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PREFACE

Two contrasting approaches to problems in geophysics have been pursued.
The first approach has been to use solutions of the classical equations of
continuum mechanics. Examples of this approach include LaPlace’s equation
for gravity and static geomagnetic problems, the wave equation for seismology
and electromagnetic wave propagation, and the heat equation for the thermal
structure of the earth. The second approach has been the use of stochastic
variability or noise. In this volume of Advances in Geophysics, we explore in
detail one of the main components of noise, that of long-range persistence or
memory. The first article in this volume is a broad summary of theory and
techniques of long-range persistence in time series; the second article is the
application of long-range persistence to a variety of geophysical time series.

Time series can be found in many areas of geophysics. Examples of time
series in which one variable changes with time at a given location on the earth
include temperature, the geomagnetic field, and sedimentation rates. Some
spatial data sets, such as the earth’s topography along a linear track, can also be
considered the equivalent of a time series. The main attributes of a time series
include the statistical distribution of values in the signal and the correlations (the
memory or persistence) between values. For the first attribute, the standard
approach in the literature is to assume a time series has a Gaussian statistical
distribution of values. In many cases, this assumption is appropriate and
provides the correct statistical distributions. In other cases, it is appropriate to
choose a log-normal distribution of values. We consider both in our discussion
of theory and techniques in the first article.

The other main attribute of a time series is persistence. If each value in a
time series is chosen randomly from a Gaussian distribution, the series is a
Gaussian white noise. All values in a white noise are independent of other
values; there are no correlations and the persistence is zero. The running sum of
a Gaussian white noise results in a Brownian motion. Brownian motions have
been studied for more than a hundred years. In Brownian motions, correlations
(the persistence) play an essential role. A Brownian motion is a nonstationary
time series where the mean of the signal increases as the length of the time
series increases. The persistence is positive: each value in the time series has a
positive correlation with the other values. In a Brownian motion, if one value is
larger than the average of the entire time series, the next value will also have a
strong likelihood of being larger than the mean. Brownian motions have many
applications, including topography and the diffusion of species in a gas.

A Brownian motion is an example of a time series that exhibits long-range
persistence; each value in the time series has a correlation with all other values.
The pioneering work of Mandelbrot and co-workers recognized that there is an
entire class of fractional noises and motions, all with the property of long-range
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persistence, that bridge the gap between Gaussian white noises and Brownian
motions. There are also empirical techniques for studying short-range
correlations between neighboring values. This approach generally limits in an
arbitrary way the number of preceding values that influence the next value.
Examples of short-range persistence techniques include the autoregressive (AR)
model, the moving average (MA) model, and the ARMA combined model. )

In studying long-range persistence, there are fundamental problems. of
analysis and a wide range of applications. In the first article in this volume, we
provides a comprehensive introduction and framework for the theory of long-
range persistence in time series, followed by a discussion and comparison of
four techniques: semivariograms, rescaled-range, Fourier spectral analysis, and
wavelet variance analysis. Wavelet variance analysis is particularly useful for
nonstationary time series, such as Brownian motions. The theory of each
technique is discussed at a level understandable to advanced undergraduate
students, graduate students, and researchers. Strengths and weakness of each
technique are then compared by applying each to a broad range of synthetic
time series (fractional noises an motions).

In the second article of this volume, we apply techniques of long-range
persistence to climate variability, the earth’s magnetic field and sediment
deposition. Each application is an in-depth and innovative way of examining
these parameters. The treatment of climate variability includes the first
comprehensive examination of the stochastic component of temperature, and
provides fundamental new insights into how the global ocean-atmosphere
system operates. The variability of climate is quantified in terms of fractional
noises and motions. Numerical studies of climate should be able to reproduce
this variability. The treatment of the Earth’s magnetic field provides new
insights into the behavior of the Earth’s geodynamo. We follow these three
detailed applications with a summary of long-range persistence applications by
other scientists. Both articles in this volume include extensive bibliographies.

The first article in this volume benefited from the detailed comments of
Teresa Jordan, Peter Thomas and Wilfried Brutsaert. We also acknowledge a
very comprehensive and useful review of this volume by Alberto Malinverno,
whose detailed comments allowed us to substantially improve our contributions.

Donald L. Turcotte
Jon D. Pelletier
Bruce D. Malamud
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1. INTRODUCTION
1.1. Brief Overview of Article

Mandelbrot (1967) introduced the concept of fractals in terms of statisti-
cal self-similarity or scale invariance, the idea that the shape of an object
does not define its size. The original example was the length of a rocky
coastline; a map of a rocky coastline gives no indication of its scale.
Subsequently, many natural phenomena have been shown to exhibit statis-
tical self-similarity. Examples include earthquakes, fragments, river net-
works, and mineral deposits (Turcotte, 1997). For real applications, scale
invariance is valid only over a limited range; for example, in terms of
fragments, there will always be a largest fragment and a smallest fragment.

Mandelbrot and Van Ness (1968) extended the concept of statistical
self-similarity to time series. This was done within the context of the
self-affine time series. A two-dimensional object is self-affine if it is
statistically self-similar when the two axes are scaled differently. The
classic example of a self-affine time series is a Brownian motion. In this
article, we consider, in detail, methods of generating synthetic self-affine
time series and methods for their analysis. Our basic definition of a
self-affine time series is that the power-spectral density of the time series
has a power-law dependence on frequency. The concepts of persistence
and stationarity are examined in detail.

Examples of time series in geophysics include global temperature, the
strength of the Earth’s magnetic field, and the flow in a river. After
obvious periodicities and trends in a time series have been removed, the
remaining values are the stochastic component. The stochastic component
of a time series has two main aspects, its statistical distribution of values
and its persistence. Typical statistical distributions are Gaussian (normal)
and log-normal. The persistence measures the correlations between adja-
cent values within the time series. The persistence of values with respect to
each other can be strong, weak, or nonexistent (white noise). A strong
correlation implies a “memory” of previous values in the time series.
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2 BRUCE D. MALAMUD AND DONALD L. TURCOTTE

Values of a time series can affect other values in the time series that are
not only nearby in time (short-range) but also far away in time (long-range).
Since self-affine time series have a power-law dependence of the power-
spectral density function on frequency, they exhibit long-range persistence.

There are many statistical approaches currently in use for the purpose
of quantifying geophysical data sets. The purpose of this paper is to
systematically compare many of these statistical approaches and to illus-
trate their robustness and utility through applications to synthetic data sets
whose properties are known. To achieve this purpose, we generate self-
affine synthetic fractional noises and motions with a wide range of persis-
tence strengths and two different statistical distributions, Gaussian and
log-normal. These synthetic noises and motions have similar properties to
many time series found in geophysics and other fields. The persistence
analyses we use to quantify these time series are semivariogram analysis,
rescaled-range analysis, average extreme-value analysis, Fourier power-
spectral analysis, and wavelet variance analysis. The last two techniques
measure the strength of persistence over a broad range of self-affine time
series, whereas the others measure the strength only over specific subsets.
We discuss the theory behind each technique and its use in measuring the
strength of persistence for self-affine time series.

1.2. What Is a Time Series?

A time series is the set of numerical values of any variable that changes
with time. A time series is generally either continuous or discrete. A
continuous time series y(¢) is a set of values that are continuous in time
over the interval 7. Examples include the continuous record of the
atmospheric temperature at a specified point in space and the discharge
down a river measured at a gauging station. A discrete time series consists
of a set of values that are not continuous. The values in a discrete time
series, y,, are often specified at equal increments of time, 8. Values of y,
are then given at times ¢, = né, n = 1,2,3,..., N with interval T = Né.
Although the time between successive n is a constant &, the values of y,
may occur arbitrarily during each § interval (e.g., floods), they may occur
at exactly every & interval (e.g., hourly temperature readings), or they can
be the integral of the continuous time series taken over each & (e.g., a
yearly time series of lake sediment accumulation). Note that in this article,
we connect individual points in a discrete time series by straight lines; this
can give the false impression of continuous observation, but aids the eye in
following the time series.
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Time series are generally sets of values given as a function of time, ¢;
for instance, current as a function of time can be represented as ().
However, time series are also good representations of other kinds of data
sets. For example, topographic elevations along linear transects, h(x), are
essentially equivalent to continuous time series. Here, the topographic
elevation, A, is a function of the horizontal coordinate, x. Another exam-
ple is the concentration of a mineral as a function of depth in a drill core.
The actual concentrations are continuous, with possibly a few exceptions,
but from practical considerations, measurements of concentrations are
carried out at discrete intervals, giving a discrete time series. Well logs are
an example of a time series in a geological context; digitized measurements
of density, porosity, and/or permeability at prescribed depth intervals
represent discrete time series. Three examples of geophysical time series
are given in Fig. 1.

Although time series are defined to be sets of values as a function of a
single variable, i.e., y(¢), time series can be extended to functions of more
variables. An example is topography, A(x, y), where the elevation 4 is a
function of two horizontal coordinates, x and y. In this article, we will only
examine time series that are functions of one variable and can be plotted
in two dimensions (two coordinates).

A time series may be characterized by any combination of the following:
a trend component, one or more periodic components, and a stochastic
component. The trend component is a long-term increase or decrease in
the series; for example, trends in stream-flow series often result from
gradual human-induced changes to the land. Many time series have
periodic components; for example, an atmospheric temperature time series
will have strong daily and yearly periodicities. The stochastic component is
the fluctuations not included in either the trend or periodic components.

1.3. How Is a Time Series Quantiﬁed‘?

In order to quantify the stochastic component of a time series it is
necessary to specify: (1) the statistical distribution of values, and (2) the
persistence (or antipersistence).

The values of the variable in a natural time series may take on any
statistical distribution of values. The most commonly used distributions
may be divided into four families: the normal family (normal, log-normal,
log-normal type 3), the general extreme-value (GEV) family (GEV, Gum-
bel, log-Gumbel, Weibull), the Pearson type 3 family (Pearson type 3, log-
Pearson type 3), and the generalized Pareto distribution. Stedinger et al.
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FIG. 1. Three examples of time series. (a) The number of worldwide earthquakes with
seismic moments My > 10® N -m in successive 30-day intervals, 1977-1995 (Harvard Cen-
troid-Moment Tensor Database, 1997). (b) Average daily river discharges (Slack and
Landwehr, 1992) for the hydrologic gauging station at Salt River near Roosevelt, AZ, Oct. 1,
1913 to Sept. 30, 1988, drainage area 11,200 km?. (c) Elevation h as a function of position x.
Earth’s topography from 70W, 55S (southern tip of South America) to 70W, 10S (intersection
of Bolivia, Peru, and Brazil). Both (a) and (b) are examples of discrete time series and (c) is
an example of a continuous time series. In (a), the values are independent of one another;
this is an example of an uncorrelated time series. In both (b) and (c), the values in each time
series are positively correlated with one another; these are examples of persistent time series.
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(1993) provide an excellent discussion and review of these different distri-
butions.

In many cases, the distribution of values is well approximated by a
Gaussian (normal) distribution. For example, the discrete time series of
the number of worldwide earthquakes occurring during successive 30-day
periods (Fig. 1a) is closely approximated by a Gaussian distribution.-In -
other cases, the distribution may be strongly skewed with only positive
values possible and it is appropriate to consider log-normal distributions.
An example is the discrete time series of daily river discharges illustrated
in Fig. 1b. Hydrologic time-series studies have been considered in detail by
Bras and Rodriguez-Iturbe (1993) and Salas (1993). |

In addition to the statistical distribution of values, it is also necessary to
specify whether a time series is persistent, uncorrelated, or antipersistent.
The stochastic component of a time series is persistent if adjacent values
are positively correlated; i.e., adjacent values are on average closer to each
other than for an uncorrelated time series. It is antipersistent if adjacent
values are anticorrelated; i.e., adjacent values are on average further apart
than for an uncorrelated time series. Beran (1992, 1994) and Bassing-
thwaighte et al. (1994) give good overviews of statistical methods for
treating data with persistence, and consider a variety of applications.
Persistence is also known as the “memory” or internal correlation of a
process.

An example of a persistent time series is the discrete time series of
average daily river discharges given in Fig. 1b. Adjacent values of the
average daily river discharges are positively correlated with one another. If
a value for an average daily discharge is greater than the mean of the
average daily discharges, then the next successive average daily discharge
will have a high probability of also being greater; big values have a
tendency to follow other big values, and small ones tend to follow small.
An example of a continuous time series is the topography profile given in
Fig. 1c. Topography as a time series has been considered in detail by
Malinverno (1995). Topography clearly has horizontal persistence; adjacent
values of topography are correlated. If adjacent values in the time series
are independent of one another, then the stochastic component is uncorre-
lated. For example, the number of worldwide earthquakes occurring during
successive 30-day periods (Fig. 1a) is a sequence of independent measure-
ments and the values in the time series are uncorrelated.

Persistence can be either weak or strong, short-range or long-range. The
terms weak and strong are taken here to mean how strongly time-series
values that are separated by a given number of points (the lag) are
correlated with one another. Short-range vs long-range persistence speci-
fies whether there is persistence for only short lags, or also for much
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longer lags. For instance, if values have a strong correlation with one
another, but only for short lags, this is strong persistence over a short
range. Topography is an example of a process that exhibits strong persis-
tence over a long range.

There is a large literature on models containing short-range persistence;
examples include autoregressive (AR) processes, moving average (MA)
processes, and combinations of the two (ARMA) (e.g., Salas, 1993; Box
et al., 1994). A number of fields, for example hydrology, use models based
on short-range persistence. In this article, we examine time-series models
that exhibit long-range persistence. We create synthetic self-affine time
series with long-range persistence and systematic variations in the strengths
of persistence, similar to many time series found in geophysics and other
fields. We examine a variety of techniques that quantify the strengths of
persistence in self-affine time series, and discuss the relative merits of each
technique.

1.4. Autocorrelations and Semivariograms

In many cases the persistence (or antipersistence) of a time series can be
quantified by using the ‘autocorrelation function. Many books and papers
discuss this function. A very readable and comprehensive review of the
use of the autocorrelation function for time-series analysis is given by
Box et al. (1994).

The autocorrelation function, r(s), at lag s, measures the correlation of
a time series with itself, y(z + s) compared with y(¢), at increasing values
of s. This is given by

r(s) = —, (D
c

with the autocovariance function, c(s), given by

B ly(e) — 51d 2)
C(S)—(T__T)fo [y(e +5) = 3lly(¢) —ylar (

and the autocovariance function at 0 lag, ¢(0), given by

1
c(0) = ?fOT[y(t) ~yFdt=vV. 3)

The time series, y(t), is prescribed over the interval 0 <t < T. The
average and variance of y(¢) over the interval T are y and V. The
autocorrelation function, r(s), is dimensionless and does not depend on
the units of y(¢) or ¢. With s = 0 we have ¢(s) = ¢(0) = V, the variance of
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the time series over the period 7, resulting in r(s) = 1. The time series
when compared with itself (0 lag) has a correlation of 1, the most positive
that r(s) can be. With increasing lag, s, the values of r(s) become smaller
as the statistical correlations of y(t + s) with y(¢) decrease. The plot of
r(s) versus s is known as a correlogram. Although the autocorrelation, Eq.
(1), at a particular lag, s, can give insight into the data, one is generally
more interested in the overall structure of the autocorrelation function
taken over a range of lags. Large values of r(s) indicate a strong correla-
tion between those points in the time series that are separated by lag s,
small values of r(s) indicate weak correlation, and values of r(s) =
indicate no correlation (white noise). Persistence here can be defined as a
sequence of r(s) that have positive values. If the values of r(s) are large,
but then quickly drop to r(s) = 0, we have an example of strong persis-
tence over a short range of values. If the values of r(s) are small (nonzero)
and continue to stay small for very large lags, then the persistence is weak
and long-range.

For a discrete time series, the autocorrelation function, r,, is given by

Cik

rk=a, (4)

with the autocovariance, c,, given by

1

Cr =
and the autocovariance at 0 lag (the variance) given by
1 N _
=% LG -9 =V (6)
N n=1

Increasing values of k correspond to increasing lag. The variance, V, is
taken over the N values of y,. For an uncorrelated stochastic time series
(white noise), the values of r, will be near zero. Positive values of r,
indicate persistence while negative values indicate antipersistence. The
power spectrum of a time series is the Fourier transform of the autocorre-
lation function. The power spectrum, a measure of long-range persistence
and antipersistence, is used frequently in the analysis of geophysical time
series and will be discussed in detail in Sections 2 and 3.

Note that in Egs. (2) and (5), some authors use 7 and N instead of
(T — 5) and (N — k); there is little difference for values of k less than
about N /4. For a discussion of the two different quantities, see Jenkins
and Watts (1968) and Section 6.2 in Percival and Walden (1993). We use
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(T — s) and (N — k) to maintain the same nomenclature that is used with
the definition of semivariograms introduced later in this section.

One important aspect of time series is the question of stationarity.
Broadly speaking, a time series is said to be stationary if there are no
systematic changes in the mean (i.e., no trend), no systematic changes in
variance, and if periodic components have been removed (Chatfield, 1996).
For this article, we use the concept of weak stationarity, where the mean
and the variance must be independent of the length of the interval
considered. In weak stationarity, higher moments are not considered. If
the mean or the variance vary with the length of the interval considered,
then the time series is nonstationary. ’

It is inappropriate to use correlograms for nonstationary time series,
because the autocorrelation function, r, has the mean, y, in its definition.
An alternative way to measure long-range correlations, which is valid for
both stationary and nonstationary time series, is the semivariogram vy. Like
the autocorrelation function, the semivariogram measures the dependence
of values in a time series that are separated by a lag, s. The variogram was
developed by a French professor of mining and engineering, Matheron
(1962, 1963a, b), for the analysis of ore reserves and their distribution. The
variogram is a quantification of the mean-square successive differences
within a time series taken at increasing lag, s; i.e., how much the values on
average vary from one another, hence the term “variogram.” Note that the
variogram is not a measure of the variance (second moment), V, of a time
series, but rather the variance of increments within the time series.
Geostatisticians (e.g., Journel and Huijbregts, 1978) generally use half of
the variogram, called the semivariogram. There are many examples of the
use of the semivariogram in geology and geophysics; for example, Oliver
and Webster (1986) have applied semivariograms to landforms and soil
properties, and Hewett (1986), along with a review of many other fractal
techniques, uses semivariograms for the analysis of fluid transport.

For a continuous time series, the semivariogram, y(s), is given by

Iyt +5) — y(OF dt. (7

Note that neither the mean, y, nor the variance, V, is used in this
definition. For a discrete time series we have

1
7]( 2(N k) Z (yn+k * (8)

Increasing values of s or k correspond to increasing lag. The plot of y,vs s
or ¥, vs k is known as a semivariogram. For a stationary time series, the
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semivariogram, 7y,, and the autocorrelation function, r,, are related. The
mean of the time series, y, can be added and subtracted within the
summation in Eq. (8) to give

Y = m Z [(Ypirx =) — (y, =PI -(9)

When expanded this gives

1 o N-k o
Vi = m[ Y Ppai =) + ngl (yp =3
(10)
Nk
= 2 20k — V), —)")}-
n=1

Provided the time series is stationary, two of the terms in Eq. (10) are
equivalent to the variance in Eq. (6), giving

1 N—k
Ye = V- (N k) E (yn+k 5’)()’,, _5’) (11)

Substituting the definition for ¢, from Eq. (5) into Eq. (11) and using the
definitions of ¢, from Eq. (6) and r, from Eq. (4), we find

Y=0W=-¢)= (V—V%) =VA-r). (12)
0

For an uncorrelated time series we have r, = 0 and y, = V. In Section 3.4,
we use semivariograms to quantify some nonstationary time series that
exhibit long-range persistence; the quantification will give us a measure of
the strength of the persistence.

Both the autocorrelation function and semivariograms have been ap-
plied by a number of authors to synthetic time series that exhibit long-
range persistence, similar to the synthetic time series used in this paper.
Schepers et al. (1992) applied the autocorrelation function to synthetic
stationary time series. Gallant er al. (1994) applied the semivariogram to
both stationary and nonstationary synthetic time series. Beran (1992, 1994)
has an extensive discussion of the relationship between the autocorrelation
function and long-range persistence; in addition, he gives extensive refer-
ences to applications.
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1.5. Self-Affine Fractals

Before continuing our discussion of time series, we introduce the con-
cept of the self-affine fractal and the Hausdorff exponent. Extensive work
has been done in this area over the last two decades (Mandelbrot, 1982,
1985, 1986; Feder, 1988; Meakin, 1988; Korvin, 1992; Hastings and Sugl-
hara, 1993; Schmittbuhl et al., 1995; Turcotte, 1997).

The concept of fractals finds its origins in the concept of scale invari-
ance. In the geological sciences, there are many examples of scale invari-
ance. For example, a photograph of a geological outcrop requires a scale,
such as a person or a rock hammer, in order for the viewer to have an idea
of how big or how small the folds, layers of rocks, and other structures are
in the outcrop. Mandelbrot (1967) introduced the concept of fractals by
examining the length of the coastline of Britain with different-sized mea-
suring rods, and found a power-law dependence (scale invariance) of the
total length of the coastline on the length of the measuring rod. In
addition, a distribution of objects is fractal if the frequency—size distribu-
tion satisfies a power law. Examples include the frequency-size distribu-
tions of faults, earthquakes, volcanic eruptions, mineral deposits, and oil
fields. We examine first the concept of self-similar fractals and then the
more general case of self-affine fractals.

A statistically self-similar fractal is by definition isotropic. In two dimen- -
. sions defined by x- and y-coordinates, the results do not depend on the
geometrical orientation of the x- and y-axes. A formal definition of a
self-similar fractal in two-dimensional xy-space is that f(rx, ry) is statisti-
cally similar to f(x, y), where r is a scaling factor. This result is quantified
by the fractal relation (Turcotte, 1997)

N, ~r’P, (13)

] 4

where the number of objects, N,, and the characteristic linear dimension,
r;, are related by a power law, and the constant exponent, D, is the fractal
dimension. There are also formal limits on the acceptable values of D.
Fractals on a line have 0 < D < 1, fractals on a surface have 0 < D < 2,
and fractals in a volume have 0 < D < 3.

One method for determining the fractal dimension of a rocky coastline
is to determine the number of boxes required to cover a map of the
coastline. If the number of boxes with dimension r, required to cover the
rocky coastline is N, and if the number of boxes with dimension 7,
required to cover the rocky coastline is N,, then the rocky coastline is a
self-similar fractal if N, and N, satisfy Eq. (13), i.e., (N,/N,) ~ (r,/r,)"P.
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A statistically self-affine fractal is generally not isotropic; the x- and
y-coordinates can scale differently. The boxes used to quantify self-affine
fractal are rectangular instead of square. A definition of a self-affine
fractal (Mandelbrot, 1982; Voss, 1985¢) in a two-dimensional xy-space is

f(rx, rfiey) is statistically similar to f(x, y), (14)

where x and y are variables, r is a scaling factor, and Ha, the Hausdorff
exponent, IS a constant.

For the special case where Ha = 1, the self-affine fractal is also self-
similar. Topography along a linear track is usually an example of a
naturally occurring, self-affine fractal. Consider the mean of many A#h,
where A#h is the difference in elevation between pairs of points separated
by a horizontal distance L. Self-affinity of topography implies that

AR(L) ~ LH9, (15)

where Ha is again the Hausdorff exponent. Ahnert (1984) found that
actual topography is in very good agreement with Eq. (15) taking Ha =
0.6 £ 0.1.

A deterministic construction of a self-affine fractal is illustrated in Fig. 2
(Mandelbrot, 1985; Section 3.3 of Barabasi and Stanley, 1995). In this
deterministic construction, a rectangular region with width r; and arbitrary
height &, is considered. Note that the aspect ratio of this rectangle is
irrelevant since the units of r, and h, are arbitrary. At all orders this
fractal construction will begin at (0,0) and end at (r,, h,). At zero order,
Fig. 2a, a straight line is drawn between (0,0) and (r,, h,). At first order,
Fig. 2b, the self-affine fractal is defined by dividing the horizontal coordi-
nate into four equal parts so that r; =r,/4 and dividing the vertical
coordinate into two equal parts so that h, = h,/2. Connecting the points
0,0), (ry/4, hy/2), (ry/2,0), and (ry, h,) gives the generator that will be
used for second and higher orders in this fractal construction, where the
generator will replace each straight-line segment of preceding orders.

In the second-order fractal illustrated in Fig. 2c, the generator has
replaced each straight-line segment in the first-order fractal. At second
order, the horizontal coordinate has been divided into sixteen equal parts
so that r, = r, /16, and the vertical coordinate has been divided into four
equal parts so that h, = hy/4. In terms of the formal definition of a
self-affine fractal given in Eq. (14), f(x/4,y/2) is statistically similar to
f(x, y); at each step the horizontal coordinate has been divided into four
equal parts and the vertical coordinate into two equal parts. Thus the
Hausdorff exponent can be obtained from r = } and r¥° = 1. This gives
(3)H% = 1 with the result Ha = ;. This construction of a self-affine fractal
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°0 (a) X r, )
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(e)

FiG. 2. Illustration of a deterministic self-affine fractal. (a) At zero order, a rectangular
region of width r, and height h is considered. A straight-line segment extends from (0, 0) to
(rg, hy). (b) The first-order self-affine fractal is given. This construction also serves as the
generator for higher-order fractals. (c) Each first-order straight-line segment in Fig. 2b is
replaced by the rescaled generator from Fig. 2b to give the second-order fractal construction.
(d) Each second-order straight-line segment in Fig. 2c is replaced by the rescaled generator
from Fig. 2b to give the third order fractal. (e} The construction is carried out to sixth order.

is extended to third order in Fig. 2d, where the generator has replaced
each straight-line segment in the second-order fractal. In Fig. 2e, we
extend this construction to sixth order. Note that this sixth-order construc-
tion looks very similar to a profile of topography. As we see later, this
deterministic self-affine fractal construction has the same long-range per-
sistence characteristics as both topography and Brownian motions.
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To determine the fractal dimension of this self-affine fractal we use the
box-counting method (Voss, 1988). For self-similar fractals we use square
‘boxes, but for self-affine fractals it is necessary to use rectangular boxes.
At zero order consider the single rectangular box with width r, and height
hy; thus N; = 1. At first order we have r; = ry/4, so we will use rescaled
rectangular boxes with width r, /4 and height h,/4. The rescaled box has
the same aspect ratio as the original box. We wish to determine how many
of these boxes are required to cover the first-order fractal illustrated in
Fig. 2b. This is illustrated in Fig. 3, where we find N, = 8. Using Eq. (13),
we find

_ log(N,/Ny)  log(8)  3log(2) 3 s 16
" log(ry/ry)  log4)  2log 2 7

The fractal dimension, D, can be an integer, in which case it is equivalent
to a Euclidean dimension. Euclidean dimensions of a point, line, square,
and cube are, respectively, 0, 1, 2, and 3. In general, D is not integer, but
some fraction between integers; this is the origin of the word fractal. The
fractal dimension D = 1.5 from Eq. (16) is intermediate between D = 1.0
for a straight line and D = 2.0 for a square.

1.6. Gaussian White Noises and Brownian Motions

The classic example of a stationary, discrete time series is a Gaussian
white noise. Consider a variable ¢,, n = 1,2,3,..., N, with a Gaussian

S .
1 1
0 2% z'o ol fo
X
F1G. 3. Box-counting technique applied to the first-order self-affine fractal given in Fig. 2b.
To determine its fractal dimension, rectangular boxes with width r, = r,/4 and height
hy = hy/4 are used. This results in N, = 8 shaded boxes (out of 16) covering the fractal

construction. Noting that N, = 1 box for the single box of width r, and height A, we find the
fractal dimension D = 1.5.
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distribution of values that are uncorrelated and random; the distribution
has zero mean and variance V, = g,°, where o, is the standard deviation
of the &,. The time series is stationary, so the variance does not vary for
different subintervals. A white noise is a time series constructed with a set
of y, = ¢,. Four examples of synthetic Gaussian white noises are given in
Fig. 4a. In each case, V, = 1 and a different set of random numbers has
been used. ‘

The classic example of a nonstationary time series is a Brownian motion,
obtained by summing a Gaussian white-noise sequence. For an excellent
review of the theory and history of the Brownian motion, see Wang and
Uhlenbeck (1945). The values in a Brownian-motion time series y, are
given by

Vo= ) &. (17)
i=1

The white-noise sequences shown in Fig. 4a have been summed to give the
four Brownian motions illustrated in Fig. 4b.

The variance of a Brownian motion, after n values of the white noise
have been summed, is given by
V., =¢o’n, | (18)

n

where a,> =V, is the variance of the white-noise sequence. The corre-

sponding standard deviation of the motion is given by
o, = a,n'/? (19)

This result is compared with each of the four Brownian motions illustrated
in Fig. 4b.

In Eq. (14), the Hausdorff exponent, Ha, was introduced in the context
of the self-affine scaling relation, where f(rx, r°y) is statistically similar to
f(x, y), and the vertical and horizontal coordinates can scale differently.
The standard deviation of a self-affine time series taken over n values is
given by g,. We can associate o, with the y-coordinate of the self-affine
relation, and the variable n with the x-coordinate. Then the dependence
of the standard deviation, o,, on n can be expressed in terms of the
Hausdorff exponent, Ha, (Mandelbrot and Van Ness, 1968), according to

o, ~ nHe, (20)
with the corresponding variance given by
V, ~ n?te, (21)

For a white noise, g, is independent of n; thus Ha = 0. For any stationary
time series, o, must be independent of n, by definition; thus again
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Fi1G. 4. (a) Four examples of Gaussian white noises. Successive values are chosen randomly
from a Gaussian distribution with zero mean (§ = 0) and unit variance (V = 1). Adjacent
values are not correlated. (b) The four white noises in (a) are summed using Eq. (17) to give
four Brownian motions. In each case, the envelope given by the standard deviation after n
steps, Eq. (19), is included.
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ta|—

Ha = 0. From Egs. (19) and (20) we find Ha = 5 for a Brownian motion.
We also obtained Ha = 1 for the deterministic self-affine fractal illus-
trated in Fig. 2.

In Section 1.5, we gave an example of a deterministic fractal construc-
tion with a Hausdorff exponent of Ha = 0.5 and calculated this construc-
tion to have a self-affine fractal dimension of D = 1.5. We now obtain a
general relation (Voss, 1988), one that can be applied to self-affine time
series, between the Hausdorff exponent, Ha, and the self-affine fractal
dimension, D. A derivation of the fractal dimension of a self-affine time
series can be obtained by using the box-counting method. We first intro-
duce a rectangular reference “box” with a width T; the height of the
reference “box” is o7 = o(T), where o(T) is the standard deviation of
the signal y over the interval T. Since o (T) is in general a function of T,
we are studying, by definition, nonstationary processes (see Section 1.4);
the standard deviation changes with the interval considered. The units of
the signal y, and therefore the units of the signal’s standard deviation o,
can differ from the units of the interval T. Therefore, the aspect ratio
(width to height = T/o;) of the box can have arbitrary units. As an
example, we consider the sixth-order deterministic self-affine fractal con-
struction illustrated in Fig. 2e. This is analogous to a time series, with y
varying from 0 to A, over the interval 0 to r,. The standard deviation of
this series of data (Fig. 5a) over the interval T = r, is calculated to be
or = hy/4. The reference “box” for this example (Fig. 5b) has a width of
T = r, and a height of o, = h;/4.

We next divide the interval T into N equal-sized smaller intervals with
length 7 = T/N. The standard deviation of the signal y over each of these
smaller intervals will be approximately the same, and is given by o, = o (7).
In our example (Fig. 5a), we let 7 = T/4 = r,/4; the standard deviation of
the signal y over each of the smaller intervals 7 is calculated to be
o, = h,/8. We then introduce smaller rescaled boxes of width 7= T/N
and height oy = o;/N. These boxes have the same aspect ratio as the
reference box. However, the standard deviation of the signal y over the
interval 7, o, = o(7), is not necessarily equal to oy = o;/N. In our
example (Fig. 5b), we divide our reference box into scaled smaller boxes
with width 7 = T/4 = ry,/4 and height oy = or/4 = hy/16.

We determine the number of scaled smaller boxes N, of size 7 by oy
that are required to cover the area of width T and height o,. In our
example (Fig. 5b), we find N, = 8 boxes. This construction is generalized
by writing

(22)
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FIG. 5. (a) The sixth-order deterministic self-affine fractal construction from Fig. 2e is
shown with the standard deviations calculated for the entire series (T = r;) and for four
equal smaller subdivisions of the series (7 = ry/4). (b) Box counting for the standard
deviations. The reference “box” has width T, the length of the original series, and height o,
the standard deviation for the entire series. The reference box is scaled by 4 in width and
height, giving smaller boxes with width 7= T/4 and height oy = or/4. The number of
smaller scaled boxes (7 by oy) required to cover an area T by o,, where o, is the standard
deviation of the series over each smaller subinterval 7, is N, = 8.

