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A BDE model of Colliding Cascades

Abstract

We consider a prominent and poorly understood feature of hierarchical nonlin-

ear ("complex") systems: persistent recurrence of abrupt overall changes, called

here "critical transitions." Unlike studying phase transitions in statistical physics,

we consider large deviations from steady state that culminate in a critical transi-

tion, rather than the steady states themselves.

Motivated by the earthquake prediction problem, we formulate a model that

uses heuristic constraints taken from the dynamics of seismicity. Our conclusions,

though, may apply to hierarchical systems that arise in other areas.

We use the Boolean delay equation (BDE) framework to model the dynamics of

colliding cascades. The phenomenon of colliding cascades comprises interaction of

direct cascades of loading and inverse cascades of failures. Using the BDE frame-

work, we replace the elementary interactions of elements in the system by their

integral effect. This effect is represented by the time delays between consecutive

switching of an element's state, i. e. between unloaded vs. loaded and intact vs.

failed states. In this way we bypass the necessity to reconstruct the detailed behav-

ior of the system from complex and diverse interactions, for which our knowledge

is very incomplete. This simplifies the systematic study of the model's dynamics

without losing its essential features.

The present paper is the first of two on the BDE approach to modeling seismic-

ity. Its major results are the following: (i) A model that implements the approach,

(ii) Simulating three basic types of seismic regime, (iii) A study of regime switching

in parameter space, depending on the rates of loading and healing.
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The second paper focuses on the prediction problem. We demonstrate that the

model exhibits four major types of premonitory seismicity patterns observed in

nature. Their individual and collective performance in prediction is explored by

error diagrams and found to be high in the model.

Keywords Cellular automata; Delay equations; Hierarchical modeling; Colliding cas-

cades; Seismic regimes.

1 Background

1.1 Colliding cascades (CC) models

The CC models [1, 2, 3] synthesize three phenomena that play an important role in many

complex systems: (i) The system has a hierarchical structure, with the smallest elements

merging in turn to form larger and larger ones, (ii) The system is continuously loaded (or

driven) by external sources, (iii) The elements of the system fail (break down) under the

load, causing redistribution of the load and strength throughout the system. Eventually

the failed elements heal, thereby ensuring the continuous operation of the system. We

use in our models the ternary hierarchical structure, as shown in Fig. 1.

The load is applied at the top of the hierarchy and transferred downwards to the

smallest elements, thus forming a direct cascade of loading. Failures are initiated at

the lowest level of the hierarchy, and gradually propagate upwards, thereby forming an

inverse cascade of failures, which is followed by healing. The interaction of direct and
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inverse cascades establishes the dynamics of the system: loading triggers the failures,

while failures redistribute and release the load.

The above fundamentals allow a variety of ways to model a phenomenon of colliding

cascades. The CC model first introduced by Gabrielov et al. [1] has employed a system

of ordinary differential equations (ODEs) to simulate elementary interactions among

elements. This system was running in continuous time; load and fatigue of each element

were also continuous. The ODE version of the CC model has reproduced certain major

features of seismicity, including four types of premonitory seismicity patterns. Among

them is a new type of premonitory patterns — increase of the earthquake correlation

range — which was found in the CC model first [2] and then in observations [4]. The

study of this model led to the conclusion that further simplification was desirable to

explore the colliding cascades phenomenon [1].

Closest to the present study is the second version of the CC model [3], which is based

on a cellular automaton (CA) in discrete time. It has discrete state variables — load and

fatigue. The CA version retains all the features of the ODE version that are essential for

our study. Moreover the CA version made it easier to explore scaling properties of the

system, including the scale invariance of aftershock generation.

The present version of the model goes further in its simplicity and transparent de-

pendence of behavior on control parameters by taking advantage of the BDE framework

developed by M. Ghil and associates [5, 6]. This version will be used in our study's

second part [7] to explore premonitory seismicity patterns of synthetic seismicity.
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The study's first part (the present paper) proceeds as follows. The remainder of the

present section provides some background on BDEs and the model's heuristic constraints.

The model is formulated in Sec. 2 and its multiple seismic regimes are described in Sec.

3. The physics of what determines the prevalence of one regime or another is outlined in

Sec. 4 and the results are further discussed in Sect. 5.

1.2 Boolean delay equations (BDEs)

BDEs are a novel modeling language especially tailored for the mathematical formulation

of conceptual models of systems that exhibit threshold behavior, multiple feedbacks and

distinct time delays. Originally inspired by theoretical biology, Ghil and colleagues [5,

6, 8] recognized the potential of BDEs for modeling the multiple feedbacks between the

components of the climate system. They intended BDEs as a heuristic first step on the

way to understanding problems too complex to model using systems of partial differential

equations at the present time. One hopes, of course, to be able to eventually write down

and solve the exact equations that govern the most intricate phenomena. Still, in climate

dynamics as well as in solid-earth geophysics and elsewhere in the natural sciences, much

of the preliminary discourse is often conceptual [9, 10]. BDEs offer a formal mathematical

language that may help bridge the gap between qualitative and quantitative reasoning.

