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INTRODUCTION

The Earth was formed as a planet of the Solar System about 4.5 billion years ago. Whether

because of an initial high temperature, or due to radioactivity, the temperature distribution

inside the Earth is slightly super-adiabatic, thus allowing for thermal convection at the outer

core, which gives rise to the Earth's magnetic field, and convection at the mantle providing the

mechanism for plate tectonics. Because the surface of the Earth is much colder temperature

(~ 273K) than the base of the mantle (~ 3000K), the cold thermal boundary layer develops a

few lithospheric plates, rigid layers with an average thickness of 0-80 km under the oceans and

150-200 km under the continents. The lower limit of the lithosphere is defined by an isotherm

of ~ 1600K. The layers are in relative motion at a velocity of 2 — 10 km/year, accumulating

strain at their borders and thus generating stress. When the stress exceeds the resistance of

the material a rupture occurs with a sudden release of energy, and with a consequent drop

of the accumulated stress; this energy release, part of which propagates through the Earth

as seismic waves, is known as an earthquake. However, tectonic plates continue to move, and

the process is repeated. Thus a stationary state has been reached, consisting of deformation,

stress accumulation and earthquake occurrence. This process is known as seismic cycle, and

the interval of time elapsed between two consecutive earthquakes as recurrence time.

The various processes that constitute the seismic cycle occur at different time scales. The

accumulation of stress caused by platae motions takes 100-1000 years (order of magnitude of

109 — 1O10 s) and corresponds to the duration of the seismic cycle, and the release of energy

is of the order of 1-2 minutes (order of magnitude of 102 s). Thus any model must take both

these time scales into account, in addition to a third time scale, that of aftershocks, thatcan

last for one year (order of magnitude of 10r s). We can thus say that eathquake occurrence is a

complex process of stress relaxation characterized by three time scales, one of them much lower

than the other two. Besides, during the seismic cycle, apart from the main shock, foreshocks

and aftershocks, there also occur events of lower energy with an apparently random time and

space distribution.

1 RECURRENCE OF EARTHQUAKES AND PROB-

ABILISTIC PREDICTION

1.1 Earthquakes

As a result of the study of the 1906 San Francisco earthquake, Reid proposed a mechanism for

the origin of earthquakes, known a elastic rebound theory, based on a loading process followed by



a sudden energy release (Scholz, 1990), see Figure. According to Reid's model, an earthquake is

just the rupture we have been talking about in the introduction, defined by its slip (a measure

of the discontinuity across the fault plane), also known as dislocation.

From a mathematical point of view it is not convenient to deal with discontinuities (laws

of physics are not valid there), and they are substituted by an equivalent system of forces:

equivalent in the sense that a seismograph would record the same displacement field as that

generated by the dislocation (see Aki and Richards, 1980, for a complete description). It has

been found that the system of forces equivalent to a dislocation is a double couple with zero

moment. The spatial orientation of the double couple is given in terms of two symmetric

elements of a second-order symmetric tensor. Because we are considering only shear faults, the

diagonal elements will vanish. Hence, all elements of the matrix [A] associated to the tensor

will be zero except for two symmetric elements, a2i = ai2 = 1 for example. The strength of

the double couple is given by the moment of either couple, known as seismic moment M (a

scalar), and found to be the product of the medium rigidity, the area of the fault plane and

the average dislocation. As a final result, the seismic source is represented by a second order

symmetric tensor the matrix of which is given by M[A]. Because the trace of the matrix is zero,

its determinant is zero, and hence has only four degrees of freedom: one degree for the norm M

of the tensor and three degrees for the spatial orientation of the double couple, or, equivalently,

the slip, which is known as focal mechanism. The focal mechanism can be retrieved from the

direction of the first motion of the P-wave, and the seismic moment from its amplitude. These

four parameters characterize the geometry and strength of the seismic source. However, we also

need to know its spatial location (hypocenter) and the occurrence time. These four parameters

are routinely determined from the arrival time of seismic waves at different seismic stations. In

short, an individual earthquake is characterized by two sets of four parameters, on set consisting

in the spacio-temporal location, and the other in the geometrical orientation of the source and

its strength.

