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A BDE model of Colliding Cascades. Part II.

Abstract

We consider a prominent and poorly understood feature of hierarchical nonlin-

ear ("complex") systems: persistent recurrence of abrupt overall changes, called

here "critical transitions." Unlike studying phase transitions in statistical physics,

we consider large deviations from steady state that culminate in a critical transi-

tion, rather than the steady states themselves. This raises a general problem that

comprises scenarios of development of critical transitions, their prediction and,

possibly, control.

We consider prediction of critical transitions, using the model developed in the

first part of this paper. The model merges the concept of colliding cascades and

work of Boolean delay equations. It describes generation of critical transitions in

hierarchical system by interaction between direct cascades of loading and inverse

cascades of failures. Interaction is controlled by distinct delays between switching

of elements from one state to another: loaded vs. unloaded and intact vs. failed.

The attention is focused on the earthquake prediction problem; accordingly,

the model's heuristic constraints are taken from dynamics of seismicity. Many of

our conclusions, though, may have wider applications: premonitory phenomena

encountered in seismology seem to be common to hierarchical systems of different

origin.

The model, its simple design notwithstanding, exhibits four major types of

premonitory seismicity patterns (PSPs), which have been previously observed in

earthquake prediction studies: (i) rise of earthquake clustering; (ii) rise of the

earthquake flow's intensity; (iii) rise of the earthquakes' correlation range, and (iv)
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certain transformation of Gutenberg-Richter relation (size distribution of earth-

quakes). We have found potentially important features of PSPs that are worth

testing on observations. The individual and collective performance of PSPs in the

modeled seismicity is evaluated by error diagrams. In real earthquake prediction

such performance, particularly the collective one, would be regarded as quite good.

Different prediction strategies are formulated and compared.

Keywords. Prediction of complex behavior; Cellular automata; Delay equations;

Hierarchical modeling; Colliding cascades; Earthquake precursors.

1 Introduction

This is the second part of a study aimed at a prominent and yet insufficiently understood

feature of hierarchical nonlinear, "complex" systems: persistent recurrence of abrupt

overall changes, called here ''critical transitions." The study's first part [1] described

a hierarchical model for the development of critical transitions. The model's heuristic

constraints were taken from the dynamics of seismicity. The seismically active crust of the

Earth is regarded as a complex hierarchical dissipative system, and strong earthquakes

as critical transitions in that system. That model was applied to the study of multiple

seismic regimes. In the study's Part II (the present paper), we focus on earthquake

prediction problem.

We apply to the model previously developed earthquake prediction algorithms [2, 3],

based on specific premonitory seismicity patterns (PSPs). PSPs are spatio-temporal
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features of an earthquake sequence, which indicate the approach of a strong earthquake.

The goal of the present study is twofold: (i) validation of the model, by showing that it

fits the major heuristic constraints, PSPs in particular; and (ii) finding new premonitory

phenomena that can be tested on observations; if successful, such a test would greatly

increase the model's credibility.

This Introduction outlines the essentials of the model (Sects. 1.1 and 1.2), heuristic

constraints on it (Sect. 1.3), PSPs used in this study, and the general scheme of prediction

(Sect. 1.4). Sections 2 and 3 describe respectively the individual and the collective

performance of PSPs in the modeled seismicity. A discussion of the results and their

implications for real earthquake prediction follows in Sec. 4.

1.1 Colliding Cascades (CC) models

These recently introduced models [1, 4, 5, 6] synthesize three phenomena that play an

important role in many complex systems: (i) The system has a hierarchical structure,

with the smallest elements merging in turn to form larger and larger ones, (ii) The

system is continuously loaded (or driven) by external sources, (iii) The elements of

the system fail (break down) under the load, causing redistribution of the load and

strength throughout the system. Eventually the failed elements heal, thereby ensuring

the continuous operation of the system.

The load is applied at the top of the hierarchy and transferred downwards to the

smallest elements, thereby forming a direct cascade of loading. Failures are initiated at
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the lowest level of the hierarchy, and gradually propagate upwards, thereby forming an

inverse cascade of failures, which is followed by healing. The interaction of direct and

inverse cascades establishes the dynamics of the system: loading triggers the failures

while failures redistribute and release the load.

1.2 Boolean delay equations (BDEs)

BDEs are a novel modeling language especially tailored for the mathematical formula-

tion of conceptual models of systems that exhibit threshold behavior, multiple feedbacks

and distinct time delays (see Fig. 2 in [1]). Originally inspired by theoretical biology,

Ghil and associates [7, 8] recognized the potential of BDEs for modeling the multiple

feedbacks between the components of the climate system [9]. They intended BDEs as

a heuristic first step on the way to understand problems too complex to model using

systems of partial differential equations at the present time. One hopes, of course, to

be able to eventually write down and solve the exact equations that govern the most

intricate phenomena. Still, in climate dynamics [10] as well as in solid-earth geophysics

[11] and elsewhere in the natural sciences, much of the preliminary discourse is often

conceptual.

We use the Boolean delay equation (BDE) framework to model the dynamics of

colliding cascades. The phenomenon of colliding cascades comprises interaction of direct

cascades of loading and inverse cascades of failures. Using the BDE framework, we replace

the elementary interactions of elements in the system by their integral effect. This effect
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is represented by the time delays between consecutive switching of an element's state, i.

e. between unloaded vs. loaded and intact vs. failed states. In this way we bypass the

necessity to reconstruct the detailed behavior of the system from complex and diverse

interactions, for which our knowledge is very incomplete. This simplifies the systematic

study of the model's dynamics without losing its essential features.

