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Abstract. The three most important expressions of uncertainty or inaccuracy are (1)
the classical theory of measuring errors due to C.F. Gauss (in astronomy, geodesy,
physics, etc.); (2) the famous uncertainty relation of W. Heisenberg (in quantum me-
chanics), and (3) the incompleteness theorem of K. Godel (in the foundations of math-
ematics). Scientific and philosophical applications and implications of these three the-
ories are outlined: Laplace's demon and chaos, the role of probability in classical and
quantum mechanics, the three-world theory of Popper and Eccles, and verification and
falsification of physical theories.

1 Introduction

After earlier attempts by R. Boskovic and A.M. Legendre, C.F. Gauss (1777-1855)
created a theory of errors in a perfect and comprehensive form which is valid even
today, in spite of the great progress of statistics since then. The principle is that every
measurement or empirical determination of a physical quantity is aifected by measuring
errors of random character, which are unknown but subject to statistical laws.

Error theory has always been basic in geodesy and astronomy (Boskovic and Gauss
discovered error theory for their geodetic work!), but has been less popular in physics.
Here it is frequently thought that, at least in principle, the experimental arrangements
can always be made so accurate that measuring errors can be neglected. This is, usually
implicitly, assumed in any book on theoretical physics. You will hardly find a chapter
of error theory in a course of theoretical physics.

Unavoidable observational errors came to the attention of physicists first around
1925 when W. Heisenberg established his famous uncertainty relation:

ApA, = A

where h is Planck's constant basic in quantum theory. It states that a coordinate q and
a momentum p (mass times velocity) cannot both be measured with arbitrary precision.
If q is very accurate (Aq —> 0), then the error Ap in p will be very great:

h/2ir
Ap = — * oo ,

Aq



that is, an accurate measurement of position q makes the momentum p very uncertain.
Heisenberg's uncertainty relation is of fundamental conceptual importance and thus

has become justly famous. In fact, Heisenberg's relation is much more popular with
natural scientists and natural philosophers than Gauss' error theory, although the latter,
as the geophysicist Jeffreys (1961, pp. 13-14) remarked, is certainly more important
in everyday experimental practice than Heisenberg's uncertainty relation. Ordinary
observational errors are usually much larger than Heisenberg's quantum uncertainties.

Gauss and Heisenberg have pointed out the fundamental importance of uncertainty
in our experiments with nature and perhaps even in nature itself. Thus physics and
other empirical sciences such as astronomy are basically uncertain, and least-squares
adjustment procedures which go back to Gauss and Legendre are just an ingenious way
to cope with this uncertainty.

On the other hand, mathematics has always been regarded as the prototype of an
exact science. This belief received a deadly blow by K. Godel's incompleteness theorem
published in 1931. Godel showed that mathematics can never be fully axiomatized: it is
either incomplete or inconsistent. This implies that there may be true mathematical the-
orems which cannot be deduced from a finite set of mathematical axioms. Furthermore,
mathematics, including set theory, as used in contemporary practice, cannot be proved
to be consistent by an algorithmic procedure as used, for instance, in a computer. H.
Weyl, one of the pioneers of modern mathematics and physics, was so pessimistic about
the foundations of logic and mathematics that he wrote: "How much more convincing
and closer to facts are the heuristic arguments and the subsequent systematic construc-
tions in Einstein's general relativity theory, or the Heisenberg-Schrodinger quantum
mechanics" (Weyl 1949, p. 235).

In the working practice of mathematicians, however, Godel's incompleteness is
largely ignored, in the same ways as in the working practice of physicists (except quan-
tum physicists), Heisenberg's uncertainty plays a negligible role. Nevertheless, both
facts are with us and make us aware of a theoretical "skeleton in the cupboard" which
lurks at the back of all our scientific work, of a basic element of insecurity.

Both kinds of uncertainty, however, are very subtle and usually very small "second-
order effects". Less well advertized, but usually much larger, is the effect of Gaussian
obvservational errors. So to speak, the latter are a "first-order effect".

Many instances of uncertainties of Godel and Heisenberg type are treated in (Moritz
1995).