The strength of the earthquake is given in terms of the magnitude, a measure of the en-

ergy released by the earthquake and propagated as elastic waves, which is computed from the

measurement of the maximum amplitude of a given part of the seismogram, approximately

proportional to the logarithm of the seismic moment. It would be preferable to measure the

earthquake's strength from the energy released, but this cannot be measured directly. It seems

that the best solution consists in characterizing the earthquake strength through the (scalar)

seismic moment.



1.2 Seismic cycle

Reid also observed, and this has been widely confirmed, that large earthquakes repeatedly

occur on preexisting faults. Due to friction the fault is locked and accumulates strain at both

sides until the tangential component of the stress exceeds the forces of friction leading the fault

to rupture again. As the tectonic process can be considered as stationary, the accumulated

stress will also be stationary, suggesting that earthquakes occur at preexisting faults at more

or less regular intervals of time, known as recurrence intervals. Shimazaki and Nakada (1980)

suggested a qualitative model for earthquake prediction based on the observed recurrence times,

see Figure. Let 2\ represent the resistance of material to rupture, and T2 the drop of stress

after the rupture, which will depend on the local friction on both sides of the fault. If T\ and T2

are constant, the model will be predictable (periodic recurrence times) and with constant slip

(all earthquakes with the same magnitude). This similarity of each earthquake originates the

concept of characteristic earthquake, according to which faults are segmented, and the distinct

individual segments behave in a predictable way.

Unfortunately, the periodic recurrence time has not been observed, and two variations of

the predictive model were proposed by Shimazaki and Nakada, the time predictable model and

the slip predictable model. In the time predictable model 2~i is constant and T2 is variable,

see Figure; the occurrence time of the next earthquake is obtained from the observed slip of

the last one. In the slip predictable model 2~i is variable and T2 is kept constant: the slip

of the next earthquake can be predicted on the basis of the time elapsed since the previous

earthquake. However, comparing both models with observations (instrumental, historical and

paleoseismic data) we can see that the mean recurrence time is well defined, but with significant

and unpredictable fluctuations. In other words, no deterministic prediction is possible.

Fortunately, however, not everything is lost. In the first place, the total slip across a fault

has to balance plate motions: if a fault is segmented the total slip of the distinct segments,

averaged over several seismic cycles, has to be consistent with the expected slip. In the second

place, the processes that drive plate tectonics are approximately stationary, thus allowing, in

principle, an estimation of the mean recurrence time. In the third place, we have seen that

the active faults are segmented and each earthquake occurs in a given segment. If the seismic

history of a seismic fault is known for a period of time longer than the recurrence time, it

is possible to detect whether a segment remains intact. This unbroken segment is known as

seismic gap. If a seismic gap is detected, it can be attributed high potential hazard.



1.3 The recurrence of earthquakes as a nonlinear system

It has been widely observed that the recurrence time of earthquake occurrence is not periodic;

in other words, we cannot predict deterministically the occurrence of the next earthquake from

the observations of a few past earthquakes. Much has been studied in physics about nonlinear

dynamical systems, although their application to seismology is still scarce. There is a model

that, at first sight, fits our needs, the dripping faucet (Shaw, 1984). From an experimental

point of view, water from a tank is measured as it passes through an adjustable brass nozzle.

Depending on the flow rate of water, the drop rate can be periodic, quasi-periodic or chaotic.

Upon substitution of the word water by the word stress, the analogy between recurrence of

earthquakes and recurrence of drops is total. To simulate the dripping faucet Shaw (1984)

designed a very simple mathematical model: a mass, representing the drop, grows linearly

in time, stretching a spring that represents the force of surface tension. When the spring

reaches a certain length the mass is suddenly reduced, representing a drop detaching, by an

amount dependent on the speed of the mass when it reaches the critical distance. We thus

have driven nonlinear oscillator, the nonlinearity arising from the sudden change in mass, and

with position, velocity and mass providing the three variables required for the occurrence of

chaotic behavior in a system evolving in continuous time. Numerical simulations show that the

dripping faucet model is able to reproduce the main features of the (few) observed recurrence

time of earthquakes.