BDEs may be classified as semi-discrete dynamical systems, where the variables are

discrete — typically Boolean, i.e. taking the values 0 ("off") or 1 ("on") only — while

time is allowed to be continuous. As such they occupy the previously "missing corner"
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in the rhomboid of Fig. 2, where dynamical systems are classified according to whether

their time (t) and state variables (x) are continuous or discrete.

Systems in which both variables and time are continuous are called flows [11, 12]

(upper corner in the rhomboid of Fig. 2). Vector fields, ordinary and partial differen-

tial equations (ODEs and PDEs), functional and delay-differential equations (FDEs and

DDEs) and stochastic differential equations (SDEs) belong to this category. Systems with

continuous variables and discrete time (middle left corner) are known as maps [13, 14]

and include diffeomorphisms, as well as ordinary and partial difference equations (0 AEs

and PAEs). Automata (lower corner) have both discrete time and variables: cellular

automata (CAs) and all Turing machines (including real-world computers) are part of

this group [15, 16]. BDEs and their predecessors, kinetic and conservative logic, complete

the rhomboid in the figure and occupy the remaining middle right corner.

The primary motivation that led Ghil and associates [5, 6, 8] to formulate BDEs was

their desire to analyze in a more precise way the implications of descriptive conceptual

models prevalent in the interpretation of paleoclimate records [17, 18, 19]. Mysak et al.

[20] and Ghil and co-authors [21, 22] have also pointed out the possibility to use BDEs and

similar formal models in a broader climate modeling context. Further inspiration came

from advances in theoretical biology, following upon Jacob and Monod's [23] discovery of

on-off interactions between genes, which had prompted the formulation of "kinetic logic"

[24, 25] and Boolean regulatory networks [26]. As the study of complex systems garners

increasing attention and is applied to diverse areas — from economics to the evolution of
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civilizations, passing through physics — related Boolean and other discrete models are

being explored more and more [15, 27, 28, 29].

Our BDE model uses only integer time delays. As follows from Ghil and Mullhaupt's

"pigeon-hole" lemma [6], all BDE systems with rational delays can be reduced in effect

to finite CAs. Commensurability of the delays creates a partition of the time axis into

segments over which state variables remain constant and whose length is an integer

multiple of the delays' least common denominator. As there is only a finite number of

possible assignments of two values to these segments, repetition must occur, and the only

asymptotic behavior possible is eventual constancy or periodicity in time.

The model studied here has a stochastic component. Its dynamics is therefore statis-

tically stationary or cyclo-stationary, rather than simply constant or periodic.

1.3 Heuristic constraints

In its application to seismicity, the model's hierarchical structure represents a fault net-

work [31, 30], loading imitates the impact of tectonic forces, and failures imitate earth-

quakes. Heuristic constraints include the major regularities in the observed dynamics of

seismicity [32, 33, 34, 35]: (i) the seismic cycle; (ii) intermittency in the seismic regime;

(iii) the size distribution of earthquakes, usually called the Gutenberg-Richter relation;

(iv) clustering of earthquakes in space and time; (v) long-range correlations in earthquake

occurrence; and (vi) a variety of seismicity patterns premonitory to a strong earthquake

[32, 35, 36, 37, 38].
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2 The Model

2.1 Introduction

Lattice models of systems of interacting elements are widely applied for modeling seis-

micity, starting from the pioneering works of Burrige and Knopoff [39], Allegre et al.

[40], Bak et al. [41] and Narkunskaya and Shnirman [42]. The state of the art is

summarized in [37, 43, 44, 45]. The predictability of such systems is discussed in

[44, 46, 47, 48, 49]. The present study is close in spirit to the modeling described in

[40, 48, 49, 50, 51, 52, 53, 54, 55]. The theoretical background for such modeling is

discussed in [34, 44, 45, 47, 56, 57, 58, 59, 60]

To model colliding cascades in the BDE framework, we replace the detailed inter-

actions between elements in the system by their integral effects. These effects can be

represented by the time delays between consecutive switching of an element's state, i.

e. between unloaded vs. loaded and intact vs. failed states. In this way we hope to

bypass the necessity to reconstruct the system's detailed behavior from the complex and

diverse interactions [52, 53, 54, 61] that are not directly accessible to observation and

measurement.

Indeed, we demonstrate here that this modeling framework simplifies the systematic

study of the colliding cascades dynamics without losing its essential features.
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2.2 Structure

(i) The model acts on the ternary graph of depth L shown in Fig. la. Each element is a

parent of three children that are siblings to each other. An element is connected to and

interacts with its six nearest neighbours: the parent, two siblings, and three children.

(ii) Each element possesses a certain degree of weakness or fatigue, which varies as the

inverse of its strength. An element fails when its weakness exceeds a certain threshold.

(iii) The model runs in discrete time n — 0,1, At each epoch a given element

may be either intact or failed, (broken), and either loaded or unloaded. The state of an

element ea t a moment n is defined by two Boolean functions, se(n) and le(n): se(n) = 0

if an element is intact and se(n) = 1 if an element is in a filed state, while le{n) = 0 if an

element is unloaded and le(n) = 1 if an element is loaded.