1.3 Heuristic constraints

In its applications to seismicity hierarchical structure of the model represents a faults

network [12, 13], loading imitates the impact of tectonic forces, and failures imitate

earthquakes. Heuristic constraints include the major regularities observed in the dynam-

ics of real seismicity [14, 15, 16, 67]: (i) the seismic cycle; (ii) intermittency in the seismic

regime; (iii) the size distribution of earthquakes, usually called the Gutenberg-Richter

(G-R) relation; (iv) specific clustering of earthquakes in space and time; (v) long-range

correlations in earthquake occurrence; and (vi) a variety of seismicity patterns premoni-

tory to a strong earthquake [3, 11, 14, 67, 68].

The first part of this study [1] shows that the model reproduces the first four features,

(i)-(iv). Here we will focus on the last one — the premonitory seismicity patterns (PSPs).

The existence of long-range correlation will follow from our analysis of PSPs.
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1.4 Premonitory seismicity patterns (PSPs) and prediction al-

gorithms

Our point of departure is the methodology of earthquake prediction, realized in a family of

intermediate-term prediction algorithms [2, 3, 11]. We briefly describe this methodology

below.

1.4.1 Four types of premonitory seismicity patterns

Studies of observed and modeled seismicity have demonstrated that an earthquake of

magnitude m is often preceded by PSPs formed within an area and magnitude range

depending on m. Unambiguously defined and better validated are the intermediate-term

patterns that have a characteristic duration of alarms years.

We consider here PSPs of the following four types [3, 18, 19, 20, 21]: (i) rise of seismic

activity; (ii) rise of earthquake clustering; (iii) rise of earthquake correlation range; and

(iv) certain changes in the earthquakes' size distribution (G-R relation). Patterns of

the first two types have been found in observations first and then in models [22, 23,

24, 25, 26, 27]; patterns of other two types — first in models and then in observations

[4, 28, 29, 30, 31, 32]. The intermediate-term patterns of the first two types have been

validated by the statistically significant predictions of real earthquakes [34, 35, 36]. Other

patterns are in different stages of testing.
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1.4.2 General scheme of prediction

(i) A sequence of earthquakes in a given area is described by a catalog

C = {(tc, mc, he): C = 1, 2, . . . E\ te < te+1} . (1)

Here te is the starting time of the rupture, me is the magnitude — a logarithmic measure

of the energy released by the earthquake, and he is the position vector of the hypocenter.

The latter represents a point approximation of the area where the rupture started. The

main features of such a sequence are robustly captured by the functionals Fk(t,Sk), k =

1,2,..., if, each depicting a certain PSP (Fig. 1). With a few exceptions, our functionals

are defined in a sliding time window (t — s,£); note that the value of a functional is

attributed to the end t of the window. The specific functionals Fk used in this study are

defined in Section 2 below.

(ii) Emergence of a PSP is defined by the condition

Fk(t) > Ck. (2)

Here Fk(t) is one of the functionals that depict this PSP; the threshold Ck is usually

chosen as a certain percentile of the probability density function (pdf) for functional Fk-

Since a single PSP may be captured by several different functionals, when talking about

emergence of a PSP we suppose that appropriate functional Fk that depict this PSP is

chosen. When it is imporatnt to distinguish between different functionals that depict the

same PSP we use phrases like "emergence of a functional", etc.

(iii) An alarm is triggered when a single pattern or a certain combination of the
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patterns emerges. Different prediction algorithms use different patterns. An alarm is

declared for a time interval r*.. In the algorithms considered here the alarm is terminated

after a major earthquake occurs or the time TJ. expires, whichever comes first. The

possible outcomes of prediction are shown in Fig. 2. Obviously this scheme is open for

the use of other data, not necessarily seismological ones (e.g. [41, 42, 43, 44, 45]).

1.4.3 The pattern recognition approach to prediction.

In the absence of an adequate theory, the prediction algorithms considered here have

inevitably been found by a pattern recognition analysis of observed and/or modeled

seismicity.

The relevance of pattern recognition is clear from Fig. 1: we have to find a set of

functionals Fk(t) that discriminate between the two possibilities: a strong earthquake will

or will not occur in the area considered during a specified time interval. The methodology

of pattern recognition of infrequent events has been developed by the school of I. M.

Gelfand [13, 37, 38, 39] for the study of rare phenomena of highly complex origin, a

situation where classical statistical methods are inapplicable. It is in a way akin to the

exploratory data analysis, developed by J. Tukey [40].

A distinctive feature of this methodology is robustness. To properly deal with the

high complexity of seismic phenomena, the functionals and the corresponding prediction

algorithms have to be given robust definitions that makes them applicable to different

conditions, such as region, magnitude range, and seismic regime; otherwise the test of a
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prediction algorithm would be practically impossible. Such applicability is achieved at a

price, namely the reduction of the predictions' accuracy in individual cases.