1.4 A probabilistic approach to recurrence time prediction

The goal of any model is to predict future events. A generalization of Reid's model led to

Shimizaki and Nakada's time-predictable and slip-predictable deterministic models. Under the

hypothesis (Hagiwara, 1974) that the statistical distribution of the ultimate crust strain may

be represented by a Weibull distribution, Rikitake (1975, 1999) estimated the probability of

occurrence of great earthquakes . We have tested Hagiwara-Rikitake's approach with data

generated by the dripping faucet model in the chaotic regime and found that the estimated

recurrence time with its associated standard deviation was kept almos constant through the

evolution of a window of 15 points for a generated time series of 2,000 elements.



2 THE PHYSICAL BASES OF THE SEISMIC CYCLE

2.1 Phenomenology of seismic catalogs and fault population

Up to now we have characterized the seismic cycle by the main shock. However, a look at any

seismic catalog reveals the occurrence of other events apart from the characteristic ones.

As reported by Main (1996), an analysis of the seismic catalogs and fault population reveals

the following characteristics:

1. Fault populations are broadly scale-invariant over several orders of magnitude (power

law distribution).

2. Earthquake frequency-magnitude statistics also imply power law scaling (Gutenberg-

Richter law).

3. Earthquakes have a relatively constant and relatively small stress drop over a wide range

of scales during dynamic slip (3 MPa compared with tectonic stress, ~ 10 — 100 Mpa .

4. Fault and fracture breaks are rough, with self-affine or self-similar scaling.

5. Earthquake population in diverse tectonic zones exhibit spatial variability, clustering

and intermittency, quantitatively consistent with multifractal scaling.

6. The distribution of spacings of hypocentral locations of earthquakes and laboratory

acoustic emissions are power law in both space and time.

7. Earthquakes have aftershock sequences that decay at a rate R(t) determined by Omori's

law R(t) = Tjrf-)^-, where p is a power law index and Ro and t0 are constants.

8. Seismicity can be induced by stress perturbations smaller than the stress drop in indi-

vidual events; i.e., earthquakes can be "triggered".

In short, we can say that the seismic catalog is characterized by a clustering in the seismic

cycle (foreshocks, main shock, aftershocks), power law distributions (Gutenberg-Richter's law,

Omori's law), fractal and multifractal scaling and action at distance. From a phenomenological

point of view, these are the characteristics of a fractal structure. Following Ito (1992), we can

say that earthquakes are natural fractals. We are thus left to find the physical process

according to which the occurrence of earthquakes emerges as a fractal structure, as many other

natural phenomena.

The best known scale free phenomena in physics are the critical phenomena that occur at

the phase transitions. Well known phase transitions are liquid-gas transition at the critical

6



temperature and the magnetic transition ferromagnetic-paramagnetic. In general terms we can

view a phase transition as a transition order-disorder: in the liquid-gas transition, liquid is in an

ordered state, and gas in a disordered; in the magnetic transition, below the critical temperature

the material is in an ordered state (dipoles are in the same direction), and above the critical

temperature in a disordered state (dipoles lie on a random direction). An earthquake is a

large-scale fracture of the earth's crust, with a sudden release of stored energy, and it occurs

when the stored energy exceeds the resistance of the material. The critical point will thus

be defined as the resistance of material to failure. The ordered state will correspond to the

stressed material, and the disordered state to the unstressed material (note that although we

are dealing with stress as a scalar, it is a tensor!).

Take again the example of the liquid-gas phase transition. For a given range of pressure and

temperature, liquid and gas coexist, with a step in density; as the critical point is approached the

density step decreases, vanishing at the critical point. For temperature higher than the critical

one, liquid and gas cease to be distinct entities. It is interesting to note that, as we approach

the critical point critical opalescence appears: close to the critical point long-range fluctuations

appear in the density of the fluid. If light is shone on to a fluid near its critical temperature

it is strongly reflected and causes the fluid to appear milky-white, due to the existence of

fluctuations at all scale lengths, obeying a power law distribution. It thus appears that the

liquid-gas phase transition can be defined by two parameters: the density step of the phase

transition and the length-scale of the fluctuations. Both parameters define the evolution of all

classes of critical phenomena, and are generically termed order parameter and correlation

length.