Thus, an element may be in one of the four states defined by the 2-dimensional vector

(se, Ze), as depicted in Table 1. Such a 2-dimensional vector of Boolean variables has

been used by Saunders and Ghil [62] to represent the state of the tropical Pacific in a

model of the El-Nino/Southern-Oscillation (ENSO) phenomenon.

(iv) An element of the system may switch from one state to another under an impact

from its nearest neighbors (Fig. lb). The dynamics of the system is controlled by the

time delays between the given impact and the switching to another state.

(v) At the start, n = 0, all elements are in the state (0, 0), intact and unloaded. Most

of the changes in the state of an element occur in the following cycle:

( 0 , 0 ) ^ ( 0 , 1 ) ^ ( 1 , 1 ) ^ ( 1 , 0 ) ^ ( 0 , 0 ) . . .
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However, other sequences are also possible, with one exception: a failed and loaded

element may switch only to a failed and unloaded state, (1,1) —> (1? 0). This mimics fast

stress drop after a failure.

(vi) It is supposed that all the interactions take a nonzero time. We model this by

introducing four basic time delays:

• AL - between an element being impacted by the load and switching to the loaded

state, ( . ,0)->(- , l ) ;

• Ap - between the increase in weakness and switching to the failed state, (0, •) —>

(1,0;

• AD - between failure and switching to the unloaded state, (•, 1) —> (*,0);

• AH - between the moment when healing conditions are established and switching

to the intact (healed) state, (1, •) —> (0, •).

In each specific case we determine a delay as described in Sect. 2.3 and 2.4 below,

depending on the impact of the nearest neighbors of an element.

2.3 Load switching

The top element of the system is loaded by external forces. The load is transferred down

the hierarchy, so that an element on all other levels may receive the load only from its

parent and siblings. Each element may transfer the load only to its siblings and children.

The load dissipates only at the lowest level. This is reminiscent of 3-D turbulence, where
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energy enters the system only at the largest scale, is redistributed across all scales, and

is finally dissipated at the shortest scales [63].

2.3.1 Top element

(1) Loading. The unloaded top element becomes loaded, (0,0) —> (0,1), after it remains

unbroken for the time Ax,. This delay mimics the time taken to accumulate the load

from external forces.

(ii) Unloading. After the top element breaks down, it becomes unloaded, (1,1) —>

(1,0), with the time delay Ap. This delay mimics the time taken to release the accumu-

lated load.

2.3.2 Other elements

Load switching for an element depends on the impact from its neighbors.

(i) Loading. An unloaded element becomes loaded, (-,0) —> (-,1), under the impact

from a loaded parent or siblings. This mimics the influx of load with a delay defined by

(2) below.

(ii) Unloading. A loaded element becomes unloaded, (-,1) —> (-,0), in two cases:

First, under the impact from an unloaded parent or siblings, with the delay defined by

(5) below; this mimics a deficiency of the load influx. Second, after failure with the fixed

delay A^; this mimics the time taken to release the accumulated load, in the same way

as for the top element.

(iii) Total impact Ie(n) on an element e at epoch n is defined as follows:
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-le). (1)
i

Here the summation is taken over the indices i of the element's siblings, while the index

p refers to its parent. The coefficient k < 1 determines the ratio between the impacts

due to a parent and siblings.

(iv) Time delay. When the impact Ie becomes nonzero at epoch n, the load is switched

on with the time delay

A(n) = [AL/ |Je(n)|]. (2)

Here [x] denotes the integer part of x.

The impact can become zero during the delay A(n) given by (2); this won't affect

the loading. This rule ensures that the load switching occurs sooner when the neighbors'

impact is larger. When an element is loaded only by its parent we have |/e | = 1 and the

delay is A^, the same as for the top element.

According to (1) the total impact Ie(n) may change at each moment n^ j = 1,2,...,

when the element e, its parent, or a sibling switch their load. At each step rij we define

the corresponding epoch N^(rij) = nj + A(rij) of load switching, where A(nj) is given by

(2). The load actually switches at the earliest possible moment, that is for the smallest

value of
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2.4 Failures

(i) Impact of neighbors. We assume that an element is weakened by the failure of its

neighbors. The weakness We of element e at epoch n is defined as follows:

We(n) = cFc(n) + (1 - c)F3(n) +pFp(n). (3)

Here Fc(n) and F3(n) are the numbers of failed children and siblings of the element e

respectively. The Boolean function Fp(n) indicates the weakening caused by the failure

of a parent. The weakening takes place during the rapid transfer of the load by the

parent, that is during A D time units after its failure. The nonnegative coefficients c and

p determine the impact of neighbor's failure.

Note that the mechanism of weakening due to the state of a parent is different from

that due to siblings and children. According to (3), a child or a sibling weaken the

element for as long as they are in a failed state, independently of their load; the parent

does so, however, only while it is in a failed but not yet unloaded state.

