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Abstract. We present a formulation for mechanical modeling of geological processes in the
seismogenic. crust using damage rheology. The seismogenic layer is treated as an elastic me-
dium where distributed damage, modifying the elastic stiffness, evolves as a function of the
deformation history. The model damage rheology is based on thermodynamic principles and
fundamental observations of rock deformation. The theoretical analysis leads to a kinetic
equation for damage evolution having two principal coefficients. The first is a criterion for the
transition between strength degradation and recovering (healing), and is related to friction. The
second is a rate coefficient of damage evolution which can have different values or functional
forms for positive (degradation) and negative (healing) evolution. We constrain these coeffi-
cients by fitting model predictions to laboratory data, including coefficient of friction in sawcut

setting, intact strength in fracture experiments, first yielding in faulting experiments under
three-dimensional strain, onset and evolution of acoustic emission, and dynamic instability.
The model damage rheology accounts for many realistic features of three-dimensional defor-
mation fields associated with an earthquake cycle. These include aseismic deformation, grad-
ual strength degradation, development of process zones and branching faults around high-
damage areas, strain localization, brittle failure, and state dependent friction. Some properties
of the model damage rheology (e.g., cyclic stick-slip behavior with possible accompanying
creep) are illustrated with simplified analytical results. The developments of the paper provide
an internally consistent framework for simulating long histories of crustal deformation, and
studying the coupled evolution of regional earthquakes and faults. This is done in a follow up

work.

1. Introduction

Rocks exhibit a wide variety of rheological behaviors
ranging from viscoelastic deformation to plastic flow and lo-
calized faulting. A great challenge of theoretical geodynamic
studies is to incorporate multi rheological behavior, including
faulting, into models that simulate deformational processes in
the upper crust. At the present time, a generally accepted
method for describing time-dependent deformational proc-
esses in the brittle-elastic parts of the lithosphere is not avail-
able. The purpose of this paper and a follow-up work (V.
Lyakhovsky, Y. Ben-Zion, and A. Agnon, manuscript in
preparation; herein after referred to as paper 2) is to develop a
useful framework for studies concemned with seismic and
aseismic deformations in large domains of space and time.

The overall large-scale structure of our model is a layered

elastic-viscoelastic half-space incorporating damage rheology.
In the present paper we focus on theory and observations rele-
vant to the damage rheology and its coupling with viscous re-
laxation. In paper 2 we discuss the other components of the
model and provide various simulation examples.

Copyright 1997 by the American Geophysical Union.
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Brittle behavior is often modeled by a rigid elastic-plastic
solid that is governed by simple static-kinetic friction or Byer-
lee's law [Brace and Kohlistedt, 1980]. However, such mod-
els do not account for details of strength evolution and they
thus cannot be used to study important portions of the defor-
mation field, such as nucleation of slip instabilities. The rate-
and state-dependent (RS) friction model [e.g., Dieterich,
1979, 1981; Ruina, 1983] provides a framework that can be
used to simulate all important aspects of an earthquake cycle,
including stable slip, nucleation of instabilities, rupture
propagation, and healing. However, the RS formulation as-
sumes that deformation at all stages occurs on well defined
frictional surfaces, and it does not provide a mechanism for
understanding distributed deformation. In addition, it is not
clear [e.g., Andrews, 1989; Ben-Zion and Rice, 1995] to what
extent the existing RS friction laws are valid for natural con-
ditions involving complex geometry, large values of slip, slip
rate, and time, etc.

Various simple conceptual schemes based on a network of
blocks and springs (e.g., Burridge and Knopoff, 1967, Carl-
son and Langer, 1989] have been used to simulate static,
quasi-static, and dynamic sliding processes. Rice [1993] and
Ben-Zion and Rice [1993, 1995)] criticized the validity of rep-
resenting a fault in elastic solid with a block-spring array:
They simulated slip histories on various types of a two-
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dimensional (2-D) strike-slip fault in a 3-D elastic half-space
with models incorporating continuum elasticity. Cowie er al.
[1993). Sornetre er al. [1994]. and Ward [1996] simulated the
development of fault patterns and regional earthquakes in 2-D
elastic solids: we discuss these models in more detail in paper
2. Lockner and Madden (1991 a. b] developed a numerical
multiple-crack model for the failure process of a brittle solid
which simulates growth of microcracks on a regular array of
potential crack sites. This and similar numerical models re-
produce various common features of fracturing processes, es-
pecially those occurring in some fabricated materials. but they
cannot explain fault patterns observed in experiments [e.g..
Reches, 1988] or in the field [e.g.. Segall and Pollard, 1983].
Fracture distributions in situ and fragmentation of rocks in
laboratory samples show fractal-like patterns [e.g.. King,
1983: Turcotte, 1986; Okubo and Aki, 1987; Aviles et al.,
1987]. Thus fracture network simulations should not depend
on specific length scales, such as length scales prescribed in
regular arrays.

A rheological model of the faulting process should include
subcritical crack growth from very early stages of the loading,
material degradation due to increasing crack concentration,
macroscopic brittle failure. post failure deformation, and
healing. Suitable variables should be defined to characterize
the above deformational aspects quantitatively in a framework
compatible with continuum mechanics and thermodynamics.
Among such approaches are Robinson’s [1952] linear cumu-
lative creep damage law, Hoff s [1953] ductile creep rupture
theory. Kachanov's [1958, 1986] brittle rupture theory,
Rabomov’s [1969. 1988] coupled damage creep theory, and
many modifications of these theories. Several researchers (see
the review of Kachanov, [1994]) proposed models with a
scalar damage parameter changing from 0 at an undamaged
siate to | at failure. The scalar damage models fit reasonably
well existing experimental results, including culmination of
damage in concrete subjected to fatigue loading {Papa, 1993]
and damage increase in 2024-T3 aluminum alloy under differ-
ent loading and temperature conditions [Hansen and
Schrever, 1994]. In the study of Hansen and Schrever [1994],
the scalar isotropic damage model correlates with all meas-
ured quantities except the change in the apparent Poisson ra-
tio. For this reason, Ju [1990] and Hansen and Schrever
[1994] suggested upgrading the damage parameter from a
scalar to tensor quantity. Such an anisotropic tensorial damage
model contains at least three adjustable parameters which
permit correct simulation of the apparent Poisson ratio.