However, from Eq. (20) we have

o(T) ~ THe, (23)

SO we can write

or o) o(T)

o, o(r) o(T/N) _ (T;N)H“ _ 1 o0
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and combining Egs. (22) and (24) gives

T 2—Ha
v (7 e
T

TS
In our example (Fig. 5), N, = 8, and T/7 = 4, i.e., (8) = (4>~ giving
(2 — Ha) = 1.5, thus Ha = 0.5. Equation (25) is a fractal relation: the
number of boxes, N,, is inversely proportional to the size of the subinter-
val considered, raised to a constant power (2 — Ha). The interval over
which the signal y is considered, T, is a constant. We can extend this
analysis to smaller intervals of 7, and at each different subinterval consid-
ered, 7,, there will be a corresponding N,; boxes. Equation (25) becomes

T 2-Ha
N, = (_) - 26)

7

If we compare this to the power-law relation from Eq. (13) and associate T,
with r; and N,; with N,, then

Ha =2 - D. 27D

For a Brownian motion, Ha = 3 and we have D = 3. We obtained the

same result for our deterministic self-affine fractal example illustrated in
Fig. 2: Ha = % and D = 3. Since for the self-affine fractals illustrated
here, the value for D is always between 1 (a line) and 2 (a square), Ha for
a self-affine fractal is between 0 and 1. We have derived here a general
equation for Ha as a function of D. Self-affine fractal time series,
1 < D < 2, are a subset of self-affine time series. A smooth time series
(low frequencies dominate over high frequencies) approaches a straight
line so that it has a fractal dimension near 1. A very rough time series
(with a large high-frequency component) becomes area filling and has a
fractal dimension near 2. '

An alternative measure of a self-affine time series is that the semivari-
ogram, y(s) or vy, from Egs. (7) or (8), scales with s or k, the lag, such that
(Mandelbrot and Van Ness, 1968)

y(s) ~ s2Ha (28)
and
Ve ~ k2Ha, (29)

where, again, Ha is the Hausdorff exponent. The dependence of the
semivariogram on the lag is directly analogous to the dependence of the
variance of a time series, V,,, on the length of the time series, n, as given in
Eq. (21). We verify Egs. (28) and (29) when we determine the semivari-
ograms of synthetic fractional motions in Section 3.4.
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The Hausdorff exponent, Ha, and the fractal dimension, D, are both
measures of the strength of persistence for a subclass of self-affine time
series, for which 0 < Ha <1 (1 < D < 2). There are a number of other
measures for the strength of persistence, discussed in this paper, which can
be used to calculate the strength of persistence for self-affine time series
that do not fall in the range where Ha and D are useful. General
discussions of methods used to estimate Ha, D, and other measures of the
persistence of time series have been given by Korvin (1992), Schepers et al.
(1992), Schmittbuhl et al. (1995), and Hall (1997).

2. SPECTRAL ANALYSIS
2.1. The Fourier Transform

Spectral analysis is a technique that estimates the spectral density
function, or spectrum, of a time series. In the past, most spectral analyses
were concerned with finding periodicities in data; today, they are widely
used to obtain a complete spectrum over a wide range of frequencies. One
standard approach is to carry out a Fourier transform on a time series.
Fourier analysis is essentially concerned with approximating a function by
a sum of sine and cosine terms. A large body of literature has been written
on Fourier analysis and spectral analysis in general; comprehensive sum-
maries have been given by Priestley (1981) and Percival and Walden
(1993). Press et al. (1994) provide an easy to understand basic theory
and computational implementation of most techniques found in spectral
analysis.

A time series can be prescribed either in the time domain as y(¢) or in
the frequency domain in terms of the Fourier transform, Y(f), where f is
the frequency. The quantity Y(f) is generally a complex number indicating
both the amplitude and the phase of the signal. We first begin with the
general case where g(¢) is a continuous function that satisfies g(¢) =
gt +kT), k=0,+1,+2,+£3,..., and the function g(¢) is defined
for all t, —o <t < + If T is the smallest number that satisfies g(¢) =
g(¢ + kT), then the function g(¢) is periodic with a period T. If there is no
value of k (other than k = 0) for which g(¢) = g(¢ + kT) holds, then g(¢)
is nonperiodic. The Fourier transform, G(f), of the periodic continuous
function, g(¢), is defined as

G(f) = | " g(£)e?™if gy, (30)
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The complementary inverse Fourier transform is then given by
gt) = [ G(pe 2/ df. (31)

The exponents in Egs. (30) and (31) represent an infinite number of sine
and cosine functions, with e 27" = cos(27ft) + i sin(27ft). The i in the
exponents is the square root of —1. One goes between g(t) and G(f) by
the use of the Fourier transform equations given in Egs. (30) and (31). The
Fourier transform, G(f), of the time series represents the contribution of
each sine and cosine function at each frequency, and is commonly called
the Fourier spectrum of g(z). |

A time series with three periodic components at periods T, T/2, and
T /5, will have spikes in its Fourier spectrum at the frequencies f=1/T,
2/T,and 5/T. If T has the units of seconds, then f will have the units of
cycles per second. A white noise has no embedded frequencies and its
Fourier spectrum is approximately flat. We use frequency, f, instead of the
alternative angular frequency, w = 27 f, because f is more informative for
the time series we consider in this article.

For this article, we are interested in stochastic time series that are
nonperiodic and defined over a finite interval, 0 < ¢ < T. For ¢ outside this
interval (t < 0 and ¢ > T), we require y(¢) = 0. A periodic time series is
normally composed of a finite number of subperiods, corresponding to a
finite number of spikes at discrete frequencies in the resulting Fourier
spectrum. A nonperiodic function has no fixed period or subperiods and
instead can be viewed as being composed of an infinite number of
subperiods in the time domain or a continuous and infinite range of
frequencies in the Fourier frequency domain. We use the notation Y(f, T)
when taking the Fourier transform of y(¢) over the interval 0 < ¢t < T. For
a stochastic nonperiodic time series, the Fourier transform pair given by
Egs. (30) and (31) becomes (Priestley, 1981)

Y(f,T) = [y di (32)
0 .
and

y(®) = [ Y(f,T)e ?"F" df. (33)
In the time domain, Eq. (32), the integral is from 0 < ¢ < T, since y(¢t) = 0
outside this range; however, in the frequency domain, Eq. (33), there is a
continuous range of frequencies possible, — < f < +o, since we are
dealing with a nonperiodic function. In Eq. (32) we could have defined y(¢)
to range from —7T/2 <t < T/2 (commonly done in many texts) instead of
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0 <t < T; however, the result in Eq. (32) would be the same except that
the integral would be —7 /2 to T/2 instead of 0 to 7. The units of the
Fourier transform depend on the units of the time series y(¢). For
example, if the units for y(¢) are in amperes and the units for ¢ in seconds,
then the Fourier transform, Y(f, T), has the units of ampere-second, and
the frequency, f, has the units of second ™.

The concepts described above are easxly modified for discrete time
series. Consider the discrete time series, y,, n = 1,2,3,..., N, where the
total time interval, T, has been divided into N equal intervals of length 6,
i.e., 8 = T/N. The units of & are those of T; N is dimensionless. Many
authors do not include & in their studies of discrete time series; they
assume & = 1 time unit. We include & in the equations that follow so that
the units will be analogous to the equations given for continuous time
series. If we approximate the integrals given in Egs. (32) and (33), then the
discrete Fourier transform (DFT) applied to the discrete time series, y,, is
(Priestley, 1981)

N
Y, =8) ye”™N m=1,2,3,...,N, (34)

m
n=1

and the inverse DFT is

1 X .
y, = 'ﬁé Z Yme-—Z'mnM/N’ m = 1’2,3,,,,,N, (35)
m=1

There are now discrete values in both the time and frequency domains.
Many variations on the DFT pairs exist (see, e.g., Percival and Walden,
1993, for a complete discussion). Some authors let the running variable in
Egs. (34) and (35) vary from 0 to (N — 1). For consistency with the rest of
this article, we allow the index to run from 1 to N; the Fourier pairs are
equivalent for the two different running indices (Priestley, 1981). The
Fourier coefficients, Y,,, m = 1,2,3,..., N, are associated with frequencies
f.. = m/(N8). As before, the Fourier coefficients, Y,,, are complex num-
bers with real and imaginary parts, Y,, = a,, + ib,,. The complex modulus

of Y, is
Y, | = /(a2 + b2) . (36)
The Fourier coefficients are symmetric such that
1Y, | = Yy_ml (37)

For example, if N = 4096, then |Y;| = |Y,49s), |Y5| = |Y,004); €tc. The highest
frequency resolvable using Fourier analysis of a discrete time series, y,,
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n=123,...,N, is the frequency with a period of 2 time units, 25. Any
spectral components of a higher frequency cannot be distinguished from
lower-frequency components; this is aliasing. Consequently, the highest
frequency that we can resolve in Fourier space will be f,, = 0.5, where
f., = m/(N&); the unique Fourier coefficients will be given by Y,,, m =
1,2,3,...,N/2. :

2.2. The Power-Spectral Density

The modulus of the complex number Y(f) = (a + bi) is given by
IY(f)I = (a® + b*)'/2. In the frequency domain, a measure of the energy
distribution of a signal as a function of frequency is |Y(f,T)I>. As T
approaches infinity, the total energy diverges and also approaches infinity.
Thus it is standard practice to convert the energy to power; that is, we
divide |Y(f,T)I* by T. The power-spectral density function of y(r) is
defined (Priestley, 1981) as

S(f) = lim

T— <

7 (38)

{ lY(f, DI }
The function S(f) in Eq. (38) is for the limit as T goes to infinity. For a
discrete time series, one calculates an estimate of S(f). A plot of this
estimate of S(f) against f is known as a periodogram. In terms of units, if
y(¢) is in amperes, ¢ (and T') in seconds, and Y(f,T) in ampere-seconds,
then |Y(f, T)I* has the units of ampere?second?, and the power-spectral
distribution function, S(f), has the units of ampere?-second.

The quantity S(f)df in a periodogram represents the contribution to
the total power from those components in the time series, y(¢z), whose
frequencies lie in the interval between f and f + df. For a time series that
is self-affine, the power-spectral density is defined (e.g., Voss, 1985a) to
have a power-law dependence on frequency

S(f) ~f*. (39)

This relation also defines a self-affine fractal in the same way that
N. ~r7P, Eq. (13), defines a self-similar fractal. The implications of
Eq. (39) will be a major focus of this article. Because of the power-law
dependence of S(f) on f, self-affine time series with B > 0 exhibit
long-range persistence, and self-affine time series with B < 0 exhibit
long-range antipersistence. The value of B, the slope of the best-fit
straight line to log(S(f)) vs log(f), is a measure of the strength of

persistence or antipersistence in a time series.
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The power-spectral density function, §,,, for a discrete time series, y,,
can be written as

Né 2

The factor of 2 in Eq. (40) is a result of summing Y, from m = 1to N/2
instead of N. For a discrete self-affine time series, the power-spectral
density, S,,, again has a power-law dependence on frequency

m
N-—-x

2|y, |° N
S, = lim , m=123,..., —. (40)

S m e 1,2,3 ad (41)
m~(}%) ’ m = g by ,...,?. |

This is equivalent to

Sp ~ B, m=1,2,3,...,g. (42)
As an example, we obtain the discrete power-spectral density for two
discrete time series. We use the fast Fourier transform (e.g., Press et al.,
1994), an algorithm that is commonly used to speed up the computation
of the discrete Fourier transform. The first time series is a white noise
(Fig. 6a), where the values are randomly chosen from a Gaussian (normal)
distribution with mean y = 0 and variance V' = 1. The second time series
is the corresponding Brownian motion (Fig. 6¢) obtained by summing the
white noise given in Fig. 6a using Eq. (17). The Brownian motion has a
mean y = —23 and variance V = 950. Both time series have N = 4096
points.

The two resulting periodograms, S,, plotted as a function of f, with
log-log scaling, are shown in Figs. 6b, d. Plotted on log-log axes, there are
many more values of §,, at the high frequencies (f,, large) than at low
frequencies. Therefore, to obtain the best-fit straight line to log(S,,)
vs log(f,), we bin the data. We first divide the f,, axis into equal
log-increments, then for each log(f,,) bin calculate the average of all the
log(S,,) that are in that bin. The best-fit least-squares straight line is then
calculated for the resulting average(log(S,,)) as a function of the center of
each log(f,,) bin; these values are plotted as circles in Figs. 6b, d, with the
best-fit straight line to these circles shown.

We use Bpg to indicate the negative of the slope of the best-fit straight
line when applying power-spectral analysis, Eq. (42). Because the white
noise is a stationary uncorrelated time series, we expect the power spec-
trum to be essentially flat; i.e., all frequencies are present in equal
amounts. For the example given in Fig. 6b we find Bps = —0.03, close to
the theoretical value of 8 = 0. The Brownian motion (Fig. 6¢) is a non-
stationary signal that is much “smoother” than the white noise (Fig. 6a).
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FIG. 6. Two examples of power-spectral analysis. Two time series are given in (a) and (c)
with their respective periodograms given in (b) and (d). The first time series (a) is a white
noise with N = 4096 points, and was obtained by randomly choosing values from a Gaussian
distribution of values with a mean, y = 0, and a variance, ¥ = 1. The second time series (c) is
a Brownian motion obtained by summing the white noise in (a); it has a mean, y = —23, and
a variance, V' = 950. The Fourier power spectrum (periodograms) for the white noise and
Brownian motion are shown, respectively, in (b) and (d). In both periodograms, the power
spectral-density function, S,,, from Eq. (40) is given as a function of frequency f,, = m/N,
where m = 1,2,3,..., N/2. The circles are obtained by averaging the log(S,,) into equal
log(f,,) bins. In the log-log plots, the value of Bpg is the negative of the slope of the best-fit
least-squares straight line to the circles. The white noise has Bps = 0, and the Brownian
motion has Bpg = 2.
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F1G. 6. Continued.

Thus, we expect that the low frequencies (f,, small) will be dominant over
the high frequencies (f,, large), and that the slope of the best-fit straight
line will be negative and B positive. This is found to be true; the Brownian
motion has a slope —1.97, i.e., Bps = 1.97.

We found that a Brownian motion (a summed white noise) has Bps = 2
and a white noise has 8,5 = 0; the summed time series has a B¢ that is
approximately +2 larger than the nonsummed time series. This can be
generalized to all self-affine time series: summing a self-affine time series
shifts the theoretical power-spectral density exponent, 8, by +2. We can
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also reverse the process; the differences in adjacent values (the first
differences) of a Brownian motion result in a white noise. This can also be
generalized to all self-affine time series: taking the first differences shifts
the theoretical power-spectral density exponent, 8, by —2. We will now
show that this is true by considering the derivative (first difference) of a
self-affine time series. i

The self-affine time series, y(¢), has a corresponding Fourier transform,
Y(f,T), defined by Eq. (32) and a power-spectral density function. S(f),
defined by Eq. (38). The derivative of y(z), y'(¢), with its corresponding
inverse Fourier transform from Eq. (33), is given by

d t = o :
y'(t) = % = Y'(f,T)e *™I" df. (43)

The corresponding Fourier transform from Eq. (32) of y'(¢) is
Y'(f,T) = [y(Demif ar. (44)
0

Taking the derivative of both sides of Eq. (33) gives

dy(t)

d =
yr(t) = — = —[ Y(f’ T)e—21rift df
dt dt '[—cc (45)

- /°° (=2mif )Y(f, T)e 271" df.

Comparing the right-hand sides of Egs. (43) and (45), the integrands must
be equal; therefore,

Y'(f,T) = (=2mif YY(f,T). (46)

Using Eq. (38), the power-spectral density function, S'(f), corresponding
to y'(¢) is

S'(f) = lim

T—-x<

= (47’ f2)S(f), (47)

I(=27if)Y(f, T)I
T
where S(f) is the power-spectral density function, Eq. (38), of y(¢).

Finally, from Eq. (39), where the power-spectral density function has a
power-law dependence on frequency, we can write

B~ @r?f)fk, (48)
which simplifies to

fE e (49)
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and
B '=8—-2. : (50)

If the self-affine time series, y(¢), is characterized by a power-spectral
exponent, B, then the first difference (derivative) of that time series is
characterized by a power-spectral exponent of 8 — 2. We can use “the
same logic as that shown in Egs. (43) through (50) to show that if y(¢) has
a characteristic 8, then the running sum (integral) of y(¢) is characterized
by a power-spectral exponent of B + 2. Thus since B = 0 for a white
noise, we expect 8 = 2 for a Brownian motion, close to the value found. In
subsequent sections, we will use this summing and differencing property as
part of the construction of a variety of synthetic self-affine time series.

The power-spectral density function can also be related to other statisti-
cal measures of time series. We introduced the autocorrelation function
r, = c,/c, in Eq. (4), with ¢, given by Eq. (5) and ¢, (the variance) by
Eq. (6). The autocorrelation function is directly related to the power-
spectral density (Box et al., 1994) by

— — — , = . ’ ’...’ .

=1
(51)

The power-spectral density is the Fourier transform of c,. There are no
sine components in Eq. (51) because the autocorrelation function is an
even function (symmetric around the y axis). There is a (1 — (k/N)) in
Eq. (51) because of the way we defined the autocorrelation function in Eq.
(5); note that in many texts this factor would not be included in Eq. (51).
The autocorrelation function and the power-spectral density are equiva-
lent ways of describing a stochastic process; both contain the same infor-
mation but express it in different ways. In this article, we use the power-
spectral density in order to quantify the persistence in time series.

We next relate the power-spectral density function, S,,, to the variance,
Vy, of a discrete time series, y,, n = 1,2,3,..., N. The successive values
of the time series y, are prescribed at equal increments of time, §. Using
Parseval’s theorem (e.g., Percival and Walden, 1993), we write

1 N 5 2 N/2 ) 2 N/2
Vy=— -5’ = V== ¥ S, (52
N N Z (yn y) N262 mgll ml N5 mgl m (5 )

n=1

The variance, V), is proportional to the summation of S,,, the power-spec-
tral density function. Parseval’s theorem states that the total power in a
signal is the same whether it is computed in the time domain or the



28 BRUCE D. MALAMUD AND DONALD L. TURCOTTE

frequency domain. Note that many authors take y = 0 in writing Parseval’s
theorem. Equation (52) gives the result that the variance of a discrete time
series of length N is proportional to the sum of the power-spectral density
coefficients, S,,.

2.3. The Relation of 8, Ha, and D

Using a derivation from Voss (1985c), we now obtain a relationship
between the power 3, the Hausdorff exponent Ha, and the fractal dimen-
sion D. Consider a time series y,(¢) specified over the interval 0 < ¢ < rT.
Next consider two time series that are based on y,(¢): y (rt)with0 <t < T,
and y,(¢) also with 0 < ¢ < T. These are related by

y,(t) = y(rt), 0<t<T, (53)

rHa
where Ha is the Hausdorff exponent. This process is illustrated in Fig. 7
for r = 0.2, Ha = 0.5, and T = 1.0. In Fig. 7a, we show a time series y,(t),
0 <t < T, with the area under the curve of y,(¢) shaded from 0 < < rT.
Figure 7b shows y,(rt) from 0 < ¢ < T; i.e., the time axis of y,(¢) in Fig. 7a
has been “stretched out” in Fig. 7b by a factor of (1/r) = 5. Finally, in
Fig. 7c, we have stretched the amplitude of y,(r¢) by a factor of (1/r)""¢
= 5% = 2.32. The fundamental property of a self-affine time series is that
y,(t) taken over the time period rT (shaded part in Fig. 7a) has the same
statistical properties as y,(¢) taken over the time period T (shaded part in
Fig. 7c), with y,(rt) and y,(2) related by Eq. (53).

The Fourier transform, Eq. (32), of y,(¢) taken over T has a continuous
range of frequencies, f, and is given by

Y,(f,T) = [0 Ty, ()e?™f dy. (54)

Substituting Eq. (53) and making the change of variable ¢’ = rt, we obtain

Ty (') L dr
Y,(f,T) = fo —g et —. (55)

Simplifying Eq. (55), substituting f' = f/r and T’ = T/r into Eq. (55), and
using Eq. (32), we have

! r 1 2mif't g 1 r o
Yz(f,T) = ;‘m/() yl(t e dt' = -'.Ha_+lY1(f ,T'). (56)
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FI1G. 7. Rescaling a self-affine time series. (a) A Brownian motion (Ha = 0.5) is given by
the time series y,(t), with 0 <¢ < T. The Brownian motion has a Hausdorff exponent,
Ha = 0.5, and was obtained by summing a Gaussian white noise. For this example, we let
r=0.2 and T = 1.0. The area under the curve of y,(¢) is shaded from 0 < ¢ < rT. (b) The
time axis of y,(¢), the time series shown in Fig. 7a, is “stretched” by a factor of (1/r) = 5.
The new time series, y,(7), is shown for 0 < ¢ < T. The shaded area represents the part of
y,(t) from Fig. 7a that was expanded. The “A” in all three figures is to aid the eye in following
the part of the time series that is rescaled from step to step. (c) The amplitude of the
“stretched” time series from Fig. 7b, y(r1), is now expanded by a factor of (1,/r)~#¢ = 50° =
2.32, giving a new time series y,(¢), 0 <t < T. Since the original time series, y,(t), was
self-affine, the new time series, y,(¢), has the same statistical properties as the original time
series.
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From the definition of the power-spectral density, Eq. (38), and using it in
the right-hand side of Eq. (56), we obtain

1 AL (1] 1 R
SZ(f)=}Ln}c{—flyz(f’T)l}=}ﬂ{'f F,—a:'le(f,T)l} (57)
Simplifying Eq. (57), substituting 7” = T /r, and again comparing with the
definition of the power-spectral density, Eq. (38), we arrive at ‘

1 1 1
20D =z Jim | VTP = sy 69

We next use the fact that the power-spectral density has a power-law
dependence on frequency in Eq. (39) and assume S,(f) =Af # and
S,(f') = A(f')"B, where A is a constant of proportionality. Then Eq. (58)
becomes

A(f)7°
Af_B = —r?ﬁa—_'_—l—. (59)
The frequency f' = f/r, so
| 1 £
fr= p2Ha+1 (;) ’ (60)
which simplifies to
B
r

For the right-hand side of Eq. (61) to be 1, and from the fact that
Ha = 2 — D, Eq. (27), it follows that

B=2Ha+1=5-2D. (62)

For a self-affine fractal (0 < Ha < 1,1 <D <2)we have 1 < 8 < 3. For
a Brownian motion with Ha = § (D = 3) we have 8 = 2. Although Ha,
the Hausdorff exponent, is only applicable for self-affine time series from
0 < Ha < 1, the spectral-power exponent, B, is a measure of the strength
of persistence which is valid for all B, not just 1 < 8 < 3. For self-affine
time series, a white noise has 8 = 0, an antipersistent time series has
B <0, and a persistent time series has B > 0. Brown (1987) obtains
the fractal dimension directly by converting self-affine time series to
self-similar time series and then using the ruler method to determine the
fractal dimension (also see De Santis, 1997).
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2.4. Weak vs Strong Persistence

We now look at the strength of persistence of a self-affine time series
and relate it to the stationarity of the time series. Substitution of the
power-law dependence in Eq. (42) of the power-spectral density coefﬁ-
cients, S,,, on frequency, f,,, into (52) gives -

N/2 4 N2

_c _ -8
Y EIS'" N& ,,El(f"’) ’ (©2

where the frequency associated with each §,, is f,, = m /N, A is a positive
constant of proportionality, and V), is the variance of the discrete time
series, y,, n = 1,2,3,..., N. The minimum value for the frequency f,, is
f., = 1/N; this will approach 0 as N approaches infinity. The maximum
value for f,, will always be a constant, f,, = (N/2)/N = 0.5. We convert
the sum in Eq. (63) to an integral by dividing the limits of the sum into
(N - 1) intervals of Af = (1/N8), with the result

= V(N). (64)

We consider the definite integral in Eq. (64) for two cases, 8 < 1 and

B> 1:
1\'"# 1\'"#
[(5) (%) } neet

W(ZB‘I — NE-1), if B> 1.

V(N) = (65)

(\1-B

The factor [4 /(1 — B)] is positive for B < 1 and negative for 8 > 1. As N
becomes large, the variance converges for values of B < 1 and diverges for
B > 1. This is illustrated in Fig. 8, where the variance, V(N), from Eq. (65)
is given as a function of N (i.e., the length of the series considered) for
several values of B in the range —1 < B < 3. The variance converges to a
finite value for large N when B8 < 1, but diverges to infinity as N — o
when B > 1. The value B =1 is a natural crossover between weak and
strong persistence in a self-affine (long-range persistent) time series. Below
this value, the time series is stationary (weakly stationary, see Section 1.4);
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FIG. 8. The variance, Vy, Eq. (65), of a time series, y,, is plotted as a function of the length
of record, N, for values of B in the range —1 < 8 <1land 1 < B < 3. As N gets larger the
variance quickly converges for values of 8 < 1 and diverges for 8 > 1. Self-affine time series
are stationary for 8 < 1 and nonstationary for g > 1.

above this value, the time series is nonstationary. This classification is

B>1 strong persistence  nonstationary,

1> B >0 weak persistence stationary, (66)
B=0 uncorrelated stationary,

B<O antipersistence stationary.

2.5. Spectral Variance and Leakage

The discrete Fourier transform given in Eq. (34) does not always provide
an accurate representation of the actual statistics of a time series. Two of
the main problems in using a discrete Fourier transform are spectral



SELF-AFFINE TIME SERIES: 1 33

variance and leakage. These have been discussed comprehensively by many
authors, for example, Priestley (1981) and Percival and Walden (1993).

The first problem, spectral variance, concerns the large amount of
scatter of the §,, with respect to the best-fit straight line. A clear
illustration of spectral variation is seen in Figs. 6b, d. The standard
deviation of §,, is 100% of the mean value of §,, (i.e., the value after many
realizations) at f, (Press et al., 1994). Thus when plotted on logarithmic
scales, the periodogram exhibits approximately the same scatter at all
frequencies; i.e., the “width” of the scatter on a log—log plot is constant.
One solution to spectral variance is to average over many realizations of
the time series of interest. For each realization, calculate S,,, m =
1,2,3,...,N/2, and then average at each corresponding f,, all of the
values for §,,. This method will reduce the standard deviation of the
scatter by the square root of the number of realizations (Press et al., 1994).
In this article, we choose not to reduce the amount of scatter, as the
general trend of the periodograms is very clear, even with scatter.

Leakage is also a serious problem. For a discrete Fourier transform, a
discrete set of frequencies f,, = m/(N8), m = 1,2,3,..., N/2, is consid-
ered. The width of a frequency bin is Af = 1/(N8). For a stochastic time
series, there is generally a continuous range of associated frequencies
possible with both integer and noninteger (fractional) m. Ideally, in one
frequency bin, A f, we would like the S,, that represent the whole bin to be
some sort of an average of all of the §,, associated with the continuous f,,
in the bin. This is not the case. The power associated with frequencies that
have integer-m is correctly represented in the frequency domain. However,
the power that is associated with frequencies that have fractional-m is
distributed to not only its own bin, but also “leaks” into other bins. The
result is a bias that can seriously affect the resulting power-spectral
distribution. One method to reduce leakage is “prewhitening,” where in its
simplest form one removes the trend and obvious periodicities from the
original time series. A good discussion of the advantages and disadvan-
tages of prewhitening is given in Percival and Walden (1993). We choose
to use another method to reduce leakage, called windowing.

Windowing (also called tapering, weighting, shading, fading) involves
multiplying the N values of a time series, y,, n = 1,2,3,..., N, by the N
values of the “window,” w,, n = 1,2,3,..., N, before carrying out the
Fourier transform. If w, = 1 for all n, then w, is a rectangular window
(the original series is left unmodified). The window (or taper) is normally
constructed to change gradually from zero to a maximum to zero as » goes
from 1 to N. For a complete discussion of the statistics involved with
tapering, the reader is referred to Percival and Walden (1993). Many
books discuss the mechanics of how and which windows to use, including
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Press et al. (1994) and Smith and Smith (1995). Two commonly used
windows are

(n - (N/2)
w —3 — b r———————

= , n=1,2,3,...,N, Welch window,
(N/2)

(67)

1 27n |
w, = 5 1- cos( N ) , n=12,3,...,N, Hann window. (68)

The Fourier coefficients from Eq. (34) are then given by

N
Y, =6Y wye "N  m=123,..,N. (69)

n=1

Windowing significantly reduces the leakage when Fourier transforms are
carried out on self-affine time series, particularly for those with high
positive B’s (above B = 2) and negative B’s.

The variance of y, will be different from the variance of (w, y,); this will
affect the total power (variance) in the periodogram, and the amplitude of
the power-spectral density function will be shifted. One remedy is to
normalize the time series y, so it has a mean of 0, calculate the Fourier
coefficients Y,, based on Eq. (69), and then calculate the final S,, using

S L |2%,F 1,2,3 N (70)
m Wgs NS ’ m=1i,4,3,..., 2 ’
where
1 N 2
W=+ Y, (w,)". (71)

This will normalize the variance of (w,y,) so that it now has the variance
of the original unwindowed y,,. |

We close this section with a brief discussion of detrending. Many
statistical packages and books recommend removing the trend and the
mean of a time series before performing a Fourier analysis. The mean of a
time series can be set equal to 0; this will not affect the resulting Fourier
coefficients. If a window is to be used, then the mean of the original time
series should be set equal to 0, or the resulting power-spectra will be
improperly biased by the window. The variance of a time series can be
normalized to 1, and the slope (—B) of the resulting power-spectral
density function will not be affected. However, detrending a time series is



SELF-AFFINE TIME SERIES: 1 35

controversial, and care should be taken. One way of detrending is to take
the best-fit straight line to the time series and subtract it from all of the
values. Another way of detrending is to connect a line from the first point
and the last point, and subtract this line from the time series; this forces
y; =yn- If a time series shows a clear linear trend, where the series
appears to be closely scattered around a straight line, the trend can-be
safely removed without affecting any but the lowest frequencies in the
power spectrum. However, if there is no clear linear trend, detrending can
cause the statistics of the periodogram (in particular the slope) to change
significantly.

3. SYNTHETIC FRACTIONAL NOISES AND MOTIONS
3.1. What Are They?

As discussed above, a Brownian motion has a power-law spectrum such
that Eq. (39) is applicable with B8 = 2. We now generate synthetic time
series that have power-law spectra with arbitrary values of B. These are
referred to as fractional noises and motions, which were first introduced by
Kolmogorov (1940). Extensive studies of fractional noises and motions
have been carried out by Mandelbrot and Wallis (1968, 1969a, b, ¢) and by
Mandelbrot and Van Ness (1968). A range of applications has been
discussed by Voss (1985a, b, c, 1986, 1988, 1989).

3.2. Spectral Analysis

Fractional Gaussian noises can be generated synthetically from Gauss-
ian white noises using the following steps:

(1) A Gaussian white noise sequence is generated. Four examples are
given in Fig. 4a.

(2) A discrete Fourier transform as given in Eq. (34) is taken of a
Gaussian white noise sequence; the resulting Fourier spectrum will
be flat, that is, 8 = 0 in Eq. (42). Except for the statistical scatter,
the amplitudes of the |Y,,| will be equal. An example of the power
spectrum of a white noise is given in Fig. 9b.

(3) The resulting Fourier coefficients Y,, are filtered using the relation

m\—B/2
- ()

m N m* (72)
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FIG. 9. An example of power-spectral filtering. The Fourier power spectrum of a Gaussian
white noise with N = 4096 points is given in (b). The Fourier coefficients of the spectrum
have been filtered using Eq. (72) to give spectra with 8= —1 (a) and B=1 (c). The
power-spectral density function, S,,, equal to 2/N multiplied by the square of the amplitudes
of the complex Fourier coefficients, is given as a function of frequency f,, = m/N, where
m=1,2,3,..., N/2. The value for Bpg is the negative of the slope of the best-fit straight line
to the circles using a least-squares fit and log—log scales.
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The exponent B/2 is used because the power-spectral density is
proportional to the amplitude squared of the Fourier coefficients.
The amplitudes of the small-m coefficients correspond to short
wavelengths and high frequencies. The large-m coefficients corre-
spond to long wavelengths and low frequencies. Examples for 8 =
—1 and B =1 are given in Figs. 9a,c. -

(4) An inverse discrete Fourier transform, Eq. (35), is taken of the
filtered Fourier coefficients. The result is a fractional Gaussian
noise. To remove edge effects (periodicities), only the central por-
tion is retained.

Using the steps given above, several examples of fractional Gaussian
noises are given in Fig. 10 for 8 = —1.0, —0.5,0.5, 1.0. Note that the range
of B’s corresponding to fractional Gaussian noises is —1 < B8 < 1.

Just as a Gaussian white noise (B8 = 0) can be summed to give a
Brownian motion ( 8 = 2), fractional Gaussian noises can be summed to
give fractional Brownian motions (see Section 2.2). In each case analogous
to Eq. (50), Bp, = 2 + Big,- Fractional Brownian motions are self-affine
fractals and are restricted to the range 1 < 8 < 3 as discussed above. The
white and fractional Gaussian noises in Fig. 10a (8 = —1.0, —0.5, 0.0, 0.5,
1.0) have been summed using Eq. (17) to give the fractional Brownian
motions illustrated in Fig. 10b ( 8 = 1.0, 1.5, 2.0, 2.5, 3.0). Each fractional
noise and motion given in Fig. 10 has N = 512 points and has been
rescaled (normalized) to have zero mean (¥ = 0) and unit variance (J = 1).
The fractional Gaussian noise in Fig. 10a with B = 1.0 is statistically
identical to the fractional Brownian motion in Fig. 10b with B8 = 1.0.

