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Fractal Basics

Practical Definition of a fractal:

¢ statistical self-similarity = scale invariance =
no characteristic length

(from Bebien
et al., 1987)

¢ has fractal (non-integer) dimension:

Euclidean: point = 0, line = 1, plane = 2 etc.
More general (Capacity, Box-Counting Dim.):

- i BN
r—oo log(ﬁ)

where N(r) is the number of non-empty "boxes’
in a covering with boxes of size r.
Fore.g.aline: N(r) < r=D,=1.

N(@r) =< (1/7r)"° , ie. a power-law relation.




(after Abarbanel et al.,
1993)

We may already see: At every resolution, we learn nothing
about how many events are contained in every "box’. To learn

about clustering (probabilities), more detailed description is
needed.

-log N{r)
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Such an analysis only shows that the events form a
fractal distribution (D,=1.57 + 0.02). We know

nothing about the obvious inhomogeneity of landslides.
But:

¢ Scaling region A r=2.73 - 174.57 km (Important!)

* Only one scaling exponent over A r (-"-)

we would not detect anise tropy in D(sc(f-—af{:hi"“/) GKe
this !



Take into account heterogeneity:
Information Dimension D;:

Information = (E) =- log P(E) = log 1/P(E)
(Note: P=1=1=0;P=0=1=9)

.}r

N(r)
i=1

The average information is I(r) = Y~ = Pi(r)log Pi(r)

Thus similar to D:

I
0 log(1/ 1)

D . .
Hencel =< (1/7)"" i..a power-law relation between
information and size of boxes denotes a fractal.
Homogeneous case (P; = const.): Dy= D,

D, 1s not very popular, but introduced here due to
its relationship with the Configuration Entropy H(r):



Simply, H(r) = - I(r), 1.e. H(r) = -D, log r !

Thatis H(r) = 2 pi(r)log pi(r) , where p; is the
‘probability to find i events in a certain cell.

Thus D, describes the scaling of information (a

measure of the point set), H(r) describes information

only at specific scales.

Here, I want to vary r, however, to compare the

information at different scales. At ", H(r) has its

maximum H*. H" is the max. information (entropy,
.dtsorder . . . . . .
ihtermation) contained in a distribution at all scales.



Correlation Dimension D,:

Determined by Grassberger-Procaccia algorithm
(sphere-counting), not a fixed grid is used, but the
scaling property is determined from the spatial
correlation of points by first getting the correlation
function

C(r) = hm — Z@(r ||x - x, ||

l_} Li=j

where N = no. of (reference) points and
O i1s 0 if argument < 0, 1 otherwise.

Then,

D, = im 1280
r—0 log Y

i.e. when a power-law relation exists between C(r)
(no. of points in spheres, mass) and r, the object is
fractal with dimension D,.

Dense regions are weighted even more, thus good
for small data sets. Disadvantages: Boundary effects,
slow.



Why power laws?

Scale-invariance of f(x) means that
f(x) o< f(AX) for all A

Therefore, if f(x) is fractal there exists
a function C(A) such that

f(x) = C(A) f(AX)
Differentiating w.r.t. x and eliminating C(A)
£ (X)/f(X) = A f'(h;()/f(kx)
Substituting x = 1 and integrating w.r.t. A
f(x) = f(1) X, a=F'(1)/f(1)

Thus: Power functions are the only
scale-invariant functions.



Fractal Anomalies

Possible deviations from the described ideal scaling
behaviour are:

* Limited scaling region
r — 0 and N — o0 of the previous definitions are not
possible with real (finite) data sets. Due to finite resolution,

the log-log plot saturates at low r; it also saturates at high r
due to the finite number of points:

)

log (Clq, )ty




¢ Multiscaling (# Multifractal!)
The log-log plot may show piece-wise linear
regions instead of only one exponent over Ar. This
might indicate that e.g. two underlying mechanisms
are involved which scale differently at small and
large scales (bi-fractality) or also indicate sampling
problems. Such behaviour, however, was not
observed here. Note that undetected multiscaling
will render results for D meaningless, because e.g.
the linear regression will average over the different
slopes.

+ Self-affinity resp. anisotropy of D
Profiles and time series are self-affine, i.e. scale

~ differently in vertical and horizontal direction. For
topography, the physical reason is gravity which
only works in z-direction while erosion and tectonic
forces work in all directions.