Variations of elastic moduli and Poisson’s ratio with extent
of damage, under different types of load, can also be described
using a nonlinear elastic model with scalar damage provided
that it is scaled properly with the ratio of strain invariants.
This has been done in the damage model proposed by Lyvak-
hovsky and Mvasnikov [1984, 1985], Myasnikov et al. [1990],
and Lyakhovsky et al. [1993]. Previous applications of this
model to geodynamic problems were given by Ben-Avraham
and Lyakhovsky [1992), Lyakhovsky et al. [1994], and Agnon
and Lyakhovsky [1995). The scalar damage model accurately
reproduces results from the four point beam test [Lyakhovsky
et al., 1997]. Here we provide additional developments of the
above model, and constrain the final model parameters by
comparisons of theoretical predictions with various laboratory
results. In paper 2 we incorporate the damage rheology into a
model of a 3-D layered half-space and provide examples of
simulated patterns of seismicity and faulting.
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2. Distributed Damage in Rocks

We briefly list below some indications of damage in natu-
ral rocks and rock samples which form the observational-basis
for our theoretical damage model for the crust. Pioneering
studies of fractures and faults treated the crust as an infinite.
perfectly elastic medium [e.g.. Anderson. 1951]. Subsequent
studies accounted for the finite length of faults, and the per-
turbation to the regional stress field due to the proximity of
additional faults {Chinnery, 1966 a. b]. Field mapping often
shows that the density of faults depends on the scale of the
map. so higher resolution increases the number of faults in a
given domain [Schiolz. 1990). This complexity limits the use
of methods that specify the positions of isolated cracks in the
deforming region.

Classical fracture mechanics postulates that in a linear
elastic solid an isolated crack will propagate at velocities ap-
proaching the speed of sound in the medium once a critical
stress intensity factor K. has been reached or exceeded at the
crack tip [/rwin, 1958]. At lower stress intensity factors the
crack remains stable. A more general approach in classical
fracture mechanics is to consider the strain energy release rate
G during crack extension [e.g., Freund, 1990]. Dynamic crack
extension occurs when G reaches a critical value G..

These fracture mechanics approaches have been used suc-
cesstully to predict catastrophic crack propagation in metals,
ceramics, and glasses. In grainy materials, however, the stress
field is highly nonuniform on the grain scale. Stress intensity
factors K and strain energy release rates G are calculated mac-
roscopically, neglecting stress concentrations due to grain
contacts and energy release due to intergranular sliding. Such
materials subjected to long-term loading show significant
rates of macroscopic crack extension at values of K and G
significantly lower than the critical. This phenomenon is
known as subcritical crack growth [Swanson, 1984, Atkinson
and Meredith, 1987, Cox and Scholz, 1988).

The investigations of granite fracturing by Yukutake
[1989]). Lockner et al. [1991], and Reches and Lockner
{1994] show that fracturing cannot be described in terms of
propagation of a singie crack. Several experimental studies re-
vealed that clastic parameters strongly depend on the defor-
mational history (i.e., damage extent), leading to vanishing
elastic moduli at large stresses just before failure [Lockner
and Bverlee, 1980]. While linear elastic fracture mechanics
assumes the size of the inelastic zone at the crack tip to be
negligibly small, the experiments show that this zone has a
significant size.

In most engineering and rock-like materials a slowly
propagating crack is preceded by an evolving damage zone
distributed around its tip [e.g., Bazant and Cedolin, 1991;
Lockner et al., 1991]. The distributed damage modifies the
elastic coefficients in the medium around the tip and hence
controls the macrocrack trajectory and the growth rate [Huang
et al., 1991; Chai, 1993). The finite size effect of the fracture
process zone is often treated with models which specify a co-
hesive zone near the crack tip within the plane of the crack
[Dugdale, 1960; Barenblatt, 1962; lda, 1972; Palmer and
Rice, 1973, Rubin, 1995 a, b]. This approach is useful when
the crack geometry is well defined, and in contrast to linear
elastic fracture mechanics, the cohesion zone models do not
contain an unphysical crack tip singularity.

Field observations suggest that the size of the damage zone
(or process zone) grows with the size of the fracture, in viola-
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tion of the premises of the critical stress intensity factor ap-
proach [Rubin, 1995 a. b]. This is decisively documented
around dikes that form by the injection of magma into frac-
tures {Delaney et al.. 1986: Baer. 1991: Weinberger et al..
1995; Hoek. 1995]. and is also compatible with results of Pa-
pageorgiou and Aki [1983] who inverted seismic strong mo-
tion data for earthquake source parameters in the context of
their specific barrier model. An early theoretical discussion of
this phenomenon is given by Andrews [1976].

Andrews and Ben-Zion [1997] showed that earthquake
rupture can propagate along an interface separating different
elastic media in a wrinkle-like mode associated with little loss
of energy to friction. Thus it is energetically favorable for
ruptures to be located along the material interface between the
gouge and the surrounding rock, rather than within the gouge.
In such circumstances the damage zones of successive earth-
quake ruptures continue to create fresh gouge material, thus
adding to the overall thickness of the (damaged) fault zone.
This may help to explain field and laboratory correlations
fe.g., Hull, 1988; Robertson, 1983] between gouge thickness
and cumulative number of earthquakes (or slip) along the
fault.