In Fig. 4a, four white noises were created by randomly choosing values
from a Gaussian distribution with zero mean (y = 0) and unit variance
(V' = 1). Although the distribution from which these white noises were
derived had a zero mean (¥ = 0), the white noises have a mean that is
slightly nonzero when taken over the N values. The white noises were
summed to give the Brownian motions illustrated in Fig. 4b. Because the
mean of each white noise is not identically zero, the values at the
beginning and the end of the Brownian motion are not the same, y, # yy.
However, in the fractional noises illustrated in Fig. 10a, each noise has
been forced to have a mean of exactly 0 over the N values in the time
series. Thus, the Brownian motion is now forced to begin and end at
the same value, y, = yy. In the analyses that will follow, there is little
difference between allowing the beginning and ending points of the
distribution to be the same, or letting them be different. Statistically, the
underlying persistence is the same.

In Fig. 10, as the value of B is increased from —1 to +3, the
contribution of the high-frequency (short-period) terms is reduced. With
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FiG. 10. (a) The Fourier coefficients of the white Gaussian noise ( 8 = 0) have been
filtered to give fractional Gaussian noises with 8 = —1.0, —0.5,0.5,1.0. (b) Each of these
fractional Gaussian noises with By;, has been summed using Eq. (17) to give fractional
Brownian motions with B, = 2 + Big,, B = 1.0,1.5,2.0,2.5,3.0. Each fractional Gaussian
noise and fractional Brownian motion has N = 512 points, and has been rescaled to have
zero mean (§ = 0) and unit variance (V = 1).
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B = —1.0 and —0.5, the high-frequency contributions dominate over the
low-frequency contributions. These time series are antipersistent; adjacent
values are anticorrelated relative to a white noise ( 8 = 0). For an antiper-
sistent time series, a value larger than the mean tends to be followed by a
value smaller than the mean. With 8 = 0, the high-frequency contribu-
tions are equal to the low-frequency contributions. The result is--an
uncorrelated time series; adjacent values have no correlation with one
another. ‘

With g =05,1.0,15,2.0,2.5,3.0, the low-frequency contributions be-
come increasingly dominant over the high-frequency contributions. The
result is that adjacent values in the time series become more strongly
correlated and profiles are smoothed. The persistence in the time series is
increased. For a persistent time series, a value larger than the mean tends
to be followed by another value larger than the mean. As the persistence
becomes greater, the tendency for large to be followed by large becomes
greater.

As previously discussed in Section 2.4, we use the division between
fractional noises, 8 < 1, and fractional motions, 8 > 1, to define weak
persistence as 0 < B8 < 1 and strong persistence as 8 > 1. In all cases,
however, a self-affine time series with a nonzero B8 has long-range (as well
as short-range) persistence and antipersistence. For small B, the correla-
tions with large lag are small but are nonzero. This can be contrasted with
time series that are not self-affine; these may have only short-range
persistence (either strong or weak).

The fractional Gaussian noises with —1 < 8 < 1, generated using the
Fourier filtering technique, can be summed to give fractional Brownian
motions with 1 < 8 < 3. Similarly, the fractional Brownian motions with
1 < B <3 can be differenced to give fractional Gaussian noises with
~1 < B < 1. We can repeat the differencing and obtain extended frac-
tional Gaussian noises with —3 < 8 < —1. Similarly, extended fractional
Brownian motions with 3 < 8 < 5 can be obtained by summing fractional
Brownian motions with 1 < 8 < 3. In this article, we use the Fourier
filtering technique to generate synthetic fractional-noise self-affine time
series, each with N = 4096 points over the range —1 < B < 1. These are
extended over the range —3 < B < 5 by appropriately differencing and
summing (Table I). We will verify the B ascribed to these self-affine time
series by using power-spectral analysis.

We now illustrate the effects of windowing on power-spectral analysis.
An example of windowing using the Welch window, Eq. (67), is given for
two time series; the first, with B = 2.5, is illustrated in Fig. 11a, and the
second, with B = 1.5, is illustrated in Fig. 12a. Each of these two time
series has been rescaled to zero mean and unit variance. For illustration
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TABLE I LEGEND FOR SYMBOLS USED IN FRACTIONAL GAUSSIAN NOISE
AND BROWNIAN MOTION ANALYSES

Symbol represents Which have a
results of analyses range of Beta
Symbol on... thatis... And were created by ...
m] Extended ' 3<B<5S Summing the fractional
fractional Brownian motions
motions
O Fractional 1<B8=<3 Summing the Fourier filtered
Brownian fractional Gaussian noises
motions
A Fractional -1<B=<1 Filtering the Fourier coefficients
Gaussian of a white noise
noises
<O Extended -3<B< -1 Differencing the Fourier filtered
fractional fractional Gaussian noises
Gaussian

noises

purposes, the values at the beginning and the end of each time series are
not the same, y, # yy. The time series before and after windowing, along
with the Welch window, are shown in Figs. 11a,b for the noise with
B = 2.5 and Figs. 12a,b for B = 1.5. The power-spectral density function
with and without the Welch window is shown in Figs. 11c,d ( 8 = 2.5) and
Figs. 12c,d (B = 1.5). For the time series with B = 2.5, the best-fit lines
have slopes resulting in Bpg = 1.9 without windowing (Fig. 11c) and
Bps = 2.5 with windowing (Fig. 11d). For the time series with g8 = 1.5, the
best-fit lines have slopes resulting in Bpg = 1.5 without windowing
(Fig. 12c) and Bpg = 1.5 with windowing (Fig. 12d). Windowing clearly
makes a difference for the time series constructed with g = 2.5.

The spectral exponent obtained by power-spectral analysis is denoted
by Bps. Results of these power-spectral analyses, Bps Vs B, are given in
Fig. 13. We have used the Welch window from Eq. (67). As expected, there
is excellent correlation between Bpg vs B, for B < 4. Since it is rare to
find examples of natural self-affine time series with B > 4, the Welch
window is probably fine to use.

In addition to being self-affine time series, the fractional Brownian
motions given in Fig. 10b with 1 < B < 3 have, from Eq. (62), 1 < D < 2;
thus they are self-affine fractals. Although the mathematical definition of
self-affine fractals restricts the applicable range of B to 1 < B < 3, natu-
rally occurring self-affine time series with a power-law dependence of the
power-spectral density on frequency have values of B outside this range.
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FiG. 11. Example of power-spectral density with and without a window. (a) A fractional
Brownian motion (y,) constructed to have 8 = 2.5 is convolved with the Welch window (w,)
given in Eq. (67), resulting in (b) the new windowed time series (w, y,). The original discrete
time series, y,, # = 1,2,3,..., N, was constructed with N = 4096 points, a mean, y = 0, a
variance, V' =1, and B = 2.5. This same time series is presented later in Fig. 15d. (c)
Periodogram of y,, where using log-log scales, the power-spectral density, S,, from Eq. (42),
is plotted as a function of f,,, f,, = 1,2,3,..., N/2. The value for Bpg is the negative of the
slope of the best-fit straight line to the circles using a least-squares fit and log-log scales. (d)
Periodogram of the windowed time series, (w, y,), where S,, from Eq. (71) is now based on a
normalization by W, the window squared and summed. The power-spectral analyses for the
(a) nonwindowed time series, y,, results in (c) Bps = 1.9 and for the (b) windowed time
series, w, y,, results in (d) Bpg = 2.5.
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In the succeeding article (Pelletier and Turcotte, 1999), power-spectral
analyses have been carried out on a variety of naturally occurring time
series in geophysics. It is found that many of these time series exhibit
self-affine behavior. In some of the time series, a single value of B is
applicable over all frequencies; in other cases, subsets of the frequency
domain are characterized by different values of B. Their article also
includes extensive references to time series analyses of geophysical data

sets.
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Fi1G. 11. Continued.
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Fig. 12. Same as Fig. 11, but for a fractional Brownian motion constructed to have
B = 1.5. This same time series is presented later in Fig. 15b. For both the (a) nonwindowed
time series, y,, and (b) windowed time series, w, y,, power-spectral analysis (c) and (d) results
in equivalent Bps = 1.5. ’

3.3. Method of Successive Random Additions

An alternative method for the direct generation of fractional Brownian
motions is the method of successive random additions (Voss 1985a, b,
1988). Consider the time interval 0 < ¢, < 1 as illustrated in Fig. 14. The
values of ¢, are discrete, with ¢, =n/N, n = 1,2,..., N. Random values
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FiG. 12. Continued.
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for y,(z,) are generated based on a Gaussian probability distribution with
zero mean, y = 0, and unit variance, V(1) = 1. Three of these values
(N =3, n=1,2,3) are placed at ¢, = 0,1,1 as shown in Fig. 14a. Note
that the mean of these three values is not forced to 0, but rather the
Gaussian distribution from which the three values are randomly chosen
has a mean of 0. Two straight lines are drawn between these three points.
The midpoints of these two line segments are taken as initial values for
y,(t,) at t, = } and 2 as illustrated in Fig. 14b.
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FiG. 13. The dependence of the power-spectral exponent, Bpg, on B for a series of
synthetic fractional Gaussian noises and fractional Brownian motions with N = 4096 points.
The fractional noises and motions are constructed to have a theoretical power-spectral
exponent, B, using the Fourier filtering technique (Section 3.2). The synthetic noises and
motions are then windowed using the Welch window, Eq. (67). Finally, we verify the
power-spectral exponent of each synthetic fractional noise and motion by finding the best fit
of S ~ f~8, Eq. (39), and denoting it by Bps. Results are given for —3 < 8 < 5; each symbol
represents the best-fit Bps at a given B. The straight-line correlation is B = Bps. The
diamonds (-3 < B < —1), triangles (—1 < B < 1), circles (1 < B < 3), and squares (3 <
B < 5) are explained in Table 1.

The five points are now given random additions. These random addi-
tions are also based on a Gaussian probability distribution with zero mean,
y = 0, but with a reduced variance given by V(T) = (T)?*#°, from Eq. (23).
Since the interval has been reduced by a factor of 2, the variance is given
by V(3) = (3)*#°. For our example, we take Ha = 1 so that V(3) = 1.
The five resulting random additions are given in Fig. 14c. After addition to
the five values of y(z,) in Fig. 14b, the resulting five values for y,(z,) are
given in Fig. 14d. Again the five points are connected by four straight-line
segments and the four midpoints are taken as initial values for y,(z,) at
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t =4, %, 2, and 7 as illustrated in Fig. 14e. All nine points are now given

random additions using a Gaussian probability distribution with zero mean

but a further reduced variance from Eq. (23), V(3) = (5)°7%. Again, taking

Ha = 1 gives V(3) = 1. The nine random additions are given in Fig. 14f.

After addition to the nine values of y(z,) given in Fig. 14e, the resuiting

nine values for y,(z,) are given in Fig. 14g. The process is repeated until -
the desired number of points is obtained. A 12th-order construction,

y.,(t,) with 4097 points, is given in Fig. 14h. With Ha = 1 and B = 2, this

is a Brownian motion and strongly resembles the Brownian motions given

in Figs. 4 and 10.

A sequence of fractional Brownian motions generated by the method of
successive random additions is given in Fig. 15. Fractional Brownian
motions are given for Ha = 0.00 (8 = 1.0), Ha = 0.25 (B = 1.5), Ha =
0.50 (B = 2.0, same as Fig. 14h), Ha = 0.75 (B8 = 2.5) and Ha = 1.00
(B = 3.0); in each case 4097 points are given. As expected, these noises
closely resemble those generated by the Fourier filtering technique (Fig.
10). The method of successive random additions generates fractional
Brownian motions with 1 < B < 3. These can be differenced to give
fractional Gaussian noises with —1 < 8 < 1 and summed to give extended
fractional Brownian motions with 3 < 8 < 5.

A detailed comparison of fractional Gaussian noises and fractional
Brownian motions using the Fourier filtering technique and the method of
successive random additions has been given by Gallant et al. (1994). These
authors also considered a third method of generating synthetic fractional
noises using Weierstrass—Mandelbrot functions. Other relevant studies
include those carried out by Li and McLeod (1986) and Osborne and
Provenzale (1989).

3.4. Semivariograms

Using the definition for the semivariogram, vy,, given in Eq. (8), semivar-
- . - - Yk . q .
iograms for several fractional Gaussian noises and fractional Brownian

Fic. 14. Tllustration of the generation of a fractional Brownian motion using the method of
successive random additions. (a) Three random numbers are generated using a Gaussian
distribution with zero mean and unit variance; these are placed at ¢ = 0, 1, 1. (b) Values at

= 1 and } are obtained by linear interpolation. (c) Assuming Ha = %, five random numbers
are generated using a Gaussian distribution with zero mean and V = (3)*#% = 1. (d) The
random numbers in (c) are added to the values in (b). (¢) Values at t = g, 3, 3, 7 are obtained
by linear interpolation. (f) Nine random numbers are generated using a Gaussian distribution
with zero mean and V = (3)?#% = 1, (g) The random numbers in (f) are added to the values
in (d). (h) The construction has been continued to 4097 points; the result is a Brownian
motion.
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FiG. 15. A sequence of fractional Brownian motions generated by the method of successive
random additions. (a) Ha = 0.00 (8 = 1.0).(b) Ha = 0.25(8 = 1.5).(c) Ha = 0.50 (B8 = 2.0,
a Brownian motion same as Fig. 14h). (d) Ha = 0.75 (B8 = 2.5). (¢) Ha = 1.00 (8 = 3.0).
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F1G. 16. Semivariograms for several fractional Gaussian noises and fractional Brownian
motions. Each semivariogram is obtained using Eq. (8) with lag k = 4,8,16,...,2048, and
applied to fractional Gaussian noises and fractional Brownian motions with N = 4096 points.
Examples of time series with N = 512 points and the same characteristics are illustrated in
Fig. 10. The straight-line correlations are with y ~ k274, Eq. (29). The slope of the best-fit
straight line for log(y) vs log(k) is 2 Ha. Values for one-half of the slope, Ha, are given for
each of the examples. The triangles ( 8 = 0, 1), circles ( 8 = 1,2,3), and squares ( 8 = 3) are
explained in Table I.

motions, each with 4096 points, are given in Fig. 16. For the uncorrelated
Gaussian white noise (B8 = 0), the semivariogram is about vy, = 1, the
same as the variance of the time series, V= 1. For =1, 2, and 3,
excellent correlations are obtained with y, ~ k259 Eq. (29). For 8 = 2,
Ha = 0.47 compared satisfactorily to the expected value Ha = 0.50.

The values of Ha obtained from the best fit of Eq. (29) to the semivari-
ograms in the range —1 < B < 5 are given in Fig. 17. The straight-line
correlation is with the self-affine fractal relation 8 = 2Ha + 1, Eq. (62).
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F1G. 17. The dependence of the Hausdorff exponent, Ha, on B, for fractional Gaussian
noises and fractional Brownian motions with N = 4096 points. The values for Ha have been
obtained from the best fit of y ~ k25°, Eq. (29). Results are given for —1 < B < 5; each
symbol represents the best fit for Ha at that 8. Examples of obtaining Ha from semivari-
ograms are given in Fig. 16. The straight-line correlation is with the self-affine fractal relation
B =2Ha + 1, Eq. (62), for 1 < B < 3. The triangles (—1 < B < 1), circles (1 < B < 3), and
squares (3 < B < 5) are explained in Table 1.

Quite good agreement is found in the range 1 < B < 3, where the frac-
tional Brownian motions are expected to be self-affine fractals.

From Fig. 17, it is seen that Ha = 0 for fractional Gaussian noises in the
range —1 < B < 1. From Eq. (20), o, ~ nf9, one can conclude that, in
this range of B, the standard deviation, o;, and thus the variance, V,, are
independent of the length of the signal, n. Therefore, these fractional
noises are (weakly) stationary even though adjacent values may be corre-
lated or anticorrelated. For these fractional noises, each with variance
V =1, and in the range —1 < B < 1, the semivariogram has a value of
¥, = 1. For fractional Gaussian noises (—1 < B < 1), semivariograms are
not a measure of persistence or antipersistence strength in a self-affine
time series. We note that theoretically this result might appear to be
inconsistent with Eq. (12), where the semivariogram is y, = (V, — ¢,). The
only case where the autocovariance c, = 0 is for a white noise (B8 = 0)
and k # 0. However, for —1 < B8 < 1 and at large k, the autocovariance
¢, = 0, giving the result that y, = V.

For the fractional Brownian motions in the range 1 < B < 3, Ha varies
from 0 to 1. From Eq. (20), o, ~ n%, we conclude that the standard
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deviation, ¢,, and thus the variance, V,, both have a power-law depen-
dence on the length of the signal n. Therefore, these fractional Brownian
motions are clearly nonstationary.

4. LoG-NORMAL NOISES AND MOTIONS -
4.1. Log-Normal Distributions

The fractional Gaussian noises and fractional Brownian motions we
have considered have been based on a Gaussian (normal) frequency-size
distribution of values; therefore, the resulting time series have both
positive and negative values. The standard form of a Gaussian distribution
is obtained by taking y = 0 and g, = 1. All Gaussian distributions can be
rescaled to the normalized standard form using linear transformations.
The value of B completely specifies a normalized fractional Gaussian
noise or fractional Brownian motion.

However, many naturally occurring time series have only positive values.
For example, the volumetric flow in a river, Q(¢), is always positive as
illustrated in Fig. 1b. One of the most widely used positive distributions is
the log-normal distribution. A normal distribution can be converted to a
log-normal distribution using the relation |

x(1) = 0, (73)

where x(¢) has a log-normal distribution of values and y(¢) has a normal
distribution of values. In order to specify a log-normal distribution, it is
necessary to specify the mean of the distribution, X, and its coefficient of
variation, c,, which is the ratio of the standard deviation of the log-normal
distribution to its nonzero mean:

oy
c,=—. (74)
X

The coefficient of variation, c,, is a measure of the relative dispersion of a
time series; the standard deviation is a measure of the absolute dispersion.
If ¢, < 1, it may be appropriate to consider a Gaussian distribution. In
many cases, however, this will be a poor approximation.

Although normal distributions have a universal form, i.e., zero mean
(y = 0) and unit variance (V' = 1), this is not the case for the log-normal
distribution; no standard form exists. The coefficient of variation, c,,
classifies a family of log-normal distributions. The probability distribution
functions, f(x), for the log-normal distribution are given in Fig. 18 for
X =1and c, = 0.25,0.50,1.00. It is seen that the shape of the log-normal
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F1G. 18. The probability distribution function f(x) for the log-normal distribution with unit
mean (¥ = 1) and several values of the coefficient of variation, ¢, = 0.25,0.50, 1.00.

distribution changes systematically for different c,. As the value of c,
becomes smaller, the distribution narrows and the maximum value for f(x)
occurs at a value of x approaching 1. In the limit ¢, — 0, the distribution
is a delta function centered at x = 1. As ¢, becomes larger, the distribu-
tion spreads out and the maximum value for f(x) occurs at smaller x. The
distribution of log-normal values has an asymmetric tail extending toward
values that are more positive. Whereas the normal distribution is symmet-
ric, the asymmetry for the log-normal distribution increases with increasing
coefficient of variation, c¢,. As an example of a time series with an
approximately log-normal distribution, Fig. 1b is a plot of daily river
discharges for 7 = 75 years from the Salt River in Arizona, with a
coefficient of variation, ¢, = 2.6.

Log-normal distributions are a one-parameter family of distributions
depending on the appropriate value of c,. This has important implications
in terms of applications. It is often appropriate to approximate the distri-
bution of annual rainfalls at a station by a log-normal distribution. A
maritime station, for instance Seattle, would have little year-to-year varia-
tion in rainfall and a small value for c,. On the other hand, an arid station,

~
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for instance Phoenix, would have large year-to-year variations in rainfall
and a large value for c,.

4.2. Fractional Log-Normal Noises and Motions

A Gaussian white-noise sequence can be converted to a log-norrﬁél, '
white-noise sequence using Eq. (73) along with

g, = [In(1 + ¢2)]"?, (75)
_ X
= |n m , ‘ . (76)

where X is the mean of the log-normal distribution, and y and o, are the
mean and standard deviation of the normal distribution. Log-normal
white-noise sequences ( 8 = 0) with unit mean (¥ = 1) are given in Fig. 19
for ¢, = 0.2,0.5,1.0,2.0. With ¢, = 0.2, the standard deviation is small
compared with the mean, the distribution is nearly symmetric, and it
closely resembles a Gaussian white noise. With ¢, = 2, the variance is
large compared with the mean and the distribution is strongly asym-
metrical.

Just as a Gaussian white-noise sequence can be converted to a log-normal
white-noise sequence, so too can fractional Gaussian noises and fractional
Brownian motions be converted to fractional log-normal noises and mo-
tions using Egs. (73) to (76). Several examples are given in Fig. 19. In each
case the mean is unity (x = 1). This is a two-parameter family of noises
and motions. The values of B are a measure of the persistence of the time
series. The values of ¢, are a measure of the asymmetry of the distribution
of values. Extensive studies of fractional log-normal noises and motions
have been given by Mandelbrot and Wallis (1969a). These authors referred
to the dependence on c, as the Noah effect and the dependence on B as
the Joseph effect. The different time series in Fig. 19 resemble typical river
flow time series. Increasing c,, the Noah effect, is indicative of a climate
where there is large variability in river flow. Increasing B, the Joseph
effect, is indicative of more strongly correlated values. With higher values
of B, a year of flood is more likely to follow a previous year of flood, and a
year of drought is more likely to follow a previous year of drought.

4.3. Spectral Analysis

In Section 3.2 we used the Fourier spectral filtering method to create
fractional Gaussian noises and motions with —3 < B8 < 5. Using Egs. (73)
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FiG. 19. Examples of fractional log-normal noises and motions with N = 512 points. In
each case a fractional Gaussian noise or a fractional Brownian motion has been converted to
a fractional log-normal noise or motion; examples are given for 8 = 0, 1,2. The conversions
were made using Egs. (73) to (76). Examples are given for (a) ¢, = 0.2, (b) ¢, = 0.5, (c)
¢, = 1.0, and (d) ¢, = 2.0. In all cases the mean of the series is unity (¥ = 1).
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TABLE II LEGEND FOR SYMBOLS USED IN FRACTIONAL LOG-NORMAL NOISE

AND MOTION ANALYSES
Symbol represents ‘Which have a And were created by
results of analyses range of Beta taking the log-normal
Symbol® on... thatis... distribution of . ..
O | | Fractional 3<B=<5S Extended
log-normal fractional
motions motions
O o Fractional 1<B=<3 Fractional
log-normal Brownian
motions motions
A A A Fractional -1<B8x<1 Fractional
log-normal Gaussian
' noises noises
CO® Fractional -3<B=< -1 Extended
log-normal fractional
noises Gaussian

noises

“Different shading of the symbol represents the coefficient of variation, c,, of the
log-normal noise or motion on which the analysis was performed: white (c, = 0.2), gray
(¢, = 0.5), black (c, = 1.0).

to (76), each of the fractional Gaussian noises and motions has been
converted to its log-normal equivalent with three different coefficients of
variation, ¢, = 0.2,0.5,1.0, N = 4096 points, and B ranging over —3 <
B < 5. Table II provides a legend for symbols that are used in the log-
normal noise and motion analyses that follow in subsequent portions of
this article.

We verify the B ascribed to the log-normal self-affine time series by
using Fourier power-spectral analysis. The resulting spectral exponent is
again denoted by B,s. Before doing a spectral analysis, each of the
log-normal time series is first rescaled to zero mean and then multiplied by
the Welch window, Eq. (67). Results of these power-spectral analyses, Bpg
vs f3, are given in Fig. 20. For log-normal time series, there is excellent
correlation between Bps vs B, for 0 < B8 < 4. For B <0 and B > 4, the
correlation is poor.

A recommended technique (e.g., Hewett, 1986) is to convert the values
of a non-Gaussian distribution to those of a Gaussian distribution. How-
ever, we recommend that this only be used if the resulting B8 from Fourier
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FiG. 20. The dependence of the power-spectral exponent, Bps, on B, for synthetic
fractional log-normal noises and motions with N = 4096 points. The fractional log-normal
noises and motions were each constructed to have a theoretical power-spectral exponent, 3,
by using Eqgs. (73) to (76) applied to fractional Gaussian noises and motions. The synthetic
noises and motions are windowed using the Welch window, Eq. (67). We then verify the
power-spectral exponent of each synthetic fractional log-normal noise and motion by finding
the best fit of S ~ f~#, Eq. (39), and denoting it by Bps. Results are given for —1 < B < 5
and ¢, = 0.2 (white), 0.5 (gray), and 1.0 (black); each symbol represents the best fit for Bpg at
that B. The straight-line correlation is with B = Bps. The diamonds (-3 < 8 < ~1),
triangles (—1 < B < 1), circles (1 < B < 3), and squares (3 < B < 5) are explained in
Table II.

power-spectral analysis is less than 0. In this case, we do recommend that
the series be converted to their normal equivalent before performing a
discrete Fourier transform.

4.4. Semivariograms

Using the definition for the semivariogram, y,, given in Eq. (8), semivar-
iograms for several fractional log-normal noises and motions, each with
4096 points and c, = 0.5, are given in Fig. 21. The results are generally
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F1G. 21. Semivariograms for several fractional log-normal noises and motions with ¢, = 0.5.
Each semivariogram is obtained using Eq. (8) with lag k = 4,8,16,...,2048, and applied to
fractional log-normal noises and motions with N = 4096 points. Examples of time series with
N = 512 points and the same characteristics are illustrated in Fig. 19. The straight-line
correlations are with y ~ k242, Eq. (29). The slope of the best-fit straight line for log(y) vs
log(k) is 2 Ha. Values for one-half of the slope, Ha, are given for each of the examples. The
fractional log-normal noises and motions were each obtained by using Egs. (73) to (76)
applied to fractional Gaussian noises and motions, and letting ¢, = 0.5. The triangles
(B =0,1), circles ( 8 = 1,2,3), and squares ( B = 3) are explained in Table II.

similar to those obtained for fractional Gaussian noises and fractional
Brownian motions given in Fig. 16. For B8 = 1,2, 3, excellent correlations
are obtained with y, ~ k29, Eq. (29).

The values of Ha obtained from the best fit of Eq. (29) to the semivari-
ograms in the range —1 < B < 5 are given in Fig. 22. Results are given for
¢, = 0.2, 0.5 (illustrated in Fig. 21), and 1.0. The straight-line correlation is
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FIG. 22. The dependence of the Hausdorff exponent, Ha, on B, for fractional log-normal
noises and motions with N = 4096 points. The values for Ha have been obtained from the
best fit of y ~ k2H¢, Eq. (29). Results are given for —1 < 8 < 5 and ¢, = 0.2 (white), 0.5
(gray), and 1.0 (black); each symbol represents the best fit for Ha at that B. Examples of
obtaining Ha from semivariograms are given in Fig. 21. The straight-line correlation is with
the self-affine fractal relation B = 2Ha + 1, Eq. (62), for 1 < 8 < 3. The triangles (~-1 <
B < 1), circles (1 < B < 3), and squares (3 < B < 5) are explained in Table II.

with the self-affine fractal relation, B = 2Ha + 1, Eq. (62). The resuits
are, again, very similar to those obtained for fractional Gaussian noises
and fractional Brownian motions, given in Fig. 17. Again, good agreement
with 8 = 2Ha + 1, Eq. (62), is found in the range 1 < 8 < 3, where the
fractional motions are expected to be self-affine fractals. We can conclude
that semivariograms are very good at quantifying the strength of persis-
tence for nonstationary self-affine time series with 1 < 8 < 3, both for
Gaussian and log-normal distributions.

5. RESCALED-RANGE (R /S) ANALYSIS
5.1. The Method

An alternative approach to the quantification of correlations in time
series was developed by Harold E. Hurst (Hurst, 1951; Hurst et al., 1965).
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an_

FiG. 23. Illustration of how rescaled-range (R/S) analysis is carried out. The flow into a
reservoir is Q(t) and the average fiow out is Q(T), where 0 < ¢ < 7. The maximum volume
of water in the reservoir during the period T is V, (T) and the minimum is V,,;,(T); the
difference is the range R(T) = V,,(T) = V(7). :

Hurst spent his life studying the hydrology of the Nile River, in particular
the record of floods and droughts. He considered a river flow as a time
series and determined the storage limits in an idealized reservoir. Based
on these studies, he introduced empirically the concept of rescaled-range
(R/S) analysis. His method is illustrated in Fig. 23. Consider a reservoir
behind a dam that never overflows or empties; the flow into the reservoir is
the flow in the river upstream of the dam, Q(¢). The flow out of the
reservoir, O(T), is assumed to be the mean of the flow into the reservoir
over a period T

_ 1 .1
o) = [0 O(¢) dt. (77

The volume of water in the reservoir as a function of time, V(¢), is given by
V() = V() + (ftQ(t’)dt') —tO(T), (78)
0

where V(0) is the volume of water at ¢+ = 0. Taking ¢ = T and substituting
Eq. (77) into Eq. (78), we have V(T') = V(0); in other words, the volume in
the reservoir is the same at ¢t = 0 and ¢ = T. The range R(T) is defined to
be the difference between the maximum volume of water V_,, and the
minimum volume of water V_, during the period T

R(T) =V, . (T) = V..(T). (79)
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The rescaled range is defined to be R(T)/S(T), where S(T) is the
standard deviation of the flow Q(¢) during the period T

1 o,
S(T) = [?j; {0(¢) — O(T)} ar'| . (80)

This is identical to the definition of the standard deviation, o (T). We use
S here to maintain the standard R/S nomenclature. The period T can be
broken up into subintervals 7, for instance 7= T/2, T/4, T/8, and so
forth. For a given value of 7, R(7) and S(r) are calculated for each of the
T/t subdivisions, by substituting 7 for T in Egs. (79) and (80). The T/t
individual values for R(7)/S(7) are then averaged.

Hurst (1951) and Hurst et al. (1965) found empirically that many data
sets in nature satisfy the power-law relation

R(7) 7\ Hu 0
S(7) |, (2) ’ ®
where Hu is known as the Hurst exponent. For 7 = 2, R(7)/S(7) = 1 by
definition. Examples included river discharges, lake levels, tree ring thick-
nesses, varve thicknesses, sunspot numbers, and atmospheric temperature
and pressure. They generally found that 0.70 < Hu < 0.80. Hurst’s data
sets are included in the McLeod-Hipel Time-Series Datasets Collection
(McLeod and Hipel, 1995), which contains over 300 time series in elec-

tronic format and is available over the Internet.
The R/S analysis is easily extended to a discrete time series, y,,

n=1,23,...,N. The running sum, y,,, of the time series, y,, relative to
its mean is

= Y (y,=hn) = ( Zy,,) — myy. (82)
n=1

n=1
The range is defined by
RN = (ym)max - (ym)min (83)
with
SN = UN, (84)

where y, and oy are the mean and standard deviation of all N values in
the time series, y,. From Egs. (82) to (84), we have a value of (R, /S,,) for
the time series, y,, n = 1,2,3,..., N. Since we are interested in how
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(R/S) varies with successive subintervals 7 of N, we substitute 7 for N in
Egs. (82) to (84). The Hurst exponent, Hu, is obtained from

). -6 -

7

For example, if 64 values of y, are available for a time series, the R, and
Sy for N = 64 are obtained. Then the data are broken into two parts, each
with r =32 (1,2,...,32 and 33,34,...,64). The values for R,, and §;, are
obtained for the two parts. The two values of R,,/S;, are then averaged
to give (R;,/S5,),,- The data set is then broken into four parts, each with
=16 (1,2,...,16; 17,18,...,32; 33,34,...,48; and 49,50,...,64). The
values for R,,/S,, are obtained for the four parts and are averaged to
give (Ry/S;6).- This process is continued for =8 and 7=4 to
give (Ry/Ss),, and (R,/S,),,. For 7= 2, the value for R, = S, so that
R,/S, = 1. The values of log(R,/S,),, are plotted against log(r/2) and
the best-fit straight line gives Hu from Eq. (85). In practice, there is
generally some curvature of (R,/S,),, for small values of 7/2 and they are
therefore omitted (Tapiero and Vallois, 1996).

The running sum of a Gaussian white noise (B8 = 0) is a Brownian
motion ( B8 = 2) and Ha = 0.5. This would imply that

B=2Hu— 1. (86)
From Eq. (62) we have 8 = 2Ha + 1, giving
Hu( B — 2) = Ha( B). (87)

Since a white noise ( 8 = 0) is a random process that has adjacent values
which are uncorrelated, it is appropriate to conclude that Hu = 0.5
implies a time series that is uncorrelated. It follows that 0.5 < Hu < 1.0
implies persistence and that 0 < Hu < 0.5 implies antipersistence.