The order parameter <j>(x, t) accounts for the temporal and spatial evolution of some defined

parameter along the line that separates two phases; clearly, at the critical point the order

parameter vanishes. In the liquid-gas transition the order parameter is defined as (j){x) —

p(x) — Pgas(x). There is no general scheme for defining order parameters: one has to consider

each new physical parameter afresh. In the case of an earthquake, it occurs when the stored

energy exceeds the frictional stress ajr(x), so we can define the order parameter as 4>(x) =

a(x) — <Tfr(x); because of the inhomogeneities of the fault, we will have different values along it.

Note that we can also define the order parameter in terms of the slip u(x) on the fault, which

is proportional to the stress drop, which in turn is related to the accumulated stress. Also note

that the order parameter vanishes as the critical point is reached.

The correlation length £ expresses the typical distance over which the behavior of a variable

is correlated with, or influenced by, the behavior of another variable, and can be viewed as a

measure of the typical linear dimension of the largest piece of correlated spatial structure. The

correlation length is related to the spatial fluctuations of the order parameter. It has been found

7



empirically that the correlation length is proportional to £ ~ | p — pc \", where p is the parameter

that defines the phase transition and pc its critical value (that is, temperature, pressure, stored

stress in the above examples.) Clearly, at the critical point £ diverges and all scale lengths

are present, and follow a power law distribution. This divergence of the correlation length is

a necessary condition for the action at distance. In the case of earthquakes, the correlation

length can be associated with the length of the fault.

In summary, the theory of critical phenomena is able to account for all phenomenological

characteristics of the seismic catalogs, i.e., selfsimilarity (power law behavior) and action at

distance. Care has to be taken, however, in remembering that the critical opalescence (fluc-

tuations at all scale lengths), the equivalent to the occurrence of foreshocks, main shock and

aftershocks, occurs only close to the critical point.

2.2 Self organized critical models

The theory of critical phenomena is able to explain the phenomenology of earthquake catalogs.

On the other hand, they are referred to laboratory conditions: one or more parameters need

to be tuned to reach the critical point (for example, pressure and temperature in liquid-gas

transition). This fact also implies that critical phenomena are not time dependent and, as a

consequence, do not display any characteristic time scale. This aspect disagrees with observa-

tions, characterized by two time scales (three if after shocks are allowed to), one related to the

loading process and the other to the rupture time. We can define a tuning parameter as the

stress loading, a function of the plate velocity. Any physical model for earthquake occurrence,

thus, has to incorporate this characteristic time scale, as well as the time scale of rupture which

will occur when a critical point is reached. Basically two such models have been proposed, with

multitude of variations: the slider-block model and the sand-pile model. Further, it has been

shown that, under very general conditions, a mapping can be defined from one of them to the

other, revealing that they represent different aspects of the same phenomenon.

2.2.1 Slider-block model

As a working hypothesis, widely accepted nowadays, we assume that earthquakes occur re-

peatedly on preexisting faults. Burridge and Knopoff (1967) constructed a slider-block model

to simulate the stick-slip rupture on a fault. The model consists of two (tectonic) plates that

sandwich a chain of N blocks (later on extended to a bidimensional network of N x N blocks)

of equal mass m, mutually coupled by springs of Hooke constant kc and equilibrium length a.

The blocks are pulled by the bulk of one plate moving at velocity V through constant elastic

shear kp against the friction Fp between the two plates. The friction prevents sliding of the

8



blocks until a critical value of the pulling force is reached. The block sticks and the force on

the spring increases until it equals the friction resistance to sliding on the surface, and then

slip occurs. The extension of the spring is analogous to the elastic strain in the rock adjacent

to a fault. The slip is analogous to an earthquake on a fault. When the slip occurs, the stored

elastic strain in the spring is relieved and this process corresponds to the elastic rebound on a

fault. In the stationary state, the equation of motion for the ith block is

mX = kc(Xi+1 - 2X{ + X,-_!) - kp{Xi - Vt) - Fp{Xt)

where X{ is the departure of block i from its equilibrium position.