It is important to consider an additional property of rocks
when choosing a rheology for simulations of earthquake cy-
cles. Experimental studies of rock deformation [e.g., Nishi-
hara, 1957, Ambartsumyan, 1982; Weinberger et al., 1994]
reveal a strong dependence of elastic coefficients on the type
of loading, which results in abrupt changes of the elastic
moduli when the loading reverses from tension to compres-
sion. Abrupt changes of elastic properties are commonly ob-
served in grainy materials. For example, the tensile Young
modulus of graphite is 20% less than the compressive one
[Jones, 1977]. Jumps of Young moduli can be 30% for differ-
ent types of iron, and in concrete the compressive modulus
may be up to 3 times larger than the tensile one
[Ambartsumyvan, 1982]. Results of various experiments with
Westerly granite, marble, diabase, and weak granite from
Kola Peninsula. compiled by Lvakhovsky [1990] and Lvak-
 hovsky et al. [1993], show high sensitivity of rock elasticity to
the type of loading.

It is reasonable to assume that the extent of the latter non-
linearity in the elastic response of rocks depends strongly on
the state of damage. Perfectly intact and undamaged rock
should not display nonlinear elasticity for small strains. On
the other hand, a rock that is highly damaged along a plane
can respond to uniaxial extension normal to the damage plane
with small elastic stress, whereas it will respond to uniaxial
compression in a manner similar to intact rock.

In the following sections we first discuss the thermodynam-
ics of damage growth in elastic solid. Then we construct a
phenomenological model that relates damage to the elastic re-
sponse in an internally consistent manner. Finally, we con-
strain the obtained model parameters by comparisons of theo-
retical predictions with experimental results.

3. Model of Medium With Distributed Damage

3.1. General Thermodynamic Formulation

Here we present the construction of a new rheological
model accounting for elastic deformation, viscous relaxation,
and evolution of damage (material degradation as well as
healing). We follow the approach of irreversible thermody-
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namics [Onsager, 1931: Prigogine, 1955: deGroor and Ma-
zur, 1962), which was successfully applied to kinetics of
chemical reactions and phase transitions [e.g.. Fins. 1962:
deGroot and Mazur. 1962) and as a basis for variational
methods of continuous media models [e.g.. Sedov. 1968: Mal-
vern. 1969]. Following this framework. Mosolov and Mvas-
nikov [1965] first formulated a vanational approach to the
model of viscoplastic media [see also Ekland and Temam.
1976]. Lvakhovsky and Mvyasnikov [1985] first used the bal-
ance equations of energy and entropy to establish a thermody-
namical foundation for a rheologiczl model of damaged mate-
rial [Myasnikov et al., 1990. Lvakhovsky er al.. 1993]. A
similar approach was later used as the basis of other damage
models [e.g.. Valanis, 1990; Hansen and Schrever, 1994].

Many workers in continuum thermodynamics have postu-
lated that the free energy density is a function of various state
variables, including *‘hidden variables™ [Coleman and Gurtin,
1967: Lubliner, 19721 not available for macroscopic observa-
tion. In order to simulate a process of fracturing in terms of
continuum mechanics, a nondimensional intensive damage
variable o is introduced. The variable o can be envisioned as
the density of microcracks in a laboratory specimen. or as the
density of small faults in a crustal domain. The free energy of
a solid, F, is assumed to be given by

F= F(T,Sua) s ( 1)

where T and ¢g; are the macroscopic temperature and Cauchy
tensor of infinitesimal elastic deformation, respectively, and o
is a nondimensional damage state variable. The elastic strain
tensor g; is written as the difference between a current metric
tensor g; and a metric tensor describing the irreversible de-
formation, g";;:

0
€ = &j— ;- 2

It may be represented through small elastic displacements u;,

_1fdu 9
i = {'a— a, ] ®

The strain rate tensor is given as a temporal derivative of the
current metric tensor
dg;;
j
e =——. @)
S dt
The balance equations of the internal energy U and entropy S
accounting for irreversible changes of viscous deformation
and material damage [e.g., Malvern, 1969] have the form

du d 1

— = —(F+TS)= e ~V.J

3~ q TS = o = Vi, J (5)
ds J;
—==ViLlsT,
dt '[T) ©

where p is mass density. Here J, is heat flux and T” is local en-
tropy production. Both J; and T" result from dissipative irre-
versible processes such as internal friction and creation of new
surfaces. Substituting (5) into (6) and using an equation for
production of free energy [e.g., Gibbs, 1961]

oF oF

dF = -SdT + —d¢;. + —da, 7
%, i og ¢ ™

4 ij
and the definition of the Cauchy stress tensor
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JoF

G” =p‘a—€_‘. (8)
1

the local entropy production may be represented as

J |, 98 1oFda

= Y T+—6
r= pT? Vit pTO" d Too at

The first term of equation (9a) describes entropy production by
heat conduction. the second term is due to dissipation for a
viscous flow. and the third term is related to the damage proc-
ess. We neglect heat production by radioactive decay and
chemical processes. These processes are independent to first
order: hence. as is commonly assumed. each term in (9a) must
be positive. The part of the entropy production related to the
damage process. g, 1§

(9a)

= (9b)

We expand Ty as a Taylor series with respect to do/dt around
an equilibrium state T'(a) where do/dt=0:

do do do )’
T, (a.?‘T] =To(0)+ T, (a)-d—[-+ T, (a{—dT) 20. (%)

Here T, and T, are expansion corfficients. In the case of con-
stant damage the deformational process is reversible and en-
tropy production is zero (I'e=0). This condition implies that
I,=0. The entropy production T, should be nonnegative for
any level of damage and direction of its evolution including
healing (damage decrease) and destruction (damage increase).
That is possible only if the second term of the Taylor series.
T. is identically zero and T'»>0. Thus the quadratic term in
(9¢) is the dominant term of the Taylor series. Back substitu-
tion into (9b) gives

1 9Fd
o]z

—_ —_— 9d)
dt

Toa dt

From (9b) - (9d) the equation of damage evolution has the
form
(10)

where C=1/ T-T is a positive function of the state variables
describing the temporal rate of the damage process. We note
that (10) describes not only damage increase, but also a proc-
ess of material recovery associated with healing of mi-
crocracks, which is favored by high confining pressure, low
shear stress, and especially high temperature.