Multifractals

In a sense another deviation, but also a much more
advanced concept are multifractals:

The previous fractal dimensions all increasingly
emphasise the dense areas within a fractal. If the

fractal is heterogeneous, even a comparison between
the first three generalised dimensions can tell us only
very little about the inhomogeneous structure. In fact,
there are infinitely many fractal dimensions of the form:

D, = —lim log(¥ {R("}')

q-1r0 logr

Note that the gth moments of the probabilities
introduced before are used here to emphasise dense
areas (q>0) and sparse areas (q<0). E.g. D, may be
obtained for q=2. Especially q<0 1s new here: We
also want to characterise the areas where few events
happen. The limits D ., and D_ . thus describe the
seismologically important areas of most and least
intensive occurrence of earthquakes.

10



As all differently clustered areas must obey scaling
laws of their own, a multifractal can be said to be a
fractal of fractals. Multifractality is not a property of
a point set (the support) itself, but of measures such
as their spatial density, information etc. ("derived
measures) or the size of events at the points (e.g.
seismic energy, landslide size).

One may plot D, vs. q to obtain the spectrum of
generalised dimensions but here I prefer the f(a)-a
curve, the multifractal spectrum. The latter has a
direct physical meaning and may be obtained from
the D,-curve by a transformation (Legendre).

11
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= D Csparse’)

o may be said to be a local scaling index; f is the fractal
dimension of all points (areas) with local scaling exponent o.
Hence, f tells how many “a-areas’ there are!

Furthermore, 0, = Do, Oy = D.oo, f(019)=Dy, f(0y;) tells
how many most strongly clustered areas there are, (0, qy)
tells how many least populated areas there are. Thus, one
“might expect these values to be extremely sensitive to
changes in seismicity patterns.

For a monofractal, the f(a)—a curve should collapse into
the single point f = a = D,,. In practice, due to numerical
effects, almost anything will seem multifractal though,;
all the above constraints must be taken into account, a
comparison with synthetic data sets of the same overall
properties should be performed and Aa should be big
enough to trust multifractality. Especially the calculation
of high order (negative) moments is critical.

12



What’s fractal about EQs?

Earthquakes have so many different fractal properties that they
belong to the most interesting fractal phenomena (Takayasu 90)

In addition to theoretical evidence for fractality of EQs (SOC e.g.
Sornette and Sornette 1989, but also other slider-block models), the
following empirical observations were made in the past:

+ D of regional and worldwide hypo- and epicentre distribution is

1.2 - 1.6 (e.g. Kagan and Knopoff 1980, Sadvskiy et al. 1984,
Okubo and Aki 1987, Aviles et al. 1987); (multifractal: Geilikman et
al. 1990, Hirata & Imoto 1991, Hirabayashi et al. 1992, Hooge et al.
1994)

Faults and fractures (in heterogeneous media) and their distribution
are fractal (e.g. Brown & Scholz 1985, Scholz & Aviles 1986,
Okubo & Aki 1987, Sammis & Biegel 1987, Hirata 1989, Kagan 92 )
- The Gutenberg-Richter relation f(m) o< mP is “fractal’

(= f(E) =< E"2%3 also scaling); D = 2b (Aki 1981)

The Omori-law n(t) o t® means temporal scaling of excited
aftershocks; also confirmed by laboratory experiments (AE, e.g.
Scholz 1986, Hirata 1987)

In general, the temporal distribution of EQs is (multi)fractal too

(e.g. Godano & Caruso 1995) (H, 95/

Spatial distribution of EQ size (seismic energy) is (multi)fractal

(e.g. Hirabayashi et al. 1992, Hooge et al. 1994)

Temporal and spatial scaling together show that the EQ

process is a scaling spatio-temporal process (i.e. coupled).
One important consequence: EQs not Poissonian! (cf. Mandelbrot 1983)

13
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Figure 4.1. Worid-wide

number of earthquakes per
year, N with magnitudes
greater than m as a function
of m. The square root of the
rupture area A is also given.
Circles, 1983-1987
(Dziewonski et al., 1989,
and others); squares,
19201979 (Purcaru and
Berckhemer, 1982). The
solid line represents (4.1)
with b = 1.00 and
d=10%yr~%

Figure 4.2. Number of
earthquakes per year N with
magnitudes greater than m
as a function of m. Squares,
Southern California

1932-1972 (Main and
Burton, 1986); solid circle,
expected rate of occurrence
of great earthquakes in
Southern California (Sieh
et al., 1989). The line
represents (4.1) with

b =0.89 and
ad=14x105yr~t.