This set of coupled differential equations has to be solved numerically for the whole system

simultaneously, and is very time consuming. An extension to two dimensions with an analog

cellular automaton was designed by Nakanishi (1990), much faster in computation. The blocks

interact with their nearest neighbors, so in any step in a loop one has to consider the possible

slip of any of the blocks of the system. If we define the size of the earthquake as the number

of blocks that have slid, the size distribution follows a power law, thus satisfying Gutenberg-

Richter law. However, no aftershocks are allowed in this model: all events are independent,

corresponding to independent steps in the loop. On the other hand, this is the condition of

applicability of Gutenber-Richter law: to be computed, foreshocks and aftershocks have to be

removed from the seismic catalog. To generate aftershocks, the hypothesis of viscoelasticity has

to be introduced. In the slider block model, two different time scales are present: a very large

one, related to the plate motion, and a short one (considered as instantaneous)corresponding

to the total slip of the system.

It is of interest to point out some features of the slider-block model: for high dimensional

systems (a large number of blocks) the system behaves at the edge of chaos, and for low

dimensional systems (a few blocks, often used to simulate the interaction between faults),

the system is chaotic. Thus, the prediction of individual earthquakes is not possible in a

deterministic sense, and only a probabilistic approach will be possible.

2.2.2 Sand-pile model

Consider a pile of sand on a circular table (Bak et.al., 1988, Turcotte, 1997). Grains of sand are

randomly dropped on the pile until the slope of the pile reaches the critical angle of repose. This

is the maximum slope that granular material can maintain without additional grains sliding

down the slope. The sand-pile never reaches the hypothetical critical state. As the critical state

is approached additional sand grains trigger sandslides of various sizes, and the frequency-size

distribution of landslides is a power law. On average the number of sandgrains added balance

the number that slide down the slope and off the table, but the actual number of grains on

9



the table fluctuates continuously. The evolution of the above system is well illustrated using

a simple cellular automata model (Vespignani and Zapperi, 1998). Consider a squared grid of

N boxes, and let Zi be an integer (or continuous) variable that represents the number of grains

(energy) that we add to the system. At each time step an energy grain is added to a randomly

chosen site, until the energy of a site reaches a threshold zc. When this happens the site relaxes

Zi > Z{ - Zc

and the energy is transferred to the nearest neighbors

The relaxation of a site can induce nearest neighbor sites to relax on their turn, i.e., they exceed

the threshold because of the energy received. New active sites can generate other relaxations

and so on, eventually giving rise to an avalanche. The distribution of avalanches follows a

power law distribution. As already noted, under very general conditions we can assimilate the

relaxation of a grain to the sliding of a block in the spring-block model, which can be described

by a cellular automaton model similar to the one just described.

2.3 Self-Organized Criticality

The two models previously described are typical examples of large interactive systems. To

describe their behavior, Bak et.al. (1988) introduced the concept of Self-Organized Criticality

(SOC). A system is said to be in a state of Self-Organized Criticality if it is maintained near a

critical point. According to this concept a natural system is in a marginally stable state; when

perturbed from this state, it will evolve naturally back to the state of marginal stability. In the

critical state there is no longer a natural length scale, so that fractal statistics applies.

The SOC model solves, for example, the problem of the external tuning for the system to

reach the critical point, but is very sensitive to other parameters such us the velocity of the

driving plates. Perhaps it is too simplistic, but has helped us to understand the general features

of earthquake occurrence as a complex system, which is composed of a very large number of

elements and initiated the point of view of assimilate the occurrence of earthquakes to critical

phenomena.

Vespignani and Zapperi (1988) have shown that the number of states needed to describe

each site can be reduced to the following three main states: stable, critical and active. Stable

sites are those that do not relax (become active) if energy is added to them by external fields or

interactions with active sites. Critical sites become active with the addition of energy. Active

sites are those transferring energy; they interact with other sites, usually nearest neighbors. -

10
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Correig et.al. (1997) provide an example of a three state system, the so called minimalist

model.
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3.3 General Analysis a( Displacement Discontinuities Across
an Internal Surface Z

In this section we shaJI introduce the seismic moment tensor, M. This is a quantity
that depends on source strength and fault orientation, and it characterizes a9
the information about the source that can be learned from observing waves
whose wavelengths are much longer than the linear dimensions of I . In this
case, the source is effectively a point source with an associated radiation pattern,
and the moment tensor can often be estimated in practice for a 2iven earthquake
by using long-period tcleseismic data. In practice, seismologists use moment
tensors that are confined to sources having a body-force equivalent given by
couples alone. Such sources include geologic faults (shearing) and explosions
(expansion), with M as <i second-order tensor. For forces differentiated more
than once, sources can be characterized by higher-order moment tensors.