This is a particular instance of the usual trade-off between the number of parameters

fitted and result's statistical significance. E. Fermi coined the phrase "With four expo-

nents I can fit an elephant" to highlight the problem of using too large a set of parameters

for a given data set. The pattern recognition approach leaves a considerable freedom in

the retrospective development of an algorithm, in particular in the choice of adjustable

parameters. A good prediction algorithm has to be insensitive to various free choices

of its definition. The sensitivity analysis for such an algorithm comprises an exhaustive

set of numerical experiments, that make up a major part of the efforts in the algorithm

development. This set includes: (i) evaluating the stability of predictions to variations

in the algorithm and its parameters, and (ii) validating the results by application of the

algorithm to "out of sample" data. Finally, real-data advance prediction provides further

confidence in the algorithm. The results of such analyses are summed up in the error

diagrams that show the trade-off between different prediction errors [46, 47, 48, 49]. They

show the actual prediction skill and provide the necessary basis for the optimization of

disaster preparedness measures that may be undertaken in response to such a prediction

[48, 49, 50].

Error diagrams for the PSPs considered in this study are given in Section 2.
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1.4,4 Four paradigms

The studies described above led to the following findings that are important for fun-

damental understanding of the dynamics of seismicity, as well as for further prediction

research [14, 51, 52]: (i) Long-range correlations occur in fault system dynamics and,

accordingly, premonitory phenomena are formed in the large-size areas, (ii) There exist

four types of premonitory phenomena (see Sect. 1.4.1). (iii) These phenomena exhibit

at least partial similarity worldwide, (iv) Premonitory phenomena are dual in nature:

some of them, like the PSPs considered here, are common for a wide class of nonlinear

systems; others are specific to the geometry of the faults' network or to a certain physical

mechanism that controlls the stress and strength field in the lithosphere.

Table 1 provides a more detailed comparison between the "holistic" approach to earth-

quake prediction being pursued here and the complimentary "reductionist" approach.

The table also provides additional information on characteristic sizes of the fault net-

works and time scales of interest for long-, intermediate- and short-term prediction.

2 Individual performance of each seismicity pattern

In this section, we study the PSPs that appear in the synthetic seismicity produced by

the model introduced in [1]. These are PSPs of the four types discussed above in Sect.

1.4.1, and we thus apply the predictions based on those PSPs, one at a time. The brief

overview of the patterns is given in Table 2. Each PSP considered is depicted by a
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set of functionals; as a result 23 different functionals are considered. We evaluate the

performance of each functional by the corresponding error diagram (see Sect. 2.3 and

Fig. 8) and juxtapose the emergence of different functionals before individual major

earthquakes (see Sect. 2.9, Figs. 9 - 11)

2.1 Earthquake sequence

In this study we analyze the synthetic earthquake sequence shown in Fig. 3. It cor-

responds to the model's intermittent regime, denoted by I in [1]. The exact model

parameter values that yield this sequence are given in the captions of the figure. As

demonstrated in [1], this sequence exhibits major features of real seismicity, as summa-

rized in Sect. 1.3. This sequence includes 43 earthquakes with ra = 7, maximal possible

in this version of the model. They are targeted for prediction in the subsequent analysis.

An aftershock is defined in the model as a descendant of a main shock of magnitude

m which occurred within T(m) time units from the main shock. A descendant is a child,

child of a child, etc., of a main shock within the system considered. In accordance with

this definition, events of magnitude m = 1, the smallest possible in the model, have no

aftershocks. The values of T(m) for different magnitudes m of main shock are taken

here as foUows: T(7) = 3000, T(6) = 1500, T(5) = 600, T(4) = 300, T(3) = 150, and

T(2) = 70.

Most of the premonitory patterns considered have been defined on the sequence of

main shocks. However the number of aftershocks is retained for each main shock. As
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in analysing observations, the few immediate foreshocks are not differentiated from the

main shocks.

The synthetic sequence of main shocks is represented by a catalog D similar to C of

Eq. 1:

D = {(th mh hh B[): I = 1,2,... , L, tt < tl+1} . (3)

Here, B\ is the number of aftershocks of the I — th main shock within a time interval

(ti,ti + 8); where 8 is usually very small. We use S = 300 time units.

Prediction is targeted at the "major" earthquakes that have magnitude m — 7, the

maximal possible in the sequence considered. Premonitory patterns are formed by the

earthquakes with smaller magnitudes, from m = 6 down to m = 1.

2.2 Scale invariance.

The energy distribution of earthquakes, commonly known as G-R relation, is a funda-

mental feature of dynamics of seismicity [16, 87, 88, 89, 90, 91]. Statistical-physics-type

models of seismicity often use the simplest power-law form of this relation,

log10 N(m) = a — bm. (4)

Here N(m) is the average annual number of earthquakes with magnitude m within a

certain territory. Since m is the logarithmic measure of energy, Eq. (4) is the power law.

This power law naturally evokes far-reaching analogies with scale invariance and self-

organized criticality. However, Eq. (4) is merely a zeroth-order approximation of seis-

micity in a large-scale fault systems, but not on a local scale, e.g. on a single active
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fault, commensurate with the size of earthquake sources. Equation (4) is essentially a

multiscale description of seismicity, since the larger m the larger the area, where the value

of N(m) has to be estimated. The power law of Eq. (4) is valid only after substantial

averaging over time and territory; even so, it is valid only in a limited magnitude range.

For example, B. Gutenberg and C. Richter themselves emphasized the downward bend

of N(m) at large m for the whole global seismicity. As demonstrated by Molchan and

Podgaetskaya [89], the global distribution of earthquake sizes is better fitted by Kolmogo-

roff's log-normal distribution [92]. A good heuristic constraint for modeling seismicity is

rather the deviation from the power law (4) changing in time and from area to area. For

instance, a more adequate mesoscale approximation of the G-R relation is a broken line

in log-log coordinates with constant values of b within certain magnitude intervals [33].