W

A1/2 km wx,\a i

Figure 6.3. Fractal cluster
analysis of 49 earthquakes
that occurred near Efate
Isiand, New Hebrides in
the period 1978~1984
(Smalley et al, 1987). (a)
The circles give the fraction

of intervals p of length ¢

that include an earthquake
:asa function of 3, The solid
line represents the
correlation with (6.2) taking
D = 0.255. The broken line
is the result for uniformly
spaced events.(E)The
results for 49 randomly

distributed events (Poisson
Spm———

process).
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Fig. 5. Illustration of the twa-block model. The constant velocity driver extends the
springs until sliding of a block commences. In some cases sliding of one block induces

the sliding of the second block.

Driver Plagte

Fig. 8. Dlustration of the two-dimensional slider-block model. An array of blocks each
with mass m is pulled across a surface by a driver plate at a constant velocity V. Each
block is coupled to the adjacent blocks with either leaf or coil springs of spring constant
ke, and to the driver plate with a leaf spring of spring constant k. The extension of the

(i, j) pulling spring is x;.
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Possible Reasons for Earthquake Complexity
and Consequences

Chaos: deterministic; described by system of non-linear
differential equations; exponential sensitivity to
small changes in initial conditions.

Problems systems (block models) need tuning;
applicability of models to nature?
Consequences: Depending on Lyapunov exponent,
only (very) short-term predictions possible.
But: tools of non-linear time series analysis might be
useful for effective monitoring

Critical Point Phenomenon/Phase Transition:
divergence of correlation length -> fractal at the
critical point.

More general: transition simple <-> complex
(percolation threshold)

Problems: Crust is non-equilibrium system, needs
tuning towards critical point. Transition of the
type "fractal <-> not fractal" not observed.

Consequences: If transition happens slowly, a warning
of increased hazard level might be possible.

SOC: non-equilibrium state where small perturbations can
cause events of all sizes (following a power-law
size distribution). No tuning required.

Problems: ?

ansequences Prediction of large events impossible
because large events differ from small ones only
in size!

Strong evidence also from induced seismicity.

However, it is possible, that a combination of the above
mechanisms applies...

17
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Zeitl e Uan Fation
Temporal Variafon

Kfo{'o lﬁ%‘l{/ ,
Data from Jan. 1976 up to m=6.9 Hyogo-ken Nanbu EQ on Jan.
17, 1995 at 34.60 ° N, 135.03 ° E (Abuyama Obs., Kyoto Univ.,
H. Katao). Magnitude completeness is 1.5 but was ignored
for more events and inclusion of micro-seismicity. Area
selected according to geophysical and numerical constraints

(e.g. centered on mainshock, boundary effect for sphere count).
~ 26 500 evarfy
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For the moving analyses, a window size of 5000 events with
an overlap of 2%, i.e. 100 events was selected to avoid too
small data sets but achieve good temporal resolution. The
values obtained are thus integral over about 3 yrs on average;
they are plotted centered on each interval. The EQ history was
recorded for the greater area 33° — 36° N, 134° - 137°E not
to miss the influence of large EQs that happened slightly out-
side the area of analysis.

Several moderate to larger EQs occurred in the interval, most
notably an m=5.6 event in May 1984 and an m=5.4 event in
Sept. 1990.

20



Temporal evolution of the spatial density (epicentre distribution)

M=56 M=
X X

35

25

q=-2,0,1,2
from top g 2}

----------------------------------------------------------------------------------

15+

0.5

1 1 ] 1 L
0 5000 10000 15000 20000 25000
Event #

— 4 Yrs ~-

The first three generalised dimensions are not very sensitive to
the seismic evolution. The sensitivity increases with increasing
positive g though. D_,, as also shown by Hirabayashi et al., is
more sensitive. The strongest changes in seismicity occur in less
active areas thus. However, it becomes clear that we need the
whole spectra to completely describe the changes. There is no
clear correlation with big events and no long-term trend though.