2 Laplace's Demon and Chaos

Let our theoretical basis be "classical" Euclidean geometry, classical (Newtonian) me-
chanics and Gaussian error theory. The fundamental dogma of this way of thinking
has been the belief that Gaussian errors can be made as small as we wish so that, at
least theoretically, they can be completely disregarded. The events of nature proceed
in a deterministic way, subject to causality according to classical mechanics. Euclidean
geometry and Newtonian mechanics are not essentially affected by measuring uncertain-
ties. Even if the initial conditions are not known with absolute precision, this does not



essentially affect the result computed according to the laws of classical meachanics. The
computed final results will not be essentially less accurate than the initial data.

This is the point of view of deterministic causality. It has found its classical expres-
sion in the form of Laplace's demon:

An intelligent being which, for some given moment of time, knew all the
forces by which nature is driven, and the relative position of the objects by
which it is composed (provided the being's intelligence were so vast as to be
able to analyze all the data), would be able to comprise, in a single formula,
the movements of the largest bodies in the universe and those of the lightest
atom: nothing would be uncertain to it, and both the future and the past
would be present to its eyes. The human mind offers in the perfection which
it has been able to give to astronomy, a feeble inkling of such an intelligence.
(P. Laplace, 1749-1827).

The Newtonian theory has proved particular useful in astronomy, where the planets
moving around the sun may be regarded as mass points, and where friction can be
disregarded. On the basis of our present orbital determinations (the "initial conditions"),
the movements of planets can be predicted with very high precision hundreds of years
ahead. This seems to be an ideal case of stability.

This is in stark contrast with meteorological weather prediction which works only a
few days ahead and is a typical case of instability. A small error in the initial conditions
may cause an arbitrarily great error in the predicted results. This is E.N. Lorenz'
"butterfly effect": a butterfly flapping ints wings in Austria may cause a tornado in the
United States.

Lorenz' work in 1963 was one of the starting points of modern chaos theory, or
deterministic chaos (Schuster 1988).

Curiously enough, chaos theory nevertheless goes back to astronomy since Henri
Poincare (1892) showed that the usual trigonometric series of celestial mechanics may
frequently be divergent. This introduces uncertainties of chaos type even in astronomical
predictions, but only for very long-range predictions (on the order of thousands of years,
perhaps).

Already H. Bruns pointed out in 1884 that an astronomical series may be conver-
gent or divergent, depending on whether a certain empirical parameter is a rational or
irrational number. Now, to any irrational number, there can be found an arbitrarily
close rational number, so that the question of whether a certain astronomical series is
mathematically convergent or divergent, is physically meaningless!

This is closely related to the geodetic question whether the spherical-harmonic ex-
pansion of the earth's external gravitational potential is convergent or divergent at the
earth's surface. As T. Krarup has shown in 1969, a grain of sand placed on the earth's
surface may change convergence into divergence and vice versa. This geodetic form of
the "butterfly effect" has sometimes been called the "sand-grain effect"; cf. (Moritz
1980, p. 64).

Now since we know that not everything in nature is stable, instabilities and chaos
are seen everywhere in nature.



What is characteristic for chaos may be expressed as: "small causes —•> large effects"
(for example: butterfly —> tornado). Another phenomenon of this kind is the throw of
dice. If, with one set of initial conditions (position and velocity of the hand throwing the
die) we get a 5, with another set of initial conditions (even if it is practically identical,
e.g., using a dice-throwing machine) we may throw a 3.

So the initial conditions become irrelevant, and symmetry takes over: all six faces of
the die have equal probability. Thus probability arises from deterministic but chaotic
motion. This also, as well as meteorological instability, was clearly recognized already
by Poincare.

Chaotic effects in nature thus are frequently responsible for probabilistic laws, and
also random errors are of this kind. Reading an angle with a theodolite involves various
movements (the hand turning a micrometer screw, rapid unvoluntary eye movements,
etc.) which are (at least according to classical physics) completely determined, if not
in practice, then at least in theory. Nevertheless we have random errors because a
deterministic analysis simply is not practically feasible (even if it were theoretically
possible which I doubt).

So modern chaos theory does throw a strong light on the relation between determin-
ism and randomness, including Gaussian errors.