G-R relation for our synthetic sequence is shown in Fig. 4 for orientation in the

subsequent analysis. Power law of Eq. (4) fits well the model data. The b-value is

less for main shocks than for aftershocks that is in accordance with observations on real

earthquakes. Premonitory transformations of GR relation are discussed in Sect. 2.8

below.

2.3 Error diagrams

Definitions. Error diagrams are a key element in evaluating a prediction algorithm. They

have been introduced into earthquake prediction studies by G. Molchan [46, 47, 48, 49].

The definition of an error diagram is the following: Consider prediction by a single
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functional. In the present context, a precursor is a functional on the seismic sequence

D of Eq. (3). We continously monitor seismicity, declare alarms when that functional

exceeds a threshold value as described in Sect. 1.4.2, and count the prediction outcomes

(Fig- 2).

Prediction relates to a specified time interval of length T. During that time interval,

N strong events occurred and Np of them were not predicted. The number of declared

alarms is A, with Ap of them being false alarms. The total duration of alarms was D.

The error diagram shows the trade-off between relative duration of alarms r = D/T, the

rate of failures to predict n = Np/N, and the rate of false alarms / = Ap/A. In the

(n, r)-plane the straight line n + r = 1 corresponds to a random binomial prediction —

at each step in time the alarm is declared with some probability r and not declared with

probability 1 — r. Given a particular prediction that depends on a set of parameters,

different points on error diagram correspond to different values of these parameters.

Error diagrams thus sum up the score of prediction's successes and errors. This score

depends on an algorithm's adjustable parameters. For example, raising the threshold Ck

in Eq. (2) will reduce the number of alarms A but may increase the number of failures

to predict Np. Raising r*., on the other hand, will increase the duration of alarms D but

may reduce the number of failures to predict Np, etc. A prediction algorithm is useful

if: (i) prediction score is higher than the random one that corresponds to the diagonal

n + r = 1 of the square {(n, r) : 0 < n < 1,0 < r < 1}; and (ii) this score is insensitive

to variation of parameters.
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2.4 Rise of seismic activity: the functionals S and TV

Definitions. A premonitory rise of seismic activity is depicted by the following functionals

[2, 14, 61, 62]: JVm(£, s) is the number of main shocks of magnitude ra within the time

interval (t — s,t) and
ra

Sm(M)= £ N(m')S(mf). (5)
ra'=l

Here AT(ra') is the number of main shocks with magnitude ra', while the weight S(m')

is proportional to the source area of an earthquake with magnitude ra'. In analysis of

observations it is coarsely estimated from the earthquake magnitude: S(m) ~ 106m.

Here we use the same expression with b = Iog10(3), suggested by the ternary hierarchical

structure of our system.

Performance. We computed each of these functionals for the sequence shown in Fig.

3 with s = 3000 and for ra from 1 to 6; note that according to (5) the patterns Ni and

Si coincide. Altogether we consider 11 functionals that depict rise of seimic activity.

Error diagrams for prediction with these functionals are given in Figs. 8a-d below.

"Quiet" intervals, with seismicity below ra = 4, are eliminated from consideration, to

avoid artificial improvement of statistics: neither strong earthquakes nor alarms may

emerge in our model during such intervals, which occupy 77% of the total duration of

our earthquake sequence. This is done for all the error diagrams shown in Fig. 8. For

advance prediction of real earthquakes the performance shown in Fig. 8 would be quite

satisfactory.
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2.5 Rise of seismic activity: accelerated Benioff strain release

Definition. Aside from the functionals JVm and S m discussed in Sect. 2.4, the cumulative

Benioff stress release also captures rise of seismic activity [21, 26, 67, 68, 69, 70, 71, 72].

It is dfined as

Yl/2,to<tk<t. (6)
k

Here Ek is the energy and tk is the moment of the &-th earthquake within an analyzed

sequence. In the analysis of observations energy is estimated from the magnitude. The

summation is taken over all the earthquakes in an area under consideration, without

elimination of aftershocks. Analysing the model we define the function e(t) as

6(*) = £ l o 6 m * > to<tk<t. (7)
k

The function e(t) determined from observations is approximated by a power law [67,

68]

e(t) = A- B(t, - t)«, (8)

where tf is the time of a strong earthquake, targeted for prediction. This power law is

often allowed to be modulated by log-periodic variations:

e(t) = A- B(tf - t)a {1 + C cos [w ln(tf - « ) ] } . (9)

Since tf is a priori unknown, a number of different time series analysis methods can be

used to optimize its determination from the observations [73].

Composite seismicity. Figure 5 shows that the modeled seismicity indeed exhibits on

average the premonitory power law rise described by Eq. (8). Aside from the power-law
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behavior of the function e captured well by Figs. 5a,b, Fig. 5c hints strongly at its

periodic modulations amplifying as the major earthuqake approaches.

In this study, we do not explore this pattern for individual major earthquakes.

2.6 Rise of clustering: "bursts of aftershocks"

Definitions. Premonitory clustering is captured by "pattern B" or "burst of aftershocks"

[53]. It consists of a main shock with a large number of aftershocks. One of the functional

depicting this premonitory phenomenon is Bm(ti^S). Here m and t\ are the magnitude

and occurrence time of the I — th main shock, while Bm is the number of its aftershocks

within the time interval 5. The PSP "bursts of aftershocks" depicted by the functional

Bm was the first to have its statistical significance carefully established [35]. In real

earthquake prediction Bm is counted within a short time interval of S = 2 days, while

the whole aftershock sequence may be much longer — a year or more. The updated

application of this pattern in southern California was recently described by Rotwain and

Liu [59].