(ii) Failure. An intact element e fails when it is loaded and its weakness exceeds a

certain threshold:

le(n) = 1 and We(n) > W0{n). (4)

After these conditions are satisfied, the element fails, i.e. the transition (0,1) —>• (1,1)

occurs, with the time delay

A(n) = [AFe^~w^] . (5)



A BDE model of Colliding Cascades 13

Failure occurs if the condition (4) holds during the delay (5). The larger the difference

Wo — We(n), the sooner the failure occurs.

(iii) Time delay. According to (3), the weakness We(n) of an element e may change

at each moment n^ j = 1,2,..., when at least one of the element's nearest neighbors

switches its state. At each step rij we define the corresponding moment N^s\nj) =

rij + A(rij) of state switching, where A(rij) is now given by (5). The element fails at the

earliest possible moment, that is for the smallest value of N(s\rij), as is the case for load

switching in Sect.2.3.2 above.

2.5 Healing

After its failure, and subsequent unloading, an element starts to heal. It will become

intact, (1,-) -> (0,-), after at least two of its children remain intact for the time A#,

independently of the element's load.

2.6 Triggering of inverse cascades

An element fails if and only if a sufficient number of its children are broken. For that

reason an inverse cascade of failures can only be triggered on the lowest level of the

model. For the elements on that level we imitate the number of the broken children Ue

by a random process. The simplest physical reason for introducing such a process is that

the hierarchical structure actually continues beneath the first level and is truncated off

in our otherwise deterministic model.
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Specifically, Ue(n) is defined as a random walk with integer values from 0 to 3; this is

the possible number of broken children in our system. The initial value for each element

is Ue(0) = 0; increments are drawn form a Poisson process with intensity A. An increment

+ 1 or —1 appears if the element is loaded or unloaded, respectively. This ensures that the

children of a loaded element are more likely to fail. The value of Ue does not change in

extreme cases: when Ue = 0 and the increment is —1; or when Ue = 3 and the increment

is +1.

Random initial states were considered in a BDE model for paleoclimate by Wright et

al. [64], while the effect of periodic forcing was studied in their ENSO model by Saunders

and Ghil [62]. To the best of our knowledge, the use of random forcing in a BDE model

is new.

2,7 Conservation law

Our BDE model is dissipative in the usual physical sense — as well as in the mathematical

sence formulated by Ghil and Mullhaupt [6] — if we associate the loading with an energy

influx. The energy dissipates only at the lowest level, where it is transferred downwards,

out of the model. In any part of the model that does not include its lowest level energy

conservation holds, but only after averaging over sufficiently large time intervals. On

small intervals it may not hold, due to the discrete time delays involved in energy transfer.
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2.8 Parameters

The model has the following parameters:

• The time delays Ax,, A D , AJP, and A#, whose dimension is time.

• The intensity A of the random initial fracturing, with a dimension of inverse time;

it controls the triggering of inverse cascades of failures (See Sect. 2.6).

• The dimensionless parameter k that determines the relative impact of the parent

and siblings on the load switching; see Eq. (1). Equivalently, k detemines the load

redistribution among children and siblings.

• The dimensionless parameters c and p defining how the children, siblings and parent

weaken an element; with 0 < c < 1 and p > 0; see Eq. (3).

• The weakness threshold Wo] see Eq. (4).

The time may be normalized by one of the time delays or by the inverse intensity

I/A; we normalize time by Ap. The coefficients c and p are normalized by the weakness

threshold Wo so that Wo = 1. Accordingly, the model has seven independent parameters:

A, AL, AD , A H , k, c, and p.

In this study, the last three parameters were fixed with the values: k = 1/3, c = 2/3,

and p = 3 (see Table 2). The ratio of the parameters AH and A^ was kept fixed so

that AH = 2A^- Accordingly, we concentrate on how loading Ax,, healing A#, and the

forcing intensity A affect the characteristics of our model's synthetic seismicity.
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2.9 Earthquake sequence

A real-world earthquake starts with a rupture over a segment of a tectonic fault, or

with nearly simultaneous rupture of several segments of the fault network. The simplest

routine catalogs of observed earthquakes provide the sequence:

C = {(**, mk, hk) : k = 1,2,... K* tk < tk+1} . (6)

Here tk is the starting time of the rupture, mk is the magnitude — a logarithmic measure

of the energy released by the earthquake — and hk is the position vector of the hypocenter.

The latter represents a point approximation of the area where the rupture started.

In our model, an earthquake is the failure of an element or simultaneous failure of

several elements. The sequence of modeled earthquakes is also represented by a "catalog"

(6) with the following obvious analogies: tk is the time of failure; mk is the level of the

broken element counted from the bottom of the hierarchy; and hk is the position of an

element within a system (see Fig. la). We associate hk with the hypocenter, since this

vector identifies the position of an element in relation to other elements; obviously this

is a crude analogy. When a modeled earthquake comprises several broken elements, the

highest of them is indicated in our catalog.
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3 Multiple seismic regimes

3.1 What is a seismic regime?

A long-term pattern of seismicity within a given region is usually called a seismic regime.