3 Approximate or Exact Science?

How exactly does a law of physics fit nature? If the data are inexact, are at least the
laws exact? The well-known contemporary mathematician Penrose (1989, p. 183) gave a
fine mathematical argument, based on Poincare's ideas, that classical mechanics cannot
be applicable to the real world. This proof is based on the internal structure of classical
mechanics.

By external considerations it is also easy to see (and well known in physics), that
classical mechanics is only an approximate limiting case of relativity theory for small
velocities v (v <C c, c being the light velocity) and a limiting case of quantum mechanics
for h -> 0; cf. (Moritz and Hofmann-Wellenhof 1993, pp. 233 and 311).

Unfortunately, general relativity and quantum mechanics are incompatible, so at
least one of them must be inexact, too.

But how can a physical theory be exact if even the concepts which it uses cannot
be defined exactly? Have you ever seen a point mass? Not even a geometric point can
be defined exactly! So the approximate character of any physical theory is not really
surprising.

4 The Role of Probability

The theory of probability plays an important role in chaotic systems and in the theory
of random errors, as we have mentioned in sec. 2.

In quantum mechanics, probability is still more fundamental. There, a measurable
quantity is given by a linear operator L, and the possible outcomes of the measurement



are the eigenvalues Ai, A2, . . . of the operator L. If the state of the system is given by
a state function V7, then the probability that an eigenvalue will be measured is given by
the inner product of if) and the eigenfunction fa corresponding to the fc-th eigenvalue
A*:

Pk =< i>,fa> .
Thus the eigenvalue Â  cannot be predicted exactly, but only with probability pk!

The reader who is not familiar with linear operators L and state functions xf>, may
understand the basic mathematical structure if he thinks of L as a n x n square matrix
and of the state function if) as a unit vector of n components. (In fact, the analogy
becomes perfect if we let n —> 00, because a linear operator is fully equivalent to an
infinite square matrix, and a state function if) corresponds to a unit vector in infinitely
dimensional Hilbert space).

Also fa becomes a unit vector, so that < -0, fa > is nothing else than the inner
product of two unit vectors (for n —> 00, to be sure).

Thus probability is absolutely basic to the conceptual structure of quantum mechan-
ics. What is being discussed is whether probability in quantum mechanics is subjective
or objective.

If the state function represents, so to speak, our knowledge of the quantum system
under consideration, then the corresponding probabilities are subjective. This is the
famous Copenhagen interpretation of Bohr and Heisenberg, which is essentially accepted
by the majority of working quantum physicists.

The quantum probabilities, however, may also be considered objective facts of na-
ture. This interpretation is favored by Karl Popper (quantum probabilities are objective
propensities of the system) and by the Russian school, e.g. Blokhintsev (1968).

This is only a very brief outline; for more details cf. (Moritz 1995, sec. 3.5).

5 The Three Worlds of Popper and Eccles

The terminology has become popular by the famous (though not uncontroversial) work
(Popper and Eccles 1977).

World 1 is the external world of nature in which we move, live, and die. It is the
"real world" described by natural science (physics, chemistry, biology, geology, etc.).

World 2 is our internal world of thoughts, perceptions, emotions, headaches, joys,
etc.

World 3 is the world of interpersonal human culture. It contains mathematics,
languages, computer programs, poetry, music, etc. It is very similar to Plato's world of
ideas.

Philosophers disagree on the extent in which these three worlds are "real". Some
do not recognize World 3; they say that the World 3 object "mathematics" is only the
collection of all books on mathematics ever written and published, that is, a collection
of physical (World 1) objects. (But what about the mistakes contained in those books?)

Some deny the reality of internal experiences. Those persons are lucky because they
never seem to have headaches or fear the dentist, and unlucky because they never enjoy
a good meal. (I don't go so far as to say that they are not even thinking.)



Some philosophers even deny the reality of the external world.
At any rate, the three-world concept furnishes a very convenient terminology even

for those who disagree with it.

6 Can We Draw a Circle?

I think that Gauss' error theory is able to contribute essentially to basic philosophical
questions. Let us start with the Three-World theory outlined in the preceding section.