There is no way to show more than 200 f(a)-a curves, so in the
following, I plot characteristics of the spectra as time series.
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O, and o, (most dense and most sparse areas):
solid = wer i
amin é arr

3.95

3.9

i 1 Il 1
1] 5000 10000 20000 25000

One sees a roughly synchronous behaviour of both values.
Nothing points out the Kobe EQ at the end of the interval.(?)
But: There is increase before the m=5.6 event, followed by a
“decrease and again an increase before the m=5.4 event. The
increasing trends start at about 4 resp. 3 yrs before.
Because of the anticipated large error in a_,,, the abrupt jumps
are probably not real.
Recall that
¢ increase in o, = extremely sparse clusters get even sparser
decrease = extremely sparse clusters get less sparse
+ increase in o, = extremely dense clusters get less dense
decrease = extremely dense clusters get more dense

max>

Thus, the simultaneous increase of both values indicates that
extremal clusters get less populated. Whether overall seismicity
decreases, depends on the whole shape of the spectrum.

22



Moving entropy analysis:

45

4k

35+

3r

 fkm}

25

2r
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1F
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0 5000 10000 1
Event #
08

0.78 |

06 |

0.74

0.72 |

0.7

A s 1. A H -
[} 5000 10000 15000 20000 25000
Event#

There are no seemingly random fluctuations here, but r’ shows dis-
continuous plateaus. The 2nd peak precedes the m=5.4 or Kobe event,
while the m=5.6 EQ is not reflected. Further research into r* seems
promising. Better is H': There are 2 cycles which seem to correspond
to the two major EQs besides Kobe. First, the disorder decreases for
about 4 yrs from a possible maximum before the m=5.6 EQ occurs at
a min. of disorder (= on average most KSatbgeRerns (rerrandom)
epicentre distribution). Then, disorder assumes a new max. before it
decreases again for about 3 yrs before the m=5.4 event.

An entropy analysis is comparatively easy and reliable.
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Figure 1: Examples for entropy c_uives for, from top to bottom, a Sierpinski triangle:
a homogenecus random distribution and a regularly spaced set of grid points.

35°36N R
35° 24N

35T 12N

139° 24E 139" 38E 139" 48°E 140" 00'E

Figure 2: A subset of the NIED earthquake catalogue ("Region A"
selected according to the critefia given in the text. The area is centered
on the February 1992 M = 6.1 earthquake and contains 4,600 events

- total. Circle size cofresponds to magnitude, colour to depths.

Figure 3: Entropy curve for the data from
Region A, typical for a muitifractal because
of the hump with a well defined maximum.
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Chaos: Basics

Now not seismicity patterns but time series are analysed. The
main question: Is it possible to model EQ-time series (and there-

fore the EQ process itself) by low-dimensional deterministic
models? Related: Can one unambiguously detect precursors?
Are EQs chaotic and what does this mean?

Chaos = low-dimensional (< about 6 degrees of freedom) deter-
ministic chaos (high-dimensional chaos = noise for numerical
purposes): Although completely deterministic, very limited pre-
dictability. Time series look like noise (optically and to linear
methods like autocorrelation and Fourier analysis).

The main part in nonlin. analysis is the attempt to reconstruct
the dynamics in phase space from the measured scalar signal.
Then fractal analysis is applied to the obtained attractor which
is made up of the trajectory of the system with time. The tra-
jectory describes the systems state (phase) at every time.

How can one obtain the phase space structure from a one-dim-
ensional time series?

26



An example of a two-dimensional phase space for the motion
of a particle in one dimension:

Y

A o
| / . B 0:at +ime €+ T
2.4 vel oci*\/ /°
. e )
-
N R
xa(t) x.,(t*T) >x
position

By only measuring x(t), one can still reconstruct the original
trajectory by delay-time embedding.

One gets the correct embedding dimension d by embedding the
time series in successively higher d and checking for saturation
in, usually, D,. D, becomes constant at that d where the attractor
is fully unfolded (Looking at a plane (D,=2) in d=1, we get
D,=1; at d=2, D,=2; but at d=3, still D,=2, i.e. D, has saturated
and we know that the object is only two-dimensional).

Only if deterministic structure in signal, D, saturates at all:
Major idea to test for structure in seemingly random signals.
In addition, if D, is non-integer, the determinism 1s caused
by chaotic dynamics.