It is characterized by the frequency and the irregularity of the strong earthquakes' oc-

currence, namely by (i) its specific Gutenberg-Richter relation (size distribution of earth-

quakes); (ii) the variability of this relation with time; and (iii) the largest magnitude

recorded during a few decades. The notion of seismic regime is thus a much more com-

plete description of seismic activity than the "level of seismicity," often used to discrimi-

nate among regions with high, medium, low and negligible seismicity; the latter are called

aseismic regions.

A regional seismic regime is determined by the region's neotectonics that can be

described, roughly speaking, by two factors: (i) the rate of crustal deformations; and (ii)

the crustal consolidation, which determines the part of the deformations that are realized

through earthquakes. However, as is typical for complex processes, one long-term pattern

of seismicity may switch to another in the same region, as well as migrate from one area

to another on a regional or global scale [65, 66].

The term "seismic regime" is commonly used to identify the strongest, striking differ-

ences in seismicity patterns. A qualitative, heuristic definition of regimes was sufficient

up till now for descriptive purposes and for the exploratory modeling done so far. Thus,

the problem of formal definition did not yet arise, as good definitions often arise only



A BDE model of Colliding Cascades 18

after a problem is solved. The factors that determine the realization of one regime or

another have been studied in [51, 67, 68, 69]. In this section we explore the distinct

regimes that arise in the CC model formulated in Sect. 2.

3.2 Seismic cycles

Sequences of seismic cycles are an essential feature of observed long-term seismicity. A

seismic cycle consists of three consecutive phases [33]:

1) "preseismic" rise of activity culminating in one or several major earthquakes;

2) "postseismic" gradual decline of activity; and

3) relatively low activity that eventually returns to another rise.

Such cycles take place on different time and space scales. Exact periodicity is quite

rare; usually, observed time intervals between consecutive major earthquakes depart con-

siderably from their mean, and the outlook as well as timing of a particular phase within

each cycle varies strongly from cycle to cycle. At different times, seismic cycles may

culminate in earthquakes of different magnitude. It is common for the sequence of cycles

to exhibit intermittent behavior.

3.3 Three seismic regimes

We computed a few hundreds of earthquake sequences over the time interval / = [0, 2 • 106],

while varying the values of parameters within the ranges given in Table 2. The sequences

so obtained can be qualitatively divided into three seismic regimes. Typical examples of
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each regime are shown in Fig. 3. The figure's three panels are described below.

Regime H: High and nearly periodic seismicity (top panel). All cycles reach the top

level, vfi — L^ with L = 6. They are very similar and thus the sequence is approximately

periodic, in the statistical sense of cyclo-stationarity [70].

Regime I: Intermittent seismicity (middle panel). The seismicity reaches the top level

for some but not all cycles. The sequences are thus much less periodic than in Regime

H.

Regime L: Medium or low seismicity (lower panel). No cycle reaches the top level

and seismic activity is much more constant at a low or medium level, without the long

quiescent intervals present in Regimes H and I.

Next, we explore the regimes' major characteristics and their location in parameter

space.

3.3.1 Gutenberg-Richter (GR) relation

In our model, the GR relation is quite distinct from one regime to another (see Fig. 4).

For regime H, the relation is almost perfectly linear, log N(m) = a — bm, over all

possible magnitudes, with b = 0.48. For regimes I and L (panels b and c, respectively) the

GR relation is increasingly convex and thus cannot be characterized well by a single slope

b. A straight line with the slope b = 0.48 is shown in panels (b) and (c) for comparison.

For regime H, Fig. 4a, the relation is stationary, while for the other two it is changing

in time (not shown).
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3.3.2 The internal dynamics of the regimes

Figure 5 shows the average density p(n) of the elements that are in a failed state at epoch

n:

p(n) = [i/i(n) + . . . + um(n)] /L. (7)

Here Vi(n) is the rate of failed elements at the i-th level of the hierarchy at the moment n,

while L is the depth of the tree. The levels are counted from the bottom of the hierarchy.

The panels, top to bottom, correspond to the same synthetic sequences as in Fig. 3. The

density p exhibits the same transition from near-periodicity (panel a) to intermittent

(panel b) and eventually to low-level noisy behavior (panel c) as in Fig. 3.

3.3.3 Regime diagram

The location of the regimes in the plane of the two key parameters (Ax,, AH) is shown

in Fig. 6. The values of AL and AH vary as shown in the figure, while the rest of the

parameters have the fixed values given in the caption to Fig. 3.

The high-seismicity, nearly periodic regime H occurs predominantly for high values

of AH, that is for low healing rates. The low-seismicity, noisy regime L occurs for low

AH and high Ax, — i.e., for high healing rates and very slow loading. The intermittent

regime I occurs for low AH and low AL, when both the healing and loading rates are

high. The domain of the regime I extends also toward the upper right edge of the figure

and fades away as it approaches the triple point at which all three regimes meet.