It should be noted that not all authors use the running sum when
applying the rescaled-range method. The technique can be applied directly
to the specified time series, i.e., substituting y, for y,, in Eq. (83). If this is
done, the resulting Hurst exponent from Eq. (85) varies from 0 to 1 when
B is in the range 1 to 3; i.e., the results in Fig. 25 (discussed in the next
section) will be shifted by B + 2. Care should be taken to specify which
version of rescaled range is being used, as there is currently some confu-
sion in the literature. In this article, we will use the running sum as given
in Eq. (82) when applying rescaled range to a discrete time series.
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5.2. Applications to Fractional Gaussian Noises and Motions

The Hurst rescaled-range analysis was first applied to fractional Gauss-
ian noises and fractional Brownian motions by Mandelbrot and Wallis
(1969c). The dependence of log(R/S),, on log(7/2) for several fractional
noises and motions with 4096 points, similar to those illustrated in Fig. 10,
are given in Fig. 24. For 8 = 0, 1, and 2, excellent correlations with the
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3
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(.E) 100 { (B) 100 +
i (W 1
1 4 t + 1 } t +
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FI1G. 24. Hurst rescaled-range (R/S) analyses for several fractional Gaussian noises and
fractional Brownian motions with N = 4096 points. Average values of R/S are given as a
function of the interval 7/2 for 7= 4,8, 16,...,4096, where R and S are calculated using
Egs. (82) to (84). Examples of time series with N = 512 points and the same characteristics as
the noises and motions with 4096 points are illustrated in Fig. 10. The straight-line correla-
tions are with (R/S),, ~ (7/2)"%, Eq. (85). The slope of the best-fit straight line for
log(R/S),, vs log(r/2) is Hu. Values for Hu are given for each of the examples. The
diamonds ( B8 = —1), triangles (8 = —1,0, 1), and circles ( 8 = 1,2) are explained in Table I.
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Fic. 25. The dependence of the Hurst exponent, Hu, on 8, for fractional Gaussian noises
and fractional Brownian motions with N = 4096 points. The values for Hu have been
obtained from the best fit of (R/S),, ~ (r/2)"%, Eq. (85). Results are given for —3 < B8 < 3;
each symbol represents the best fit for Hu at that B. Examples of obtaining Hu from
rescaled-range (R/S) analyses are given in Fig. 24. The straight-line correlation is with the
relation B = 2Hu — 1, Eq. (86), for —1 < B < —3. The diamonds (-3 < 8 < —1), trian-
gles (—1 < B < 1), and circles (1 < B < 3) are explained in Table 1.

Hurst relation, (R/S),, ~ (7/2)"*, Eq. (85), are obtained. For 8 = 0, we
find Hu = 0.56 compared with the expected value of 0.5 for the uncorre-
lated white Gaussian noise.

The values of Hu obtained for the best fit to the Hurst relation, Eq.
(85), in the range —3 < B < 3 are given in Fig. 25. The straight-line
correlation is with B8 = 2Hu — 1, Eq. (86). Reasonably good agreement is
found in the range —1 < B < 1; however, for 8 < 0, Hu definitely begins
to deviate from the straight-line correlation. The Hurst exponent provides
a quantitative measure of the strength of persistence and antipersistence
for fractional Gaussian noises (—1 < B < 1), but the only place it is
exactly correlated with 8 = 2Hu — 1, Eq. (86), is at Hu = 0.7. Extensive
R/S analyses of fractional Gaussian noises and fractional Brownian mo-
tions have been carried out by Bassingthwaighte and Raymond (1994).
They found, when using synthetic self-affine noises and motions con-
structed to have certain values of 8, that Hu converges very slowly to the
expected value of B8 = 2Hu — 1, Eq. (86), for large sample sizes, N. For
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values of N < 4096, we have found that Hu gets steadily worse. with
Hu = 0.5 when 8 < 0.

5.3. Applications to Fractional Log-Normal Noises and Motions

In Fig. 26, we apply rescaled-range analysis to several fractional log-
normal noises and motions with N = 4096 points and c, = 0.5. Log-
normal noises and motions similar to these are given in Fig. 19. The val-
ues for Hu, the Hurst exponent, have been obtained from the best fit of
(R/S),, ~ (r/2)%*, Eq. (85). We find good correlations for 8 = —1, 0, 1,
and 2. :

The values of Hu obtained for the best fit to Eq. (85) in the range
-3 < B < 3 with ¢, = 0.2, 0.5 (illustrated in Fig. 26), and 1.0 are given in
Fig. 27. The straight-line correlation is with 8 = 2Hu — 1, Eq. (86). The
agreement obtained for ¢, = 0.2 is similar to that found in Fig. 25, where
the same analyses have been applied to fractional Gaussian noises and
motions. For ¢, = 0.5 and 1.0, the asymptotic values for negative B’s
become systematically higher. For log-normal noises with 8 < 0, values for
Hu are clearly biased towards higher and higher values as ¢, increases.

We recommend that if rescaled range is to be used, then the non-
Gaussian distribution should first be converted (Hewett, 1986; Press et al.,
1994) to its Gaussian equivalent. However, even for a Gaussian distribu-
tion, the Hurst rescaled-range analysis is a poor estimator of the strength
of antipersistence. Rescaled-range analysis has also been applied to frac-
tional log-normal noises and motions by Mandelbrot and Wallis (1969c¢).

6. AVERAGE EXTREME-VALUE ANALYSIS
6.1. The Method

For many time series, the primary goal is to understand the frequency—
size distribution of the extreme values. An example is a river discharge
time series. The extreme values of this time series are floods. Flood hazard
assessments require statistical estimators of these extreme values. ‘

For a Gaussian white noise, the frequency-size distribution of the
extreme values are clearly Gaussian. However, what about fractional
noises and motions? In order to specify the extreme values of a time series
we consider average extreme-value analysis. Taking a synthetic time series
of length N, we first force the time series to have a mean of 0 by
subtracting y,, the mean of the data series taken over N, from each
successive value in the time series. We still use y,, n = 1,2,3,..., N, to
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FI1G. 26. Hurst rescaled-range (R/S) analyses for several fractional log-normal noises and
motions with N = 4096 points and ¢, = 0.5. Average values of R/S are given as a function
of the interval 7/2 for 7 = 4,8, 16,...,4096, where R and § are calculated using Eqgs. (82) to
(84). The fractional log-normal noises and motions were each obtained by using Egs. (73) to
(76) applied to fractional Gaussian noises and motions, and letting c, = 0.5. Examples of
time series with N = 512 points and the same characteristics are illustrated in Fig. 19. The
straight-line correlations are with (R/S),, ~ (r/2)7%, Eq. (85). The slope of the best-fit
straight line for log(R/S),, vs log(7/2) is Hu. Values for Hu are given for each of the
examples. The diamonds (B8 = —1), triangles (8= —1,0,1), and circles (B8 = 1,2) are
explained in Table II.

represent the time series with zero mean. The maximum value of y, over
the N points, y,, is assigned a period 7 = N. The period is then broken
into two parts each of length N/2 and the maximum value for each part is
found. The average, (y,),,, of the two values y, is assigned the period
T = N /2. The process is repeated for r= N/4, N/8, N/16,... . To deter-



66 BRUCE D. MALAMUD AND DONALD L. TURCOTTE

1.2

f - - .
1.0 { B=2Hu-1 \ ;_‘_.'_._o_n_t_n_i

0.8 / —
Hu o6 |
teeesa, A A& L
. ry og-Normal
0412 %ee u»—iAA / Distributions
20006000 A/ aon C,=0.2

0.2 AeB Cy ='0.5
aem c,= 1.0
0.0
-3 -2 -1 0 1 2 3

F1G. 27. The dependence of the Hurst exponent, Hu, on B, for fractional log-normal
noises and motions with N = 4096 points. The values for Hu have been obtained from the
best fit of (R/S),, ~ (r/2)7“, Eq. (85). Results are given for —3 < B < 3 and ¢, = 0.2
(white), 0.5 (gray), and 1.0 (black); each symbol represents the best fit for Hu at that B.
Examples of obtaining Hu from rescaled-range (R/S) analyses are given in Fig. 26. The
straight-line correlation is with the relation 8 = 2Hu - 1, Eq. (86), for =1 < 8 < -3. The
diamonds (-3 < B < —1), triangles (—1 < B < 1), and circles (1 < B < 3) are explained in
Table II.

mine whether the extreme values have a power-law dependence on the
length of time considered, we correlate the results with

(Yeday ~ 77, (88)
where He is the extreme-value exponent. Consider the relation
B=2He + 1, (89)

which is analogous to B = 2Ha + 1, Eq. (62), where Ha is the Hausdorff
exponent.

6.2. Applications to Fractional Gaussian Noises and Motions

We have applied average extreme-value analyses to several fractional
noises and motions with 4096 points, similar to those noises illustrated in
Fig. 10. The results are given in Fig. 28 for 8 = 0, 1, 2, 3. Good correlations
with Eq. (88) are found. The values of He obtained from the best fit of
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FiG. 28. Average extreme-value analyses for several fractional Gaussian noises and frac-

tional Brownian motions with N = 4096 points. Examples of time series with N = 512 points
and the same characteristics as the noises and motions we use here are illustrated in Fig. 10.
The time series is forced to have a mean of 0. Average values of the extreme values in each
interval, (y,),,, are given as a function of the interval r for » = 8,16,32,...,4096. The
straight-line correlations are with (y,),, ~ 77¢, Eq. (88). The slope of the best-fit straight line
for log(y,),, vs log(7) is He. Values for He are given for each of the examples. The triangles
(B =0,1), circles ( B = 1,2,3), and squares ( 8 = 3) are explained in Table L

Eq. (88) in the range —1 < B < 5 are given in Fig. 29. The straight-line
correlation is with B8 = 2Ha + 1, Eq. (89). Reasonably good agreement is
found in the range 1 < B8 < 3, where the fractional Brownian motions are
expected to be self-affine fractals; however, for 8 < 2, He becomes more
positive than the straight-line fit given by Eq. (89). More interestingly, for
the fractional Gaussian noises and fractional Brownian motions, the ex-
treme-value behavior illustrated in Fig. 29 is essentially identical to the
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FiG. 29. The dependence of the extreme-value exponent, He, on g, for fractional Gaussian
noises and fractional Brownian motions with N = 4096 points. The values for He have been
obtained from the best fit of (y,),, ~ 7#¢, Eq. (88). Results are given for —1 < 8 < 5; each
symbol represents the best fit for He at that B. Examples of obtaining He from average
extreme-value analysis are given in Fig. 28. The straight-line correlation is with the relation
B =2He + 1, Eq. (89), for 1 < B < 3. The triangles (—1 < 8 < 1), circles (1 < 8 < 3), and
squares (3 < B < 5) are explained in Table I.

rescaled-range analysis behavior illustrated in Fig. 25, with each point in
the figure shifted by a 8 of 2:

Hu(B) = He(B + 2). | (90)

The two techniques result in an identical pattern of values for Hu and He,
except that rescaled-range analysis measures the strength of persistence
(and antipersistence) for fractional Gaussian noises (-1 < 8 < 1), and
average extreme-value analysis measures the strength of persistence for
fractional Brownian motions (1 < 8 < 3). The effect of Eq. (82) is to take
the running sum of y,, which results in the time series being shifted by a 8
of 2. This is similar to shifting B8 by 2 when summing a white noise to
construct a Brownian motion. The range, R(7), from Eq. (83) is then
similar to taking the maximum value, y,, in each subperiod, 7.

The fractional Gaussian noises and fractional Brownian motions illus-
trated in Fig. 10 have both positive maximum values, y,.,, and negative
minimum values, y,... The average extreme-value analysis just presented
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FiG. 30. Average extreme-value analyses for several fractional log-normal noises and
motions with N = 4096 points and ¢, = 0.5. The fractional log-normal noises and motions
were obtained by using Egs. (73) to (76) applied to fractional Gaussian noises and motions,
and letting ¢, = 0.5. Examples of time series with 512 points and the same characteristics are
illustrated in Fig. 19. The time series is forced to have a mean of 0. Average values of the
extreme values in each interval, (y.),,, are given as a function of the interval 7 for
7=8,16,32,...,4096. The straight-line correlations are with (y,),, ~ 77¢, Eq. (88).. The
slope of the best-fit straight line for log(y,),, vs log(7) is He. Values for He are given for each
of the examples. The triangles (B = 0,1), circles (8 = 1,2,3), and squares (B = 3) are
explained in Table II.

was on the most positive maximum values, y, .., for fractional noises and
motions y,, n = 1,2,3,..., N, with N = 4096 points and -1 < B < 5. We
have also applied average extreme-value analysis to the most negative
values, y.,, obtained by taking the negative of the fractional noise time
series. The results were essentially the same.
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Fi1G. 31. The dependence of the extreme-value exponent, He, on S, for fractional log-normal
noises and motions with N = 4096 points. The values for He have been obtained from the
best fit of (y,),, ~ ¢, Eq. (88). Results are given for —1 < 8 < 5 and ¢, = 0.2 (white), 0.5
(gray), and 1.0 (black); each symbol represents the best fit for He at that 8. Examples of
obtaining He from average extreme-value analysis are given in Fig. 30. The straight-line
correlation is with the relation 8 = 2He + 1, Eq. (89), for 1 < B < 3. The triangles (-1 < 8
< 1), circles (1 < B < 3), and squares (3 < B8 < 5) are explained in Table II

6.3. Applications to Fractional Log-Normal Noises and Motions

Average extreme-value analysis has been applied to several fractional
log-normal noises and motions, each with 4096 points, similar to those
illustrated in Fig. 19. Results for ¢, = 0.5 and B = 0,1,2,3 are given in
Fig. 30. In general, the correlations with (y,),, ~ 7€, Eq. (88), are quite
good. The values of He obtained from the best fit of Eq. (88) in the range
-1 < B <5 and ¢, = 0.2, 0.5 (illustrated in Fig. 30), and 1.0 are given in
Fig. 31. The straight-line correlation is with B = 2He + 1, Eq. (89). As
expected, the results for the fractional log-normal noises and motions with
a low coefficient of variation, ¢, = 0.2 (Fig. 31), are very similar to the
fractional Gaussian noises and motions in Fig. 29. Reasonably good
agreement is found in the range 1 < B < 3, where the fractional Brownian
motions are expected to be self-affine fractals. For 8 < 2, He becomes
increasingly more positive than the straight-line fit given by Eq. (89).
As the coefficient of variation becomes greater, ¢, = 0.5 and ¢, = 1.0
(Fig. 31), He deviates farther away from the straight-line fit given by
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B = 2He + 1, Eq. (89). This is very similar to the behavior seen in Fig. 27
for the results of rescaled-range analysis applied to fractional log-normal
noises and motions. Rescaled-range analysis exhibits an increasing Hu (for
B < 0) as a function of an increasing coefficient of variation, c,; similarly,
average extreme-value analy51s exhibits an increasing He (for 8 < 2) as a
function of increasing c, '

7. WAVELET ANALYSIS
7.1. The Method

Fourier transforms have a long history of applications to a wide variety
of problems. For example, they have great utility in terms of obtaining the
frequency content of a time series. Despite the many advantages of
Fourier transforms, there are also disadvantages. For instance, they do not
provide spatial resolution. To overcome some of these disadvantages,
Grossmann and Morlet (1984) introduced the wavelet transform. This
transform provides information on both the spatial and frequency depen-
dence of a time series. The transform has a fractal basis and is particularly
useful when applied to nonperiodic multiscaled time series. The method
can also be applied to nonstationary processes. Two excellent discussions
of the wavelet transform are given by Hubbard (1996) and Wornell (1996).
Hubbard (1996) is particularly useful because she provides a complete
history of wavelets, along with a very easy to understand introduction to
wavelet mathematics.

The wavelet transform is a filter g[(¢’ — #)/a] which is passed over a
time series f(¢'). The effective width of the filter is generally increased by
powers of 2. The generalized form of the wavelet transform is given by

1 = (-
W(t,a) = 1/2[ ( )f(t ) dr'. (91)

The filter is centered at ¢, the position parameter, with a the scale
parameter. The effective width of the filter is normally taken to be a
constant multiple of the scale parameter. The quantity g(¢') is known as
the “mother wavelet.” Other wavelets are rescaled versions of the mother
wavelet. The factor a®° in Eq. (91) is an energy normalization so that the
transformed signal will have the same energy at all scales. The area of
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each wavelet must sum to zero so that

[ g(#)adr =0. (92)
When a is increased by powers of 2, a suite of wavelets is generated that
can accommodate a wide range of scales in the signal f(¢'). Small values-of -
the scale parameter a are equivalent to examining the high-frequency
contributions to a time series; large values of a are equivalent to examin-
ing low frequencies.

A commonly used mother wavelet that satisfies Eq. (92) is the “Mexican
hat” wavelet, which is the negative of the second derivative of the Gauss-
ian distribution. It takes the form :

27

and is illustrated in Fig. 32. The effective width of the illustrated filter is
16a, where a is the scale parameter. Substitution of Eq. (93) into Eq. (91)
gives

1 1/2 o
W(t,a) = (——) f

1 1/2 ,
g(t') = (——) (1-¢%)e "2 (93)

2a7T —oc a

t—1\? o
1 () e erpoar. o

The filter in this case is the Mexican hat wavelet. For an effective width of
16a, with a = 1, seventeen values from the Mexican hat as given in Eq.
(93) are being convolved with the time series W(t, a) in Eq. (94); for a = 2,
thirty-three values from the Mexican hat are being convolved with the time
series, and so forth.

Many other wavelet transforms have been proposed in the literature.
For example, a simple box wavelet known as the Haar wavelet has found
wide use. A disadvantage of most wavelet transforms, including the Mexi-
can hat and Haar, is that the sequence of wavelets is not orthogonal; i.e.,
as with Fourier transforms, the complete set can be inverted to reproduce
the original signal. To overcome this difficulty, Daubechies (1988) intro-
duced an orthogonal wavelet. Unfortunately, this wavelet transform has an
extremely complex waveform. Because we find very good results in quanti-
fying the strength of persistence when we use the Mexican hat wavelet, we
have not extensively examined other wavelets.

7.2. Applications to Fractional Gaussian Noises and Motions

The wavelet transform from Eq. (94) has been applied to several
fractional Gaussian noises and fractional Brownian motions, each with
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FIG. 32. Mother Mexican hat wavelet g(¢') from Eq. (93), where g(¢') is the negative of the
second derivative of a normal distribution. The width of this wavelet is 16a.

N = 4096 points. A Mexican hat wavelet, Eq. (93), with an effective width
of 16a is convolved, 16a points at a time, with the time series y,,
n=1,2,3,..., N. The first convolution is centered at n = 8a, n increasing
at +1 intervals, and the last convolution is centered at N — 8a (n = 8a,
8a + 1,8a + 2,..., N — 8a). In Fig. 33, results for W(z, a) are shown for
noises with 8= —1,0,1,2 and Mexican hats with a scale parameter,
a =1,2,4,8,16. The original time series, y,, is shown at the bottom of
each graph. As we would expect, for an antipersistent (8 = —1) time
series, the amplitude, W(z, a), of the resulting wavelet transform is strongest
for high frequencies (a small). For an uncorrelated signal (a Gaussian
white noise, B = 0), W(t, a) is equal for all a; in other words, the signal is
stationary, so there is no change in the variance at different a. For
persistent signals ( 8 = 1,2), the wavelet amplitude, W(t, a), is strongest
for the low frequencies (a large).
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In order to quantify the dependence of W on a and B, we determine
Vy, the variance of W, as a function of a. The results using fractional
noises with B = -2, —-1,0,1,2,3, are given in Fig. 34. In each case, we
find an excellent correlation with the relation

Vy ~ ai”. (95)

Flandrin (1992, 1993) applied a similar approach to fractional Brownian
motions, finding a power-law behavior of the variance of W, from which he
calculated an estimate for the fractal dimension of the fractional Brownian
motions.

Fig. 35 gives the values of Hw as a function of S, obtained from the best
fit of Eq. (95) in the range —3 < B < 5. A good correlation with the
- relation

B = Hw (96)

is obtained over the entire range. The wavelet transform provides a
powerful measure of the strength of persistence or antipersistence over the
complete range of fractional Gaussian noises and fractional Brownian
motions. Moreover, because the wavelet transform is not sensitive to
nonstationarities like Fourier analysis, one does not need to worry about
detrending, windowing, spectral variance, €tc.

7.3. Applications to Fractional Log-Normal Noises and Motions

The wavelet transform from Eq. (94) has been applied to several
fractional log-normal noises and motions, each with 4096 points. In Fig. 36,
results for W(¢, a) are shown for noises with ¢, = 0.5 and 8 = —1,0,1,2,
using Mexican hats with a scaling parameter, a = 1,2, 4, 8, 16. The original
time series is shown at the bottom of each graph. For decreasing a, the
signal, W(t, a), increases when B = —1, is almost constant when B = 0,
decreases when 8 = 1, and decreases even more when B8 = 2.

In order to quantify the dependence of W on both a and B, we
determine Vy,, the variance of W, as a function of a. The results for
B=-2,-1,0,1,2,3 are given in Fig. 37. Again, excellent fits are found
with Eq. (95). Fig. 38 presents the values of Hw as a function of B,
obtained from the best fit of Eq. (95) in the range —3 < B8 < 5. For

F1G. 33. Wavelet transform W(t,a) of four fractional Gaussian noises and fractional
Brownian motions (8 = —1,0,1,2) with N = 4096 points. The “Mexican hat” wavelet from
Eq. (94) is used with a width of 164, for a = 1,2,4,8, 16. The fractional noises and motions
used in each wavelet analysis are given at the bottom of each figure, and above the time
series, W(t, a) is given for each value of a.
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FiG. 34. Wavelet variance analyses for several fractional Gaussian noises and fractional
Brownian motions with N = 4096 points. The “Mexican hat” filter, with a filter width of 16a,
has been applied to the noises and motions. Examples of time series with N = 512 points and
the same characteristics as the noises and motions we use here are illustrated in Fig. 10. The
population variance of the wavelet amplitude, V},, is given as a function of the wavelet width,
a, for a = 1,2,4,8, 16. The straight-line correlations are with V}, ~ a®*, Eq. (95). The slope
of the best-fit straight line for log(V}, ) vs log(a) is Hw. Values for Hw are given for each of
the examples. The diamonds ( 8 = —2, —1), triangles (8 = —1,0,1), circles (B8 = 1,2,3),

and squares ( 8 = 3) are explained in Table L
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Fic. 35. The dependence of the wavelet variance exponent, Hw, on B, for fractional
Gaussian noises and fractional Brownian motions with N = 4096 points. The values for Hw
have been obtained from the best fit of Vy,, ~ a’’*, Eq. (95). Results are given for -3 < 8 < 5;
each symbol represents the best fit for Hw at that 8. Examples of obtaining Hw from wavelet
variance analysis are given in Fig. 34. The straight-line correlation is with the relation
B = Hw, Eq. (91), for =3 < B < 5. The diamonds (—3 < 8 < —1), triangles (—1 < B < 1),
circles (1 < B < 3), and squares (3 < B < 5) are explained in Table 1.

¢, = 0.2, an extremely good correlation with 8 = Hw, Eq. (96), is found
for B =5 down to about B = —1; for values of 8 more negative than
B = —1, Hw is more positive than expected. For higher coefficients of
variation, ¢, = 0.5 and ¢, = 1.0, the deviation gets worse, and Hw fails to
predict the expected value for values of B more negative than 8 = —0.5
and —0.2, respectively.

The wavelet transform provides a very powerful measure of persistence
or antipersistence for log-normal fractional noises and motions with 8 > 0.
For negative values of 8 it does not do as good a job. We recommend a
transformation to a Gaussian distribution for non-Gaussian distributions
with 8 < 0.
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8. SUMMARY

The basic concepts of self-affine time series have been introduced in this
article. In a self-affine time series, the power-spectral density as defined in
Eq. (38) scales as a power-law function of the frequency, Eq. (39). Time
series are quantified by their statistical distribution of values and by their
persistence or antipersistence. Persistence can be classified in terms of
range, short-range or long-range, and in terms of strength, weak or strong.
The distribution of values is usually either Gaussian (normal) or log-nor-
mal. The basic characteristic of a self-affine time series is that the
persistence is scale invariant. Thus, a self-affine time series has long-range
persistence by definition. :
~In this chapter, we have examined a variety of techniques to quantify

the strength of long-range persistence in self-affine time series. These in-
clude Fourier power-spectral analysis, semivariogram analysis, rescaled-
range analysis, average extreme-event analysis, and wavelet variance anal-
ysis. Other techniques to examine long-range persistent series,
not discussed in this article, include dispersional analysis (Bas-
singthwaighte and Raymond, 1995), maximum likelihood estimators (Beran,
1994), and the roughness—length technique (Malinverno, 1990). The
roughness—length technique is similar to the rescaled-range method ap-
plied to the original time series, in that the “roughness” of the time series
is found to have a power-law dependence on the window length. The
roughness is defined as the root-mean-square residual on a linear trend
over the length of the window.

In addition, Beran (1994), along with other authors, discusses long-range
persistence techniques that examine composite long-memory processes,
such as fractional autoregressive integrated moving average (FARIMA)
models. Composite long-memory processes are characterized by more than
two parameters; in this article we have restricted our analysis to single-
parameter long-memory processes, 1.e., processes where the persistence is
characterized by one parameter, B, Ha, Hu, He, or Hw.

Synthetic self-affine time series were generated using spectral tech-
niques and the method of successive random additions. Although the
spectral technique can be used to generate fractional noises with any value
of B, we used the technique to generate noises in the range —1 < 8 < 1.
These discrete noises were summed to give fractional motions in the range

FiG. 36. Wavelet transform W(t,a) of four fractional log-normal noises and motions
(B = —1,0,1,2) with N = 4096 points and coefficient of variation, ¢, = 0.5. The “Mexican
hat” wavelet from Eq. (94) is used with a width of 16a, for a = 1,2,4,8,16. The fractional
log-normal noises and motions used in each wavelet analysis are given at the bottom of each
figure, and above the time series, W(¢, a) is given for each value of a.
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FiG. 37. Wavelet variance analyses for several fractional log-normal noises and motions
with N = 4096 points and ¢, = 0.5. The “Mexican hat” filter, with a filter width of 16a, has
been applied to the log-normal noises and motions. The fractional log-normal noises and
motions were each obtained by using Egs. (73) to (76) applied to fractional Gaussian noises
and motions, and letting ¢, = 0.5. Examples of time series with N = 512 points and the same
characteristics as the noises and motions we use here are illustrated in Fig. 19. The
population variance of the wavelet amplitude, V), is given as a function of the wavelet width,
a, for a = 1,2,4, 8, 16. The straight-line correlations are with V};, ~ al’v, Eq. (95). The slope
of the best-fit straight line for log(Vy, ) vs log(a) is Hw. Values for Hw are given for each of
the examples. The diamonds (B = ~2, —1), triangles (8 = —1,0,1), circles (8 = 1,2,3),
and squares ( B = 3) are explained in Table II.
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8. SUMMARY

The basic concepts of self-affine time series have been introduced in this
article. In a self-affine time series, the power-spectral density as defined in
Eq. (38) scales as a power-law function of the frequency, Eq. (39). Time
series are quantified by their statistical distribution of values and by their
persistence or antipersistence. Persistence can be classified in terms of
range, short-range or long-range, and in terms of strength, weak or strong.
The distribution of values is usually either Gaussian (normal) or log-nor-
mal. The basic characteristic of a self-affine time series is that the
persistence is scale invariant. Thus, a self-affine time series has long-range
persistence by definition. :
~In this chapter, we have examined a variety of techniques to quantify

the strength of long-range persistence in self-affine time series. These in-
clude Fourier power-spectral analysis, semivariogram analysis, rescaled-
range analysis, average extreme-event analysis, and wavelet variance anal-
ysis. Other techniques to examine long-range persistent series,
not discussed in this article, include dispersional analysis (Bas-
singthwaighte and Raymond, 1995), maximum likelihood estimators (Beran,
1994), and the roughness—length technique (Malinverno, 1990). The
roughness—length technique is similar to the rescaled-range method ap-
plied to the original time series, in that the “roughness” of the time series
is found to have a power-law dependence on the window length. The
roughness is defined as the root-mean-square residual on a linear trend
over the length of the window.

In addition, Beran (1994), along with other authors, discusses long-range
persistence techniques that examine composite long-memory processes,
such as fractional autoregressive integrated moving average (FARIMA)
models. Composite long-memory processes are characterized by more than
two parameters; in this article we have restricted our analysis to single-
parameter long-memory processes, i.e., processes where the persistence is
characterized by one parameter, 8, Ha, Hu, He, or Hw.

Synthetic self-affine time series were generated using spectral tech-
niques and the method of successive random additions. Although the
spectral technique can be used to generate fractional noises with any value
of B, we used the technique to generate noises in the range —1 < 8 < 1.
These discrete noises were summed to give fractional motions in the range

FiG. 36. Wavelet transform W(t¢,a) of four fractional log-normal noises and motions
(B = —-1,0,1,2) with N = 4096 points and coefficient of variation, ¢, = 0.5. The “Mexican
hat” wavelet from Eq. (94) is used with a width of 16a, for a = 1,2,4,8, 16. The fractional
log-normal noises and motions used in each wavelet analysis are given at the bottom of each
figure, and above the time series, W(¢, a) is given for each value of a.
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Fic. 38. The dependence of the wavelet variance exponent, Hw, on B, for fractional
log-normal noises and motions with N = 4096 points. The values for Hw have been obtained
from the best fit of Vy, ~ a'*, Eq. (95). Results are given for —3 < B <5 and ¢, = 0.2
(white), 0.5 (gray), and 1.0 (black); each symbol represents the best fit for Hw at that B.
Examples of obtaining Hw from wavelet variance analysis are given in Fig. 37. The
straight-line correlation is with the relation B = Hw, Eq. (96), for —3 < B < 5. The dia-
monds (-3 < B < —1), triangles (—1 < B < 1), circles (1 < B < 3),and squares 3 < B < 5)
are explained in Table II.

1 < B < 3, and differenced to give extended fractional noises in the range
—3 < B < —1. The method of successive random additions was used to
generate fractional motions in the range 1 < B < 3. The discrete motions
could then be summed to give extended fractional motions in the range
3 < B <5 and differenced to give fractional noises in the range —1 <
B <1l |

Self-affine time series with 8 > 1 have a systematically different behav-
ior than self-affine time series with 8 < 1. With B8 > 1, the time series are
nonstationary and moments of the time series depend upon its length.
Over the range 1 < B < 3, the time series are self-affine fractals with
fractal dimension, 1 < D < 2. These time series are known as fractional
motions; with 8 = 2, the time series is a Brownian motion. Time series in
the range —1 < B < 1 are known as fractional noises and are stationary.
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With B8 = 0, the time series is a white noise. We define the self-affine time
series with B8 > 1 to have strong persistence and the self-affine time series
with 8 < 1 to have weak persistence.

We have used a variety of techniques to quantify the strength of
persistence of synthetic self-affine time series with =3 < 8 < 5:

(1) Semivariograms quantify the strength of persistence in the range
1 < B < 3. Self-affine time series in this range are nonstationary and are
considered to be self-affine fractals. The characteristic measure of a
semivariogram is the Hausdorff exponent, Ha. For both fractional Gauss-
ian motions and fractional log-normal motions, 1 < B8 < 3, there is a good
correlation with 8 = 2Ha + 1.

(2) Rescaled-range analyses quantify the strength of persistence in the
range —1 < B < 1. Self-affine time series in this range are stationary. The
characteristic measure of R/S analysis is the Hurst exponent, Hu. For
fractional Gaussian noises, the correlation with 8 = 2Hu — 1 is relatively
poor, particularly for B < 0. For fractional log-normal noises, the correla-
tion becomes worse. The convergence of Hu to Hu = (8 + 1)/2 is poor
for long record lengths.

(3) Average extreme-value analyses quantify the strength of persistence
in the range 1 < B < 3. The characteristic measure of average extreme-
value analysis is the extreme-value exponent, He. The correlation with
B =2He + 1 is the same as the correlation of Hu with 8 =2Hu — 1,
except that Hu( 8) = He(B + 2).

(4) Spectral techniques can, in principle, quantify the strength of persis-
tence for all values of B. Both stationary and nonstationary self-affine time
series can be considered. For a self-affine time series with a prescribed B,
Fourier spectral techniques provide a direct confirmation of this 8 using
the power-law dependence of S,, on f,. For fractional Gaussian noises
and motions, biased results can be found for 8 > 2 and B < 0, unless
windowing is applied to the time series. When windowing is applied,
spectral techniques accurately quantify the persistence for almost all
values of B. For fractional log-normal noises and motions, even with
windowing, B does not provide a reliable measure of persistence for
B < 0; we recommend for all B8 < 0 non-Gaussian distribution time series
that the time series be converted to a Gaussian distribution before
applying spectral techniques.

(5) Wavelet variance analyses quantify the strength of persistence for all
B. Self-affine time series in this range are both stationary and nonstation-
ary. The characteristic measure of wavelet variance analysis is the wavelet
exponent, Hw. In many ways, wavelet analyses are the most satisfactory
measure of the strength of persistence, particularly for data sets that are
nonstationary. Wavelet analyses do not have many of the inherent prob-
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lems that are found in Fourier power-spectral analysis, such as windowing
and detrending. For 8> 0, Hw correlates well with Hw = 8 for both
fractional Gaussian and fractional log-normal noises and motions. For
B < 0, Hw correlates well with Hw = B for both fractional Gaussian
noises and motions, but is poor for fractional log-normal noises and
motions. We recommend for 8 < 0 that a non-Gaussian distribution—of -
values be converted to a Gaussian distribution.