For sources of finite extent, we shall introduce the seismic moment density
tensor, m. which can often be thought of as tIM.tlZ. or as (AVI ill' for a volume
source.

There are two ways in which this section generalizes Section 3.i First, the
coordinate axes are not taken in directions related to directionaJities of the
source. (This generality is important, because the direction of slip and the orien-
tation of the fault plane are not usually known a priori, but must be deduced
from the radiated seismic waves.) Second, discontinuities are to be allowed in
the displacement component normal to the fault plane, so that apparent ex-
pansions or compressions will be allowed to occur.

Our starting point for the general analysis of displacement discontinuities
is the representation (3.2). but using now the convolution symbol • so that

X. 0 JJ[u,]v;c, jp, - ^ - G.r JZ. (3.17)

If Xo is the amplitude of a force applied in the p-direction at (, with general time
variation, then the convolution Xo • C » gives the n-component of displacement
at (x, t) due to the varying point force at £ More generally, if the force applied
at £ is F(£, r), then we can sum over p and write F, • G,, for the n-componem

[ujJvjCi/p, are moment per unit area, and this raajces sense because the GQAtntal*
tion from <J has to be a surface density, weighted by the infinitesinial are* element
JT to give a moment contribution. We define

« „ = [u,]vJ-c,,p, (3.18)

to be the components of the moment density tensor, m. In terms of this symmetric
tensor, which is time dependent, the representation theorem for displacement
at x due to general displacement discontinuity [u(f, t)] across Z is

ujx, t) C. M dX. (3.19)

When we have learned more about the Green function (in Chapter 4), we shall
find that the time dependence of the integrand in (3.19) is quite simple, because
if x is many wavelengths away from ?, then convolution with G gives a field at
(x. 0 that depends on what occurs at q only at "retarded time." i.e.. / minus some
propagation time between { and x.

For an isotropic body, it follows from (2.33) and (3.18) that

, t)] (3.201

Further, if the displacement discontinuity (or slip) is parallel to I at ?, the scalar
product i' [u] is zero and

r i -*. v fu 11 (3 "Ml

In the case of I lying in the plane ; j = 0. with slip only in the ^-direction,
we have the source model considered in Section 3.2, and for this the moment
density tensor is

0 (i[ut(i
0 0
0 0

, r)]

which is the now familiar double couple.
In the case of a tension crack in the 6 = 0 plane, only the slip component

[u3] is nonzero, and from (3.20) we find

tf. t)] 0
T)]

0 (X + 2/jj[u3(41)] 14
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Wtibutl distribution analysis
The assumption that « — £ is governed by a Gaussian distribution is ob-

viously inadequate because « is to be defined over a range for which e < 0. In
order to improve this point, Hagiwara (1974b) proposed to apply a Weibull
distribution (Weibull, 1951), which has been widely used in quality control
research, to the present analysis of probability. It has been proved that the
distribution is very useful for analyses of the failure time of buildings, fac-
tory products and so on.

Let us denote a small time interval by if . The probability for crustal
rupture to occur between £ and f * $t is pven by \(i)&t on the condition
that the rupture did not occur prior to L \(t), called the hazard rate, is
distributed in a Weibull distribution as:

X(O - Ktm

where K > 0 and m > —1.