The three sequences shown in Fig. 3 correspond to the three stars in Fig. 6 at fixed
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= 0.5 • 104 and increasing AH-

Next, we analyze what happens to the system when it is driven across regime bound-

aries.

nr=i

3.3.4 Measure of seismicity clustering

To better describe the differences between regimes, we define a measure G of clustering.

This is done in the following steps.

(i) First, we define a measure S(/) of seismic activity within the time interval / as

,3. (8)

Here summation is taken over all events that occur within the time interval /, i is the

sequential index of an event, and rrii is the magnitude of the i-th event. The value of a

equalizes, on average, the contribution of earthquakes with different magnitudes, that is

from different levels of the hierarchy.

(ii) Consider a subdivision of a time interval / into a set of nonoverlapping intervals of

length e > 0. For simplicity we choose e such that |/| = eiVj, where | • | denotes the length

of an interval and Nj is an integer. Therefore, we have the following representation:

(iii) For each n = 1, . . . , Ni we choose an n-subset £l(n) = {U»=mi,...,mn ^} of the total

covering set (9) that maximizes the value of S obtained over the possible subsets of total

length n, i. e.,:

. max. {S(U/i)} = S(ft(n)) = S*(n). (10)
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(iv) Introducing the notations

E(n) = E » / E ( J ) , r(n) = ne/\I\, (11)

we finally define the measure of clustering within the interval / as

G(/)= max (E(n)-r(n)) . (12)
n = l i V

Figure 7 illustrates the behavior of the clustering measure G(I) so defined. Panel (a)

shows £ vs. r for the three synthetic sequences shown in Fig. 3. The more clustered

the sequence, the more convex the corresponding curve. A marked Poisson process with

independent marks would correspond, for appropriate e, to a diagonal line that depicts

the absence of clustering.

Figure 7b displays the curves S - r vs. r and the corresponding maxima of G for the

three synthetic sequences shown in Fig. 3.

The measure G is used next to depict a bifurcation in our system's behavior during

the transition from Regime H to Regime L.

3.3.5 Transitions between regimes in parameter space

Figure 8 illustrates the transition between regimes in the parameter plane (Ax,, A H ) .

Panel (a) shows a rectangular trajectory in this plane that passes through all the three

regimes and touches their triple point. We single out the 30 points along this trajectory,

that are indicated by small circles in the figure. The three pairs of points that corre-

spond to the transitions between regimes are distinguished by large circles and marked



A BDE model of Colliding Cascades 23

in addition by letters, for example (A) and (B) mark the transition from Regime H to

Regime L.

We estimate the clustering G(/), / = [0,2 • 106] for the synthetic sequences that

correspond to the 30 marked points along the trajectory in Fig. 8a. Figure 8b shows the

corresponding values of G. We see the dramatic drop, from 0.8 to 0.18, between points

(A) and (B) that correspond to the transition from Regime H to Regime L. The values

of G remain small, G w 0.1, in Regime L, between points (B) and (C).

The transition (C)-(D) that leads to Regime I is very smooth, unlike that from H

to L. The clustering G increases from 0.1 to 0.53 while the trajectory is moving across

Regime I, from point (D) to (E). The transition (E)-(F) is again smooth and G increases

further, albeit more gradually. Finally, it reaches the level G = 0.8 and fluctuates around

it while the trajectory advances through the domain of Regime H, between points (F)

and (A).

The transition between regimes is illustrated in greater detail in Fig. 9. It shows

fragments of the six synthetic sequences that correspond to the points (A)-(E) in Fig.

8a. The sharp difference in the character of seismicity between points (A) and (B), near

the boundary between Regimes H and L, is even more obvious than in Fig. 8b. The

other two transitions, from (C) to (D) and (E) to (F), are much smoother, but they still

highlight the intermittent character of Regime I.

Figures 8 and 9 quantify and illustrate the bifurcation in system's dynamics that

occurs in parameter space on the boundary between Regimes H and L. The abrupt
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change in earthquake clustering there is well expressed by the measure G of Eq. (12).

The more subtle change in intermittency that occurs at the boundaries L-I and I-H

awaits better quantification in subsequent work.

3.3.6 Intermittent regime

We explore here in a greater detail the intriguing intermittent regime I. Figure 10 shows

different patterns of intermittency obtained by varying the parameters A L and A#. The

sequences shown in panels (a)-(f) of Fig. 10 correspond to points (a)-(f) in the plane

(Ax,, A H ) of Fig. 6. The rest of the parameters are fixed at the values given in the caption.

Two sequences, (a) and (b), are taken from Regime H, for comparison purposes; the other

four, (c)-(f), are from Regime I.

The sequence in panel (a) consists of nearly periodic cycles, all of which end with an

event of magnitude m — 6; there is no intermittency. In panel (b) the activity between

cycles starts to rise. This sequence lies in the near near vicinity of the boundary between

regimes H and I (see Fig. 6).