Self-affine time series are found in a wide variety of geophysical applica-
tions. Examples include the natural variability of climate, variations in
sedimentation, and the variability of the Earth’s magnetic field. Stochastic
differential equations can generate self-affine time series with a variety of
values for B. Geophysical applications and relevant models are discussed
in the article following this one (Pelletier and Turcotte, 1999).
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APPENDIX

ABBREVIATIONS AND SYMBOLS

Equation Section
Symbol Description introduced introduced

a Scale parameter in wavelet

analysis 91 7.1
A Constant of proportionality 59 23
() Average value of ( ), normally

over a given interval 7 81 5.1
Bm Brownian motion 18 1.6
Co Covariance of y, at zero lag 4,6 14
(1)) Covariance of y(¢) at zero lag 1,3 14
Cx Covariance of y, at lag k 4,5 14
c(s) Covariance of y(¢) at lag s 1,2 14
¢y ~Coefficient of variation 7 4.1

(continued)
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ABBREVIATIONS AND SYMBOLS (continued)

Equation Section
Symbol Description introduced introduced
D Fractal dimension 13 1.5
DFT Discrete Fourier transform 16 -
e Exponential, e = 2.718 30 2.1
Af Width of a frequency bin,
Af=1/(N8) 64 24
f Continuous frequency 30 2.1
fm Discrete frequency,
'w = m/(N8) 42 2.1
f(x) Function of x : 15
fBm Fractional Brownian motion 32
fGn Fractional Gaussian noise 3.2
G(f) Fourier transform of g(¢) 30 21
g Periodic continuous function 30 21
g(') Mother wavelet; filter 91 7.1
Ah(L) Difference in elevation between
a pair of points 15 1.5
h Elevation 1.2
hy Height of rectangular region 1.5
Ha Hausdorff exponent 14 1.5
He Extreme value exponent 88 6.1
Hu Hurst exponent 81 5.1
Hw Wavelet variance analysis
exponent 95 7.2
i Square root of —1 30 2.1
k Lag for a discrete time series, y, 4 1.4
In Natural logarithm (base )
log Common logarithm (base 10)
m Running variable in the
frequency domain, Y,,,, S,,, o> 34 21
Running variable for the running sum, y,, 82 5.1
n Running variable for a discrete
time series, y, 5 1.2
N Length of a discrete time series
l1<n<N 5 1.2
Number of subintervals in an
interval T 22 1.6
Ny, Ny, Number of boxes 22,26 1.6
N, Number of objects with linear
size r; 13 1.5
o) Volumetric flow in a river 77 4.1
o(T) Mean of the volumetric flow
over a period T 77 5.1
r Scaling factor 14 1.5

(continued)
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ABBREVIATIONS AND SYMBOLS (continued)

85

Equation Section
Symbol Description introduced introduced
ry Width of rectangular region 1.5
r; Characteristic linear dimension 13 1.5 7
r Autocorrelation function
for y, atlag k 4 14
Ry, R, Range over N or 7 values;
rescaled-range analysis 83, 85 51
r(s) Autocorrelation function for
y(2) at lag s 1 1.4
R(T),R(r)  Range over period T or 7;
rescaled-range analysis 79, 81 51
s Lag for a continuous time series 1 1.4
S(f) Power-spectral density of y(¢) 38 2.2
S Power-spectral density of y, 40 22
Sn, S, Standard deviation over N
or 7 values; rescaled-range analysis 84, 85 5.1
S(T), S(r) Standard deviation over time
T or 7, rescaled-range analysis 80, 81 5.1
t Running variable for a
continuous time series y(t) 2 1.2
Position parameter in wavelet
analysis 91 7.1
T Length of a continuous
time series, 0 <t < T 2 1.2
Period of a continuous function
g) 32 2.1
t, Discrete values of ¢, ¢, = né 1.2
Discrete values, t, = n/N,
n=12...,N 33
vV Variance of y(t) over the
interval T 3 14
Variance of y, over N values 6 1.4
v, Variance of ¢, over N values 1.6
Vinaxs Venin Maximum and minimum
volumes of water during T 79 5.1
V, Variance of y, over the first
n values 18 1.6
Vn Variance of y, over N values 52 2.2
V(t) Volume of water in a reservoir
as a function of ¢ 78 5.1
w(T) Variance over the interval T 33
Vw Variance of the wavelet
transform W(¢, a) 95 7.2

(continued)
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ABBREVIATIONS AND SYMBOLS (continued)
Equation Section

Symbol Description introduced introduced
w, Window used in power-spectral _

analysis 67 25
wn White noise 17 1.6
W, Window squared and summed 70 2.5
W(t, a) Wavelet transform 91 7.1
X Average of x(z), log-normal

distribution of values 74 4.1
x(1) Log-normal distribution

of values 73 4.1
y Average of y(¢) over the

interval T 2 14

Average of y, over N values,

n=01,2...,N 5 1.4
Ve Maximum value of y, during

an interval 7 88 6.1
Y(f,T) Fourier transform of y(¢) over

the interval 0 < ¢t < T 32 2.1
Ym Running sum of y, 82 5.1
Y, Discrete Fourier coefficients of

Yom=12,....N 34 2.1
Y,,,| Complex modulus of Y,, 36 2.1
Ya Set of values in a discrete time

series,n = 1,2,3,..., N 5 1.2
Vv Average of y, over N values,

n=01,2...,N 82 5.1
y(t) Set of values in a continuous

time series 2 1.2

Gaussian (normal) set of values 73 4.1

B Power-spectral density exponent 39 22
Brs Exponent obtained by

power-spectral analysis 22
Yi Semivariogram of y, at lag k 8 14
v(s) Semivariogram of y(¢) at lag s 7 1.4
6 Time between successive 7 in a

time series, y,, with T = N& 34 1.2
£, Gaussian distribution of values

that are uncorrelated 17 1.6
T Pi, 7 = 3.1416... 30 2.1
g, Standard deviation of &, over

N values 18 1.6
g, Standard deviation of y, over

the first n values in series 19 1.6

(continued)
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ABBREVIATIONS AND SYMBOLS (continued)

: Equation Section
Symbol Description introduced introduced
o(T), or Standard deviation of y(t) taken —
over the interval T 22,23 1.6
o(1), 0, Standard deviation of y(r) taken
over the subinterval 7 22,24 1.6
o, Standard deviation of the
log-normal distribution x(¢) 74 4.1
o, Standard deviation of the
Gaussian distribution y(z) 75 4.1
p3 Summation 5 14
T, T Subintervals of a length T or N 22,26 1.6
w Angular frequency 2.1
~ Proportional 13 1.5
% Infinity 30 2.1
= Approximately equal to
= Equal by definition
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II. APPLICATIONS AND MODELS

JoN D. PELLETIER AND DoNALD L. TURCOTTE

Department of Geological Sciences
Cornell University
Ithaca, New York 14853-1504

1. INTRODUCTION

In the previous article (Malamud and Turcotte, 1999, hereafter referred
to as MT), the authors considered various theoretical aspects of self-affine
time series. Several techniques for generating synthetic, self-affine time
series were discussed and alternative methods for analyzing time series
were presented. A primary means of identifying a self-affine time series is
in terms of its Fourier spectrum. For self-affinity the power spectrum or
power-spectral density, S, must have a power-law dependence on fre-
quency, f: S o f~# (MT, Eq. 39).

When considering self-similar processes in nature, there are generally
upper and lower limits to the validity of power-law statistics. An example is
a power-law distribution for the frequency—size distribution of fragments.
There will always be a largest and a smallest fragment. In many cases
power-law statistics will be applicable over a limited range of sizes. In
other cases two power-law regimes are found with different slopes. There
are also upper and lower limits to the self-affine behavior of naturally
occurring time series. In some cases two or more power-law regimes are
found with different values of B. In this paper we consider several
applications of self-affine time series in geophysics. The coverage of topics
is not meant to be complete. Instead, we consider three examples in some
detail and present applicable models.

The first application we consider is time-series data for local atmo-
spheric temperature. The spectral behavior for time scales between 200
kyr and 500 yr is obtained from deuterium concentrations in the Vostok
ice core. Historical temperature records are analyzed to give the spectral
behavior between time scales of 300 yr and 1 day. The obvious daily and
annual periodicities are removed and we focus on the stochastic content of
the time series. We find that self-affine behavior is applicable over well-
defined frequency bands. The self-affine behavior is associated with inter-
actions between the atmosphere, the space above (through the radiation of
heat), and the oceans and continents below. Solutions to a stochastic
diffusion equation for a layer with a substrate reproduce the observed
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statistics. The results are closely related to those for heat diffusion through
a metallic film over a substrate and to variations of solar luminosity. We
have also carried out power-spectral analyses of mean river discharges and
tree ring thicknesses. Both exhibit self-affine behavior with 8 = 0.5. This
corresponds to a Hurst exponent Hu = 0.7, consistent with the previous
results as discussed by MT (Section 5.2). The implications of a self-affine
river-discharge time series for drought assessment are also considered.

In our second application we consider porosity variations in sedimentary
basins. A model developed for the growth of atomic surface layers is
modified so that it is applicable to the spatial and temporal variations in
deposition and erosion. Self-affine variability is found with B = 2 in space
and B = 1.5 in time. The spatial variability is a Brownian motion. This has
been widely observed as the spectral behavior of topography. We show that
this variability is also consistent with the spatial distribution of oil pools in
sedimentary basins. The temporal variability of sedimentation is associated
with the vertical variability of porosity. Self-affine spectra with 8 = 1.5 are
good approximations to observed data. The vertical variability of sedimen-
tation and erosion can also be used to model the completeness of the
sedimentary record. It has been observed that the rate of sedimentation,
R, has a power-law dependence on the time period of sedimentation, T,
with R a T~%76. A self-affine spectrum with 8 = 1.5 gives R o« T %7,

Our third application considers the variability of the earth’s magnetic
field. We argue that intensity variations and reversals of the magnetic field
are a natural consequence of the inherent variability generated by dynamo
action and magnetic diffusion in the core. The field exhibits a binormal
behavior and when a fluctuation crosses the zero intensity value a reversal
occurs. The spectral behavior of the field on time scales of 100 yr to 4 Myr
has been obtained from paleomagnetic data. Over this range it is well
approximated by a 1/f (8 = 1) self-affine time series. Synthetic 1/f time
series have been used to generate reversal statistics and these are found to
be in good agreement with observations. The reversal statistics are sensi-
tive to the values of B and we conclude that the agreement is strong
support for 1/f behavior over the entire record of reversals. A model that
generates the observed 1/f behavior is a two-dimensional stochastic
diffusion equation.

2. NATURAL VARIABILITY OF CLIMATE

2.1. Temperature Spectra

Understanding the natural variability of climate is one of the most
important tasks facing climatologists. The Intergovernmental Panel on
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Climate Change (1995) concluded that the “balance of evidence suggests a
discernible human impact on the climate system.” This conclusion is based,
however, on comparisons with the variability exhibited by general circula-
tion models (GCM). Model runs often exhibit significantly lower variabil-
ity, by a factor of up to 10, and a different frequency dependence on time
than paleoclimatic data (Santer et al., 1995). Other model results give
natural variability comparable in magnitude to that observed in the last
100 years (Barnett et al., 1992).

In this section we consider the power spectrum of temporal variations in
atmospheric temperature on time scales of 200 kyr to 1 day. We will show
that at the longest time scales, at frequencies smaller than f = 1/(40 kyr)
the power spectrum is flat (white noise). At frequencies between f= 1/
(40 kyr) and f =~ 1/(2 kyr) the power spectrum is proportional to f* (a
Brownian motion). At frequencies greater than f = 1/(2 kyr) the power
spectrum is proportional to f~'/%. At very high frequencies (above f = 1/
(1 month)) the spectrum varies as f /2 for continental stations and
remains proportional to f~!/? for maritime stations. Thus we find a
sequence of self-affine spectra, each with a characteristic value of S, over
different frequency bands.

We will further show that the observed power spectrum of atmospheric
temperature is identical to the power spectrum of variations due to the
stochastic diffusion of heat in a metallic film that is in thermal equilibrium
with a substrate (Van Vliet et al., 1980). Temperature variations in the film
and the substrate occur as a result of fluctuations in the heat transport by
electrons undergoing Brownian motion. The top of the film absorbs and
emits blackbody radiation. In our analogy we associate the atmosphere
with the metallic film and the oceans with the substrate. Turbulent eddies
in the atmosphere and oceans are analogous to the electrons undergoing
Brownian motion in a metallic film in contact with a substrate.

We first consider the spectral behavior of the deuterium concentrations
in the Vostok (East Antarctica) ice core. A 220-kyr record of temperature
fluctuations is obtained using the conversion 5.66D(%) = 1°K (Jouzel
et al., 1987). The plot of variations in temperature versus age is given in
Fig. 1. Jouzel and Merlivat (1984) have concluded that the Vostok deu-
terium record is a proxy for local atmospheric temperature. Because the
data are unevenly sampled we utilized the Lomb periodogram (Press et al.,
1992) to estimate the power spectrum. The results are given in Fig. 2. We
associate the power spectrum with three regions of different self-affine
behavior. The first region, at frequencies less than f = 1/(40 kyr), is a
white noise (B = 0). The second region, between f= 1/(40 kyr) and
f=1/Q kyr), is a Brownian motion (8 = 2). In the third region, with
frequencies greater than f = 1/(2 kyr), there is a change to a lower value
of B. This change is associated with rapid variations in the Vostok core.
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FiG. 1. Atmospheric temperatures at Vostok, Antarctica inferred from deuterium concen-
trations in the Vostok ice core. From Jouzel et al., (1987).

This is also observed in ice cores from Greenland (Yiou et al., 1995).
Details of this analysis have been given by Pelletier (1997a).

In order to extend our analyses to higher frequencies we have carried
out power-spectral analyses on data for atmospheric temperature varia-
tions from weather stations. One of the longest available records is for the
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F1G. 2. Power-spectral density estimated with the Lomb periodogram of the temperature
inferred from the deuterium concentrations in the Vostok (East Antarctica) ice core. The

‘power-spectral density S is given as a function of frequency for time scales of 500 yr to
200 kyr.
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FIG. 3. Average monthly atmospheric temperature for central England (Manley, 1974) with
the yearly periodicity removed.

average monthly temperature in central England, 1659-1973. The data are
tabulated in Manley (1974). The yearly periodicity was removed from these
data by subtracting from each value the average temperature of that
month for the entire record. The resulting time series is given in Fig. 3.
This time series exhibits rapid fluctuations from year to year superimposed
on more gradual, lower frequency variations. The power spectrum esti-
mated as the square of the coefficients of the fast Fourier transform (FFT)
is presented in Fig. 4 along with a least-squares power-law fit to the data
with B8 = 0.47. We have also determined the average power spectrum of
the time series of monthly mean temperatures from 94 stations worldwide
with the yearly trend removed. We obtained the power spectra S(f) of all
complete temperature series of length greater than or equal to 1024
months from the climatological database compiled by Vose et al. (1992).
The yearly trend was removed by subtracting from each monthly data point
the average temperature for that month in the 86-year record for each
station. All of the power spectra were then averaged at equal frequency
values. The results are given in Fig. 5. The data yield a straight line on a
log-log plot with slope close to —0.5, indicating that S(f) o f~1/2 in this
frequency range.

Finally we consider the average power spectrum of time series of daily
mean temperature (estimated by taking the average of the maximum and
minimum temperature of each day) from 50 continental and 50 maritime
stations over 4096 days. Maritime stations are sites on small islands far
from any large land masses. Continental stations are well inland on large
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Fi1G. 4. Power-spectral density of the time series of central England temperatures in Fig. 3.

109

continents, far from any large bodies of water. We chose 50 stations at
random from the complete records (those with greater than 4096 nearly
consecutive days of data) of the Global Daily Summary database (National
Climatic Data Center, 1994). Once again the yearly periodicities were
removed. The results are given in Figs. 6 and 7. Continental stations
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FiG. 5. Average power-spectral density of 94 complete monthly temperature time series
from the data set of Vose et al. (1992) plotted as a function of frequency in yr~!. The
power-spectral density S is given as a function of frequency for time scales of 2 months to
100 yr.
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FIG. 6. Average power-spectral density of 50 continental daily temperature time series
from the National Climatic Data Center (1994) as a function of frequency in yr~'. The
power-spectral density S is given as a function of frequency for time scales of 2 days
to 10 yr.
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Fic. 7. Average power-spectral density of 50 maritime daily temperature time series from

the data set of the National Climatic Data Center (1994) as a function of frequency in yr~!.

The power-spectral density S is given as a function of frequency for time scales of 2 days
to 10 yr.
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FiG. 8. Power-spectral density of local atmospheric temperature from instrumental data

and inferred from ice cores for time scales of 200 kyr to 2 days. The high-frequency data are
for continental stations. Piecewise power-law trends are indicated.
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(Fig. 6) correlate with a f~3/% high-frequency region. Maritime stations
(Fig. 7) correlate with a f~!/? scaling up to the highest frequency. The
crossover frequency for the continental spectra is f = 1/(1 month). The
difference between continental and maritime stations results from the air
mass above maritime stations exchanging heat with both the atmosphere
above and the oceans below while the air mass above continental stations
exchanges heat only with the atmosphere above it. Because of the low
thermal conductivity of the solid earth, it does not act as a thermal buffer.
The three spectra have been combined in Fig. 8 to give a continuous
spectral behavior of atmospheric temperature from frequencies of 107° to
102 yr1,

2.2. River-Discharge and Tree-Ring Spectra

Before presenting a theoretical basis for the temperature time-series
spectra given above, we will consider two additional time series. We first
give power-spectral analyses of hydrological time series. Figure 9 presents
the results of power-spectral analyses of monthly mean river-discharge
data in the United States from the Hydro-Climatic Data Network compiled
by Slack and Landwehr (1992). The annual variabilities were removed and
the power spectra were computed in the same manner as for the tempera-
ture data. For the streamflow data we chose all complete records with a
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FiG. 9. Average normalized power-spectral density of 636 monthly river-discharge series as

a function of frequency in yr~1.

duration greater than or equal to 512 months and included 636 records in
our analysis. Since river discharges can vary by orders of magnitude
between river basins, we normalized the variance of each series before
averaging the spectra. A least-squares fit to the data gives B = 0.50,
consistent with the value observed for the temperature data in the same
frequency range. We have taken advantage of the large number of avail-
able stations to investigate the possible regional variability of the power
spectra. We have averaged the power spectra for each of the 18 hydrologic
regions of the U.S. defined by the United States Geological Survey and
given in Wallis ez al. (1991). All of the regions exhibit the same spectral
dependence with an average B value of 0.52 and a standard deviation of
0.03, indicating little variation.

The second time series we consider is the sequence of annual tree-ring
widths. We have performed spectral analyses of tree-ring width chronolo-
gies in the western United States obtained from the International Tree
Ring Database. Tree rings in the western U.S. are strongly correlated with
precipitation (Landwehr and Matalas, 1986). The chronologies are time
series in which the nonstationarities in growth rates have been removed
and spatial averaging has been performed in an attempt to isolate climatic
effects. Tree-ring series have the advantage of being much longer than
most historical records. We obtained 43 chronologies in the western U.S.
greater than 1024 years in length. The average normalized power spectrum
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FiG. 10. Average normalized power-spectral density of 43 tree-ring chronologies in the

western U.S. as a function of frequency in yr~!.

of those records is presented in Fig. 10. The least-squares fit indicates that
for tree-ring time series, S(f) is nearly proportional to f~1/2,

In the frequency range f = 1/(2 kyr) to 1/(1 month) the three data sets,
atmospheric temperature, river discharge, and tree-ring widths, all yield
spectra with a slope B = 0.5. In Section 5.2 of MT the application of the
rescaled-range technique was discussed. It was pointed out that Hurst et
al. (1965) applied the rescaled-range method to time-series data for atmo-
spheric temperature, river discharge, precipitation, tree-ring widths, and
other climatological time series. Good correlations were obtained with the
Hurst relation (MT, Eq. 81) taking Hu = 0.73 on average. From the
correlation between Hu and B given for fractional Gaussian noises in MT,
Fig. 25, we see that Hu = (.73 is entirely consistent with the observed
value B = 0.5.

2.3. Stochastic Diffusion Model

To see how time series with power-law power spectra arise, we present
the results from the simulation of a discrete, one-dimensional stochastic
diffusion process. A discrete version of the diffusion equation for the
density of particles on a one-dimensional grid of points is

n(t,1) — nt) ong () — 2n,(8) + n,_y(1)). (1)

We establish a one-dimensional lattice of 32 sites with periodic boundary
conditions at the ends of the lattice. At the beginning, we place 10
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Fic. 11. Average power-spectral density of the number of random walkers in the central
site of a lattice. The average of 50 simulations is presented.

particles on each site of the lattice. At each time step, a particle is chosen
at random and moved to the left with probability 3 and to the right if it
does not move to the left. In this way, the average rate at which particles
leave a site is proportional to the number of particles in the site. The
average rate at which particles enter a site i is proportional to the number
of particles on each side multiplied by one-half since the particles to the
left and the right of site { move into site i only half of the time. This is a
stochastic model satisfying Eq. (1). The probabilistic nature of this model
causes fluctuations to occur in the local density of random walkers. These
fluctuations do not occur in a deterministic model of diffusion.

In Fig. 11 we present the average of 50 power spectra, each spectrum
from a time series of the number of particles in a central site of the 32-site
lattice. The figure shows a power spectrum of the form S(f) o f~'/2. In
Fig. 12 we plot the cumulative probability distribution of the time series
produced by the stochastic diffusion model. The solid circles represent
data. The curve represents the cumulative log-normal distribution fit to the
data. A good fit is obtained.

Since the distribution of values in a hydrological time series is often
log-normal, we have shown that a simple model of stochastic diffusion
gives rise to both the power spectrum and the distribution observed for
hydrological time series. Below we study the stochastic diffusion of heat
energy in a region with boundary conditions appropriate to the coupled
atmosphere—ocean system. Although the discussion is applied to transport
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FiG. 12. Cumulative distribution function of the time series produced by the stochastic
diffusion model (solid lines). The curve represents the cumulative log-normal distribution
function fit to the data.

of heat energy and the resultant temperature fluctuations in the atmo-
sphere, the same model] can be applied to the turbulent transport of water
vapor in the atmosphere and the resultant variations in precipitation
through time. Therefore, this model provides a means to understand why
the variations in temperature and in precipitation have similar statistics.

A stochastic diffusion process can be studied analytically by adding a
noise term to the flux of a deterministic diffusion equation (Van Kampen,
1981):

IAT oJ ‘ @)
P T T ax
IAT
J=—o0—— + n(x,t), (3)
ax

where J is the heat flux, AT is the fluctuation in temperature from
equilibrium, p is the density, ¢ is the heat capacity per unit mass, o is the
thermal conductivity, and 7 is a Gaussian white noise in space and time.

Equation (2) is conservation of energy. Equation (3) is Fourier’s law of
heat transport with random advection of heat superimposed. The random-
advection term models the effects of local convective instabilities which
randomly advect heat vertically in the atmosphere. Novikov (1963) has
proposed this method for studying turbulent fluctuations.
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FiG. 13. (a) Geometry of the one-dimensional diffusion calculation detailed in the text. (b)
Boundary conditions appropriate to the air masses above the ocean (maritime stations),
where the ocean acts as a thermal conductor. (¢) Boundary conditions appropriate to the air
masses above the continents (continental stations), where the continents act as a thermal
insulator.

We now determine the behavior of the stochastic diffusion model in
terms of the power spectrum of temperature fluctuations in a layer of
width 2/ embedded in an infinite space in which Egs. (2) and (3) are
applicable. The presentation we give is similar to that of Voss and Clarke
(1976). The variations in total heat energy in the layer of width 2/ are
determined by the heat flow across the boundaries. Figure 13a illustrates
the geometry of the layer exchanging thermal energy with diffusing regions
above and below it. A diffusion process has a frequency-dependent corre-
lation length A = (2a/f)/? (Voss and Clarke, 1976), where o is the
diffusion coefficient, a = o/( pc). Two different situations arise as a
consequence of the length scale, 2/, of the geometry. For high frequencies
A < 21, the fluctuations in heat flow across the two boundaries are
independent. For low frequencies A > 2/, the fluctuations in heat across
the two boundaries are in phase.

First we consider high frequencies. Since the boundaries fluctuate inde-
pendently, we can consider the flow across one boundary only. The flux of
heat energy is given by Eq. (2). Its Fourier transform is given by

ion(k, w)

ak? +iw

J(k, w) = , 4)
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where f = 27w and k is the wave number. The flux of heat energy out of
the layer at the boundary at x =/ (the other boundary is located at
x = —=1I) is the rate of change of the total energy in the layer
E(t): dE(t)/dt = J(I,t). The Fourier transform of this equation is

i

E(w) = — / " dke™ Ik, ). (5)

Qm) e’ -

Therefore, the power spectrum of variations in E(¢), Sp(w) = {|E(w)|*),
1s

w dk

Sl | s

o w32, (6)
In the above expression, the noise term n does not appear because, since
it is white noise in space and time, its average amplitude is independent of
w and k, i.e., it is just a constant. Since AT « AE, the power spectrum of
temperature has the same form as S; and S;(w) o 0™ >/2

If we include the heat flux out of both boundaries, the rate of change of
energy in the layer will be given by the difference in heat flux: dE(¢)/dt =
J(1,t) — J(—1,¢t). The Fourier transform of E(t) is now

1 ®
E(w) = 7 [ dksin(kDI(k, w). 7

Qn
Then,
o dk sin®(kl)
o a’k* + @?
o 0w 32(1 — e %(sin 6 + cos H)), (8)

where 0 = (w/wy)"/? and w, = a/21* is the frequency at which the
correlation length is equal to the width of the layer. When A < 2/, the
above expression reduces to S;(f) o f73/2. When A > 2I, S,.(f) o f71/2
(Voss and Clarke, 1976). In this limit the boundaries fluctuate in phase,
and heat that enters into the region from one boundary can diffuse out of
the other boundary. The result is a sequence of fluctuations which are less
persistent ( 8 is smaller) than in the single-boundary f~3/? case.

In Section 2.1 we presented evidence that continental stations exhibit a
f*/% high-frequency region and maritime stations exhibit f~!/2 scaling up
to the highest frequency considered. This observation can be interpreted in
terms of the diffusion model presented above. The power spectrum of
temperature variations in an air mass exchanging heat by one-dimensional
stochastic diffusion is proportional to f~1/2 if the air mass is bounded by
two diffusing regions and is proportional to f~3/? if it interacts with only

Sr(w) a Sp(w) a
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one. The boundary conditions appropriate to maritime and continental
stations are presented in Figs. 13b and 13c, respectively. The layer consid-
ered is taken to have an upper boundary embedded in the atmosphere -and
a lower boundary at the earth’s surface. For maritime stations heat is
transferred across this lower boundary into the oceans, so it is equivalent
to the case A/l > 1 and therefore the power spectrum of temperature
variations is S(f) o f~1/2. For continental stations the lower boundary is
insulating, so it is equivalent to the case A/l < 1 and therefore S(f) «
f~3/2, At low frequencies, horizontal heat exchange between continental
and maritime air masses limits the variance of the continental stations.
This crossover should occur at the time scale when the air masses above
continents and above oceans become mixed. The time scale for one
complete Hadley or Walker circulation which mixes the air masses is
approximately 1 month, the same time scale as the observed crossover
(Pelletier, 1997a). '

Next we consider the stochastic diffusion model in a geometry appropri-
ate for a coupled atmosphere—ocean model with an atmosphere of uni-
form density (equal to the density at sea level) in thermal contact with
oceans of uniform density. The height of our model atmosphere is the
scale height of the atmosphere (height at which the pressure falls by a
factor of e from its value at sea level). Figure 14 illustrates the geometry
and constants chosen with o the vertical heat conductivity, p the density,
¢ the specific heat per unit mass, a the vertical thermal diffusivity, and g
the thermal conductance of heat out of the Earth by emission of radiation.
Primed constants denote values for the oceans. The physical constants
which enter the model are the density, specific heat, vertical thermal
diffusivity, depths of the oceans and the atmosphere, and the thermal
conductance by emission of radiation. The density and the specific heat of
air and water are well-known constants. We choose an ocean depth of
4 km and an atmospheric height equal to the scale height of 8 km as used
by Hoffert et al. (1980) in their climate modeling studies. The eddy
diffusivity we employ for the oceans is 6 X 10~°> m?/s. This value has been
obtained from tritium dispersion studies (Garrett, 1984). The vertical eddy
diffusivity for the atmosphere we use is 1 m? /s, as quoted by Pleune (1990)
and Seinfeld (1986) for stable air conditions. This eddy diffusivity implies
an equilibration time of the tropospheric air column of 2 years. This value
is roughly consistent with the 1 year decay time of the Pinatubo and El
Chichon aerosols (Hofmann and Rosen, 1987; Rosen et al., 1994).

Since the time scales of horizontal diffusion in the atmosphere and the
oceans are so much smaller than the time scales of vertical diffusion, the
rate-limiting step for thermal equilibration is vertical transport. For this
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F1G. 14. Geometry of the coupled atmosphere—ocean model and the constants chosen.

reason, we consider only the variations in local temperature resulting from
vertical heat exchange in the atmosphere and oceans.

The equation for temperature fluctuations in space and time in the
model from Egs. (2) to (5) is

IAT(x,t) 9*AT(x,t) onlx,t)
— —a(x > = — X
ot ax ax

(9

The mean value of 7 is zero and the flux of heat is proportional to the
temperature:

{(n(x,1)) =0, (10)
(nx, On(x’, ")) o e (X){T(x)Y6(x — x")8(t — t"). (11D

The delta functions indicate that the white-noise term 7 is uncorrelated in
space and time.

North and Cahalan (1981) analyzed a similar model of climate change
with respect to predictability. They studied the diffusion equation in two
dimensions as a model for horizontal heat transport in the atmosphere.
They included a white-noise term on the right-hand side of the diffusion
equation (they used 7(x,¢) where we use dn(x,t)/dx) to represent
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variations in heat transport by turbulent eddies. However, a noise term in
the flux of temperature rather than in the temperature itself is more
appropriate as a model for variations in turbulent heat transfer.

The boundary conditions are that no heat flows out of the bottoms of
the oceans and that there is continuity of temperature and heat flux at the
atmosphere—ocean boundary:

ikl 12)
ox x=w2_- ’ '
AT(x =wy) = AT(x = wy), (13)
oAT JAT
Kiall IR ctl (14)
0X |x=w; 0X |x=wi

At the top of the atmosphere we impose a blackbody-radiation boundary
condition. Most (65%) of the energy incident on the Earth is reradiated as
long-wavelength blackbody radiation from the water and carbon dioxide in
the atmosphere (Peixoto and Oort, 1992). This radiated energy depends on
the temperature of the atmosphere at the point of emission according
to the Stefan—Boltzmann law. It is common practice to assume that tem-
perature variations about equilibrium are small. This is a good approxima-
tion since the global mean temperature fluctuated by only about ten
degrees Kelvin during the last glaciation, as illustrated in Fig. 1. With a
linear approximation, the radiated energy is proportional to the tempera-
ture difference from equilibrium (Ghil, 1983). The boundary condition at
the scale height of the atmosphere (which we take to be representative of
the average elevation where radiation is emitted from the atmosphere) is
then

0AT

X |x=0

We will use the value g = 1.7 W/m? °K as used by Ghil (1983) and
(Harvey and Schneider (1985). It is often assumed that a feedback exists
between atmospheric or sea-surface temperature and cloud cover. If such
a feedback existed, it might be necessary to parameterize radiated energy
in terms of cloud cover or atmospheric water vapor. However, no evidence
for such a feedback has been found (Arking and Ziskin, 1994).

The existence of two layers of different diffusivity makes the study of the
two-layer model much more complex than that of the one-layer models
applied to the atmosphere above the continents and the oceans. Van Vliet
et al. (1980) used Green’s functions to solve this two-layer model. The
Green’s function of the Laplace-transformed diffusion equation is defined

= gAT(x = 0). (15)

ag
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by

92G(x,x",iw)
iwG(x,x',iw) — a(x) P = 8(x —x'), (16)

where G is governed by the same boundary conditions as AT. This
equation can be solved by separating G into two parts: G, and G, with
x <x' and x >x', respectively. G, and G, satisfy the homogeneous
(unforced) diffusion equation with a jump condition relating G, and G,:

G, 1
ox x=x' a(x,) .