The cumulative failure rate ts ziven as:

F(t) - I - K ( O

where R{t) is called the reliability and defined b y

(15-30]

(15-31]

(15-32]

Kt- exp ( - — - r ) i15-331

The mean time to rupture, or mean life so called in quality control re-
search, is given as:

exp {~~YJ
o

Failure density function f{t) is then obtained as:

£l,,-/rn.J-.-(5r!1p l l-"r(^ [15-34]

*•• THEORY OF EARTHQUAKE PREDICTION

where V denotes a gamma function. In a similar fashion, the mean square of
the time to rupture is obtained as:

The standard deviation of the rupture time is defined by {E[t2] ~ E1[t])*
which is obtained as:

When the double logarithm of 1/K is taken, we obtain:

log. log. ( i ) - log. * ("> * 1) lo

The above discussion has been developed in terms of (. It may be approxi-
mately assumed, however, that strain accumulation due to a plat* motion
proceeds with a constant strain rate u. The time origin is taken at the occur-
rence time of a large earthquake when most of the strain energy accumulated
is released. In that case, we assume:
t'ut [15-381

and so the entire discussion above can be made in terms of e. For instance,
(15-37] can be rewritten as:

log. log. •log. ,. ~m * 1
l ) log .e [15-39]

which indicates that Iog.log,(l/K) is linearly correlated with log.e.
In order to determine m and K from actual data, we usually proceed in

the following way. Counting frequency of earthquake occurrence nf for each
strain range having an interval A«, probability density for a range between
lAc and (i + l)Ae (< » 0. 1, 2, ...) can be obtained from:
f,Ae-n,/N (15-40]
where /V is the total number of the data. Accordingly, the cumulative prob-
ability is obtained as:

n,/N (15-41]

so that R can readily be calculated from [15-31].
The above-mentioned procedure is applied to the data of ultimate strain

which are given in Table 15-XII. Omitting extreme vaiues of ultimate strain
such as those for the 1906 San Francisco, 1928 South Bulgaria and the 1933

Iog(log(1/R(T)))
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Hallmarks of Self-Organized Critlcality

Features

Boundary condition

Critical parameter

Dynamic fluctuation

Power law distribution

Sandpiles

constant "grain" rate

repose angle 0C

small fluctuation in angle, A0C <?#c

avalanche volume or energy

Earthquakes

constant strain . ate

tectonic stress <rc

small stress drop, Acrc <3 az

source length,seismic moment,

energy (Gutenberg-Richter law)

eg

T I

20



EARTHQUAKE OCCURRENCE AS
CRITICAL PHENOMENA

the distribution of almost all properties
of earthquakes are self-similar, i-e.,
follow a power law

action at distance
The Burridge-Knopolt spring-block model.

these are the characteristics of critical
phenomena that occur at phase transi-
tions order/disorder

mX = Kc(Xt+l - 2X{ + Xi-i) - KV{XX - Vt) - FP(X{)

Fitj —»• Fid - Fc

Fm —+ Fnn + <*FC

F

0

Fnn + CCFCnn ' l nn T^ KJ-J- C

7, , —¥ 0

Fnn —> Fnn



PHENOMENOLOGY OF EARTHQUAKES
AND FAULT POPULATION (Main, 1966)

1. Fault populations are broadly scale-invariant over several orders
of magnitude (power law distribution).

2. Earthquake frequency-magnitude statistics also imply power law
scaling (Gutenberg-Richter law).

3. Earthquakes have a relatively constant and relatively small stress
drop over a wide range of scales during dynamic slip (3 MPa
compared with tectonic stress, ~ 10 — 100 MPa .

4. Fault and fracture breaks are rough, with self-affine or self-similar
scaling.

5. Earthquake population in diverse tectonic zones exhibit spatial
variability, clustering and intermitency, quantitatively consistent
with multifractal scaling.

6. The distribution of spacings of hypocentral locations of earth-
quakes and laboratori acoustic emissions are power law in both
space and time.

7. Earthquakes have aftershock sequences that decay at a rate R(t)
determined by Omori's law R(t) — rtfj\P, where p is a power law
index and RQ and to are constants.

8. Seiswmicity can be induced by stress pereturbations smaller than
the stress drop in individual events; i.e., earthquakes can be "trig-
gered" .

SEISMIC CATALOG

Is characterized by three temporal scales.