Consider mathematical reasoning. Logical and mathematical thinking are prover-
bially rigorous. How can our brain perform exact thinking?

To see the problem, take any mathematical theorem about a circle, e.g., its definition:
the circle is the geometrical locus of all points whose distance from a given point is
constant; in other terms, the circle is a curve of constant radius.

Now comes the paradox: nobody, not even the greatest mathematician, has ever
seen or drawn a mathematical circle. Nobody (I really mean nobody) has ever seen or
marked a point, and I dare say that probably nobody will ever by able to do so.

What is the reason? Logical, mathematical, and other axiomatic systems are rigor-
ous, that is, absolutely accurate, at least in principle. For instance, 2 + 1 = 3 and not
2.993. Logical and mathematical objects belong to World 3. The fact that a mathemati-
cian, whose mind belongs to World 2, is able to perform a rigorous logical deduction or
find a rigorous mathematical proof which is recognized as such also by his fellow mathe-
maticians, is very remarkable indeed. Mathematicians have discovered all properties of
and theorems about a circle, without ever having been able to construct one on paper.

But what about the circles constantly used in illustrations in books on geometry etc.?
They are not exact circles, as one easily sees by looking at them with a magnifying glass
or under a microscope. At best, they are "fuzzy" realizations of exact, or "real", circles!

Some mathematicians write books full of geometric theorems and proofs, which do
not contain a single figure. All theorems must be derivable from the axioms by logical
deduction only. It is true that most such books do contain figures, but only as an aid
to better visualize the geometric situation.

Thus logicians, mathematicians etc. appear to be capable of exact thinking, of dealing
with World 3 objects directly. Thus there seems to be an intimate relation between
World 3 and World 2. In a way, exact circles, being objects of World 3, can be transferred
exactly to World 2.

Now comes the surprise. Circles cannot be transferred exactly to World 1! Realiza-
tions in World 1 of abstract World 3 objects such as points, straight lines, or circles are
always approximate only!

Thus we have the following scheme of objects:

in World 3: exact,
in World 2: exact (at least in principle),
in World 1: fuzzy.

This seems to be a clear indication that World 1 and World 2 are essentially different.
This seems to be a rather significant philosophical result.

6



This may be illustrated by the following Figure 1. It is obviously impossible to trace
an exact circle even with a very firm and sure hand.

Figure 1: Tracing a circle with a shaky hand

By the way, the Gaussian error theory cannot be immediately applied to this case.
The hand traces a random function whereas the classical error theory deals with vectors
only. As we have mentioned, a function is essentially equivalent to a vector in Hilbert
space: the coefficients of a Fourier expansion form an infinitely-dimensional vector. This
fact was used in (Moritz 1961) to construct an error theory in Hilbert space.

7 Verification and Falsification
A physical theory must be verified (confirmed) by experiment. Such a verification can
never be complete: the next experiment may not be in agreement with the theory.

Therefore, K. Popper (1977) tried to replace verification by falsification: a single
experiment is sufficient to "falsify" a theory by showing that the experiment is incom-
patible with the theory.

Now the Gaussian error theory enters into the picture. A theory cannot only be
exactly verified, it cannot be exactly falsified either: the experiment can appear to
confirm a theory although it is incompatible with it! The measuring errors can give the
false impression that a theory is correct.

Since the successful theories (classical mechanics, relativity, quantum theory) are
so accurately confirmed by experiments, it is very difficult to overthrow them. Any
crucial measurement must be so precise that it is in the "gray zone" between fact and
fiction. Any small deviation from the theoretical result may as well be ascribed to
random measuring errors, together with systematic effects. Think of the history of the
measurement of the light velocity (now it is assumed as an absolutely correct value), or
of the present attempts to empirically distinguish Einstein's general theory of relativity
from competing theories of "Post-Newtonian Approximation".

So even falsification is not absolute. In practice, theoreticians need not worry about
either verification or falsification of their theories anyway: their experimental friends
will be eager to verify them, and their antagonists will be most happy to falsify them.

These two examples, distinction of World 1 and World 2 as discussed in the preceding
section, and verification and falsification as outlined in the present section, show that the
consideration of measuring errors can have important consequences in the philosophy of
natural science.
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