

Electronics is getting more and more miniaturized and computers are getting bigger
and more complex. The number of atoms needed to represent 1 bit (unit of information)
are decreasing dramatically: 1970 we needed about 1015 atoms/bit, 1990 about 108

atoms/bit. The extrapolation to the year 2010 gives about 1000 atoms/bit, and to 2020
a few atoms/bit, which reaches the size of quantum systems and introduces quantum
computation (Williams and Clearwater 1997, p. 8). Systems are getting more and more
complex but remain (hopefully) under the control of science and advanced technology.

On the other hand, biological systems are much less under our control. The reduction
of biological systems to physics and chemistry is possible only to a certain degree. So
far, a complete mathematical systems theory for biological systems is not available at
present and may well never be possible even in the future. Only a partial description,
e.g. by expert systems (sec. 3.6) seems to be possible.

Here we must work with induction rather than deduction (sec. 2), and a "holistic"
practical experience plays a decisive role: praxis cum theoria. Dissipative, dynamic, and
open (sec. 3.9) thermodynamical systems in biology are the counterparts of the largely
conservative, static, and closed systems of engineering.

Medicine is able to solve an "engineering" problem only if the problem is uniquely
defined and admits only one solutions, for instance treating a well-defined infectional
disease or performing a precisely prescribed surgical operation, such as the removal of
a tumor. In medical diagnostics, the doctor has to determine the illness on the basis
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of limited information, which usually is an ill-defined "inverse" problem. The surgeon,
however, usually deals with well-defined "direct" partial problems for which, in the
course of time, standard solutions (operational techniques) have been developed.

In general, complex problems of nature pose the following task: all decisions must
be made on the basis of incomplete information (Anger 1990). This fact underlines the
great importance of practical experience, which cannot be replaced by the best possible
mathematics. On the other hand, very sophisticated mathematics may be needed in
order to make best use of the experimental data. The question is not: theory or practice,
but practice with theory (praxis cum theoria).

Besides a theory of measuring errors (sec. 3.1), we would urgently need a theory of
measurement itself: For a complex system, which quantities must be measured outside of
it, in order to determined certain inner parameters, which cannot be directly measured,
in a unique and stable manner (Anger 1985, 1990; Backus 1970)?

4.5 Remarks on the further evolution of mankind
Concerning evolution of man, we do have a problem which never arose before. In former
times, man has lived from plants, seeds, and animals which are themselves complex
systems which had enough time to undergo a slow and relatively stable evolution. Water
was available and was usually relatively clean. At present, man is faced with a rapidly
changing environment, and also plants and animals from which he lives are rapidly
changed by breeding and, recently, genetic engineering, not to speak of very recently
developed chemicals (e.g., pharmaceutical substances). Will mankind be able to evolve
so fast as to keep pace with this rapid development?

Modern civilization also provides other disturbances of our environment: chemical
pollution of water and air, and, recently, electromagnetic "smog" from electrical trans-
mission lines, radio stations, computers, handies etc. These disturbances are not made
harmless by the very fact that they are invisible. Of course, it is astonishing what
amount of new chemicals, pharmaceuticals and electromagnetic and other noise the
human organism can take.

So far, the average life time of women and men is constantly increasing, to a great
measure by more hygiene, better food, not to forget incomparably better medical treat-
ment and the new pharmaceutical products, e.g., antibiotics. It is only to be hoped that
this trend will continue. For this, a certain beneficial equilibrium in the biosphere, an
equilibrium between man and his environment, seems to be necessary. Fortunately, this
problem is now being extensively studied, e.g., by the Geosphere-Biosphere-Project of
the International Council for Science (ICSU).

For the continued survival of humankind, all efforts of natural, medical, and social
sciences must be combined in a good synthesis which contains reductionistic as well as
holistic aspects. Cooperation is required, according to the statement of Hans Urs von
Balthasar:

"Truth is symphonic".
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