3.2. Elastic Moduli of a Damaged Material

The elastic properties of a damaged solid should depend on
the damage level, and quantification of this has been the sub-
ject of much research [e.g. Kachanov, 1993]. An undamaged
solid with a=0 is modeled by an ideal linear elastic material
governed by Hook’s law. At the other extreme, a material with
a=1 is densely cracked and loses its stability. Below we de-
scribe a nonlinear elastic behavior of damaged material for all
values of the damage parameter (O<a<1), including strain lo-
calization and brittle failure.

Many experimental studies measure nonlinear stress-strain
relations for rocks and rock-like materials. For example,
Walsh [1965] showed that Young’s modulus of a cracked
elastic solid under uniaxial compression is smaller than the
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modulus of the same solid without cracks: conversely. crack
closure under increasing compressive stress causes a gradual
increase in the modulus. Opening and closure of microcracks
lead to abrupt changes of elastic properties upon stress rever-
sal from tension to compression [e.g.. Weimberger et al.
1994]. Various formulations attempt to model such phenom-
ena. The models of Ambartsumvan-Khachatrvan [Ambartsu-
mvan. 1982] and Jones [1977] assume that the compliance
(Poisson's ratio divided by Young's modulus) changes when
the associated stress component reverses. Hansen and
Schrever [1993] consider opening and closing of microcracks
to simulate activation and deactivation of damage in terms of
continuum mechanics. For materials with a weak nonlinear
response. Lomakin and Rabotnov [1978] assumed that the
elastic moduli depend only on the type of loading. To evaluate
the damage effects. Lvakhovsky er al. [1997] derive the mac-
roscopic stress-strain relations for a 3-D elastic solid with
noninteracting cracks embedded inside a homogeneous ma-
trix, and test the solution against rock-mechanics experiments.
The cracks considered are oriented perpendicular either to the
maximum tension axis or maximum compression axis. In the
first case they dilate during loading, while in the second they
contract. The solution for the elastic energy of such a solid
was derived following the self-consistent scheme of Budian-
sky and O’Connell {1976]. Following the formulation dis-
cussed by Lvakhovsky et al. [1997], the elastic potential is

written as LA
U "‘"6[3112 +ul, 'Yln/l—z-) ,

where A and [ are Lame constants, I,=g, and L=¢g;g; are two
independent invariants of the strain tensor €;, and y is an ad-
ditional elastic modulus (summation notation is assumed).
The second order term with the new modulus y accounts for
microcrack opening and closure in a damaged material. The
term incorporates nonlinear elasticity even for an infinitesimal
strain. and it simulates abrupt change in the elastic properties
when the loading reverses from compression to tension. Using
(8). the stress tensor is derived from (11) as

I, I

The stress-strain relation (12) can be rewritten to mimic the
usual form of Hook's law by introducing effective elastic
moduli

(1n

w:x-%; ue=u—%v~i, (13)
where the strain invariant ratio =1V, characterizes the type
of deformation as discussed below.

Lvakhovsky and Myasnikov [1987, 1988] discussed the
relation between seismic wave velocity and state of stress for
thec damage rheology model we use. They found that small
amplitude harmonic waves propagate in this model as in a
lincar anisotropic elastic solid with elastic stiffness tensor de-
pending on the initial state of strain. Three different modes of
waves exist, one P wave and two S waves. Thus in spite of its
initial isotropic formulation and a scalar damage parameter,
the present nonlinear elastic model accounts for a stress-
induced anisotropy.

The energy in the form of (11) is used below to describe the
elastic behavior of a damaged material with intermediate val-
ues of the parameter o (O<o<]1).
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Table 1. Matrix 3°U/dg;0g,
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€1 & €33 €12 €13 €23
g, Ar2u—f L-v(e, +es) A-y(e +es3) 0 0 0
+ef ~21e,  +ieie +ees
€22 A-Y(ey+ey) A+2u—of A=v(e; +e3) 0 0 0
+¥ee; +'y§e§ -21, tele;
€33 A-v(e +e3) A-vyleztes) A+2p-f 0 0 0
+1eies +16eqes +1Eed -2y,
€12 0 0 0 2u -+ 0 0
&3 0 0 0 0 u- 0
€13 0 0 0 0 0 -1

Here ¢; =¢; / /I, is a normalized value of the deformation along principal axes

3.3. Loss of Convexity and Strain Localization

Two different mathematical conditions are appropriate for
analyzing material stability. The first is convexity of the elas-
tic energy which provides a unique solution of the static
" problem [Ekland and Temam, 1976]. This criterion was
adopted and expanded by R. Hill, T.Y. Thomas, J. Mandel, C.
Trusdell. and others [e.g. Bazant and Cedolin, 1991]. The
second is ellipticity of the elasto dynamic equation [e.g.,
Rudnicki and Rice. 1975). These two conditions are not al-
ways identical, especially for nonlinear elasticity [e.g.,
Schrever and Neilsen, 1996 a, b]. The first condition is a
stronger one. and convexity may be lost prior to the ellipticity.
For that reason we start with the first condition for material
stability.