We consider also a generalized functional, which employs the function Sm of Eq. (5)

to weigh aftershocks according to their magnitude:

ra

B%(ti,6)= £ 106"'• iVi(m'). (10)

Here ATj(ra') is the number of those aftershocks of the I — th main shock that have

magnitude m'; clearly, m! < m and Zw= 1 Ni(mf) = Bm. The exponent b is taken from

the G-R relation for the aftershocks. As in the definition of £?m, the summation is taken
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over the time interval S after the main shock. V. Kossobokov used the functional B^ in

[60] for analysing observed seismicity.

The weighting introduced in (10) equalizes the contribution of the aftershocks with

different magnitudes. Without the weighting, 6 = 0, and thus £?E and B coincide. We

computed both B^ and Bm with S = 300 for m = 6, 5, and 4, thus considering 6 different

functionals that depict the PSP "bursts of aftershocks".

Composite seismicity. Emergence of this pattern in the composite sequence of Fig. 3

is summed up in Fig. 6. The figure shows a composition of time intervals (tf — 104, tf)

before each major earthquake, where tf is its occurrence time. The following features in

Fig. 6 are noteworthy:

• High values of B6 and B$ — that is bursts of aftershocks triggered by main shocks

with m = 6 — abruptly emerge at about 700 time units prior to a major earthquake.

Burst of aftershocks triggered by main shocks with m = 5 have a larger lead time,

of 3,000 to 2,000 time units, and are more widely spread. This happens for an

obvious reason: due to similarity of our hierarchical model at different scales they

are premonitory not only to earthquakes of m — 7 but also to smaller ones, m = 6.

yields a better performance than £?m: it pays off to weight the aftershocks by

magnitude.

• There is an apparent drop of B^ and Bm close to a major event. This effect was

recently observed for real earthquakes in Southern California [59].
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Performance. Performance of the functional i?^, m = 4, 5,6 in prediction of indi-

vidual earthquakes is characterized by the error diagram in Fig. 8, panels e and f. The

large rate of false alarms for m = 5 and 4 has the same explanation, as their wider spread

in the composite sequence (Fig. 6): the first pattern may be premonitory to earthquakes

with m = 6 and second — with m = 6 and 5, while we concentrate only on predition

of earthquakes with m = 7, the strongest ones. Emergence of these patterns before

individual major earthquakes is shown in Figs. 9 - 1 1 below, along with the false alarms.

2.7 Rise of correlation range: functionals Accord, II, and ROC

Long-range correlations in seismicity. The occurrence of major earthquakes is corre-

lated at large distances that exceed considerably the size of the rupture in the earth-

quakes' sources. Different manifestations of this phenomenon include the large size of

the areas where premonitory seismicity patterns are formed [2, 39, 61]; the correlation of

the strongest earthquakes worldwide between themselves, and with perturbations of the

Chandler wobble and Earth rotation [38, 86]; migration of seismicity along active faults

to distances up to 104 km [84, 94]; and near-simultaneous occurrence of earthquakes at

large distances [75, 76, 77, 81, 82, 83] This phenomenon has been also established by

modeling seismic dynamics [78, 79, 80].

The physical mechanisms that are responsible for long-range correlations are summa-

rized in [14]. Here we do not consider the large correlation range per se, but concentrate

on its premonitory rise. This has been found to occur in observed seismicity, on the time
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scales of months [30], years [31, 32], and decades [39], as well as in colliding cascades

models [1, 4, 5]. No statistical significance for this phenomenon is yet established in

observations. Further study in the present model is intended to provide pointers to the

analysis of real seismicity.

Definitions. We consider several functional that register premonitory rise of correla-

tion.

The functional A, "Accord". This functional measures simultaneous rise of seismic

activity in the major branches of the system. Our ternary model is naturally divided

into three major branches, descending from the second highest level, corresponding to

m = 6. We measure seismic activity of a branch by the functional Se(£, s) defined by Eq.

(5) with s = 3000. The functional A6(t) is defined as the number of branches for which

Se(£,«s) simultaneously exceed a common threshold CA- By definition, the functional

Ae(t) may assume integer values from 0 to 3; we took CA — 2.

In the analysis of observations the "major branches" are the fault zones comprising

the region [12, 31].

We considered also a functional A$(t) defined, similarly to A$(t), for the nine branches

that descend from the third-highest level of the hierarchy, corresponding to m = 5; in

this case we took CA = 3.

The functional II. This functional measures the rise of activity in a sufficiently large

part of the system. As for the functional Accord, we measure activity of each major

branch by the function S6(£,«s) with s — 3000. The functional Ile(t) is the sum of the



A BDE model of Colliding Cascades. Part II. 21

activities of the two most active branches.

The functional ROC ("range of correlation"). This functional captures the rise of the

distance between nearly simultaneous earthquakes. The functional i2m(£,«s) is defined as

the number of pairs of events with magnitude m which occur within time s from each other

at the maximal possible distance. In the model we use the ultrametric distance along

the tree [74], i. e., the minimal number of edges that connect two elements; according to

the definition of ultrametric distance, siblings are at a distance null from each other. We

considered this functional with s = 5000 for magnitudes m from 2 to 6. The functional

that generalizes i?m(£, s) to real observations has been explored by P. Shebalin et al. [30]

in the quest for short-term prediction, since it could have a smaller lead time than other

functionals considered here. On longer time scales a similar phenomenon was reported

by A. Prozorov [75, 76, 77] for California and some other regions.