The power spectrum of the average temperature in the atmosphere in
terms of G is given by Van Vliet et al. (1980) as

17
x=x’ ox ( )

Sar(f) « Re([owljowlc;l(x, X, iw) dxdx’) (18)

w X
x Re(f lf G(x,x",iw) dxdx’
0 ‘o
w w
+/ [ 1G1a(x,x’,iw)dxdx’), (19)
0 “x
where G, stands for the solution to the differential equation for G where
the source point is located in the atmosphere and Re denotes the real part
of the complex expression. Two forms of G,, and G,, are necessary for x
located above and below x', respectively, due to the discontinuity in the

derivative of G, created by the delta function. The solutions of G; which
satisfy the above differential equation and boundary conditions are

L ('L (w,—x"\_ (W,
G,=—=|— smh( )smh(—)
aK

ol’ L L'
ot 22 Veosh( 2 ) [sinn( 2 + Z hx) (20)
cos 7 coSs (L’) sin (L) Iz coS (L
and
L [(x'—x
a L
where

Lg L)) oL L'

+ (cosh(%) + Lig sinh(%))cosh(%) (22)

A o wi\Y\o'L  (w,
K= smh(z—) +———cosh(—))————smh(——)
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and L = (a/iw)/? and L' = (&' /iw)'/?. Performing the integration, van
Vliet et al. (1981) obtained

S,r(f) a Re I

o'L w ~2glL cosh(w,/L) — 1
LZ{—tanh(—l—%)[ 5 1/

o cosh(w, /L)

+(—1 + _g_w_l tanh
g

|
‘tanh(%)]} { :tanh(%) + Z:T] %tanb(%)
|

ot s Zeann( ) @3)
+ S —
7 an ( 7
For very low frequencies, several approximations can be made:
Wy Wy W, Wy
hl—| =~ — — =~ = 4
tan (L) 7 tanh(L,) I 24)
cosh(w, /L) —1 1w}
24 ~——. (25)
cosh(w, /L) 2 L
Reducing Eq. (23)
Sar(f) : (26)
i) ST e SR

This is the low-frequency Lorentzian spectrum observed in the Vostok
data. The crossover frequency as a function of the constants chosen for the
model is

4
= . 27
fo wicp +wyc'p'(1 +gw, /o) 27)

At high frequencies the following approximations hold:
tanh(rv—l—) ~ Kv—l, tanh(—u—)i) ~1, (28)
L L L’
cosh(w, /L) =1 1w}
cosh(w, /L) 21

(29)
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then

1/2 1/2 1/2

ST (f) o 1(28"’1) ( cpo ) ( 8 ) af—l/Z. (30)
av 2\ o c'p'a’ w; pcf

This is the broad f~!/? region observed in the power spectrum of the

temperature data and predicted based on the simpler one-layer model

exchanging heat with regions above and below. The high- and low-frequency

spectra meet at

1/3 r o1 _r\1/3 4/3

o c'p'o cpw

fl = g ( ) ( P ) 41/3( ’p/ 1 ) (31)
wy pc \ 2gw, cpo c'p'w,

~ 1,/(10 kyr). (32)

This value agrees within an order of magnitude with that observed in the
Vostok data (f = 1/(2 kyr)).

The three crossover time scales in the composite spectrum of Fig. 8 are
fundamental time scales of the climate system. The 1-month time scale for
the crossover between f3/2 and f~!/2 behavior in continental stations
may be associated with the time scale for one complete Hadley or Walker
circulation. These circulations bring continental air masses in contact with
oceanic air masses and allow the variations in heat energy of continental
air masses to damp out more quickly through this connection to the ocean
heat sink.

For time scales greater than 1 month but less than 2 kyr, fluctuations in
the heat loss from the atmosphere by radiative cooling causes temperature
variations in the atmosphere which can be damped by the oceans. At
frequencies lower than 2 kyr, the time scale of vertical ocean mixing, the
atmosphere and the oceans are in thermal equilibrium. The oceans can no
longer absorb thermal fluctuations in the atmosphere resulting from fluc-
tuations in the radiative emission on this time scale. The variance in
temperature of the atmosphere and the oceans is then determined solely
by the radiation boundary condition. The fluctuating temperature at the
top of the atmosphere will result in a white-noise flux out of the atmo-
sphere—ocean system. The average temperature of the atmosphere and the
oceans at these time scales will be given by the sum of a white noise, a
Brownian motion. This is observed in the Vostok data between time scales
of 2 kyr and 40 kyr.

The power spectrum of temperature variations flattens out at frequen-
cies lower than f = 1/(40 kyr) as a result of a negative feedback mecha-
nism: as the coupled atmosphere and oceans warm up (cool down) due to
nonstationary fluctuations resulting from the random heat flux out into
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space, the system will radiate, on average, more (less) radiation, limiting
the variance at low frequencies. This can be described by a linear damping
equation for the global temperature difference from equilibrium: -

JAT 1

— = ——AT+ '
pr o n(1), (33)

where 7, = 1/f, and f, is given by Eq. (27). The temperature variations
AT from this equation have a spectrum which is a Lorentzian with a
crossover time scale of 7. This can be shown with Fourier transforms. The
Fourier transform of Eq. (33) is given by

n(w)

AT(w) = (34)

ol tiw
The power spectrum S,,(@) = {|AT(w)|*) is then given by Eq. (26). Now
we must consider whether the observed low-frequency crossover time scale
of 40 kyr is consistent with the model prediction given by

wicp +wyc'p'(1 + gw, /o)
. .

If we neglect the heat capacity of the atmosphere relative to that of the
ocean, this reduces to ’

(35)

'TO=

i N el (36)
g o

The first term is the time scale for radiative damping of the heat energy of
the coupled atmosphere—ocean system into space. The second term is the
time scale for transport of the heat energy of the ocean to the top of the
atmosphere where it can be radiated from clouds. If the time scale for one
of these processes is much larger than the time scale for the other, the
crossover time scale will be determined by that rate-limiting step. For
the Earth’s climate system, the transport of the oceans’ heat through the
atmosphere appears to be the rate-limiting step. This process takes a long
time because the atmosphere has a low heat capacity compared to the
oceans and is therefore a poor heat conductor. The time scale of radiative
damping is estimated to be 600 yr from the well-known constants listed in
Fig. 14. The time scale for vertical transport of the oceans’ heat through
the atmosphere can only be estimated to within an order of magnitude
since this time scale is linearly dependent on the average vertical diffusiv-
ity of the atmosphere. Only rough estimates are available for this parame-
ter. Estimates of 1 m?/s for this parameter have been given by Pleune
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(1990) and Seinfeld (1986). In order for the time scale of vertical advection
of the oceans’ heat through the atmosphere to be 40 kyr, a vertical
diffusivity of 0.1 m*/s is required, a factor of 10 lower but roughly in
agreement with the values quoted above.

Besides the frequency dependence of the power spectrum, the model we
have presented predicts that the distribution of temperature variations
from equilibrium obeys a Gaussian distribution. This is because the
stochastic term obeys a Gaussian distribution function and the tempera-
ture fluctuations are related to the stochastic term through a linear
transformation. By definition, the probability density function is only
defined for time scales in which the temperature-fluctuation time series
are stationary. Gaussian time series with power-law power spectra of the
form S(f) o f# are stationary if 8 < 1 and nonstationary if 8 > 1 (MT,
Section 2.4). Thus, a unique probability density function only exists for very
long time scales (greater than 100 kyr) where the power spectrum is
constant ( 8 = 0) and for the range of time scales in which the power
spectrum obeys S(f) o f~# with 8 = 0.5. Matteucci (1990) has computed
the probability distribution function for climatic variations at very long
time scales with the SPECMAP stack. He obtained a Gaussian distribu-
tion. Similarly, Janosi and Vattay (1992) have obtained a Gaussian distri-
bution with monthly temperature data sets of several decades length with
the annual variability removed.

Manabe and Stouffer (1996) have completed power-spectral analyses of
variations in local atmospheric temperature in control runs of a coupled
atmosphere—ocean—land surface model. They computed the power spec-
trum of temperature time series of each surface grid point and then
averaged the power spectra at equal frequency values, as in our observa-
tional power-spectral analyses. Their results are presented in Fig. 15. They
found different spectra for continental and maritime gridpoints. Maritime
gridpoints exhibited power-law power spectra for time scales of one month
to several hundred years with an exponent of close to —0.25. Continental
gridpoints, however, showed flat spectra up to time scales of about 100 yr,
in contrast to observations. Exploring the similarities and differences
between the approach in this paper, GCM results such as those of Manabe
and Stouffer (1996), and observations should enable us to learn more
about this fundamental problem in earth science.

Time-series analyses of paleoclimatic data often exhibit a dominant peak
near 100 kyr as well as smaller periodicities near 40 kyr and 20 kyr
(Thomson, 1990). Although variations in the eccentricity of the Earth’s
orbit occur with this frequency, this variation is not expected to produce a
linear influence on climate change since this orbital variation results in
only a fraction of a percent change in the amount of radiation incident on
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Fi1G. 15. Average power-spectral density of atmospheric temperature above continents and
oceans for each grid point in the general circulation model calculations of Manabe and
Stouffer (1996). The straight line corresponding to f~1/2 is included for comparison.

the Earth (Hays er al., 1976). Although there are nonlinear models that
predict a 100-kyr periodicity, it is generally agreed that the underlying
mechanism for this peak is not well understood (Kerr, 1978). The model
presented in this section leaves the question open as it does not predict
any periodicity. The only component of the system thought to have a
characteristic time scale of 100 kyr is the cryosphere (Mitchell, 1976).
Perhaps the cryosphere can produce a 100-kyr peak in the power spectrum
when forced by the background spectrum predicted by the model of this
paper. Studies incorporating the cryosphere into our model are an impor-

tant extension of our work that may lead to new insights into the nature of
the 100-kyr periodicity.
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FIG. 16. Power-spectral density of variations in the solar irradiance in 1987 and 1985 from

the ACRIM project as a function of frequency in hour~1.

2.4. Variations in Solar Luminosity

We have applied the same model presented in Section 2.3 to variations
in the solar luminosity for time scales of minutes to months (Pelletier,
1996). In Fig. 16 we present the power spectra estimated with the Lomb
periodogram of ACRIM solar irradiance data sampled during 1987 and
1985 plotted as a function of the frequency in hours™!. The same sequence
of power-law behavior is observed in these data as is observed in the
Vostok data. Large peaks appear at the orbital frequency of the satellite
and its harmonics. These peaks are an artifact of the spectral estimation. A
stochastic diffusion model of the turbulent heat transfer between the
granulation layer of the sun, modeled as a homogeneous thin layer with a
radiative boundary condition, and the rest of the convection zone, modeled
as a homogeneous thick layer with thermal and diffusion constants appro-
priate to the lower convection zone, predicts the same spectral form
observed in solar irradiance data. The time scales of thermal and radiative
equilibrium of the solar convection zone based upon thermal and diffusion
constants estimated from mixing-length theory match those observed in
the ACRIM data. Further details are discussed in Pelletier (1996).
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2.5. Drought Hazard Assessment

One of the principal applications of time-series analysis is to drought
hazard assessment. A major question is whether “short-memory” models
are adequate or whether “long-memory” models such as self-affine noises
and motions are required (Bras and Rodriguez-Iturbe, 1985).

Since hydrologic droughts are phenomena requiring multiple years of
low flow, the frequency of occurrence will be affected by correlations in
the time series of discharge. We now illustrate how fractional noises can
be used to estimate drought frequencies. The use of fractional noises that
exhibit the Hurst phenomenon has been proposed by Booy and Lye (1989)
for use in flood-frequency analysis. The goal of stochastic hydrology is to
generate synthetic time series of river discharge that accurately reproduce
hydrological time series. Based on evidence for the applicability of a
fractional noise with B = 0.5, we generated synthetic time series with
two-parameter log-normal distributions that fit the historical records of
river discharge. We first discuss the techniques and results of drought-
frequency analyses for series with different log-normal distributions. Then
we discuss the results of a comparison between drought frequencies for the
Colorado river based upon a fractional noise with exponent of —1/2 and a
short-memory first-order autoregressive (AR(1)) model. An AR(1) model is
a time series in which each value is equal to a constant factor multiplied by
the last value in the series plus a random variable.

Techniques for generating synthetic log-normal fractional noises have
been discussed by Malamud and Turcotte (MT, Section 4.2). We utilize
synthetic noises with 8 = 0.5 and ¢, = 0.2, 0.4, and 0.6. There is no unique
definition of a drought; several alternatives were discussed in a recent
drought assessment of the southwestern U.S. by Tarboton (1994). Per-
haps the most straightforward definition is that proposed by Yevjevich
(1967). He defined a drought as any year or consecutive number of
years during which average annual streamflow is continuously below the
long-term mean annual runoff. The magnitude is the average deficit during
the drought. The principal drawback to this definition is that two 5-year
droughts separated by one wet year will only be recognized as 5-year
droughts even though the succession of droughts results in ten or eleven
years of critically low supply. In Fig. 17 we present the results of drought-
frequency analyses based on this definition of a drought. Each part is a
two-dimensional contour plot of the logarithm (base 10) of the recurrence
interval in years of a drought of a given duration and magnitude, with the
magnitude normalized to the mean flow. Figures 17a, b, and c represent
coefficients of variation 0.2, 0.4, and 0.6, respectively. To construct each
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FiG. 17. Contours of the logarithm (base 10) of the recurrence interval in years as a
function of drought duration and magnitude (normalized to the mean annual flow) for a
log-normal distribution with coefficient of variation (a) 0.2, (b) 0.4, and (c) 0.6.

figure we generated synthetic records of one million years in length and
searched them for drought occurrences.

In order to assess the importance of long-range persistence on the
likelihood of severe drought, we have compared a drought-frequency
analysis using a first-order autoregressive model for the Colorado river at
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FiG. 17. Continued.

Lees Ferry (Kendall and Dracup, 1991) with a fractional noise model for
the same location. The synthetic time series were one million years in
length. We found that for droughts of ten years duration and small
magnitude, 100-year events according to the fractional noise model, the
difference in recurrence interval for the two models is a factor of 5. We
conclude that the presence of long-range persistence has a significant
effect on the likelihood of severe drought. The presence of long-range
persistence does not, however, appear to improve the ability to predict

future climatological and hydrological time series to any significant degree
(Noakes et al., 1988).

3. VARIATIONS IN SEDIMENTATION
3.1. Introduction

We now turn to porosity variations in sedimentary basins. We show that
these variations are self-affine motions in both the horizontal and vertical
directions. We show that the observed distributions can be reproduced
using a standard model for surface growth. We will further show that this
model is consistent with the observed variations and episodicity in sedi-
ment deposition.
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In the past decade many studies have documented the scale invariance
of porosity and density variations in sedimentary basins. Power-law power
spectra of vertical density and porosity well logs have been reported by
Hewett (1986), Walden and Hosken (1985), Pilkington and Todoeschuck
(1990), Todoeschuck et al. (1990), Holliger (1996), Shiomi et al. (1997),
Dolan et al. (1997), and Pelletier and Turcotte (1996). Tubman and Crane
(1995) and Deshpande et al. (1997) have presented evidence for scale-
invariant horizontal variations in density and porosity from well logs and
seismic data. In addition, Dunne et al. (1995) presented evidence that the
topography of alluvial plains along the channel strike is also scale invari-
ant. They performed spectral analyses on fluvial microtopographic tran-
sects of an alluvial plain in Kenya. They obtained power spectra with
S(k) a k™, where k is the wave number and 8 ranges from 1.5 to 2.
Based on his original observation, Hewett (1986) developed a fractal-based
interpolation scheme for determining the three-dimensional porosity varia-
tions in sedimentary basins using available well logs. The validity of the
interpolated structure was subsequently verified in a variety of ways. This
approach was applied to modeling groundwater migration by Molz and
Boman (1993).

3.2. Stochastic Diffusion Model

Before considering the observed spectra further, we present a model for
the filling of sedimentary basins which will be predictive of both vertical
and horizontal porosity variations. We will refer to this model as the
stochastic diffusion model. The model is called that because the dynamic
rules of the model are equivalent to a diffusion process, as we will show.
At each time step, a site on a one-dimensional lattice is chosen at random.
During that time step, a unit of sediment is deposited on that site or on
one of its nearest neighbors, depending on which site has the lowest
elevation. This is the simplest model combining randomness and the
tendency for sediment to be deposited in low-lying areas of an alluvial
plain. The model is illustrated in Fig. 18. The cross-hatched block shows
the unit of sediment being added to the surface. In each case, an arrow
points towards the site upon which the unit of sediment will be deposited.
In Fig. 18a the chosen site has a lower elevation than either of its nearest
neighbors, so the sediment is deposited at the chosen site. In Fig. 18b one
of the nearest neighboring sites has a lower elevation and the sediment is
deposited at that lower site. In the case of a tie for the lowest elevation
between two or three sites, the site on which the sediment is deposited is
chosen randomly between the sites of the same elevation, as in Fig. 18c.
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Fic. 18. Illustration of the sediment deposition model. In each case a site is chosen
randomly (the center of the three sites in each of the above pictures). The dashed block is the
unit of sediment being added to the surface. The arrows point toward the site upon which the
unit of sediment will be deposited. (a) The chosen site has a lower elevation than either of its
nearest neighbors, so the sediment is deposited at the chosen site. (b) One of the nearest
neighboring sites has a lower elevation and the sediment is deposited at that lower site. (¢) In
the case of a tie for the lowest elevation between two or three sites, the site on which the
sediment is deposited is chosen randomly between the sites of the same elevation.

The local elevation is the total number of units of sediment that have been
deposited at the site.

This stochastic diffusion model was first analyzed by Family (1986) with
applications to the growth of atomic surface layers. He reported the results
of computer simulations which showed that the model produces scale-
invariant variations of the surface in space and time. He found that the
standard deviation, o, of the surface follows the relation

o(L,T) o« LV?TV4, (37)

where L is a length scale and T is a time scale. Surfaces with scale-
invariant standard deviations o (L,T) o L¥%TH% have a power-law de-
pendence of the power-spectral density, S(k), on wave number k of the
form S(k) o k=2#%"1 (e, ok ? for Ha,=1/2) and a power-law
dependence on frequency of the form S(f) o f~2#%~1 (ie., o f73/2 for
Ha, = 1/4).

An example of the topography produced by the stochastic diffusion
model with 1024 grid points is given in Fig. 19. The average dependence of
the power-spectral density on wave number from 50 independent simula-
tions is given in Fig. 20. The power spectrum is proportional to k™2,
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FiG. 19. A typical surface produced by the deposition model with 1024 grid points.

indicating that the surface is a Brownian motion. Other lattice sizes yield
similar results. The synthetic topography given in Fig. 19 is very similar to
the one-dimensional transect of Kenyan topography obtained by Dunne ef
al. (1995) and plotted in Fig. 21. Hooke and Rohrer (1979) have mapped
the topographic profiles of alluvial fans perpendicular to the flow direction.
The synthetic profile is also strikingly similar to their alluvial fan profiles.

S(k)

(o Y
1072

k (1/cell size)
FiG. 20. Average power spectrum of the surfaces constructed from 50 independent simula-

tions on 1024 grid points as a function of the wave number k. The model surfaces are
Brownian motions.
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FIG. 21. One-dimensional transect of hillslope topography perpendicular to the channel

dip. Obtained with the use of laser altimetry. From Dunne ez al. (1995).

In Fig. 22 we plot the variations in surface elevation (subtracted from
the mean height of the landscape) at the central site of our simulation
after the simulation has reached a dynamic steady state. In Fig. 23 we
present the average power spectrum of the difference from the mean
height of the central site produced in 50 simulations. The power spectrum
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FiG. 22. Difference from the mean height of the central site of the lattice as a function

of time.
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FiG. 23. Average power spectrum of the difference from the mean height of the central site
for 50 independent simulations as a function of frequency f. The power spectrum is
proportional to f3/2,

is proportional to f 3/2. An alternative approach to the problem of
deposition and erosion is the random-walk model (Tipper, 1983). This
model considers the deposition and the erosion at a point to be a white
noise. The elevation of topography at that point is the sum of the
deposition and the erosion and therefore is a random walk with power
spectrum S(f) o f~2. The model of basin filling in which erosion and
deposition occur independently will be referred to as the random-walk
model. The random-walk model has been analyzed as a model for sedi-
mentary bed formation. The effect of directing the sediment to lower
elevations in our stochastic diffusion model is to preferentially fill low-lying
areas of the alluvial plain. This results in an anticorrelated sequence of
deposition and erosion: after an area has aggraded, it has a higher
elevation and a lower rate of future aggradation. Without the filling in of
low-lying areas, the horizontal surface would be a white noise. The
random-walk model, therefore, results in a very unrealistic alluvial plain
topography.

We can also include the effects of erosion in our stochastic diffusion
model. Although deposition generally occurs in topographic depressions,
tending to smooth out the floodplain, erosion is less consistent. Erosion
can downcut in a channel or, during a large flood, can lower alluvial ridges.
We have modified our simulation to include the effects of erosion by
choosing randomly at each time step whether to deposit or to erode
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sediment during that time step. The probability of deposition must be
greater than 0.5 in order to accumulate a sedimentary basin over time. We
have studied the modified stochastic diffusion model assuming that erosion
occurs preferentially on channel floors, randomly on the landscape, or
preferentially on alluvial ridges. In the simulations in which we assumed
erosion to occur preferentially on the channel floors, we have included an
erosion rule that takes away rather than deposits a unit of sediment at a
randomly chosen site or one of its nearest neighbors, depending on which
has the lowest elevation. We have also investigated rules that remove a
unit of sediment only from the chosen site (to simulate random erosion on
the floodplain) and a rule that removes sediment from the chosen site or
one of its nearest neighbors, depending on which site is highest, to
simulate the preferential erosion of alluvial ridges. The exponents of the
power-law power spectra obtained in the stochastic diffusion model with-
out erosion are unchanged for any of these modified models with erosion.

In the simplest version of the stochastic diffusion model which includes
only deposition, the probability that a particle is added to the site is
proportional to 2 if both of a site’s neighbors have a higher elevation, is
proportional to 1 if only one of the neighbors is higher, and is zero if both
neighbors are lower. The model may be described mathematically with a
stochastic difference equation of the form

Pivor =Ry € OCh k) + OCh_y 0k L), (38)

where h;,., —h;, represents the most probable growth rate of the
surface and @ is the Heavyside function defined by &(x, x,) = 1 if x > x,
or 0 if x <x,. Averaging this equation over a time long compared to the
time required to grow a single layer of unit height of sediment, the
equation for the average surface growth rate is

<hi,t+1 - hi,t> o <hi+1,t - hi,t> + <hi—1,t - hi,t> (39)
o Ry, 2 = 2€hy ) + (g ). (40)

This is a discrete version of the diffusion equation. Directing sediment to
lower elevations smooths out the surface and is equivalent to a diffusion
process. As recognized by Family (1986), a continuous version of the
discrete model is provided by a one-dimensional diffusion equation with a
Gaussian white-noise term:

oh(x,t) 9%*h(x,t)
—_ = D—

pm = + n(x,1). (41)
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The term 7(x, t) represents actual deposition and erosion. The assumed
Gaussian white noise is characterized by a mean, 7, and a standard
deviation, o. If 5 =0 there is no net deposition and sedimentation
balances erosion. For i > 0 there is net deposition and for 5 < 0 there is
net erosion. The ratio o/ is a measure of the amplitude of fluctuations
in the sedimentation process. The diffusion term in Eq. (41) introduces
both spatial and temporal correlations in the sedimentation process not
present in the random-walk model.

3.3. Observations

We will next consider some observed spectra of the vertical variations of
porosity in sedimentary basins and compare them with the results we have
obtained. Our model for variations in paleotopographic elevation (or
stratigraphic position) with time may be comparable to porosity variations
with depth since high porosity is often associated with low stratigraphic
position such as in poorly sorted, sandy channel-fill deposits (Curry and
Curry, 1972; Coleman and Prior, 1982). Porosity as a function of depth is
routinely measured at equal intervals in formation well logs (Hewett,
1986). As a specific example we have considered porosity logs from 15
wells in the Gulf of Mexico. One of the logs is plotted in Fig. 24. The wells
are drilled in a deltaic sedimentary environment with a few large, nearly
vertical faults (Alexander, 1995). The power spectra for these wells are
given in Fig. 25 as a function of the wave number k in m™'. At spatial

35_‘I l I ' o O S '__

by |

porosity (%)

2000 4000 6000 8000 10000
depth (ft)
FiG. 24. Vertical porosity well log from the Gulf of Mexico.
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FIG. 25. (a) and (b) Power-spectral density of porosity as a function of wave number in
units of m~! in 15 wells from the Gulf of Mexico. The spectra are offset so that they may be
placed on the same graph.

scales larger than =~ 3 m, the power spectra are well approximated by a
power law. Below this scale the power-spectral density decreases sharply in
most of the wells. This decrease may be the result of a transition from
second-order heterogeneities (dominated by variations in porosity within
the larger genetic units) to third-order heterogeneities which result from
the geometrical arrangements of individual depositional units. The transi-
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tion from second- to third-order heterogeneities occurs at the scale of
meters (Allen and Allen, 1990) and is consistent with the 3-m scale of the
break observed in the power spectra. We estimate S from the slope of
the least-squares linear fits to the log—log plots at scales greater than 3 m.
The values of B obtained exhibit considerable variability from well to well.
However, the average 8 = 1.4 is close to the value 1.5 predicted by the
model. The standard deviation is 0.2.

Dolan et al. (1998) reported ranges of values of B from time-series
analyses of vertical density and porosity variations in well logs. They
obtained average power-spectral exponents 3 = 1.50, 1.62, and 1.46 using
three different numerical procedures for a cluster of ten wells in a fluvial
sedimentary environment. These values are in excellent agreement with
the ones we obtained and with our model. Holliger (1996) has reported
values of B8 from 1.2 to 1.4, somewhat smaller, but roughly consistent with
the values reported here.

We will next consider several observational studies relevant to the
horizontal variations of porosity in sedimentary basins. Direct measure-
ments of topography on relevant scales have been carried out by Dunne et
al. (1995). These authors have performed power-spectral analyses of fluvial
microtopographic transects perpendicular to the fall line from two hill-
slopes obtained with laser altimetry from scales of 0.1 to 100 m. Their work
provides us with a direct test of our model for the topographic variations
of an alluvial plain. They obtained power spectra with a power-law depen-
dence on wave number as predicted. The exponents of the power spectra
had an average of B = 1.6 with a standard deviation of 0.2, somewhat
smaller than our model prediction of 8 = 2.

In addition to the power-spectral behavior of the surface in space and
time discussed above, the stochastic diffusion model also predicts a Gauss-
ian distribution of the surface elevation. This is true of any linear stochas-
tic differential equation with Gaussian noise. The microtopographic tran-
sects obtained by Dunne et al. (1995) enable us to test this prediction. In
Fig. 26 we present the distribution of elevations from the 15 profiles
published by the authors. The profiles were digitally scanned for the
analysis. Also plotted in Fig. 26 is the nonlinear least-squares fit to a
Gaussian distribution. A good fit is obtained.

We will next show that the distribution of producing oil and gas wells is
consistent with B = 2 horizontal porosity variations. Barton and Scholz
(1995) have presented the spatial distribution of drilled wells and wells
showing hydrocarbons in the Denver and Powder River basins. These
basins evolved from sediment deposition in a meandering alluvial environ-
ment (Berg, 1968). Using the box-counting technique, Barton and Scholz
(1995) found that the fractal dimensions for the drilled wells in the two
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FiG. 26. Probability density function for elevation of topographic transects from Dunne
et al. (1995).

basins were 1.80 and 1.86 and that the fractal dimensions of wells showing
hydrocarbons were 1.43 and 1.49, respectively. After petroleum is gener-
ated and migrates from source rocks, it will move from sites of high
potential energy to sites of low potential energy. Hydrocarbons are found
in traps that are the crests of low-porisity caprock that have obstructed its
upward migration (Allen and Allen, 1990). The caprock will mimic the
floodplain relief at the time of its deposition. This is consistent with the
observation that hydrocarbons are often found in geometries which mimic
the topography of the alluvial plain at the time of deposition in a variety of
fluvial depositional environments such as meandering (Curry and Curry,
1972), deltaic (Coleman and Prior, 1982), and submarine fans (Garcia,
1981; Wilde et al., 1978). A simple model for the horizontal spatial
distribution of hydrocarbons in a reservoir is one in which hydrocarbons
are assumed to be accumulated in all of the crests of the caprock above a
certain elevation.

The spatial distribution of wells showing hydrocarbons in the Powder
River and Denver basins is given in Fig. 27. We have set the width of each
basin to be 128 units so as to facilitate comparisons with a synthetic
reservoir constructed on a 128 X 128 grid. We analyzed the data with the
pair-correlation function, which we believe to be a better estimator of
correlations for point processes than box counting.

The two-dimensional pair-correlation function C(r) is defined as the
number of pairs of wells whose separation is between r and r + Ar, per
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FiG. 27. Wells producing hydrocarbons in the (a) Powder River and (b) Denver basins.
From Barton and Scholz (1995). Distance units are scaled such that the basin is 128 X 128.

unit area (Vicsek, 1992). The pairs are binned in logarithmically spaced
intervals Ar. For a data set with scale-invariant clustering, C(r) o r™¢,
where « is related to the fractal dimension through D =2 — o in two
dimensions (Vicsek, 1992). The pair-correlation function is commonly
employed in the analysis of diffusion-limited aggregation. However, studies
incorporating it in the earth sciences are rare. Kagan and Knopoff (1980)
have applied it to the spatial clustering of earthquakes. Figure 28 shows
the pair-correlation function of the Denver and Powder River basin wells
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F1G. 28. Pair-correlation function of the Powder River and Denver basins as a function of
the pair separation.
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Fic. 29. Synthetic reservoir constructed from a source and caprock with a two-dimensional
Brownian-motion topography constructed on a 128 X 128 grid where all the sites with
porosity greater than a fixed level are showing.

on a log-log plot. The least-squares fits to the correlation function yield
exponents of a = 0.59 for Powder River and « = 0.50 for the Denver
basin, implying D = 1.41 and D = 1.5, respectively. The results obtained
by the pair-correlation method are in close agreement with the results
obtained by Barton and Scholz (1995) using box counting,

To show that these correlation functions are consistent with a caprock
with Brownian-motion topography, we have constructed synthetic reser-
voirs where hydrocarbon traps are regions where the caprock elevation is
larger than a threshold value. In order to do this we synthesized two-
dimensional fractional Brownian motions on a 128 X 128 lattice with the
Fourier-filtering technique discussed in MT, Section 3.2. The threshold
value for showing hydrocarbons was chosen such that the resulting syn-
thetic reservoir had the same percentage of showing wells as the Denver
and Powder River basins (about 5%). Figure 29 shows a synthetic reservoir
produced with B = 2.0 (a Brownian motion). The synthetic reservoir shows
a degree of clustering similar to that of the Denver and Powder River
basins. In Fig. 30 we have plotted the pair-correlation functions for the
showing wells in synthetic reservoirs constructed with g = 2.5, 2.0, 1.5, and
1.0. The pair-correlation functions show a gradual decrease with decreas-
ing B. The synthetic reservoirs whose scaling exponents, «, most closely
match those of the Denver and Powder River basins are B = 2.0 and
B = 1.5. Although we cannot precisely determine the scaling exponent of
the porosity variations with this method, we conclude that 8 is close to 2,
consistent with the stochastic diffusion model.
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F1G. 30. Pair-correlation functions for synthetic reservoirs with caprocks constructed with
different values of B. The plots are offset so that they may be placed on the same graph.

Besides the pair-correlation function, two other fractal relations allow us
to infer Brownian-motion paleotopography from horizontal variations in
sedimentary basins. Agterberg (1982) has computed the fractal dimension
of the perimeter of sand isopach contours from the Lloydminster oil field
to be 1.3, close to the value of 1.25 measured for coastlines and topo-
graphic contours (Turcotte, 1992). Barton and Scholz (1995) have pre-
sented frequency—size distributions of oil pools. They found that the
cumulative number of oil fields has a power-law dependence on the
volume of the fields with exponent close to —1: N(> V') o V™. Kondev
and Henley (1995) have related the length distribution of contour lengths
of Gaussian surfaces to the Hausdorff measure Ha. Pelletier (1997b) has
shown that their results imply that the cumulative frequency—area distribu-
tion of areas enclosed by contours of a Brownian-motion surface is
N(> A) o A73/%, Since volume and area for producing wells are observed
to be related by V o 4%% (Harbaugh et al., 1977), our model of the
migration of hydrocarbon into regions with caprock topography above a
threshold elevation then predicts N(> V) o V°/%, in close agreement
with the cumulative frequency—size distributions of Barton and Scholz
(1995). Pelletier (1997b) has employed the same techniques to infer the
self-affinity of the top of the convective boundary layer from the size
distribution of cumulus cloud fields.
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3.4. Completeness of the Sedimentary Record

A problem related to topography and porosity variations in sedimentary
basins is the statistics of preserved sections. Stratigraphic sections are
formed by alternating periods of deposition and erosion or nondeposition.
The resulting stratigraphic section contains the deposited sediments that
were not subsequently eroded. Various stochastic models have been pro-
posed to explain aspects of sedimentary bed formation, including the
frequency distribution of bed thicknesses. Beginning with Kolmogorov’s
work (Kolmogorov, 1951), many studies have investigated random-walk
models of sedimentation. Random-walk models assume that the magni-
tudes of alternating depositional and erosional events are independent.
These models are applied by letting the typical episodes of deposition and
erosion define minimal units of a discrete time scale. The lengthy periods
of nondeposition, as well as any long intervals of deposition and erosion,
are treated as multiples of these units. There have been a number of
variants of Kolmogorov’s work: Schwarzacher (1975) described a process of
bed formation that results in a random walk on the integers, Vistelius and
Feigel’son (1965) allowed different types of sediment to be deposited,
Dacey (1979) considered both exponential and geometrical probability
distributions for the amount of sediment deposited and eroded, and
Strauss and Sadler (1989) have considered a continuous version of the
random-walk model. These models are generally considered to be success-
ful at predicting observed bed-thickness distributions (Strauss and Sadler,
1989).

