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1 INTRODUCTION

Plate tectonics provides a mechanism for the tectonic loading and relaxation process that define

the seismic cycle. It has also been widely reported (Scholz, 1990) that earthquakes tend to

occur once and again at the same fault, defining what is known as earthquake recurrence, that

is, "the time between subsequent rupturing on a given segment of fault, hence to the period of

the loading cycle" (Scholz, 1990).

Past observations have been used to predict the next event as, for example, for the case

of Parkfield series (Bakun and Lind, 1985), with no success, through a recurrence model (Shi-

mazaki and Nakata, 1980). This prediction was severely criticized by Savage (1993) from

statistical grounds. In these cases, observations were used along with some assumptions on

the stress behavior (recurrence model) or statistical distributions (Savage, 1993), but no any

physical model was appealed. Sornette and Knopoff (1997) warned that when dealing with

statistics, the final result is depending on the assumed probability distribution.

Independently, with the underlying hypothesis of the recurrence of seismic cycles, Hagiwara

(1974) and Rikitake (1975) developed a method for the estimation of the probability of oc-

currence of the next earthquake, also based on the observation of previous activity, in which

the main hypothesis consist in assuming that the crustal rupture time follows a Weibull dis-

tribution, widely used in probabilistic control with respect to the failure-time of buildings and

factory products. Under this assumption the mean return period and its associated standard-

deviation can be computed, along with the hazard rate. This approach has been used recently

by Rikitake (1999) to reevaluate the probability of a great earthquake to recur in the Tokai

district, Japan.
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A problem that concerns all analysis based on the analysis of short, non-periodic and pos-
sibly non-stationary time series is whether or not they are representative of the whole process:
which is the realibility of the obtained prediction? Paleoseismology can provide a few more
recurrence times, but the problem remains the same. The aim of the present study is to an-
alyze the robustness of the predictions by repeating Rikitake's procedure with a numerically
generated chaotic time series, for which all parameters are well controlled. As a physical model
to simulate the recurrence time of earthquakes we have used the dripping faucet model (Shaw,
1984) in the chaotic regime. The inter-event time between successive drops can be assimilated
to the recurrence time between characteristic earthquakes, and its mass can be assimilated to
its magnitude.

2 RIKITAKE'S METHOD

Hagiwara (1974) suggested that the statistical distribution of ultimate crust strain may be
expressed by a Weibull distribution. This approach has been followed by Rikitake (1975, 1976)
to estimate the probability of a series of great earthquakes occurred in a given seismogenic
zone.

Following Rikitake (1976), let us denote a cumulative probability for the recurrence of a
great earthquake during a period between 0, when the last earthquake occurred, and t by F(t).

Writing

R(t) = 1 - F(t) (1)

and assuming a Weibull distribution X(t) = Ktm, K > 0 and m > — 1, the reliability R(t) is
found as

R(t) = exp [- j * \(t)dt\ = exp[-X^m+1V(m + 1)] (2)

where K and m are the parameters to be determined from observations from which the mean
return period and its standard deviation can be readily determined. To estimate the governing
parameters K and m, taking the double natural logarithm of 1/R one obtains

In ln(l/i?) = \n[K/(m + 1)] + (m + 1)/ lnt, (3)

From this equation K and m can be obtained from actually observed data by least squares.
Still following Rikitake (1976), in practice one counts the frequency of return period (n )̂

for each time range At suitable chosen. The probability of a return period falling in a range



between iAt and (i + l)At, (i = 0, 1, 2, ...) is obtained as ni/N for which TV is the total number

of data. The cumulative probability is then obtained as

i

F = J2ni/N (4)
2=0

so that R can be readily obtained from eq. (1). With R thus calculated, ln(lni?) . vs. Int

plots are made by adopting an appropriate time interval, and a straight line can be fit to data,

from which k and m are estimated.

The mean return period E(t) is given by

E(t) =v J \m+1/ \m
and its associated standard deviation a as

m + lj Vra + l/J ' \m +
On the condition that no earthquake occurs in the time range between 0 and t, the probability

of having an earthquake between t and t + s can be computed from the cumulative probability

F(t) as a conditional probability FS(t), defined as

(7)

3 THE DRIPPING FAUCET MODEL

In the framework of a discussion about predictability in physical systems, Shaw (1984) presents

as a paradigmatic example a very well known one by insomniacs, that of a leaking faucet.

From an experimental point of view, water from a tank is measured as it passes through an

adjustable brass nozzle. Depending on the flow rate of water, the drop rate can be periodic,

quasi-periodic or chaotic. Upon substitution of the word water by the word stress, the analogy

between recurrence of earthquakes and recurrence of drops is total. To simulate the dripping

faucet Shaw (1984) designed a very simple mathematical model: a mass, representing the drop,

grows linearly in time, stretching a spring that represents the force of surface tension. When

the spring reaches a certain length the mass is suddenly reduced, representing a drop detaching,

by an amount dependent on the speed of the mass when it reaches the critical distance. We

thus have driven nonlinear oscillator, the nonlinearity arising from the sudden change in mass,

and with position, velocity and mass providing the three variables required for the occurrence

of chaotic behavior in a system evolving in continuous time.



Quantitatively this model can be written as

d ( dy\ dy
(8)

where m(t) is the mass of the drop, g the gravity, k the spring constant, b the friction constant

and y the displacement, subject to the boundary conditions

m(t) = ct.
. dx

Am oc —
dt (9)

X—XQ

More elaborate quantitative models have been developed since the original work of Shaw, but
this one suffices for the present purpose.
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