A premonitory rise of the functionals Accord and ROC has been found first in the

colliding cascades model [4, 6] and then in observations. So far this has been found only

in one region for each functional, in S. California for Accord [31], and the Lesser Antilles

for ROC'[30]. The premonitory rise of II has been found first in this study. An alternative

approach for detecting the rise of correlation range was suggested by Zoeller et. al. [32].

Performance. Error diagrams for prediction with the patterns Accord, ROC and II

are given in Fig. 8, panels g-j. Performance of ROC is weaker, comparing to the other

patterns. Possibly, being a short-term precursor, it works better as a second approx-

imation to intermediate-term one; this was observed by Shebalin et al. [30] in Lesser
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Antilles.

2.8 Transformation of G-R relation: "Upward Bend" pattern

Definition. According to [29, 93, 94, 95, 96] a major earthquake with magnitude m0 is

preceded by an "upward bend", i.e., a decrease of the b-value, for the G-R relation in the

adjacent magnitude interval (ra0 — c2, m0 — Ci), C\ < c2. Figure 7 clearly demonstrates

such a change in the composite seismicity. Panels (a) and (c) show the G-R relation

for the main shocks and all events, respectively. The change is particularly strong when

considering only the main shocks. To depict this transformation we use the functional

This functional was calculated with s = 2000 for the composite seismicity and is

shown in Figs. 7b and d. One can see a rapid growth of the U(t) that starts a few

thousand time units before a major earthquake. This provide a clear evidence of the

presence of the upward-bend pattern in our model. However, the error diagram (panels

k and 1 of Fig. 8) shows too many false alarms produced by this pattern in predicting

individual earthquakes. This is discussed in a few more detail in Sect. 4.

2.9 Track record of single patterns

Alarms. Alarms raised by each functional are juxtaposed in Fig. 9. Each box corresponds

to a major earthquake; its sequential number is indicated at the top of the box. Our

earthquake sequence includes 43 major earthquakes. For brevity we show only 10 of them.
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The right edge of a box is the time of a major earthquake. The horizontal axis shows the

time before that earthquake. Each line corresponds to a premonitory pattern depicted

by a specific functional in a certain magnitude range; both functional and magnitude

range are indicated at the left. Shaded areas are the alarms rised by this pattern.

We juxtapose in Fig. 9 the predictions by all the 23 functionals considered in this

study.

Prediction strategies. The trade-off between correct predictions and errors is con-

trolled by a prediction algorithm's adjustable parameters. Three panels in Fig. 9 corre-

spond to different choices of the trade-off that implement the three "prediction strate-

gies" . Each strategy minimizes one of the following characteristics of prediction: the rate

of failures to predict n (top panel); the sum of errors n + r + / (middle panel); and the

rate of false alarms / (lower panel). One can easily see that the lead time of precursors

decreases in that order.

Figure 10 illustrates the continuous performance of each pattern, including long in-

tervals where major earthquakes did not occur, so that most of the alarms are false.

Earthquakes of m = 6 are indicated in the figure by shadowed vertical lines to emphasize

their association with the false alarms.

Success score. The alarms preceding each of the 43 major earthquakes are juxtaposed

in Fig. 11. It presents the complete summary of correct predictions and failures to

predict, for each of the 23 functionals considered.

Next, we explore collective performance of these patterns.
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3 Collective performance of seismicity patterns

Minimax strategy. Figures 8-11 clearly show that our prediction does have many errors

even in a simple model. Is it possible to improve the prediction for this model, and with

23 functionals considered? To answer this question, we explore the following "minimax"

strategy: (i) tune the prediction by individual functional at minimizing the rate of false

alarms, at the cost of large rate of failures to predict (Figs. 9a, 10a), and (ii) reduce the

failures to predict by combining different predictions.

Error diagrams. We applied the minimax strategy as follows: Six functionals, defined

for m = 6, are used for prediction: S6, iV6, 5 6 , Re-, A6, and n 6 . Individual alarms are

declared as described in 1.4.2. A collective alarm is declared when M out of the six

possible alarms are triggered at the same time, M = 1 , . . . , 6. In that way we obtain six

versions of predictions, corresponding to different values of M. The corresponding error

diagrams are shown in Figs. 12a,b.

In the same way we consider the five functionals defined for m = 5: S5, iVs, #5, i?5,

and A5. The collective alarm is declared when two individual alarms arise simultaneously.

The corresponding error diagram is shown in Figs. 12c,d.

Figures 9-11 provide a clear evidence that emergences of different functionals and

patterns are strongly correlated, while Fig. 12 shows, that prediction indeed improved

by combining single functionals. This confirms that while the onsets of different patterns

are strongly correlated, the remaining discrepancy is still sufficient to improve prediction

by combining them. Note, that studies of PSPs in observed seismicity led to the similar
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conclusion: "Emergence of observed patterns is strongly correlated, suggesting that they

all reflect a single underlying phenomenon" [101]. Moreover, joint application of different

patterns is reasonably successful in many prediction algorithms [102, 103, 104, 105, 106].

The "minimax" strategy shown in Fig. 12 was not yet used in these algorithms, and

seems very promising, even though such a spectacular success could hardly be repeated

with observations.

4 Discussion

1. Relevance. The relevance of the model to reality is well supported by the fact, that

it fits the major heuristic constraints, including a wide range of premonitory seismicity

patterns.