Tipper (1983) was the first to apply the random-walk model to the
problem of stratigraphic completeness: given that deposited sediment is
often later eroded, how much of the depositional history is preserved in a
given stratigraphic section? Sadler (1981) obtained a solution to this
problem by investigating the dependence of sedimentation rate on the
time span over which the sedimentation rate was measured. If the depen-
dence of the sedimentation rate on time span can be assessed, then for a
single stratigraphic section, the ratio of the overall accumulation rate to
the average rate at time span T is the completeness (Sadler and Strauss,
1990). Sadler (1981) quantified the sedimentation rate, R, as a power-law
function for a time span, T, with exponent —0.65: R o T~%%, McShea
and Raup (1986) have critically reviewed Sadler’s approach, indicating
possible biases in the data he compiled. Sadler interpreted the decreasing
sedimentation rate with time as the result of including longer and longer
hiatuses of erosion or nondeposition in the average at longer time inter-
vals. Plotnick (1986) introduced a fractal model for the length distribution
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FiG. 31. The nondimensional thickness of sediments o /D in a sedimentary basin is given

as a function of nondimensional time to2/D for a sequence in which the ratio of the
standard deviation to the mean of sedimentation, o /7, is 0.1.

of stratigraphic hiatuses that is consistent with this interpretation and that
predicts a power-law dependence of sedimentation rate on time span.
Tipper (1983), Strauss and Sadler (1989), and Sadler and Strauss (1990)
have addressed the issue of stratigraphic completeness with the random-
walk model of sedimentation. The random-walk model predicts a power-law
dependence of sedimentation rate on time with exponent — 1: R o« 77172,
- The time history of sedimentation at a point based on our model is given
in Figs. 31 and 32. Figure 31 is the complete history of deposition and
erosion at a point in the basin. The time series of deposition and erosion is
represented by a fractional Brownian motion with power spectrum S(f) o
f73/2, This fractional Brownian motion represents the elevation of total
height of sediment deposited locally in a fluvial sedimentary basin, super-
imposed on a constant rate of subsidence. The time series is scale invariant
in terms of the nondimensional sedimentary thickness, Ao /D, and time,
to?/D; it is characterized by the single parameter o/7. If o/7% is small
the fluctuations in sedimentation rate are small compared to the subsi-
dence rate; if /7 is large the fluctuations are large. For the example
given in Fig. 31, o/m = 0.1. Figure 32 is produced from Fig. 31 by
removing any deposited sediment that is subsequently eroded. In the
“staircase” plot of Fig. 32, beds are defined as a time interval of continu-
ous deposition, i.e., a series of consecutive time steps with increasing
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FiG. 32. For the model given in Fig. 31 the age of the sediments is given as a function of
depth. Only those sediments which are not later eroded are preserved.

elevations. Hiatuses are defined as periods in which no sediment is
preserved, i.e., a series of consecutive time steps with the same elevation.

We will next discuss the relationship between sedimentation rate and
time span with the stratigraphic model of Plotnick (1986) based on a
deterministic fractal distribution of hiatus lengths. The age of sediments in
this model is given as a function of depth in Fig. 33a. As illustrated, the
vertical segments (beds) are of equal thickness. The positions of the
transitions from beds to hiatuses are given by a second-order Cantor set.
Eight kilometers of sediments have been deposited in this model sedimen-
tary basin in a period of 9 Myr so that the mean rate of deposition is
R(9 Myr) = 8 km/9 Myr = 0.89 mm /yr over this period. However, there
is a major unconformity at a depth of 4 km. The sediments immediately
above this unconformity have an age of 3 Ma and the sediments immedi-
ately below it have an age of 6 Ma. There are no sediments in the
sedimentary pile with ages between 3 and 6 Ma. In terms of the Cantor
set, this is illustrated in Fig. 33b. The line of unit length is divided into
three parts and the middle third, representing the period without deposi-
tion, is removed. The two remaining parts are placed on top of each other
as shown.

During the first three million years of deposition (the lower half of
the sedimentary section) the mean rates of deposition are R(3 Myr) =
4 km/3 Myr = 1.33 mm /yr. Thus the rate of deposition increases as the
period considered decreases. This is shown in Figure 33c.
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Fic. 33. Illustration of a model for sediment deposition based on a devil’s staircase
associated with a second-order Cantor set. (a) Age of sediments T as a function of depth y.
(b) Ilustration of how the Cantor set is used to construct the sedimentary pile. (c) Average
rate of deposition R as a function of the period T considered.

There is also an unconformity at a depth of two kilometers. The
sediments immediately above this unconformity have an age of 1 Ma and
sediments below have an age of 2 Ma. Similarly, there is an unconformity
at a depth of 6 km; the sediments above this unconformity have an age of
7 Ma and sediments below have an age of 8 Ma. There are no sediments in
the pile with ages between 8 and 7 Ma or between 2 and 1 Ma. This is
clearly illustrated in Fig. 33a. In terms of the Cantor set, Fig. 33b, the two
remaining line segments of length 1/3 are each divided into three parts
and the middle thirds are removed. The four remaining segments of length
1/9 are placed on top of each other as shown. During the periods 9 to 8, 7
to 6, 3 to 2, and 1 to 0 Myr, the rates of deposition are R (1 Myr) = 2 km/
1 Myr = 2 mm /yr. This rate is also included in Figure 33c.

The rate of deposition clearly has a power-law dependence with respect
to the length of the time interval considered. The results illustrated in
Fig. 33 are based on a second-order Cantor set but the construction
can be extended to any order desired and the power-law results given in
Fig. 33c would be extended to shorter and shorter time intervals.
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FIG. 34. Average rate of sedimentation, R/7, as a function of time span, To'2/D, for the
sediment column of Fig. 32.

The sedimentation rate has been calculated in this way based on the
sedimentation history of Fig. 32. The results are plotted in Fig. 34 on a
logarithmic scale. The sedimentation rate has a power-law dependence on
time span with exponent —3/4: R o T73/4, Sadler and Strauss (1990)
have shown that the random-walk model results in a power-law relation-
ship with exponent —1 /2. Our result is a better fit to the data of Sadler
(1981), who has compiled measurements of fluvial sedimentation rates
from the geological literature for time scales of minutes to 100 million
years. His data are plotted in Fig. 35, where they are averaged in bin sizes
with an equal spacing on a logarithmic scale. In this plot we have not
included the data on time scales from 10° to 108 years since these time
scales include unconformities resulting from regressive and transgressive
events on active margins. Variations in sea level are beyond the scope of
the model and it would be inappropriate to compare the model to
sedimentation rates on those time scales. A least-squares linear fit to the
log—log plot yields a slope of —0.76. This result differs from the original
exponent of —0.65 quoted by Sadler (1981) since we have averaged the
data in logarithmically spaced bins so that each portion of the data has
equal weight in the least-squares fit. An exponent of —(0.76 is consistent
with the stochastic diffusion model result given in Fig. 34.

These results can also be obtained from theoretical fractal relations.
Fractional Brownian motions have the property that the standard devia-
tion of the time series has a power-law dependence on time with a
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Fic. 35. Observed sedimentation rates as a function of time span from the data of Sadler

(1995). The data have been binned in equally spaced bins in log space. A least-squares linear
fit to the logarithms of the data yields a slope of — 2, indicating that R o T-3/%,
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fractional exponent Ha, the Hausdorff measure: o o T¢ as given by MT,
Eq. 20. The rate of change of the time series for a given time interval, T, is
then the sedimentation rate R = o/T o T#%~!. The power-spectral expo-
nent of a time series and its Hausdorff measure are related by 8 = 2Ha +
1 (MT, Eq. 62). For the random-walk model, 8 = 2, Ha = 1/2, and the
sedimentation rate is then R o T~!/2. For the stochastic diffusion model,
B=3/2, Ha=1/4, and R o T73/%  in agreement with the numerical
results.

The dependence of sedimentation rate on time span continues up to
time scales of the Wilson cycle. On time scales of 10°—10® years, transgres-
sive and regressive events give rise to alternating periods of deposition and
erosion as mentioned previously. Korvin (1992) found, using the SEDPAK
simulation package, that alternating periods of deposition and erosion
resulting from sea-level change, combined with the diffusive parameteriza-
tion of sediment transport of SEDPAK, resulted in a decreasing sedimen-
tation rate with increasing time span in the same way that channel avulsion
and diffusive sediment transport results in episodic sedimentation rates on
smaller time scales.

3.5. Bed Thicknesses

Working from our preserved-thickness history of Fig. 32, we will define a
bed as any consecutive sequence of time units at different depths. Con-
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FiG. 36. Cumulative frequency-length distribution of hiatuses, the number of hiatuses
longer than nondimensional hiatus length ¢, %/D, for synthetic sequences produced with
the stochastic diffusion model. '

versely, a hiatus is any consecutive sequence of time units with the same
depth. In this section we will present bed-thickness and hiatus-length
distributions and compare them with observations and with other models.

Plotnick (1986) presented the model for discontinuous sedimentation
based on a fractal distribution of hiatus lengths illustrated in Fig. 33. The
cumulative distribution of hiatus lengths, the number of hiatuses greater
than or equal to a length of time, T, produced by our model is plotted in
Fig. 36. In order to obtain an accurate curve, we generated 100 synthetic
preserved-thickness histories and accumulated the hiatus distributions in
order to obtain Fig. 36. The distribution is not fractal. This was at first
surprising since a fractal distribution of hiatuses was used to illustrate how
a power-law dependence of sedimentation rate on time span can occur.
However, in the model of Fig. 33 each bed had the same thickness. In
contrast, as we will show, the stochastic diffusion model of sedimentation
results in bed thicknesses with an exponential distribution. Therefore, our
observation of a scale-invariant sedimentation rate without a scale-
invariant distribution of hiatuses is not inconsistent with the model of
Fig. 33 since they result in different bed-thickness distributions.

The cumulative distribution of bed thicknesses generated by our model
is plotted in Fig. 37 for the four different values of o/7 indicated next to
each distribution. For synthetic depositional histories with a relatively
large o/7, such as 0.1, no deposition occurs during most of the history.
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FiG. 37. Cumulative frequency—thickness distribution of nondimensional bed thicknesses
for synthetic sediment columns with o/7 = 0.1, 0.01, 0.001, and 0.0003. The distributions are
exponential.

The result is a small number of beds with a very skewed distribution. For
smaller ratios, more thick beds appear in the record. The straight-line
trends of the distributions on a log-linear axis indicate that the cumulative
bed-thickness distributions are exponential. The noncumulative distribu-
tion is also exponential since the cumulative distribution is the integral of
the noncumulative distribution. Exponential bed-thickness distributions
are common in stochastic models of sedimentation (Dacey, 1979). Despite
reported conclusions that stochastic models of sedimentation, including
those that generate exponential bed-thickness distributions, accurately
predict observed bed-thickness distributions (Mizutani and Hattori, 1972),
we are not aware of any model which predicts the commonly observed
log-normal distribution. This may not be a fundamental weakness of the
bed formation models that have been proposed to date. Another possibility
has been suggested by Drummond and Wilkinson (1996). They have
argued that the observation of log-normal distributions is an artifact
resulting from unrecognized or unrecorded small strata. They propose that
exponential distributions are consistent with the data if the data for the
frequencies of the smallest strata are considered incomplete and not
considered in the distribution fitting. This is consistent with the conclusion
of Muto (1995) who has presented the cumulative frequency—thickness
distribution of four large turbidite data sets from Japan. He found that an
exponential distribution best fit the data. However, power-law distributions
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F1G. 38. Cumulative frequency—thickness distribution of bed thicknesses of deep-sea se-
quences from (a) Ra Stua, (b) Castagne, and (c) Cismon Valley, Italy published in Claps and
Masetti (1994). The coefficients in the exponential distributions determined by a least-squares
fit of the logarithm of the bed number to the bed thickness for the largest forty beds were
—0.052, —0.166, and —0.252, showing an increasing trend with sedimentation rate consistent
with the model behavior.

have also been persuasively argued for the distribution of turbidite beds
(Rothman et al., 1993).

In Fig. 37, synthetic sedimentation histories with larger values of sedi-
mentation rate, o/7, have a more skewed distribution or a steeper slope
on a log-linear scale. This is consistent with the dependence of skew on
sedimentation rate observed in deep-sea sequences in Italy by Claps and
Masetti (1994). These authors published bed-thickness data from three
formations in Italy: Ra Stua, Castagne, and Cismon Valley. The sedimen-
tation rates for a 1-Ma time scale have been estimated to be 2.5, 1.7, and
0.6 cm /kyr, respectively, for these sections. In Fig. 37 we found that basins
which filled slowly had bed-thickness distributions that were more skewed
than those in basins which filled more quickly. The cumulative bed-
thickness distributions for these sections based on data that were digitally
scanned from Claps and Masetti (1994) are presented in Fig. 38. The
model prediction that the skew of the bed-thickness distributions increases
from the (a) Ra Stua section to the (b) Castagne and (c) Cismon Valley
sections is consistent with the data.
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4. VARIABILITY OF THE EARTH’S MAGNETIC FIELD
4.1. Variations of the Dipole Moment

As our third and final example we consider the time series of the Earth’s
magnetic field. Paleomagnetic studies show clearly that the polarity of the
magnetic field has been subject to reversals. Kono (1971) has compiled
paleointensity measurements of the magnetic field from volcanic lavas for
0-10 Ma. He concluded that the distribution of paleointensity is well
approximated by a symmetric binormal distribution with mean 8.9 X
10 Am? and standard deviation 3.4 X 1022 A - m*. One normal distribu-
tion is applicable to the field when it is in its normal polarity and the other
is applicable when it is in its reversed polarity.

We have utilized three data sets for computing the power spectrum of
the dipole moment of the Earth’s magnetic field. They are archeomagnetic
data for time scales of 100 yr to 8 kyr from Kovacheva (1980), marine
sediment data from the Somali basin for time scales of 1 kyr to 140 kyr
from Meynadier et al. (1992), and marine sediment data from the Pacific
and Indian Oceans from time scales of 20 kyr to 4 Myr from Meynadier et
al. (1994). The data were published in table form in Kovacheva (1980) and
obtained from L. Meynadier (personal communication, 1995) for the
marine sediment data in Meynadier et al. (1992) and Meynadier et al.
(1994). Marine sediment data are accurate measures of relative paleoin-
tensity but give no information on absolute intensity. In order to calibrate
marine sediment data, the data must be compared to absolute paleointen-
sity measurements from volcanic lavas sampled from the same time period
as the sedimentary record. Meynadier et al. (1994) have done this for the
composite Pacific and Indian Ocean data set. They have calibrated the
mean paleointensity in terms of the virtual axial dipole moment for
0-4 Ma as 9 X 10# A-m? (Valet and Meynadier, 1993). This value is
consistent with that obtained by Kono (1971) for the longer time interval
up to 10 Ma. Using this calibration, we calibrated the Somali data with the
time interval 0—140 ka from the composite Pacific and Indian Ocean data
set. The data from Meynadier et al. (1994) are plotted in Fig. 39 as a
function of age in Ma. The last reversal at approximately 730 ka is clearly
shown. We obtained the power spectrum of each of the time series using
the Lomb periodogram (Press et al., 1992). The resulting spectra are given
in Fig. 40. The composite sediment record from the Pacific and Indian
Oceans is plotted up to the frequency 1/(25 kyr). Above this time scale
good synchroneity is observed in the Pacific and Indian Ocean data sets
(Meynadier et al., 1994). This suggests that nongeomagnetic effects such as
variable sedimentation rate are not significant in these cores above this
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FIG. 39. Paleointensity of the virtual axial dipole moment (VADM) of the Earth’s magnetic
field (with reversed polarity data given by negative values) inferred from sediment cores for
the past 4 Ma from Meynadier et al. (1994).
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F1G. 40. Power-spectral density of the geomagnetic field intensity variations estimated from
the Lomb periodogram of sediment cores from Meynadier et al. (1992) and Meynadier et al.
(1994) and archeomagnetic data from Kovacheva (1980). The power-spectral density S is
given as a function of frequency f for time scales of 100 yr to 4 Myr.
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time scale. From frequencies of 1/(25 kyr) to 1/(1.6 kyr) we plot the
power spectrum of the Somali data. For time scales of 1.6 kyr to the
highest frequency we plot the power spectrum of the data of Kovacheva
(1980). A least-squares linear regression to the data yields a slope of
—1.09 over 4.5 orders of magnitude. This indicates that the power spec-
trum is well approximated as 1/f on these time scales.

The power spectrum of secular geomagnetic intensity variations has
been determined to have a 1/f2 power spectrum between time scales of 1
and 100 years (Currie, 1968; Barton, 1982; Courtillot and Le Mouel, 1983).
This is consistent with the analysis of McLeod (1992), who found that the
first difference of the annual means of geomagnetic field intensity is a
white noise since the first difference of a random process with power
spectrum 1/f2 is a white noise. Our observation of 1/f power-spectral
behavior above time scales of approximately 100 years together with the
results of Currie (1968) and Barton (1982) suggests that there is a crossover
from 1/f to 1/f> spectral behavior at a time scale of approximately
100 years.

4.2. Reversal Record

We will now show that the statistics of the reversal record are consistent
with those of a binormal 1/f noise paleointensity record which reverses
each time the intensity crosses the zero value. We will compare the
polarity length distribution and the clustering of reversals between syn-
thetic reversals produced with 1/f noise intensity variations and the
reversal history according to Harland et al. (1990) and Cande and Kent
(1992a, 1995).

First we consider the polarity length distribution of the real reversal
history. The polarity length distribution calculated from the chronology of
Harland et al. (1990) is given as the solid line in Fig. 41. The polarity
length distribution is the number of interval lengths longer than the length
plotted on the horizontal axis. A reassessment of the magnetic anomaly
data has been obtained by Cande and Kent (1992a, 1995). The polarity
length distribution of their time scale normalized to the same length as
the Harland er al. (1990) time scale, is presented as the dashed curve in
Fig. 41. The two distributions are nearly identical. These plots suggest that
the polarity length distribution is better fit by a power law for large
polarity lengths than by an exponential distribution, as first suggested by
Cox (1968). The same conclusion has been reached by Gaffin (1989) and
Seki and Tto (1993).
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FiG. 41. Cumulative frequency—length distribution of the lengths of polarity intervals from
the time scale of Harland et al. (1990) (solid curve), Cande and Kent (1992a, 1995) (dashed
curve), and the Cande and Kent (1992a, 1995) time scale from C1 to C13 with cryptochrons
included (dashed-dotted line).

The third curve, plotted with a dashed-dotted line, represents the
polarity length distribution estimated from the magnetic time scale be-
tween C1 and C13 with “cryptochrons” included and scaled to the length
of the Harland et al. (1990) time scale. Cryptochrons are small variations
recorded in the magnetic anomaly data that may either represent varia-
tions in paleomagnetic intensity or short reversals (Blakely, 1974; Cande
and Kent, 1992b). Cryptochrons occur with a time scale at the limit of
temporal resolution of the reversal record from magnetic anomalies of the
sea floor. The form of the polarity length distribution estimated from the
record between C1 and C13 including cryptochrons is not representative of
the entire reversal history because of the variable reversal rate which
concentrates many short polarity intervals in this time period. However,
this distribution enables us to estimate the temporal resolution of the
reversal-record history. The distribution estimated from C1 to C13 has
many more short polarity intervals than those of the full reversal history
starting at a reversal length of 0.3 Myr. Above a time scale of 0.3 Myr the
magnetic time scale is nearly complete. Below it many short polarity
intervals may be unrecorded.

To show that this distribution is consistent with binormal 1/f noise
intensity variations, we have generated synthetic Gaussian noises with a
power spectrum proportional to 1/f, a mean value of 8.9 X 10% A - m?,
and a standard deviation of 3.4 X 10*> A - m? as obtained by Kono (1971),
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FiG. 42. A 1/f noise with a normal distribution with mean of 8.9 and standard deviation of
3.4 X 102 Am? representing the geomagnetic field intensity in one polarity state.

representative of the field intensity in one polarity state. These synthetic
noises were generated using the Fourier-domain filtering technique dis-
cussed in MT, Section 3.2. An example is shown as Fig. 42. In order to
construct a binormal intensity distribution from the synthetic normal
distribution, we inverted every other polarity interval to the opposite
polarity starting from its minimum value below the zero intensity axis and
extending to its next minimum below the zero. The result of this procedure
on the Gaussian, 1/f noise of Fig. 42 is presented in Fig. 43. Its irregular
polarity lengths are similar to those in the marine sediment data of Fig. 39.

The operation of reversing the paleomagnetic intensity when it crosses
the zero intensity value is consistent with models of the geodynamo as a
system with two symmetric attracting states of positive and negative
polarity such as the Rikitake disk dynamo. Between reversals, the geomag-
netic field fluctuates until a fluctuation large enough to cross the energy
barrier into the other basin of attraction occurs. Kono (1987) has explored
the statistical similarity between the Rikitake disk dynamo and the distri-
bution of paleointensity. Our construction of the binormal 1/f noise is
consistent with his model.

We have computed the distributions of lengths between successive
reversals for twenty synthetic noises scaled to length 169 Ma, the length of
the reversal chronology, and have averaged the results in terms of the
number of reversals. The results are plotted as the solid curve along with
the Harland et al. (1990) time scale (dashed curve) in Fig. 44. The dots in
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FiG. 43. Binormal 1/f noise constructed from the normal 1 /f noise of Fig. 42 as described
in the text.
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F1G. 44. Cumulative frequency—length polarity interval distributions from the Harland et
al. (1990) time scale and that of the binormal 1/f noise model of intensity variations. The
distribution from the Harland ez al. (1990) time scale is the dashed curve. The solid line is the
average cumulative distribution from the 1/f noise model. The dotted lines represent the
minimum and maximum reversal-length distributions for 20 numerical experiments, thereby
representing 95% confidence intervals.
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Fic. 45. Cumulative frequency-length polarity interval distributions for the 1/f noise
model of intensity variations (shown in the middle, the same as that in Fig. 44) and for
intensity variations with power spectra proportional to f~%® and f~!2. This plot illustrates
that the polarity length distribution is very sensitive to the form of the power spectrum,
allowing us to conclude that the agreement between the model and the observed distribution
in Fig. 43 is unique to 1/f noise intensity variations.

Fig. 44 are the maximum and minimum values obtained in the twenty
synthetic reversal chronologies for each reversal rank, thus representing
95% confidence intervals. The shape of the synthetic polarity length
distribution is very similar to the Harland et al. (1990) time scale. The
synthetic polarity length distribution matches the Harland e al. (1990)
time scale within the 95% confidence interval over all time scales plotted
except for the Cretaceous superchron, which lies slightly outside of the
95% confidence interval, and reversals separated by less than about
0.3 Myr. The overprediction of very short reversals could be a limitation of
the model or a result of the incompleteness of the reversal record for short
polarity intervals. As mentioned, the temporal resolution of the magnetic
time scale inferred from magnetic anomalies is approximately 0.3 Myr. We
conclude that the polarity length distribution produced from binormal 1 /f
intensity variations is consistent with the observed polarity length distribu-
tion for all time scales for which the reversal record is complete.

We next consider whether the agreement illustrated in Fig. 44 is unique
to 1/f noise. We have computed polarity length distributions using binor-
mal intensity variations with power spectra %% and f~!2. These results,
along with the 1/f result from Fig. 44, are given in Fig. 45. The shape of
the polarity length distribution is very sensitive to the exponent of the
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power spectrum. A slight increase in the magnitude of the exponent results
in many more long polarity intervals than with 1/f noise. We conclude
that the agreement in Fig. 44 between the synthetic reversal distribution
and the true reversal history is unique to 1/f noise and provides strong
evidence that the dipole moment has 1/f behavior up to time scales of
170 Myr.

A binormal, 1/f noise geomagnetic field variation is consistent with the
qualitative results of Pal and Roberts (1988), who found an anticorrelation
between reversal frequency and paleointensity. This anticorrelation is
evident in the synthetic 1/f noise of Fig. 43. During the time intervals of
greatest average paleointensity the reversal rate is lowest.

In addition to the broad distribution of polarity lengths, the reversal
history is also characterized by a clustering of reversals. This behavior has
been quantified with the reversal rate. The reversal rate has been relatively
high from 0-20 Ma and has decreased gradually going back in history
to the Cretaceous superchron. An alternative approach to quantifying
the clustering of reversals is with the pair-correlation function. The pair-
correlation function C(¢) is the number of pairs of reversals whose
separation is between ¢ and ¢ + Af, per unit time (Vicsek, 1992). The
pair-correlation function for a set of points can be compared to that for a
Poisson process to detect nonrandom clustering. The pair-correlation
function analysis is more appropriate for comparison of the reversal
history to the synthetic reversal history generated by a stochastic model
since a stochastic model cannot predict behavior in time, such as when the
reversal rate is large or small. However, a stochastic model may accurately
reflect the extent to which small polarity intervals are followed by small
polarity intervals and long intervals by long intervals as quantified with the
pair-correlation function.

The pair-correlation function of reversals according to the Harland et al.
(1990) and Cande and Kent (1992a, 1995) reversal histories is shown in
Fig. 46 as filled and unfilled circles, respectively. Also presented in
Fig. 46 is the pair-correlation function for a synthetic reversal data set
based on binormal 1/f noise dipole moment variations (boxes) and for a
Poisson process (triangles). The functions are offset so that they may be
placed on the same graph. The Poisson process was constructed with 293
points, the same number of reversals as the Harland et al. (1990) time
scale, positioned with uniform probability on the interval between 0 and
170 Ma. The Poisson process yields a correlation function independent of
t. The real and synthetic reversal histories variations exhibit significant
clustering with more pairs of points at small separation and fewer at large
separations than for a Poisson process. Straight-line fits of the form
C(t) o t~* were obtained. The purpose of this was to show that similar
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FIG. 46. Pair-correlation function of the reversal history according to the Harland et al.
(1990) time scale (filled circles), Cande and Kent (1992a, 1995) (open circles), synthetic
reversals produced from 1/f noise model of intensity variations (boxes), and a Poisson
process (triangles). The real and synthetic reversals exhibit similar nonrandom clustering. The
data sets are offset.

clustering is observed in the real and synthetic reversals. The exponents of
the Harland er al. (1990), Cande and Kent (1992a, 1995), and synthetic
reversals are —0.39, —0.31, and —0.42, respectively, indicating close
agreement between the model and real reversals.

4.3. Inclination and Declination Data

Power-spectral analyses of inclination and declination data have also
been carried out. We obtained time-series data for inclination and declina-
tion from lake sediment cores in the Global Paleomagnetic Database
(Lock and McElhinney, 1992). The core with the greatest number of data
points was from Lac du Bouchet (Thouveny et al., 1990). The inclination
data from this data set are plotted in Fig. 47. The power spectra of the
inclination and declination at Lac du Bouchet estimated with the Lomb
Periodogram are presented in Fig. 48. We associate the spectra with a flat
spectrum below a frequency of f= 1/(3 kyr) and a constant spectrum
above a frequency of f = 1/(500 yr). From frequencies of f = 1/(3 kyr) to
f = 1/(500 yr) the inclination and declination are Brownian motions with
S(f) o f~2. Spectral analyses of inclination data from five other sediment
cores were calculated. These spectra are presented in Fig. 49. The spectra
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Fic. 47. Magnetic field inclination inferred from the Lac du Bouchet sediment core
(Thouveny et al., 1990).

correspond, from top to bottom, to cores from Anderson Pond (Lund and
Banerjee, 1985), Bessette Creck (Turner et al., 1982), Fish Lake (Verosub
et al., 1986), Lake Bullenmerri (Turner and Thompson, 1981), and Lake
Keilambete (Barton and McFElhinny, 1981). Since the data sets have fewer
points, there is more uncertainty in the spectra and they are characterized
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FiG. 48. Power spectra of inclination and declination from the Lac du Bouchet sediment

core. The declination spectrum is offset from the inclination spectrum so that they may be
placed on the same graph.
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Fig. 49. Power spectra of inclination from the following locations, top to bottom: (1)

Anderson Pond, (2) Bessette Creek, (3) Fish Lake, (4) Lake Bullenmerri, and (5) Lake
Keilambete. The spectra are offset to place them on the same graph.

by greater variability between adjacent frequencies. The spectra have the
same form, within the uncertainty of the spectra, as that associated with
the spectra from Lac du Bouchet. These results suggest that 3 kyr and
500 yr are characteristic time scales of geodynamo behavior. Variations in
inclination and declination are associated with changes in the nondipole
components of the field. Therefore, the autocorrelation or decay time of
the quadrupole moment is the maximum time scale for correlated fluctua-
tions of inclination and declination to occur. The autocorrelation time of
the quadrupole moment has been estimated by McLeod (1996) to be
1.6 kyr. This is within a factor of 2 of the 3-kyr time scale above which
variations in inclination and declination are observed to be uncorrelated in
the spectra of Figs. 48 and 49.

Many analyses of variations in paleointensity of the Earth’s magnetic
field concentrate on identifying characteristic time scales of variation.
Many such characteristic time scales have been identified. Valet and
Meynadier (1993) suggested, based on the same sediment core data ana-
lyzed in this paper, that the Earth’s magnetic field regenerates following a
reversal on a time scale of a few thousand years and then decays slowly on
a time scale of 0.5 Myr before the next reversal. They termed this an
“asymmetric saw-tooth” pattern. More recent data have shown that the
“asymmetric saw-tooth” is not a robust pattern. Longer cores show a slow
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decay preceding a reversal to be rare (Tauxe and Hartl, 1997). Moreover,
Laj et al. (1996) have shown that the magnetic field does not always
regenerate quickly after a reversal. Thibal ez al. (1995) have quantified-the
rate of decrease in field intensity preceding a reversal and found it to be
inversely proportional to the length of the polarity interval. The authors
concluded from this that the length of the reversal was predetermined.
Such behavior is not indicative of a predetermined polarity length. This
can be concluded by considering the null hypothesis that variations in the
field are characterized by any stationary random process. By definition, a
stationary time series has a variance which is independent of the length of
the series. The average rate of change of the time series over a time
interval will then be a constant value divided by the interval of time, i.e.,
inversely proportional to time interval. Therefore, any stationary random
function satisfies the relationship that Thibal et al. (1995) observed.

In the power-spectral analyses of geomagnetic variations inferred from
sediment cores performed by Lund et al. (1988), Meynadier et al. (1992),
Lehman et al. (1996), and Tauxe and Hartl (1997), dominant periodicities
in the record were identified and proposed as characteristic time scales of
geodynamo behavior. However, it must be emphasized that any finite
length record will exhibit peaks in its power spectrum even if the underly-
ing process is random such as a 1/f noise. Periodicity tests such as those
developed by Lees and Park (1995) need to be applied to data in order to
assess the probability that a peak in a spectrum is statistically significant.
The periodicity tests developed by Lees and Park (1995) are especially
valuable because they do not depend on a particular model of the
stochastic portion of the spectrum. Some of the periodicity tests that have
been used in the geomagnetism literature assume forms for the stochastic
portion of the spectrum that are not compatible with the 1/f process we
have identified. See Mann and Lees (1996) for an application of these
techniques to climatic time series.

It is generally believed that secular geomagnetic variations are the result
of internal dynamics while longer time-scale phenomena such as variations
in the reversal rate are controlled by variations in boundary conditions at
the core—mantle boundary (CMB) (McFadden and Merrill, 1995). How-
ever, our observation of continuous 1/f spectral behavior for time scales
of 100 yr to 170 Myr suggests that a single process controls variations in
geomagnetic intensity over this range of time scales. In Section 4.4 we
consider a model for geodynamo behavior which reproduces the 1 /f dipole
moment variations over a wide range of time scales and exhibits many of
the other features of geomagnetic variability we have identified.
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4.4. Model for Geomagnetic Variations

There has been great interest in 1/f noise processes in the physics
literature for many years (Weissman, 1988). One model of 1 /f noise is a
stochastic process composed of a superposition of modes with exponential
decay characterized by different time constants. The time constant for a
stochastic process is defined through its autocorrelation function a(7). For
a stochastic process with a single time constant 7,, the autocorrelation
function is given by a(r) = e~"/", The power spectrum of such a process
is, by the Weiner—Khinchine theorem, the Fourier transform of the
autocorrelation function:

Ty

S —_—
()« 1+ Qaf)

(42)

This is a Lorentzian spectrum with a Brownian-motion behavior (S(f) o
f~%) for time scales small compared to 7, and white-noise behavior
(8(f) = constant) above the characteristic time constant. If the stochastic
process is composed of a superposition of modes with time constants
following a distribution D(7,) o 75!, where the D(r))Ar, is the net
variance contributed by modes between 7, and 7, + A7y, then a 1/f
spectrum results over a range of frequencies (van der Ziel, 1950; Weiss-
man, 1988). Such a distribution of exponential time constants has been
documented for the Earth’s magnetic field by McLeod (1996).