27



(a)
Preprocess
data
(gaps,
jumps,

etc.)

(B)
Check for
stationarity,
remove trends
{(FFT, polynomial,
diffexentiate)
o RO

{c)
Check for simple
structure
{phase plots,
maps, prob.

Found simple
structure?

(D)
Attempt attractor
reconstruction
(mainly D,
saturation)

Saturation
with 4 ?

l YE!
(E)
Characterise
attractor
{D0, D2, Lyapunov
exp.)

(F)
Confirm results
{Surrogate data,

nonlinear
prediction etc.)

. @ifference?

Significant

I YES-

(G}
Possibly £find

model eguations

Will become more clear in the following model applications:
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Model Dynamics

Example model 1:

[ g1 i ‘:“1‘ . ‘.I‘
T I M R TR TN 1| 1 N TR W
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Mt it il il } iy Hendddi -+ i
ALt |

|
1

T T Y T Y Y T - T Y 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Following the outlined strategy, first some simple tests:

Stereographic plot of an em-
bedding into two dimensions
with delay time 1 (i.e. x(t) vs.
x(t-1): No apparent structure

X(t)

X(t-n)

| A return map where X’ = 0.5

| is plotted vs. the previous time

| when this was fulfilled. This is
another way to unveil structure:
No structure either.

-2 Preuious X 2

29



The probability histogram
looks Gaussian: Noise.

The autocorrelation function
drops to zero abruptly and
remains there: No correlation
in data: Uncorrelated noise.

AnAAS B P AR P LA N AN
Ay v e o

H H
Bomimant P = .

The power spectrum is broad
(no periodicity) and flat (no
1/f or coloured noise: White
noise.

30



106

\.J The integrated signal resembles
a random walk (Brownian
motion) as witnessed by a

Hurst coefficient of 0.49:
White noise.

Finally, there is no saturation

of D, up to d = 10. Also the

" large error bars indicate poor

Di

scaling properties.

9 Embedding Dimenzion 18

One may conclude that, at least for practical purposes, the data
is uncorrelated (white) noise. Such data can not be modelled by
deterministic models.

The data really represents 2000 points with a Gaussian distribution
of zero mean and a standard deviation of unity.
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Example model 2:

60

504

e
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fame  prob. distr,
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M\al Corp. \(unc"\'ov\

The x(t) vs. x(t-1) plot
already shows a well defined
object: There 1s some
determinism.

Xty

X(t-n)

The return map shows a

very simple, almost linear
structure. We may thus expect
the attractor to have a fractal
dimension of about 2.

2
-20 Previous X 2%



Enbedding Dincrzlion

10

Indedding Vincns lon

The power spectrum is broad, i.e.
no predominant peaks due to
periodicity and shows clear power-
law behaviour: Good candidate

for chaos.

D, shows very clear saturation
at about 2; also the estimated
error for D, is very small:
Together with the previous tests,
this must be chaos.

When embedding the randomised
data, all structure is gone (if the
saturation was spurious before, it
would still be here now): The

above result is t2e. N0t confmdictel

As usually n = D, + 1 equations suffice to model a system

with an attractor of D,, one expects to be able to model the
system with three equations.
Indeed the signal was produced by integrating the Lorenz model of

three coupled first-order nonlinear differential equations with a At
of 0.05.
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Figure 7.3: A seemingly random signal of two incommensurate [requencies
(above) and its shuflled version (below)
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Figure 7.6:

Stereographic delay time plot of quasi-periodic data revealing a
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Iligure 7.7: Return map of quasi-periodic data in which a:(1) is plotted at pos-

itions where 2'(t) = 0.5 (y-axis) versus the previous time where the condition

was fulfilled (x-axis)

. l{&{"lr w\; v\;sm

xw)

X(t-n)

Figure 7.8: Phase space plot of shuffied quasi-periodic data: The structure

seen in [ig. 7.6 has been destroyed
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Figure 7.10: D(d) for embedding dimensions of 1 to 10 for shuflled quasi-
periodic data for conflirmation of structure in the original data
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Application to EQ data

Radon is the only radioactive gas emitted from the surface of
the crust and thought to be predominantly governed by stress
changes in the underlying basement rock. Changes in radon
concentration in groundwater with time are considered a promi-
sing EQ precursor (e.g Wakita 1982).