The maximum possible value of the damage parameter o
for a given strain tensor g; is defined by the requirement of
convexity of the elastic energy U of (11). This condition im-
plies positivity of all eigenvalues of the matrix azU/aeiiae”
whose dimension is 6x6 for six independent components of
the strain tensor (€);, £, €. €2, €3, €x). The matrix compo-
nents in the coordinate system of the principal axes are given
in Table 1. The first eigenvalue is equal to

X, =20 -1 =2u°20.
This condition implies stability against simple-shear defor-

mation. The second and third eigenvalues satisfy the quadratic
equation

(14)

X2 —(4;1—37?’;+3)u)x+(2p—y@)2 +
+H2p - EIBA - ) + M~y )(3-E7) =0,
The roots of this equation are nonnegative if
(20 =18)% +(2H -3 -1E) +
+AME—y2)3-E%)20.

If either (14) or (15) is not satisfied, the elastic energy is not a
convex function of the strain tensor and the static problem has
multiple solutions. It can be shown that conditions (14) and

(15)

1341

1.

(15) coincide with conditions of positivity of the eigenvalues
of the acoustic matrices which correspond to two different
polarizations of shear waves. Thus loss of convexity of the
elastic energy in the present model also provides the criterion
for strain localization used by Rudnicki and Rice [1975].

3.4. Kinetics of the Damage Process

Equation (10) provides a general form of damage evolution
compatible with thermodynamic principles. Practical use of
the equation requires an additional functional relation between
the damage parameter o and the three elastic moduli A. y. and
Y. With the current level of experimental constraints. some
simple assumptions should be made. Hence we assume linear
dependencies of the elastic moduli A, t, and yon damage:

A=hg+0h,.
H=Ho+Ol,, (16)
Y=oy,

where A=Aq, u=p, and y=0 correspond to initial elastic modui
of the uncracked material. Combining equations (10), (11),
and (16) yields an equation of damage evolution

da A,
_=_Cp(_ll;l+“rl2 —lel\/l—l’—j’ (1
dt 2
which may be rewritten in the form
do Ar p2 3
—=-C,4l LE+2L-E |,
a d z(eré Y, E,] (18)

The positive coefficient C, given by Cpy,, describes the rate of
damage evolution for a given deformation.

To use equation (18) in a 3-D damage evolution model, we
employ two additional constraints. The first is that there exists
a critical strain invariant ratio &, which corresponds to a neu-
tral state between healing and degradation of the material. As
will be shown in a later section, this is a generalization of
friction, which is a widely observed constitutive behavior in-
rocks and other brittle materials. High shear strain relative to
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Figure 1. Thick line gives the maximum value (¢,) of the
damage parameter ¢ as a function of strain invariant ratio &,
The range —V3<E<&, corresponds to stable behavior with
healing. For £>, there is material degradation leading to loss
of stability according to equation (14) or (15).

compaction (0>£>&,) or extension (£>0>E,) leads to degrada-
tion, while high compaction with absence of or low shear
component (§<&,) leads to healing of the material. The coeffi-
cient &, may be estimated from the onset of damage-induced
instability or first yielding in rock mechanics experiments. An
intuitive possibility for the second constraint, discussed by
Lyvakhovsky [1988] for a similar model, is that of a constant
bulk modulus (A°+2/3u°) under isotropic compaction (E=—3).
However, back substitution to (18) gives with this assumption
a zero rate of healing for £&=—V3. This is a significant short-
coming for a model expected to describe earthquake cycles
containing both degradation and healing. Agnon and Lyak-
hovsky [1995] slightly changed this assumption and chose
only the modulus A to be constant. Under their condition (16)
has the following form

A=Lko=const; p=py+0ofyy,; y=of, . 1%

where ¥, is calculated from the conditions (14) and (15) of
convexity loss for the maximum value of the damage parame-
ter (a=1), when the strain invariant ratio is £=§,. Figure 1
shows the dependence of the critical damage on the strain in-
variant ratio for Ay=M,. In this case, condition (15) is realized
first for £2E, and prescribes the scale ¥,.

With the assumptions (19), equation (18) is rewritten in a
simple form containing only two unknown model parameters

do
‘a'[‘=cd]2(§‘§o)- (20)

The two model parameters &) and C, are assumed in our
model to be material properties. As will be discussed in a sub-
sequent section, the parameters may be constrained by results
of rock mechanics experiments. Comparing our model predic-
tions with laboratory data of rate and state-dependent friction,
representing average properties of sliding surfaces, we find
that in such a context the coefficient C, does depend on dam-
age. Accordingly, we adopt in that section different rate coef-
ficients (equation 42) for material degradation and healing.
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4. General Properties of Damaged Material

In this section. three general properties of the model arc
analyzed using analytical solutions. The first solution for a 1-
D extension problem illustrates strain and damage localization
in a previously weakened zone. The second., 2-D case. sug-
gests that there is no stress singularity around a fujly de-
stroyed zone. The last example shows that the interaction be-
tween the damage evolution and viscous relaxation results in
stick-slip shear motion.

4.1. One-Dimensional Deformation

For a uniaxial strain, assuming a linear dependence of
Young modulus on damage, E=E,[1-0]. reduces equation

20) o
dt T \ax)

where u is displacement depending only on the x coordinate.
and A is a coefficient which depends on the type of loading.
Since in the 1-D case the strain invariant ratio is §=%1, A is
one of two constants: C4(1-&,) for tension or Cy(~1-&,) for
compression. Positive and negative values of A correspond to
fracturing and healing, respectively. For the 1-D case we con-
sider only a fracturing process.

We investigate the damage evolution of a body with unit
length and fixed displacements at the boundaries, u(0)=0 and
u(1)=uy, in a one-dimensional deformation. These boundary
conditions give the body stress

2n

i
dx
6= —_— 22
o J‘Eo(l—a) @2
0
and the strain is given by
| -1
du dx
—=ulE,-(I-a J'———— 23)
= = | Eo ( )OEo'(l_O‘) (

Substitution of {23) into (21) results in an equation of damage
evolution for the investigated body.