McLeod (1996) calculated the autocorrelation of each degree of the
geomagnetic field during the last 80 years. The autocorrelation functions
that he computed had an exponential dependence on time with degree-
dependent time constants 7, & n~2. This behavior is consistent with a
diffusion process. McLeod (1996) attributed this autocorrelation structure
to a simple model of the geomagnetic field in which the field was stochasti-
cally generated with a balance between field regeneration and diffusive
decay across a magnetic boundary layer. One way to model such a
stochastic diffusion process is with a two-dimensional diffusion equation
driven by random noise:

JB

z

ot

= DV?B, + n(x, y,1), (43)

where B, is the axial component of the magnetic field at a point inside the
core and n(x, y, t) is a Gaussian white noise representing random amplifi-
cation and destruction of the field locally by dynamo action. To this
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equation we add a term equal to c(p — B, ,,,):

z

- = DV?B, + n(x,y,t) + c¢(p — B, ,,.), (44)

where ¢ is a constant, B, ,,, is the dipole moment integrated over all
space, and p is +1 if the dipole moment of the field outside the
core—mantle boundary is positive and — 1 if the dipole moment outside the
core—mantle boundary is negative. The effect of this term is to create two
basins of attraction (polarity states) within which the dipole field fluctuates
around an intensity of +1 or —1 until a fluctuation large enough occurs to
cross the barrier to the other basin of attraction. This term could be the
result of a conservation of magnetic energy for the combination of the
poloidal and toroidal fields such that when the poloidal dipole field
intensity is low the toroidal field intensity, which is unobservable outside
the core and not explicitly modeled in Eq. (44), is high and dynamo action
is intensified, repelling the poloidal field away from a state of low dipole
intensity.

In our model the core is modeled as a two-dimensional circular region
of uniform diffusivity (the fluid outer core) surrounded by an infinite
region with small but finite diffusivity and the boundary condition that B,
approach zero as r approaches zero, where r is the radial distance from
the center of the earth. The diameter of the inner circular region is the
diameter of the core—mantle boundary.

This model has been simulated by computer using finite differencing of
the model equation on a two-dimensional lattice. It has been studied in
terms of the distribution of values and power spectrum of the dipole
moment and the power spectrum of the angular deviation from the dipole
field. The dipole field from the simulation is plotted in Fig. 50. The field
clearly undergoes reversals with a broad distribution of polarity interval
lengths. Fig. 51 represents the dipole distribution of 10 simulations (solid
curve) along with the fit to a binormal distribution (dashed curve). A
binormal distribution fits the data well. The slight asymmetry is the result
of this particular model run spending slightly more time in the negative
polarity state than in the positive polarity state. Model outputs were
generated which showed asymmetry in the other direction.

The average power spectrum of time series of the dipole field from 25
simulations is presented in Fig. 52. The spectrum has a low-frequency
spectrum S(f) o f~! and a high-frequency spectrum S(f) o f~2. This is
identical to the spectrum observed in sediment cores and historical data
discussed earlier in the chapter. The crossover time scale is the diffusion
time across the diameter of the core, estimated to be between 10° yr
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F16. 50. Dipole moment produced by the model for geomagnetic variations normalized to
the average dipole moment, set to be 1. The field exhibits reversals with a broad distribution
of polarity interval lengths and a variable reversal rate decreasing at later times in the
simulation.
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FiG. 52. Average power spectrum of the mean value of the magnetic field (dipole field)
from 25 simulations. The spectrum has a low-frequency portion with S(f) o f~! and a
high-frequency region S(f) o f~2. The same spectrum is observed in geomagnetic intensity
from sediment cores and historical data.

(Harrison and Huang, 1990) and 10* yr (McLeod, 1996). These values are
somewhat higher than the time scale of 10 yr identified as the crossover
in the sediment core and historical data.

Figure 53 shows the average power spectrum of the angular displace-
ment from the dipole from 25 simulations. The spectrum has a high-
frequency region S(f) o f~? which slowly flattens out to a flat spectrum at
low frequencies. This is nearly consistent with the spectra of inclination
and declination from lake sediment time series shown in Figs. 48 and 49.
The measured value of the crossover from white-noise to Brownian-motion
behavior in the lake sediment power spectra is 3 kyr. This value is
consistent with estimates of 10° to 10* years for the diffusion time across
the core from Harrison and Huang (1990) and McLeod (1996). A major
discrepancy between the model and the observed spectrum is the absence
of a flattening out of the spectrum of angular displacement at high
frequencies in the model calculation.

5. OTHER APPLICATIONS

Self-affine time series occur in many other areas of earth science. For
example, topographic profiles are Brownian motions (Turcotte, 1987).
Pelletier (1999c) has shown that a model of topography governed by the
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FIG. 53. Average power spectrum of the angular deviation from a dipole field from 25

simulations. The spectrum is S(f) o f~2 for high frequencies and gradually flattens out to a
constant spectrum at low frequencies.

diffusion equation with the diffusivity a function of discharge predicts both
the Brownian motion variations and the log-normal distribution of topog-
raphy. Branching river networks with statistics identical to those of real
river networks were also obtained. Gravity fields also exhibit power-law
power spectra (Turcotte, 1987; Passier and Sneider, 1995). These power
spectra have been interpreted as resulting from random density anomalies
in the mantle (Lambeck, 1976). A related problem to the fractal structure
of topography which may also exhibit self-affinity is sediment loads in
rivers. Plotnick and Prestegaard (1993) have obtained time-series data for
sediment loads in rivers on time scales of minutes to days. They applied
both the rescaled-range technique and power-spectral analysis to show
that the time series are approximately self-affine.

Tjemkes and Visser (1994) have performed power-spectral analyses on
the horizontal variability of temperature, humidity, and cloud water in the
atmosphere. They found that different power-law behaviors were applica-
ble over well-defined wave number ranges. These results are important for
understanding the variability of the atmosphere and for improved charac-
terization of these fields for inputs into large-scale models of the climate
system (IPCC, 1995). The TOPEX /POSEIDON project has provided data
on sea-surface height with global coverage with a 10-day sampling interval.
Wunsch and Stammer (1995) have shown that sea-surface height has
self-affine behavior in both space and time with three different values of 8
characterizing the variability over different wave number ranges. Variabil-
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ity in sea-surface height has been modeled using the potential vorticity
equation with stochastic forcing to represent variable wind conditions
(Muller, 1996). These techniques are very similar to the stochastic partial
differential equations discussed in this article, Sections 2—4. Hsui et al.
(1993) have shown that sea-level variations are a self-affine time series on
time scales of 10* to 10® yr. Since sea-level variations determine the major
unconformities of the stratigraphic record, the record of the earth’s history
is determined by self-affine behavior.

Self-affine time series have applications in other fields. It has long been
recognized that spatial variations in plankton abundance in the oceans are
self-affine. This has been determined by performing power-spectral analy-
sis on remotely sensed data for plankton along one-dimensional transects
(Platt and Denman, 1975). Plankton variability has been modeled using
stochastic diffusion equations similar to those presented in this paper
(Fasham, 1978). Diffusion is used to model ocean mixing and stochastic
terms are introduced to model the effects of local environmental variations
that affect the population growth rate, such as variations in light intensity
and nutrient concentration. Power-spectral analyses have also been per-
formed on vegetation densities (Palmer, 1988). The time series were
observed to have power-law power spectra. Sugihara and May (1990) and
McKinney and Frederick (1992) have applied the self-affinity of population
abundance in time to assessments of the probability of extinction. They
argued that populations with stronger correlations in variability, character-
ized by larger values of B or Hu, have greater fluctuations in population
size and have a higher probability of extinction.

Self-affine time series with B = 1 are also observed in traffic flows
(Musha and Higuchi, 1976). This behavior is reproduced in lattice gas
models which move cars around on a lattice according to simple interac-
tion rules that prevent cars from occupying the same space and that are
driven by a random input of cars into the lattice (Takayasu and Takayasu,
1993). 1/f noise has also been observed in the density of Internet traffic.
This observation may have important implications for the design and
testing of network software and services.

6. CONCLUSIONS

We have considered a variety of time series in this paper. As is the case
for many other data sets, time series include both deterministic and
stochastic components. We have concentrated our attention on the
stochastic components. Our principal objective has been to show that
the stochastic component of time series associated with complex phenom-
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ena can have considerable order and, in particular, exhibit self-affine
behavior. In order to do this we have considered three examples in some
detail. :

The first example we have considered is the natural variability of
climate. On short time scales, atmospheric temperature observations ex-
hibit deterministic daily and yearly periodicities. These have been removed
from our considerations. On long time scales, periodicities of 100, 41, 23,
and 19 kyr are observed. These four periodicities are Milankovitch cycles
and are associated with tilt and precession. Again, we do not consider
these in detail because the focus of our attention is on the stochastic
variability. At frequencies below about 1/(40 kyr), the noise spectrum is
flat (white). Radiative transfer from the atmosphere is balanced against
the solar input. At frequencies between about 1,/(40 kyr) and 1/(2 kyr),
the global temperature drifts and is a Brownian motion (B = 2). The
oceans and atmosphere act as a single thermal bath which is not buffered
by radiative losses to infinity. At frequencies between about 1 /(2 kyr) and
1/(1 month), the atmospheric temperature is stationary and is well approx-
imated by a self-affine behavior with 8 = 0.5. In this frequency range, the
atmospheric temperature is buffered by heat exchange with the oceans,
which act as a near-isothermal bath. At frequencies between about
1/(1 month) and 1 /(1 day), the temperatures at continental stations again
drift, and are well approximated by a nonstationary self-affine behavior
with B = 1.5, whereas maritime stations remain proportional to 8 = 0.5.
The maritime stations are buffered by the oceanic heat sink, whereas the
continental stations are not.

It is also shown that river-discharge and tree-ring time series exhibit
stationary B = 0.5 spectra. This is consistent with a Hurst exponent
Hu = 0.7. This weakly persistent behavior was found to be widely applica-
ble to natural time series by Hurst et al. (1965).

These studies of the stochastic variability of climate are important in a
variety of ways. They provide an important test of the validity of global
circulation models (GCMs). Manabe and Stouffer (1996) have carried out
a spectral study of their GCM, and the agreement with the results given
here is rather poor. Also, the fact that global temperature obeys a 8 = 0.5
spectral behavior in the frequency range 1/(100 yr) to 1/(10 yr) can be
used to compare the natural variability of climate to fluctuations that are
attributed to global warming. Monte Carlo simulations with time series
exhibiting a B = 0.5 behavior can be used to obtain the probability that
a specific change in global temperature can be attributed to natural
variability.

We have also shown that variations in solar luminosity exhibit the same
transitions as the climate data: from g = 0to B = 2 to B = 0.5. Thus the
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physics of the radiating layer of the sun must strongly resemble the physics
of the Earth.

The second major example we considered is the variability of porosity in
sedimentary basins. It is shown that the horizontal variations are well
approximated by a Brownian motion ( 8 = 2) and the vertical variations by
a fractional Brownian motion with 8 = 1.5. In order to explain these
results we introduced the stochastic diffusion model. This model combines
a white-noise deposition with the horizontal diffusion (Culling) model
for material transport. This model reproduces the observed self-affine
behavior.

We have also applied the stochastic diffusion model in order to explain
the completeness of the sedimentary record. According to this model, the
mean rate of deposition over a period T, R(T), depends on T according to
R o T3/ The observed dependence is R o T7°76,

The third example we considered is the temporal variability of the
Earth’s magnetic field. By combining a variety of paleointensity measure-
ments, we are able to obtain the power spectrum of the dipole moment of
the field over the frequency range 1/(4 Myr) to 1/(100 yr). Over this
entire range, the power spectrum is well approximated by a 1/f (B = 1)
self-affine time series.

As a further test of this result we considered the field’s reversal record.
We produce synthetic 1/f time series with the observed mean and vari-
ance of the Earth’s magnetic field. Each time a synthetic field reaches zero
field intensity, we assume that the polarity of the field is changed. We then
compare the number-length statistics of the synthetic fields with the
observed statistics. Good agreement is found.

Even though the dynamo driving the Earth’s magnetic field is extremely
complex, the statistical behavior of the resulting magnetic-field time series
is quite simple. This simplicity must be one of the primary tests for the
validity of new dynamo theories.

An important question that we have addressed in each of our applica-
tions is the cause of the observed self-affine behavior. We have shown that
a variety of self-affine signals can result from transport phenomena in
which there is a random element and a diffusion element. Which value of
B that results, and over what frequency or wave number domain, depends
on the dimensionality of the phenomena, the boundary conditions, and
how the random element enters into the equation (whether as a noise in
the mass or energy or in the flux of mass or energy). We have included
other examples of self-affine phenomena in this section to stimulate
researchers in those fields to apply techniques in this paper to their
problems, if appropriate. If a differential equation could be developed to
model self-affine behavior in other phenomena, researchers might come to
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better understand the relative role of deterministic versus stochastic pro-
cesses in those problems and have a null model against which to test for
the presence of external forcings on the system or other phenomena.
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dependence on § for
Gaussian noises and motions, 66-68
log-normal noises and motions, 70-71
relation to Hu, 67-68

Extreme-value exponent, He; Fractal  Fluvial sedimentation rates, 135, 156

dimension, D; Hausdorff exponent,
Ha; Hurst exponent, Hu, Power-
spectral density exponent, ; Wavelet
variance exponent, Hw
Dipole moment variability, 140-142, 153-155
Discharge, river, 4-5, 59, 98-100, 115-117,
158
Discontinuous sedimentation, 134, 137
Discontinuous time series, 2—5
Discrete Fourier transform, 21-22, see also
Fourier analysis
Discrete time series, 2-5
Dispersional analysis, 79
Distributions
bed-thickness, 131, 137-139
binormal, magnetic field as, 154
exponential, 131, 138-139, 142
families of, 3, 5
fractal, 10, 91
frequency-size, 10, 51, 91, 130, 137-139,
143, 146
Gaussian, see Gaussian distributions
log-normal, see Log-normal distributions
normal, see Gaussian distributions
power-law, 10, 91
Droughts, 53, 59, 115-117

E

Earth’s geodynamo, see Geomagnetic field

Earth’s magnetic field, see Geomagnetic field

Earthquakes, 4-5, 128

Elevation, see Topography

Erosion, see Sediments

Euclidean dimensions, 13

Exponents, see Extreme-value exponent, He;
Hausdorff exponent, Ha;, Hurst

F
Fading, see Windowing
Floods, 53, 59
Fourier analysis
aliasing, 22

coefficients, 21-22, 35-37

coefficients after windowing, 34

description, 19-22

discrete Fourier transform, 21-22

filtering technique, 35-37

inverse Fourier transform, 20-21

leakage, 32-34, see also Windowing

nonperiodic continuous time series, 20-21

nonperiodic discrete time series, 21-22

Parseval’s theorem, 27-28

periodic continuous time series, 19-20

prewhitening, 33

problems using, 32-385, 71

spectral variance, 32-33

spectrum, 20, see also Power-spectral
analysis

units of, 21

transform, 19-22

Weiner-Khinchine theorem, 152

windowing, see Windowing

Fourier’s law of heat transport, 102
Fractals

see also Fractal dimension, D; Self-affine
fractals, Self-similar fractals

Cantor set, 133134

devil’s staircase, 134

statistical concept, 1, 10

Fractal dimension, D

definition, 10
derivation of relation between
D and g, 28-30
Dand Ha, 16-18
methods for deriving
box-counting method, 1011, 13, 126-
127
ruler method, 30
time series, 18

exponent, Hu, Power-spectral density Fractional autoregressive integrated moving

exponent, f§; Wavelet variance
exponent, Hw

average (FARIMA) model, 79
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Fractional Brownian motions, see Fractional
Gaussian noises and motions
Fractional Gaussian noises and motions
analyses using
average extreme-value analysis, 66~69
power-spectral analysis, 35-37, 4445
rescaled-range analysis, 62-64
semivariogram analysis, 47, 49-51
wavelet variance analysis, 72-77
construction
Fourier filtering technique, 35-37
successive random additions, 43—47
summing and differencing, 25-27
Weierstrass—Mandelbrot functions, 47
examples in nature
geomagnetic field variations, 141, 149,
154
porosity variations, 124
temperature, 93-98
examples of synthetic, 37-39, 41, 43, 47-
48, 74, 120, 144
Fourier filtering technique, 35-37
persistence, see Persistence and
antipersistence
successive random additions, 43—47
symbols used in analyses, 40
two-dimensional, 129
Fractional log-normal noises and motions
analyses using
average extreme-value analysis, 69-71
power-spectral analysis, 55-56
rescaled-range analysis,64—635
semivariogram analysis, 9, 5658
wavelet variance analysis, 75, 77-78,
80-81

conversion from fractional Gaussian noises

and motions, 53
discussion, 51-56
drought analysis, 115
examples of synthetic and in nature, 4, 54,
78, 101-102
Joseph and Noah effect, 53
persistence, see Persistence and
antipersistence
symbols used in analyses, 55
Frequency domain, 19-20, 37-39
Frequency-size distributions, 10, 51, 91, 130,
137-139, 143, 146

G

Gaussian distributions
binormmal distribution, magnetic field, 154
earthquakes, 4-5
fractional noises and motions, see
Fractional Gaussian noises and
motions
random, see White noise
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relation to log-normal distributions, 51, 53,
55
stochastic diffusion model results as, 112,
126
successive random additions, 4346
temperature fluctuations as, 112
topographic elevations, 127
GCM, see General circulation models
Geodynamo, Earth’s, see Geomagnetic field
General circulation models, 93, 112-113, 158
Geomagnetic field '
archeomagnetic data, 140142
cryptochrons, 143
declination data, 148-151
dipole moment variability, 140-142
geomagnetic variations model, 152-155
global paleomagnetic database, 148-150
inclination data, 148-151
marine sediment data, 140-142
polarity reversals, 142-148
Rikitake disk dynamo, 144
summary, 159
Global paleomagnetic database, 148-150
Gravity fields, 156
Green’s function, 107-108
Groundwater migration, 118
Gulf of Mexico, well logs, 124-126

H

Hadley circulation, 105, 110
Hann window, 34
Harr wavelet, 72
Hausdorff exponent, Ha
see also Semivariogram analysis
box counting, 11, 16-18
dependence on p for
Gaussian noises and motions, 49-50
log-normal noises and motions, 57-58
derivation of relation between
Ha and B, 28-30
Haand D, 16-18
Gaussian surfaces, 130
sedimentation rates, related to, 136
self-affine fractal definition, 11
self-affine time series definition, 14, 18
successive random additions, 4547
variance, relation to, 14
Heat diffusion, metallic film, 92-93, 103-105
Heat transport, Fourier’s law, 102
Heavyside function, 123
Hiatuses, sedimentary, 131, 133, 137
Hurst exponent, Hu
see also Rescaled-range analysis
defined, 60-61
dependence on B for
Gaussian noises and motions, 6364
log-normal noises and motions, 64, 66



170

relation to Ha, 61
relation to He, 67-68
Hurst, Harold, 58-60, 100
Hydrocarbons, 126-130
Hydro-Climatic Data Network, 98-99
Hydrology
Colorado river, 116-117
droughts, 53, 59, 115-117
fluvial sedimentation rates, 135, 156
groundwater migration, 118
Hurst, Harold, 58-60, 100
Joseph and Noah effect, 53
Nile river, 59
precipitation, 99-100
rescaled-range analysis, 58-61
river discharges, 4-5, 59, 98-100, 115-117,
158
sediment loads in rivers, 135, 156
short-range persistence models, 6, 115
tree-ring widths, 99-100, 158

I

Ice cores, 91, 93-94, 98, 109-110
Invariance, scale, 1, 10
Inverse Fourier transform, 20-21, see also

Fourier analysis
J

Joseph effect, 53
L

Leakage, 33, see also Windowing
Lloydminster oil field, 130
Log-normal distributions
coefficient of variation, 51-53
discussion, 51-56
drought analysis, 115
examples of, 45, 52-54, 101-102
fractional noises and motions, see
Fractional log-normal noises and
motions
relation to Gaussian distributions, 51, 53,
55
Log-normal noises and motions, see
Fractional log-normal noises and
motions
Lomb periodogram, 93
Long memory, see Persistence and
antipersistence
Long-range correlations, see Persistence and
antipersistence

INDEX

Lorentzian spectrum, 109, 111, 152

M

Magnetic field, see Geomagnetic field
Mandelbrot, Benoit, 1, 35
Maximum likelihood estimators, 79
McLeod-Hipel Time Series Datsets
Collection, 60
Memory, see Persistence and antipersistence
Metallic film heat diffusion,, 92-93, 103-105
Mexican hat wavelet, 72-73
Milankovitch cycles, 158
Models
atmosphere—ocean, 102-113
atmosphere—ocean-land surface, 112-113
autoregressive (AR), 6, 115
Culling, 159
fractional autoregressive integrated moving
average (FARIMA), 79
general circulation, 93, 112-113, 158
geomagnetic, 153-155
long-range persistence, see Average
extreme-event analysis; Dispersional
analysis; Maximum likelihood
estimators; Power-spectral analysis;
Rescaled-range analysis; Roughness—
length method; Semivariogram
analysis; Wavelet variance analysis
moving-average (MA), 6
random-walk, 122-124, 131-132
Sadler and Strauss, 131, 135
sedimentary bed formation, 131
stochastic diffusion, see Stochastic
diffusion models
stratigraphic, Plotnick, 131, 133, 137
Modulus, complex number, 22
Mother wavelet, 7172
Motions, see Brownian motions; Fractional
log-normal noises and motions
Moving-average (MA) model, 6

Nile river, 59

Noah effect, 53

Noises, see Brownian motions; Fractional
Gaussian noises and motions;
Fractional log-normal noises and
motions; White noise; Persistence and
antipersistence

Nonperiodic time series, 20-22

Nonstationary, see Stationary

Normal distribution, see Gaussian
distributions
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o

Ocean, models with atmosphere, 102-113
Oil wells, 126-130

P

Pair-correlation technique
applied to
earthquakes, 128
geomagnetic reversals, 147-148
hydrocarbons, 127129
synthetic hydrocarbon reservoirs, 129-
130
description, 127-128, 147
Paleointensity, see Geomagnetic field
Paleomagnetism, see Geomagnetic field
Parseval’s theorem, 27-28
Periodicity, tests for, 151
Periodogram, see Power-spectral analysis;
Power-spectral density
Persistence and antipersistence
description, 1-2, 5-6, 38-39
fractional noises and motions, see
Fractional Gaussian noises and
motions; Fractional log-normal noises
and motions
long-range, 56, 39, 79, see also
Autocorrelation function; Average
extreme-value analysis; Power-
spectral analysis; Rescaled-range
analysis; Semivariogram analysis;
Wavelet variance analysis
measures of, see Exponents
short-range, 5-6, 39, 115, see also
Autocorrelation function
stationarity, related to, 31-32
strength, 5-7, 19, 31-32, 39, see also
Exponents
uncorrelated time series, see White noise
weak vs strong, 5-7, 31-32, 39
Petroleum, spatial distribution of, 126-130
Plankton studies, 157
Poisson process, 147
Polarity, magnetic field, see Geomagnetic
field
Porosity in sedimentary basins, 92, 118, 124~
130, 159
Powder River basin hydrocarbons, 126-129
Power-law distributions, 10, 91
Power-law regimes, 91
Power-spectral analysis
see also Power-spectral density; Power-
spectral density exponent, B
applied to
atmospheric temperature, 93-98, 156
Brownian motion, 23, 25
declination data, 148-150
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deuterium, Vostok ice core, 93—94, 98
dipole moment variations, 140—142
Gaussian noises and motions, 3537, 40—
45
geomagnetic field, 140-142, 148-151
geomagnetic model results, 153-155
gravity fields, 156
inclination data, 148-150
log-normal noises and motions, 55-56
plankton variability, 157
porosity variations, 118, 124-127
river discharges, 98~100
sea-surface heights, 156-157
sediment loads in rivers, 156
sedimentation rates, 136
solar luminosity, 114
stochastic diffusion model results, 100
113, 120-122
temperature variability, 93-98, 156
topography, 118, 124, 126
tree-ring widths, 98-100
vegetation densities, 157
Vostok ice core, 93-94, 98
well logs, 118, 124-127
white noise, 2324, 35-37
windowed time series, 3944
binning data, 23
description, 19-26
Lomb periodogram, 93
overview of applications, 91-92
summary of strengths and weaknesses, 82
windowing, see Windowing

Power-spectral density

see also Power-spectral analysis; Power-
spectral density exponent,
continuous, 22
description, 22-28
discrete, 23
relation to
autocorrelation function, 27
variance, 27-28
units of, 22
windowing effects, 34, 3944

Power-spectral density exponent, B

see also Power-spectral analysis; Power-
spectral density

definition, 22

derivation of relation between p, Ha and D,
28-30

differenced time series, 25-27, 37-39

Fourier filtering technique, 35-37

fractional Gaussian noises and motions,
dependence on B for Bes, 40, 45; Ha,
49-50; He, 66—68; Hu, 63—64; Hw, 75,
77

fractional log-normal noises and motions,
dependence on § for Bps, 55-56; Ha,
57-58; He, 70~71; Hu, 64-66; Hw, 75,
81
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summed time series, 25-27, 37-39
weak vs strong persistence, cross-over, 31—
32
Power-spectral filtering, 35-37
Precipitation, 99-100
Prewhitening, 33

R

Radiation, blackbody, 93, 107
Radiative damping, 111112
Random additions, successive, 43—47
Random-walk model, 122-124, 131-132
Rescaled-range analysis
applied to
climatological time series, 100, 115, 158
Gaussian noises and motions, 62—64
log-normal noises and motions, 6364
sediment loads in rivers, 156
average extreme-value analysis, compared
to, 67-68, 71
continuous, 59-60
description, 58-61
discontinuous, 60-61
Hurst, Harold 58-60, 100
running sum, and, 61 .
summary of strengths and weaknesses, 82
Reservoir storage, 59
Reversals, magnetic field, see Geomagnetic
field
Rikitake disk dynamo, 144
River discharges, 4-5, 59, 98-100, 115-117,
158
Roughness—iength method, 79
Ruler method, 30
Running sum, 14-15, 25-27, 37-39, 61

S

Scale invariance, 1, 10
Sea-surface heights, 156157
Sedimentary basins, porosity variations in, 92,
118, 124-130, 159
Sedimentation, see Sediments
Sediments
bed thickness distributions, 131, 136-139
completeness, stratigraphic 131-136
deposition, 122-124, 131-139
erosion, 122-124, 131-139
hiatuses, 131, 133, 137
models for sedimentation and porosity
Culling, 159
overview, 118
random-walk, 122124, 131-132
Sadler and Strauss, 131, 135
stochastic diffusion, 118-124

INDEX

stratigraphic model of Plotnick, 131, 133,
137
porosity observations, 124~130
sedimentation, 117-139, 159
sedimentation variations, overview, 117—
118
SEDPAK, 136
summary, 159
unconformities, 133-133, see also Hiatuses
Self affine, definition, 1
Self-affine fractals
box-counting method for, 11, 13
concept, 10-13
construction, deterministic, 11-12
definition, 11, 22
deterministic, 11-12
dimensions, 11, 13, 22, see also Exponents
self-affine time series, relation to, 16-18
standard deviation, 16—~18
statistical, 11-13
topography as, 11-12
Self-affine time series
box-counting method for, 16—-18
definition, 1
deriving relation between
B, Ha and D, 28-30
Haand D, 16-18
differencing, results on f, 25-27
first derivative, 26-27
power-law regimes, 91
rescaling, 28-30
self-affine fractals, relation to 16—18
standard deviation, 16—18
summing, resuits on f, 25-27, 37-39
Self-similar fractals
extension to time series, 16—18
fractal dimension, D, 10
statistical, 1, 10-11

Semivariogram analysis

applied to
Gaussian noises and motions, 9, 47, 49—
51
log-normal noises and motions, 9, 56-58
autocorrelation function, relation to, 8-9
continuous, 8-9, 18
discrete, 8-9, 18
discussion, 8~9, 18-19, 50-51
summary of strengths and weaknesses, 82
variograms, 8
Shading, see Windowing
Short memory, 5-6, 39, 115, see also
Persistence and antipersistence
Solar luminosity, 114, 158-159
Spectral analysis, see Autocorrelation
function; Fourier analysis; Power-
spectral analysis
Spectral filtering, 35-37
Spectral variance, 32-33
Staircase, devil’s, 134
Standard deviation, see Variance
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Stationarity
description, 8, 13-14, 50-51, 112, 151
persistence strength, relation to, 31-32
weak, 8
Stefan-Boltzmann law, 107
Stochastic component of time series, 1, 3
Stochastic diffusion model
for climate variability
one-dimensional, 100-107
two-layer, 107-114
for sedimentation and porosity, 118-124,
159
other studies using, 157
Storage, reservoir, 59
Stratigraphic completeness, 131-136
Stratigraphy, see Sediments

Streamflow, 4-5, 59, 98-100, 115-117, 158

Strong persistence, 5-7, 31-32, see also
Persistence and antipersistence
Successive random additions, 43—47
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distributions, families of, 3, §, see also
Distributions

lag, 67

mean, 67

moments, 8

periodicity, tests for, 151

persistence, see Persistence and

antipersistence

quantification, 3-6

running sum, 14-15, 25-27, 37-39, 61

standard deviation, 14

stationarity, 8, see a/so Stationarity

synthetic, see Synthetic time series

trend, 34-35, 95

variance, 6-8, 14
TOPEX/POSEIDON, 156~157
Topography

examples, 3-5, 11, 121, 126-127, 155-156

random-walk model, 122-124

stochastic diffusion model, 118-124

Summing self-affine time series, 14—15,25-  Traffic flow, 157

27, 37-39, 61
Superchron, Cretaceous, 146
Symbols
appendix, 8387
Gaussian noise and motion analyses, 40

log-normal noise and motion analyses, 55

Synthetic time series
see also Fractional Gaussian noises and

motions; Fractional log-normal noises

and motions
construction
Fourier filtering, 35-37
running sum, 14-15, 25-27, 37-39
successive random additions, 43-47
Weierstrass—Mandelbrot functions, 47

T

Tapering, see Windowing
Temperature, atmospheric, 91-98, 100, 156
Time series
antipersistence, see Persistence and
antipersistence
average, 67
binning data, 23
characterization of, 3, 56
component
periodic, 3, 20, 95-96, 151
stochastic, 1, 3
trend, 3, 34-35, 95
continuous, 2-5
correlations in, see Persistence and
antipersistence
definition, 2-3
detrending, 34-35, 95
discontinuous, 2-5
discrete, 2-5

Transforms
Fourier, 19-21
wavelet, 71-79
Tree-ring widths, 98-100
Trend, 34-35, 95

U

Unconformities, 133-1335, see also Hiatuses
Uncorrelated time series, 4-5, 7, see also
White noise

\4

Variables, appendix, 83-87
Variance
Brownian motion, 14
coefTicient of variation, 51-53
relation to
autocovariance function, 6-7
persistence strength, 31-32
power-spectral density, 27-28
self-affine time series, 14, 18
semivariograms, 8, 50-51
rescaled-range, standard deviation, 60
stationarity, see Stationarity
wavelets, see Wavelet variance analysis
Variograms, 8, see also Semivariogram
analysis
Vegetation densities, 157
Vostok ice core, 91, 93-94, 98, 109-110
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W

Walker circulation, 105, 110
Wavelet variance analysis
applied to
Gaussian noises and motions, 72-77
log-normal noises and motions, 75, 77—
78, 80-81
description, 71-73
Mexican hat, 72-73

summary of strengths and weaknesses, 82—

83
transform examples, 74-75, 78-79
Wavelet variance exponent, Hw
see also Wavelet variance analysis
defined, 75
dependence on § for
Gaussian noises and motions, 75, 77, 81
log-normal noises and motions, 70
Weak persistence, 5-7, 31-32, see also
Persistence and antipersistence
Weak stationarity, 8
Weierstrass-Mandelbrot functions, 47
Weighting, see Windowing
Weiner-Khinchine theorem, 152
Welch window, 34
Well logs, 118, 124-126
Wells, oil, 126-130

INDEX

White noise

analyses on Gaussian white noises using
average extreme-value analysis, 6768
Fourier analysis, 20
power-spectral analysis, 23-25, 35-36
rescaled-range analysis, 62-63
semivariogram analysis, 49—50
wavelet variance analysis, 73-74, 7677
Brownian motion, relation to, 14-15
description, 13-14
examples in nature
earthquakes, number per month, 4-5
geomagnetic variations, 148-150
temperature, 93-94, 98
examples of synthetic, 14, 37-38, 4748, 74
Fourier filtering technique, 35-37
geomagnetic field modeling, 152-153
running sum, 1415, 37-38
standard deviation, 14
successive random additions, 4347
variance, 14

Wilson cycle, 136
Windowing

description, 33-34

effects, 3944

Hann window, 34

Welch window, 34, 3941, 43