Panel (c) shows the developed intermittency. One can see within this sequence three

types of behavior: (i) nearly periodic cycles that end with events of magnitude m = 6 and

exhibit no intercycle activity (see for instance the time interval 5.6 • 105 < t < 5.8 • 105),

like in panel (a); (ii) nearly periodic cycles that end with events of lower magnitudes and

are separated by varying intercycle intervals (e. g. 4.3 • 105 < t < 4.8 • 105); and (iii)

cycles that always end with events of magnitude m = 6 but display very strong intercycle
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activity of variable duration (e.g. 3.5 • 105 < t < 4.0 • 105). The timing and duration of

these three types of behavior appear to vary randomly with time.

Panel (d) illustrates a case when cycles culminating by strong earthquake with m = 6

occur only very rarely. Most of the cycles end with lower magnitudes. This is due to

the fact that we approach the domain of Regime M (see Fig. 6). Panel (e) represents a

sequence with very long intervals of nearly periodic cycles that differ in mean period and

end with different magnitudes. Note that the three sequences shown in panels (c), (d) and

(e) are close neighbors in parameter space (see Fig. 6). Nevertheless, they demonstrate

a rich variety of long-term seismicity outlooks. This is always the case near the triple

point, where the system is very sensitive to small changes in parameter values.

Panel (f) shows one of the most interesting situations. All cycles are periodic and

end with events of magnitude m = 6. But the length of the cycles themselves, as well as

that of intercycle intervals, are quite irregular.

Figure 11 gives the mean density p(n) of failures at a given epoch for the sequences

shown in Fig. 10. The simple, near-cyclical behavior in panels (a) and (b) changes to a

much more irregular behavior in panels (c) and (d), while the one in panels (e) and (f)

is quite intermittent. The latter alternates in an entirely unpredictable and whimsical

manner between different amplitudes and periods over time.
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4 Physics of regime switching

We now discuss qualitatively the mechanisms that may determine the realization of one

or another seismic regime in the present model.

4.1 Memory

The formation of different regimes in the model has a simple physical explanation in

terms of the system's memory. It may be qualitatively characterized as follows. Consider

two snapshots of the system, showing the state of each element at the moments n and

n + s\ the four possible states of an element are given in Table 1. Memory is "short"

if the correlation between the snapshots is rapidly decreasing with s and "long" if the

decrease is slow.

When the system has a long memory its current state strongly affects its subsequent

evolution. In this case, behavior that falls in the intermittent regime I is formed.

Short memory can lead to a sequence of ceismic cycles that belongs to one of the

regimes H or L, depending on loading and healing rates. When the regime H is realized

it consists of statistically equivalent, independent seismic cycles that end with the largest

possible magnitude. Regime L comprises a mixture of independent low-level cycles; it

thus exhibits noisy behavior.
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4.2 Role of parameters

The model's effective memory, and therefore the resulting regime, is determined by the

interplay of parameters. Generally speaking, the changes in the system become faster,

and memory shorter, when the initial-fracturing parameter A (see Sec. 2.6) increases —

so the inverse cascades become more intensive — and when either of the four time delays

decreases. This situation will favor, therefore, the appearance of regimes H or I.

The maximal magnitude of the earthquakes decreases with Ap + AH, which equals

the minimal time delay for healing. This will lead to preponderece of sequences that fall

in the I or M regime.

4.3 Healing and loading

Healing and loading clearly play an important role in the formation of seismic regimes.

Without healing (A# = oo) the whole system fails in finite time and does not recover at

all, as it happens in the case of the fiber-bundle model [71, 72]. When healing is slow,

Aif ^> 1, the system can recover between consecutive total failures thus creating seismic

cycles, albeit very long ones. Finally, with fast healing, low-level failures heal so quickly

that they can't merge to generate the larger ones. As a result, the inverse cascade never

reaches the top level.

In our model, a permanent load influx drives the whole system and is the only reason

for failures to start. Seismic activity thus increases with the loading rate, which is inversly

proportional to Ax,.
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The role of each single parameter in the formation of a regime is therewith transparent.

Note however, that the realization of a seismic sequence that falls in one regime or another

depends on the interplay of parameters: no single parameter alone controls the behavior

of the system.

5 Discussion

Applying the framework of Boolean delay equations (BDEs) to the modeling of colliding

cascades did reach its goal: the system's dynamics becomes physically more transpar-

ent and easier to study exhaustively. BDEs may thus serve as a "missing link" for

understanding how the elementary interactions within the system determine its global

behavior.

Our BDE model of colliding cascades reproduces the broad spectrum of observed

seismic regimes, including intermittency. Similar regimes are encountered in many other

systems, for example, in economics.

The results raise the possibility of modeling intermittency in time as well as in pa-

rameter space. This may provide a base for the study of the next problem: prediction of

regime switching. The memory of the system may be a useful control parameter in that

problem.

Regime switching is well known and intensively studied in climatology [73, 74, 75, 76,

77], as well as in many other fields. Similar phenomena arise in percolation theory [78], as

well as in its application to forest fire models [79]: the existence of an infinite percolation



A BDE model of Colliding Cascades 29

cluster is analogous to rupture of the top element in the system considered here. In that

way, regime switching could be akin to phase transitions studied in statistical physics. A

meaningful connection, if any, is yet to be established, however.