2. Premonitory patterns. We have found in the model potentially important features

of premonitory patterns, to be tested in observations:

• "Magnitude ladder". Patterns defined for lower magnitudes tend to emerge earlier.

For instance the functional B$ rises prior to the rise of the functional BQ, as shown

in Fig. 6. This is also true for other functionals as can be seen from Figs. 9 and 10.

The individual performance of pattrens that are defined for smaller magnitudes

is weaker, but they may be used in consecutive approximations to provide early

warnings. Further problem is to organize these patterns into scenario of development

of a major earthquake.
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• False alarms are clustered in time. Most of them are associated with earthquakes

of magnitude 6. Further problem is to discriminate such alarms, thus increasing the

accuracy of predictions.

• Collective performance is much better than individual one, despite of strong corre-

lation of the patterns. Further problem is to find optimal combination of patterns.

This might be done by analysis of observations, taking advantage of existing pre-

diction algorithms.

• Lead time of the patterns is noticeable different before different earthquakes. That

is also the case in prediction of real earthquakes when the lead time varies from

months to years. Further problem is to evaluate the lead time in advance.

3. Yet unexplored possibilities.

• Other premonitory seismicity patterns. We have focused here on the relatively

better validated PSPs and did not explore several potentially important others:

(i) Other forms of premonitory clustering — swarms of the main shocks of about

the same magnitude [54, 55, 56] and narrow clusters of the foreshocks [57, 58].

(ii) More sophisticated diagnostics of transformations of G-R relation, like those

suggested in [29, 89, 98, 99, 100].

(iii) Premonitory quiescence in different time scales [64, 65, 66].

(iv) Log-periodic variations of seismic activity.
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• Alternative strategies. The strategy of prediction opposite to the one considered in

Sect. 3 deserves attention: to tune the patterns at minimizing the rate of failures

to predict at the cost of the large rate of false alarms; then reduce the false alarms

by combining different patterns.

• Prediction within other seismic regimes. As demonstrated in this study's first part

[1] our model reproduces three types of seismic regime that exhibit (i) periodic, (ii)

intermittent, and (iii) low-level seismic activity. Here we considered prediction only

in the intermediate regime. The periodic regime is hardly realistic and prediction

there is trivial. The low-seismicity regime is indeed realistic. However, prediction

in that regime is quite different problem: this regime has neither clear critical

phenomena nor scale invariance (see Fig. 4 of [1]).

4. Key problems. Our results open a new access to the following two problems, pivotal

in the quest for better prediction methodology:

• Control parameters. Emergence of the patterns is strongly correlated in time. This

emphasizes the problem to express them through the limited number of control

parameters, lowering dimensionality of the system.

• A simpler model? While introduction of colliding cascades and the BD approach

happened to be very helpful, some of the results could be possibly obtained with a

simpler model that would underly the rich variety of the previously explored ones.

5. Other applications. While the model considered was tested against observed dy-
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namics of seismicity, nothing in the model is particularly earthquake-specific. It seems

worth to explore application of the model to other geological and geotechnical disasters,

involving hierarchical structure, and the loading -> failures —> healing sequense.
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Table 1. Two complementary approaches to earthquake prediction.

"REDUCTIONISM"

(from details to the whole)

"HOLISM"

(from the whole to details)

Premonitory phenomena preceding an earthquake

with linear source dimension L are formed

near the incipient source in a network of faults

of the linear size in time scale

102L tens of years

10L years

L years to months

possibly, fractions of L, month to days

i.e. in a vicinity of

the hypocenter

Premonitory phenomena

are specific to mechanisms

controlling the strength,

e.g. friction, rock-fluids interaction,

stress corrosion, buckling, etc.

are different

are divided intot

• "universal" ones common for many chaotic systems

• those depending on the geometry of the fault network

• mechanism-specific ones

la in different regions and energy ranges

are to a considerable extent similar
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Table 2. Premonitory seismicity patterns (PSPs) considered in this study.

Notation

Nm

j g m

BS

Rm

Am

u

Description

Number of events.

Weighted number of events.

Coarsely estimates the area

of faultbreaks.

Number of immediate aftershocks.

Weighted number

of immediate aftershocks.

Near-simultaneous occurrence

Simultaneus activation

of distinct branches of

a system.

Total activity of most

active branches

of a system.

Ratio of Nm for

different m.

Type

Intensity

Intensity

Clustering

Clustering

Range of

correlation

Range of

correlation

Range of

correlation

Transformation of

GR relation.

Definition

Sect. 2.4

Eq. (5)

Sect. 2.6

Eq. (10)

Sect. 2.7

Sect. 2.7

Sect. 2.7

Eq. (11)

Use in analysis

Y E S

Y E S

Y E S

YES

Retrospectively

Retrospectively

N O

Y E S

References
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[61, 102, 103]

[53, 35, 102, 103, 59]
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This study

[102]
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List of Figures

Figure 1. Scheme of prediction. See text for details.

Figure 2. Possible outcomes of prediction.

Figure 3. Synthetic earthquake sequence, consecutively zoomed; the sequence is

generated by the colliding-cascades model of Part I [1] for the parameter values L =

7, A = 0.2 • 10"4, AL = 5 • 103, AD = 5 • 102, AH = 103,c = 2/3,p = 3, Jfe = 3. Shadowing

marks the zoomed intervals. The model shows a rich variety of behavior at different time

scales. Note that the entire sequence (not shown) is 5 • 106 time units long and that the

difference in time scales betweeen the top and bottom panels is by a factor of 103.