The data is from the Laboratory for EQ Chemistry at the Univ.
of Tokyo (G. Igarashi) and was measured at site KSM at the
Futaba fault in NE Japan.
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26800 T T T T _—

2700 |-

2400 |

Radon Residuat

2300

2200

Time [h}
This is the non-harmonic residual of about 14500 hourly values
from Nov. 1985 on after seasonal and other periodic trends
have been removed. As the y-scale compares to the one of the
original data, it may be seen that the residual has small
amplitude and variation.

1 1 H
Domimast T = 4,

The power spectrum is typical
for white noise: Broad and flat.

[ Frequancy K]

The autocorrelation function
confirms this: It drops to zero
LA A A A A quickly and remains there except

A for a periodic artifact from
detrending.
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18

Finally, there is no asymptotic
__+—t—1  behaviour of D,. Thus there is
— . .
" s no low-dimensional structure
in the radon data.

* Enbcdding Dincasion 18

For all practical purposes, one must assume that the radon signal
as observed here represents noise.

The result is not surprising as almost all geophysical and other
experimental time series, including strain data as observed at
Yamasaki fault by Kyoto Univ. (K. Watanabe), show this
behaviour. Possible reasons are that the dynamics might be too
‘high-dimensional, that there might be dynamic noise (noise which
does not simply add but (nonlinearily) interact) or, finally, that the
data really possesses no determinism.

Consequence: There is no way to deterministically model the
dynamical systems underlying these signals. Thus one can not
obtain a reliable criterion to distinguish anomalous from normal
behaviour in that one can not monitor any deviations. Unphysical
statistical criteria must be used like in the past.

One can not say, however, that the occurrence of EQs is noise-like
(e.g. Poissonian), because we have no proof that the time series
capture EQ dynamics to a sufficient degree.



This is different with the “time series’ of EQ intervals, which is
directly derived from the previously introduced EQ catalogue. —*

300000 T+ T T T

100000 H
f
{
i
i

A

interarrival Time fsec}
.

L L L N L L
0 2000 4000 6000 8000 10000 12000 14000
Time'

This 1s the first derivative of the first 15000 (of about 28000) EQ
intervals. The inter-arrival time fluctuation is used to obtain a zero-
mean time series instead of spikes.

Following the introduced strategy of nonlinear analysis:

The power spectrum is puzzling
as it first follows an increasing
power law and then seems to
settle on a plateau for high £ It is
clearly not white noise though.

The latter is confirmed when
obtaining a Hurst exponent of
0.73 which implies correlation.
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The history in the area of analysis ™
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560000

Diw

Enbedding Dimenzion

19

The phase space plot attempt

shows that the space is not
filled homogeneously but

" that there is some structure

indicating determinism.

The return map confirms this

in showing more detail. We
can not estimate the
dimension of the attractor
from this though.

The embedding shows a
clear saturation at about 3!
Also the error bars for D,
are quite small, limiting the
dimensionality of the
attractor to 2.5 - 3.5.

Note that the data is not
smoothed or filtered in

any way.
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The former result is surprising as it would mean that one can model
the temporal occurrence of EQs with as little as probably four
equations. Thus one must strictly confirm the result:

phase
randomised

(Mﬂ( power spuﬁrum {
Corr, {uuc\‘wu but Aff

prob. dlsfr) (’So{(-»")

time
randomised
0 2oloo 4<;m sc;oo - mzooT 1o<lm 12«.1:00 '14«1300
57 10 O N T N T
............................. /

1]
. Endciding Dincwslos 10 Exbedd ing Dineraion 3

phase randomised time randomised

Even the less powerful phase randomisation already completely
destroys the structure in the data. Thus low-dimensional determinism
in the data iFeaf. Due to the power spectrum and the phase space and
return plots, one is led to believe in chaotic dynamics.

The only argument against low-dimensional determinism in the
analysed EQ inter-arrival times would be that the structure is intro-
druced artificially by the seismological network or the evaluation
process. Such an effect seems unlikely though.
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Decomposing Spatio-Temporal
Seismicity Patterns

® |Introduction (Motivation, Problems
® Fundamental New Approach:
~ Principal Components Analysis
® Yes, but Spatio-Temporal?
Incorporating Time
e Sample Application to Southern California
® Conclusion & Outlook
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Motivation

"It is agreed that considerable information regarding

the generation of large earthquakes is contained in
seismicity patterns. The discussion is, however, how
to extract it." M. Wyss 1999; Seismicity Patterns, their
Statistical Significance and Physical Meaning; Birkhauser

Here:

Seismicity pattern = distribution of points in space

Information = spatio-temporal evolution of patterns,
specifically earthquake rates

Increasing quality and density of eq catalogues.