=2

do

dt

= Q4)
1-a

]
Audl (1-0o) _[

0
For a uniform initial condition (ol =const), equation (24) has
the solution ci(t)=At, leading to a complete destruction of the
body with finite time. For a nonuniform initial condition (o).,
#const), the solution of (24) may be written in the form

a(x,t)=1 -ELQ][EO(l—a(x,O))P— f(o), (25)
0

where f(t) depends on o(x,0). Equation (25) implies that the

deformation localizes at a point x, which is the maximum of

the initial damage distribution. To see that, assume that at

some time t’ the elastic modulus in the interval [xo—C, Xp+c]

may be approximated by a parabola

E(x.t) = Eg(1—a(x,t')) =a(x = x)* +b. (26)

Substitution of (25) and the parabolic approximation (26) of
the modulus into (23) yields a corresponding approximation of .
the strain distribution in the vicinity of the point x,
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du

du abu, »
ox ‘.’z«krctan(ac/b)[a2 (X=Xg)* +b2]

27N
abug

[a (x— xo) +b~ ]

— &(x—Xq)-

Equation (27) shows that the deformation localizes in the vi-
cinity of the point x,, where the initial damage distribution
was maximum, during a process where the damage at x, ap-
proaches unity or elastic modulus goes to zero (b/au,— 0).

Now consider the elastic energy transfer from the relaxing
part of the body to surface energy of the localized damaged
zone. We assume that o(x,0)=0, over a small interval of
length L. and ou(x.0)=0x, (<0;) elsewhere. In this case, the so-
lution of equation (21) may be represented as O(x,t)=0(t) at
points initially belonging to the interval L, and o(x.t)=0;(t)
elsewhere. On the basis of (24), the two time-dependent func-
tions o, and o> satisfy

dOL] 2 ]"'a') T
—=AUO - s
dt (-L)1-a,)+L(1-04) |

(28)

[S)

da2 _A ’) 1—(1]
dt (1-L)(1~0,) +L(1-a) |

For small o, and o, and with L—0, equations (28) dictate at
the initial stage of the damage evolution an increase of o, with
a rate greater than the rate of increase of o,. Thus the ratio
o/ increases with time. This is in line with the previous re-
sult on strain localization for a continuous distribution. The
damage process localizes in the interval where the initial
damage is high. At the final stage of the evolution, with
o,—1, equations (28) have the solutions
don __ Auwg _

dt 1 2(1-q,)

The damage process continues only in the small L interval,
where o(t) achieves a unit value at finite time and macro-
scopic failure of the body occurs. The energy transferred into
the high damage region, G=Jovdt, can be written from the
previous results as

G =L(1- L)udEo(1 -

o) = const;

5
0(,)' X
(]—ot2 )(12 (29)

X
j[(1-oL,)1,+(1—oz2)(1—1.)]3

dt.

Integrating (29) from a time when a,= (_13 to the time of de-
struction when o;=1, the energy flux G remains finite and is
given by
_Equg(-a)
2(1-L)
L Equa(1-L)[(1-a))L+2(1-3,)]

— 2
2{(-oy)L+(1-T,)1-L)]

(30)

For the hmltmg situation L—0 the energy transfer is
Gi=1/2Eu,’ (1—0)). In this case it is seen that all the elastic
energy of the relaxed part of the body is transferred to surface
energy of the damaged zone. If the rate of the damage process
given by the constant A) is sufficiently large, and/or the
length of the initially damaged part is sufficiently small, the
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rate of the deformational process will increase and part of G,
will become kinetic and radiate acoustic waves. In this case.
only a portion of the initial elastic energy is converted to a
surface energy. -

4.2. Two-Dimensional Stress Concentration

Extrapolating the results of the previous example to a 2-D
case, one may expect strain and damage localization in a
small region which leads to stress concentration similar to lin-
ear elasticity. However. continuous damage evolution until
total destruction eliminates the classical stress singularity. To
illustrate that. we analyze stress amplification around a circu-
lar hole in a 2-D plate subjected to remote isotropic extension.
In a cylindrical coordinate system, only the radial component
®,=axXr) of the elastic displacements is nonzero. and the stress
tensor is given by

dm 0 do
n'_}"( ) 2u—,
dr r dr
=AM —+—{+2u— 31
G0 [dr r) u @31
G, =0

Using (31) in the equation of equilibrium for the linear elastic
material gives a general solution in the form

o(r) =Ar+E. (32)

T
From (32) the stress distribution around a circular hole with
radius R in the linear elastic plate subjected to remote exten-
sion p is

(33)

The solution has a stress amplification at the boundary (Gyehex
=2p) and a /i decay. As a result of this amplification, the
damage process starts at the edge of the hole and it is local-
ized in a thin boundary layer having high gradients of damage
and elastic moduli variations. The elastic displacement axr)
has a corresponding high gradient near r=R, and in that region
the term day¥dr is dominant in relations (31) for the stress ten-
sor. Neglecting the term w/'r for a finite radius R of the hole,
and using the boundary condition G, = 0, give instead of (32)
the condition w=const (dw/dr=0) at the boundary. If the dam-
age at the boundary reaches its critical value, the tangential
stress component there becomes zero in addition to the radial
component. Stress components around the circular hole in a
damaged material remain finite even for infinitely small radius
of curvature. Instead of singular-like stress distribution, the
model predicts an evolving high gradient damage or process
zone. The geomeltry of the process zone and the rate of damage
evolution are controlling factors for both the crack trajectory
and the rate of crack growth in most engineering materials
[Chudnovsky er al., 1990; Huang et al., 1991].