Our three regimes H, I and L are naturally associated with catastrophic, self organized

critical and stable regimes that have been found analytically by Shnirman and Blanter

[61, 69] for a static hierarchical model of defect development with only an inverse cascade

of fracturing. They have found an asymptotic distribution of regimes as a function of the

inhomogeneity in model strength. The existence of these analytically obtained regimes

is thus well confirmed by our dynamical simulations.

The second part of this paper extends our study to the earthquake prediction problem.

We demonstrate in it that the model considered, its simplicity notwithstanding, does

reproduce a broad variety of the premonitory seismicity patterns observed in reality.
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Table 1. Truth table for the state of an element.

0

0

1

1

h

0

1

0

1

Element's state

intact and unloaded

intact and loaded

failed and unloaded

failed and loaded
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Table 2. Fixed values of the model's parameters or their range of variation.

From

To

A

10-7

lO"2

AL

1

106

AH

1

106

Az>

0.5

0.5 • 106

AF

103

k

1/3

c

2/3

P

3

L

6
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List of Figures

Figure 1. Structure of the Colliding Cascades (CC) model with branching number

3. a) Three highest levels of the hierarchy, b) Interaction with the nearest neighbors.

Figure 2. The place of BDEs within dynamical system theory. Note the links: The

discretization of t can be achieved by the Poincare map (P-map) or a time-one map,

leading from Flows to Maps. The opposite connection is achieved by suspension. To go

from Maps to Automata we use the discretization of x. Interpolating and smoothing

can lead in the opposite direction. Similar connections lead from BDEs to Automata

and to Flows, respectively. See text for details.

Figure 3. Three seismic regimes: sample of earthquake sequences. Top panel -

regime H, AH = 0.5 • 104; middle panel - regime I, A# = 103; bottom panel - regime L,

AH = 0.5 • 103. The rest of the model parameters are fixed: AL = 0.5 • 104, A^ = 103,

A = 0.2 • 10"4, k = 1/3, c = 2/3, and p = 3. Only a small fraction of each sequence is

shown, to illustrate the differences between regimes.

Figure 4* Three seismic regimes: magnitude distributions (Gutenberg-Richter rela-

tion). The distributions are computed for the sequences shown in Fig. 3, over the whole

time interval [0, 2 • 106] over which the synthetic sequences were generated: a) Regime

H; b) Regime I; and c) Regime L. A straight line N(m) — a — 0.48ra is shown in each

panel for comparison with Regime H that fits well this approximation.

Figure 5. Three seismic regimes: internal dynamics of the system. The panels show

the density p(n) of broken elements in the system, as defined by Eq.(7); they correspond
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to the synthetic sequences shown in Fig. 3. Top panel - Regime H; middle panel -

Regime I; and bottom panel - regime L.

Figure 6. Regime diagram in the (A^, AH) plane of the loading and healing delays.

Stars correspond to the sequences shown in Fig. 3. The points (a)-(f) correspond to the

sequences shown in Figs. 10 and 11.

Figure 7. Measure G(I) of seismicity clustering; see Eq. (12). The three curves

correspond to the three synthetic sequences shown in Fig. 3. a) Seismic activity, S vs.

the fraction r of the total time; see Eq. (11); b) the difference S - r vs. r and the

maximum values of G that are obtained.

Figure 8. Bifurcation diagram, a) Closed trajectory in the parameter plane of Fig.

6; b) the measure G of clustering illustrated in Fig. 7, calculated along the trajectory

shown in panel (a). Bifurcation happens between points (A) and (B) for transition

between regimes H and L. See details in the text; note that the points (A)-(F) here are

disctinct from points (a)-(f) in Fig. 6.

Figure 9. Synthetic sequences corresponding to the points along the trajectory in

parameter space (Fig. 8a.) The panels illustrate the transitions between the regimes H

and L — panels (A) and (B); L and I — (C) and (D); and I and H — (E) and (F). A

bifurcation occurs in the transition from (A) to (B), while the other two transitions are

smoother.

Figure 10. Different types of intermittent behavior. Each panel shows a fragment

of a synthetic sequence generated by our model; the time interval [3.5 • 105 6.5 • 105] is
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shown. Differerent panels correspond to different values of the parameters Ajr, and

as indicated in Fig. 6; the rest of the parameters are fixed: c = 2/3, p = 3, k = 1/3, TH =

1, A = 0.2 • 10-4, AF = 103, (a) AL = 102, AH = 103; (b) AL = 103, A H = 7 • 102; (c)

AL = 5 • 102, A H = 2 • 102; (d) AL = 103, AH = 2 • 102; (e) AL = 5 • 102, AH = 102; and

(f) AL = 10, A H = 102.

Figure 11. Intermittence of seismic regimes: density of failures. Each panel shows

the density of fractured elements p(n). for the different synthetic sequences; compare

Fig. 5. The parameter values for each panel and the notations are the same as in Fig.

10.
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