~ Recent developments in digital change detection
techniques.

Goal

Untangle complexity of superimposed spatio-
temporally coupled eq-processes.

Associate these fluctuations with the occurrence of
large earthquakes.
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Classical declustering methods need definition of a
space-time window...

Example: popular Reasenberg (1985) algorithm,
Q determines spatial extent,

t determines temporal extent.

A reassuring example:
Northridge cluster
=20. Taumax=20.

=10. Taumax=10.

=2. Taumax=>5.

241° oo 241° 20 242° QU

34730

34° oo 34700

2477 00 241" 30 242' QU



A troubling example:

Landers cluster

20. Taumax=20.
10. Taumax=10.
2. Taumax=3.

242° 243° 244°
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Principal Components Analysis
(Karhunen-Loéve-, Hotelling-Transform)

"Input: Set of raster data sets
Output: Mutually uncorrelated new matrices
(components) explaining original variance"

IN | ouT

correlated data | uncorrelated data

- Covariance matrix C of original data.
- Obtain eigenvalues A;:
|C-Al|=0,
ie[1,2,...,n], lidentity matrix.
- Obtain eigenvectors g
(C-Al)g=0
- Obtain component PC from
PC =T D,
T is matrix of transposed ¢, D = orig. data.

New components
- are uncorrelated (orthogonal)
- ordered by decreasing variance ("information”)

C1 contains what is common in all input data
sets, higher components will contain
increasingly subtle differences between them!
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Standard PCA

, o1 common

Incorporating Time

"Change Analysis PCA"




Sample Application

121°W 120°W 119°W 118'W 117°W 116°W 118°'W
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RTW 120W 11SW H18W  117W 11EW 115W

1884 - 1887, 1988 - 1881, 1992 - 1995, 1996 - 2000

SCEDC data 01/1984 - 07/2000
280 000 events complete for M >= 1.8

-
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Accomodating Seismicity Patterns

Earthquake Catalogue

- Select space-time volume of interest/feasible
Projection

Decide on time slice duration & phase

Decide on spatial resolution of cells
Grid data by, e.g., determining cumulative
number o eqs per cell (eq rates)

Do, e.g., log-transform to account for fractahty
of spatnal frequency distribution of seismicity
(Reduce variance due to change!)

ts = ts( AX, AX, Ay, AY, AZ, t, At, AT, [AM, ...])

fal(y)

i - .
3 “ .
. N A4 r’.: f. !
" ' ’, D) ] N

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 199920002001
Time in Years

PCA is a straight-forward method from linear

- multivariate statistics, there are no ambiguities or
tunable parameters. Only ts() allows tuning within
numerical limits.
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Producing Time Slices (At = 1a)

"a quiet year"

"before Landers"

"Landers"

"after Landers"
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Results of PCA: Spatial

First (Principal) Comp.:
"Background Seismicity"
(61.5 % of total variance)

2nd:

First Comp. of (most
dramatic) Change.
Landers, Hector Mine,
Northridge.

(10.7 %)

3rd:

2nd Comp. of (less
dramatic) change.
Hector Mine

(4.5 %)

6th:
Subtle, distributed

changes ...
(2.6 %)




Correlation r

Results of PCA: Temporal

Component Loadings
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Gao et al,
nature, 406,
500 - 504,
2000
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Conclusion & Qutlook

* PCA can be applied to seismicity patterns (as
a change analysis tool)

* |t is possible to decompose distinct clusters as
well as spatially distributed processes

* Very subtle changes can be detected

* Processes can be localised in space as well
as time

* The method is simple and unambiguous

* Should be suitable for monitoring / detection
of precursory patterns / network changes

* Suitable as a base / augmentation for other
algorithms

* Supersedes classical declustering...

® Case studies, check precursor detection
ability

~ ® Check vs. surrogate data

* Try other measures in addition to eq rates

* Try oblique transform / ICA

* Postprocess results: Treshold / Classify /
FCC ...
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