4.3. Stick-Slip Motion

The previous cases neglect viscous stress relaxation and
deal only with elastic behavior of damaged material. Here we
analyze in one dimension the behavior of a viscoelastic dam-
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age material subjected to a constant shear strain rate. For
simplicity. the viscosity of the material 1 is assumed constant.
The constitutive relation for a Maxwell viscoelastic body is

df{ t T
e=—| — |+ —

de{2p )/ 27
where 1 is shear stress and e is total strain rate (equation 4).
As discussed above. the shear modulus u (equation 19) is as-

sumed to be a linear function of the damage parameter. Thus
the equation of damage evolution (20) may be represented by

du T Y -
= —_ —E-
dt d&.cO‘Yr (2HJ cr

(34)

(35

where g, is a critical strain corresponding to the onset of ma-
terial degradation. For a given dilation I,, €., corresponds to a
certain &, When the deformation is larger than €, the damage
increases. and when it is lower the damage decreases. Thus
the elastic modulus changes together with the damage be-
tween zero (loss of convexity and stress drop) and its maxi-
mum value. Within these limits the system of equations (34)
and (35) has a singular saddle point corresponding to the un-
stable equilibrium solution

T=2ne; p=-2 (36)
8Cl‘

The two coupled nonlinear equations (34) and (35) describe
the temporal variations of shear stress and shear modulus in a
damage material subjected to a constant rate of shear strain.
The Maxwell relaxation time is t,=n/i, while a characteristic
time scale of the damage process is of the order of
=H/C¥HE' =€), of t=to/CayEal(E-E,) for a 3-D problem.
The ratio t./ty controls the style of evolution of the mechanical
system. A small t./ty implies that the shear stress T can in-
crease for a given strain rate without significant change in the
elastic modulus of the material. If this stress causes the elastic
strain to be fess than critical, then stable creep is realized. A
higher level of the applied strain rate results in elastic strain
larger than the critical, which leads to material degradation
and stress drop. No significant material healing is expected
after stress drop, and the applied constant strain rate does not
produce significant consequent stress.

—
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Figure 2. Phase plane with evolution of viscoelastic damage
material subjected to a constant strain rate.
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The material evolution displays another stvle if the ratio
L/ty 1s of the order of 1 (Figure 2). Relatively low applied
strain rates (e~Mg./M) correspond to a set of trajectories tend-
ing to stable creep. The shear modulus is increased up to its
maximum value and the shear stress approaches the value

=2ne. Higher strain rates (e>>UE./M) also produce material
healing at the initial stage of evolution, but the critical elastic
strain €. is achieved before the shear modulus obtains the
value p.,=ne/g,, (horizontal dashed line in Fig. 2). At this
point the damage evolution reverses its direction. and a degra-
dation stage begins. leading to a stress drop. The dvnamic
stress drop, which is not analyzed here. quickly reduces the
elastic strain to some low value, keeping zero shear modulus.
There is a locus of trajectories that starts from the line u=0
and shows significant material recovering together with in-
crease of elastic strain. When the shear stress is large enough.
the damage evolution reverses direction again, and a new deg-
radation stage begins, leading to the next stress drop. If the
strain rate is so high that the value p,, is larger than the
maximum shear modulus of the material with zero damage,
the steady creep can not be realized, and only stick-slip behav-
ior occurs. This process forms a repeating limit cycle which
physically corresponds to stick-slip shear motion of the viscoe-
lastic damage material.

5. Estimation of Model Parameters

Savage et al. [1996] draw a connection between macroscopic
friction measured on saw-cut specimens and internal friction
that characterizes shear fracture of intact rock. They write the
strength of an intact rock as the sum over the plane of the in-
cipient fault of both friction on closed microcracks and
strength of the remaining grains. The approach taken here ex-
tends that connection. We focus our attention on confining
pressures sufficient for closure of microcracks, so stress con-
centration may arise only once the shear stress meets the fric-
tional criterion. Then favorably oriented cracks slide and load
their tips giving rise to damage increase (equation 20). The
difference between the frictional strength of prefaulted sur-
faces and the strength of the intact rock is given by the excess
stress that is needed to increase the damage from its initial
value to critical. That stress difference is rate dependent; since
it can be calculated readily from the model. it constrains the
rate coefficient C,. In the limit that the strain remains near-
critical for damage growth (£-&, — 0), the time for fracture is
infinite, but the strength is friction-like. In this case a smooth
surface will evolve along which the damage will approach the
critical level (0—1). These features are explored below ana-
lytically, and illustrated by numerical examples. Our main
concern here is to estimate the model parameters &, and C,
which govern the style of damage evolution. The parameter £,
may be estimated from different types of rock mechanics ex-
periments; the parameter C, is less well constrained.

5.1. Friction and the Onset of Damage

One of the best studied rock property is the friction angle.
We relate the critical strain invariant ratio &, to the friction
angle @ by considering the critical shear stress for Mohr-
Coulomb sliding:

T=1an{¢)c,,

where G, is normal stress. Consider a saw-cut interface be-
tween two intact blocks in a friction experiment carried out
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Figure 3. Modified internal friction &, as a function of friction
for different Poisson ratios v=0.2, 0.25, and 0.3.

under confining pressure. Except for the interface (and per-
haps thin adjacent boundary layers), the sample has negligible
damage. Stresses are transmitted elastically to the interface,
and the corresponding strain can be calculated using Hook’s
law and conditions of triaxial compression (£;=€;,>€::<0).
The condition for fault slip is then [Agnon and Lyakhovsky,

1995]
-3

0= =, (37
\/2q2(7\.e e +2/3) +1

§

where

__ sin(@)
1-sin(g)/3

Physically (37) means that the model parameter &, is some
modification of the internal friction. Figure 3 shows the de-
pendency of the modified internal friction (&) on the friction
for three values of A/, corresponding to values of Poisson
ratio 0.2, 0.25, and 0.3. Thus for Westerly granite with friction
angle ©~30° [Byerlee, 1967), equation (37) gives &~~0.8.
The result varies little for different rocks with Poisson ratio
values between 0.2 and 0.3.