Assume, for example, an earthquake of magnitude

Mw ~ 7

period of recurrence: 100 years

aftershock duration: 1 year

rupture time: 1 - 2 minutes

1093

107s

102s

Renormalysing

107s

105s

10°3



EARTHQUAKE OCCURRENCE AS
CRITICAL PHENOMENA

the distribution of almost all properties
of earthquakes are self-siiniIarT i.e.,
follow a power law

action at distance

1111IIII III III

The BumdK-KnopolTspnna-blotk model.

these are the characteristics of critical
phenomena that occur at phase transi-
tions order/disorder

mX = Kc(Xi+l - 2X, + Xi.i) - KP(X, - Vt) - FP(X{)

F,, _ F , ; - Fc

Fan • Fnn + aFc

F, - + 0

Fnn —• Fnn + aFc

F,,j — • 0

* i n ^ inn ~i~ ^^i,]

P. Bak I Self-organized aiiicatity
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MINIMALIST MODEL

Is a toy model designed to describe an extended sys-

tem with active propagating particles interacting with

other active or passive static particles. Starting from a

homogeneous mass distribution of active and passive

cells, the system evolves to a self-organized critical

state.

Define a regular 2-D lattice. The cells of this larttice

might be found in three possible states: active, passive

or empty.

The equivalence between the minimalist, model and

the flow of seismicity can be clearly stated in terms of a

model of nucleation and origin of seismicity developed

by Cochard and Madariaga (1994, 1996).

These authors modeled the dynamics of the faulting

through a rate-dependent friction law, and starting

from an homogeneous initial stress distribution, found

that when friction is strongly rate dependent, the heal-

ing process destabilizes producing premature healing

of slip and partial stress drop, that in turn results in

large variations of the state of the stress.
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As noted by Cochard and Madariaga (1996), the rup-

ture propagation "adjusts" itself to satisfy a scaling

law, suggesting that a state resembling that of self-

organized criticality has been reached.
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RULES FOR UPDATING THE SYSTEM FROM
TIME / TO TIME t+1

(1) Active cells at t burn out and become passive at time
t+L

(2) Passive cells are annihilated when they have one, and
only one, active neighbor.

(3) Active cells are created from empty cells when they
have one, and only one, active neighbor, which must
have a passive cell at the opposite direction.
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CELLULAR AUTOMATA

Number of active cells
1. Configure intial conditions of the grid

2. Add a unit energy to a random site of the grid.

- look for the energy of the site exceeds or not a given

threshold:

- If YES, call RELAX. GOTO 2.

- ELSE, GOTO 2

SUBROUTINE RELAX

- explore the entire grid and update where needed

- stgrength of the event (cascade): total number of

units of energy

TIME SCALES - cascades: < inter-event time

- cascades: instantaneous

- each cascade is an independent event (a step in the

loop)

- no aftershocks

- small cascades cannot be assimilated to noise

SEISMIC CATALOG

remove clustering (foreshocks and aftershocks)

are the remaining earthquakes independent events?

which of them, if any, can be considered as noise?

the results of the statistics applied to cellular

automata and seismiccatalogs, are comparable?

Predicting natural hazards resem-
bles the game of croquet in Alice in
Wonderland, where the ball was a live
hedgehog who would not stand still or
go where the players intended. We
can make statistics about the habits
of hedgehogs, but we are still far
from understanding the rules of the
game.

(China Lomnitz)
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Modified Omori's law

R =
K

(1)

R: occurrence rate of aftershocks

t: time

K, c, p: constants

The cumulative number of aftershocks N(t), de-

fined as N(t) = i^n(s)ds is

N(t) =
tf[c<1-P>-(c + *)(1~p)]

(2)

Mean Earthquake Recurrence Time:

can forecast the average time between large events.

Seismicity Rate

rf/fr
(3)

R: seismicity rate

r: the reference seismicity rate,

fr and f: stressing rate prior and following the

stress step

AT: earthquake stress change

A a fault constitutive parameter

a the normal stress

t time

ta aftershock duration.

Eq. (3) gives Omori's law for t/ta < 1.

The mean earthquake recurrence time tr can be ap-

proximated as

i — t -ir ''a
- A T

~Aor'
(4)

If we define

rj — exp ——I - 1
rr \ Aa

= ta.

then eq.(3) can be integrated to obtain the cumulative

function

(5)

which can be fitted to data to obtain ta and tr.
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CUMULATIVE EVENTS
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