Figure 4' Magnitude-frequency relation (Gutenberg-Richter law). The solid dots

represent the actual value of the number JV(ra) of events with magnitude ra, while the

solid line is the least-square fit of a power law log10 N(m) = a — bm. a) All events, b)

Main shocks, c) Aftershocks.

Figure 5. Premonitory acceleration of cumulative Benioff stress release e(t) — A —

B(tf — t)a vs. t — tj\ the values of e(t) are normalized so that A = 1. The fitting curve

in panels a) and b) corresponds to B — 2.36, a — 0.55. a) e(t) in linear scale; b) e(t) in

log-log scale; and c) residuals: the difference between the data and the fitting curve in a

linear scale. Note the accelerating oscillations prior to a major earthquake in panel c).

Figure 6. Bursts of aftershocks for the composite synthetic sequence. Each panel

shows a measure of aftershock activity vs. time to a major event (i — tf), tf being an

occurrence time of the latter. Two different measures are considered. Both are counted
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at the very beginning of the whole aftershock sequence, within 300 time units after a

main shock. Panels at the top show the functional B^ that is the weighted number of

aftershocks [see Sect. 2.6, Eq. (10)]: a) m = 6, b) m = 5. Panels at the bottom show the

the number of aftershocks 5 m [see Sect. 2.6] c) m = 6, d) m = 5. Vertical arrows indicate

the moment of each major event, all plotted at t — tf = 0 on the abscissa. Significant

growth of activity is observed at several hundred time units prior to major events. The

measure B^ indicates premonitory rise of clustering better than the measure Bm. See

text for details.

Figure 7. Premonitory transformation of the model's magnitude distribution. Pan-

els on the left side show magnitude distribution in a composite seismicity for two distinct

time intervals prior to a major event; tf is its occurrence time, a) main shocks, c) all

events. Circles: -50001 < t - tf < -2000; squares: -2001 < t - tf < 0. Figures

show explicit premonitory upward bend at magnitudes m > 5; it is stronger for the main

shocks. Panels on the right side show the functional U(t) that depicts such a bend (cf.

Eq. (11)). b) main shocks, d) all events. The premonitory rise of U(t) is apparent in

both panels. See details in the text.

Figure 8. Error diagrams for all premonitory patterns considered. Panels on the

left side show the rate of the total duration r of alarms vs. the rate n of failures to

predict. Panels on the right side show the rate / of false alarms vs. the rate n of failures

to predict, a), b) Weighted number of events, S m , 2 < m < 6 (Sect. 2.4); c), d) number

of events, iVm, m = 2 , . . . , 6 (Sect. 2.4); e), f) bursts of aftershocks, i?m, m = 4 , . . . , 6
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(Sect. 2.6); g), h) accord, Am, m = 5,6 and, n (Sect. 2.7); i), j) correlation range,

m = 2 , . . . , 6 (Sect. 2.7); and k), 1) change in magnitude distribution, U (Sect. 2.8). See

text for details.

Figure 9. Performance of single premonitory seismicity patterns (PSPs) prior to

10 major earthquakes. Figure juxtaposes the alarms generated by each of 23 functionals

considered. Each box shows the emergence of a pattern prior to a major event; the events

sequential index (out of total 43) is shown at the top of the box. The right edge of the

box is the epoch of a major event. Each horizontal row represents the track record of

a pattern, identified at the left side of the panel. Shaded areas show the time intervals

when an alarm was declared by the pattern. The three panels correspond to different

prediction strategies: a) minimization of failures to predict (n —> min); b) minimization

of sum of errors (n + r + / —y min); and c) minimization of the number of false alarms

(/ -> min).

Figure 10. Performance of the single premonitory seismicity patterns (PSPs) in a

continuous time interval. The figure juxtaposes alarms generated by all 23 functionals

considered. Each panel shows the alarms generated during the time interval [3.05,3.70] •

106 time units. The horizontal line represents the track record of a pattern identified

at the left side of the panel. Shaded areas show the time intervals when an alarm was

declared. Heavy solid vertical lines and vertical arrows depict the epoch of major events

(m = 7). Heavy shaded vertical lines depict the epoch of main shocks with magnitude

m = 6. The three panels correspond to different prediction strategies, as in Fig. 9.
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Figure 11. Emergence of the single premonitory seismicity patterns (PSPs) prior to

each major earthquake. Each panel shows in separate boxes emergence of patterns prior

to each of 43 major events: shaded boxes represent predicted events while empty boxes

represent failures to predict. The sequential index of each major event (out of total 43)

is shown at the top of each box. Each horizontal line represents the track record of a

specific pattern. Shaded boxes indicate succesful predictions. The two panels correspond

to different prediction strategies: a) minimization of sum of errors (n + r + / -> min);

and b) minimization of the number of false alarms ( / —>• min).

Figure 12. Collective performance of the patterns. Error diagrams: a), b) Six

patterns defined for m = 6 are considered: S6, AT6? j?6, A6, Re-, and n6 ; an alarm is

triggered when at least M patterns emerge, M = 1,..., 6. c), d) Five patterns defined for

m = 5 are considered: S5, JVs, B$, A$, and R$\ an alarm is triggered when at least two

patterns emerge. In each case the single patterns are tuned to minimize the rate of false

alarms. The straight line n + r = const is shown in each panel for comparison. See text

for details.
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