5.2. Three-Dimensional Faulting Experiments

The modified internal friction £, may also be estimated us-
ing results of faulting experiments under 3-D strain fields
given by Reches [1983]. Figure 4 displays empirical relation-
ships between the first and second stress invariants for the
first yielding in those experiments. The data appear to be well
approximated by the relation

J,=1}. (38)

Following the notation of Reches [1983], the stress invariants
are J=6,+G2+G3, J1,=6,6,+0,0:+0,0:. Most of the experimen-
tal points for different rock types can be fitted by equation (38)
with the empirical coefficient r=0.20-0.27. Assuming that the
initial rock samples have negligible levels of damage until the
first yielding (i.e., that they behave as linear Hookean solids
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with elastic moduli A, ) and using Hook's law. the modi-
fied internal friction &, associated with initiation of the dam-
age process is given from the stress (equation 38) as

G
0= = , ) 2
\/3(}‘0/!40)~ +4ho /Mo +2-1(3hg /Mo +2)

Taking the Poisson’s ratio of the rocks close t0 0.25 (Ay=py).
the corresponding range of variation of &, is found from (39)
to be between —0.7 and ~1. Our previous estimate based on
Byverlee's law for axial symmetric compression experiments
(37) falls within this range.

(39

Js

5.3. Onset of Acoustic Emission

The emission of acoustic signals during compressive failure
experiments begins at the onset of dilatancy. and this activity
accelerates in proportion to the rate of dilatancy which is often
observed together with localization of deformation [Scholz.
1990 and references therein]. Figure 5a shows observed
acoustic emission (AE) data of Sammonds et al. {1992)], ob-
tained during a deformational experiment on Darley Dale
sandstone with a nominal strain rate of 10™ s™" and confining
pressure of 50 MPa. After a roughly linear elastic loading in
the first 2500 s (axial stress up to 220 MPa) there is a steep
rise in AE associated with first yielding and onset of cracking.
Material degradation then leads to a second yielding, involv-
ing dynamic instability and abrupt stress drop at 3700 s (peak
stress of about 290-300 MPa). The observed first and second
yielding points can be used to estimate the model parameters
& and C,. In our framework, the damage of the sample, ini-
tially assumed equal to zero (0=0), starts to increase rapidly at
the first yielding when the deformation exceeds the critical
value &,. Calculated damage evolution, obtained from equa-
tion (20), s similar to the experimental rise in AE rate (Figure
5b). The calculations give loss of convexity, or dynamic stress
drop, within a finite period of time and allow us to estimate
the second model parameter Cy. We obtain a good fit to the

18
~ 16 t+| ¢ Candoro limestone
= ® Granite
o 14 F
= o Barea sandstone
= 12 F n
= 10 F
8
E ¢ | r=0.27 %
2
S 4T
S 5 r=0.20
- n ]
0 1 '\ L L
0 2 4 6 8

First invariant (J,, kbar)

Figure 4. Experimental relations between first (J,=6,+6,+0)
and second (J,=0,0,+0G,03+0,03) stress invariants at the first
yielding under 3-D stress field for different types of rocks
[gfi;ter Reches, 1983], and their approximation by equation
(38).
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Figure 5. (a) Observed acoustic emission (solid line) and axial stress (dashed line) during deformational ex-
periment on Darley Dale sandstone with a nominal strain rate of 10~ s™' and confining pressure of 50 MPa
(Modified with permission from Nature [Sammonds et al., 1992]; copyright Macmillan Magazines Limited).
(b) Calculated damage evolution (da/dt solid line) and axial stress (dashed line) by the damage rheology

model with &,=-0. 75 and Cy=05s"

experimental results of Sammonds et al. [1992] with §=-0.75
and C4=0.5 s™'. The value of the modified internal friction &,
is again in good agreement with the previous estimates.

5.4. Intact Strength

Most experiments on fracture or intact strength of rocks do
not record AE and the first yielding is not defined. Only the
second yielding is reported. However, these data also can be
used to estimate C, if the strain rate during the loading is re-
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Figure 6. Frictional stress for sawcut series (solid circles) and
intact series (open circles) for Westerly granite [after Stesky et
al., 1974]. The heavy solid line shows the friction law of Bver-
lee [1967]. The heavy dashed line gives the yielding stress for
the modified internal friction &,=—0.8. Thin solid and dashed
lines give the simulated yielding stress for Cy=1, 3,5 s~

ported and the friction angle is given by the angle of saw-cut
samples. Figure 6 shows the results of saw-cut Westerly
granite samples after Stesky et al. [1974], which are in a good
agreement with Byeriee’s [1967] friction law for Westerly
granite

t=05+060, (kbar).

Using the previous estimate (§,=—0.8) for Westerly granite
based on the Byerlee friction law, damage evolution is simu-
lated for strain rate of 2.710 s™' [Stesky er al., 1974] and
different values of C,=1, 3, and 5 s™'. Three lines shown in
Figure 6 represent maximum differential stress (stress enve-
lopes) versus confining pressure simulated for the three differ-
ent C,. The curve for Cy=3 s™' fits well the experimental data
of Stesky et al. [1974] and gives another estimate of the dam-
age rate constant.

It appears that the parameter &, is well constrained and
varies little with different types of rocks and loading condi-
tions. The values of the damage rate constant Cy vary by an
order of magnitude based on a limited range of experiments
with a similar strain rate of about 107 s™'. Thus additional
constraints for C, with different strain rates are needed. Some
of those may come from fitting simulated seismicity patterns
of the type discussed in paper 2.

6. Model Implications

6.1. Necking of Thin Plate

The large-scale extension of thin sheets may, under certain
conditions, generate further instabilities by the formation of
fauilt zones or local necks. First we provide an expression for
the direction of the neck trace for plastic material. Expressions
for a pertectly plastic material were given by Storen and Rice
{1975] and were used by Agnon and Eidelman [1991] for
analysis of continental rifts. To maintain a constant length and
rigid blocks, the neck must form along horizontal directions of
zero extension, or velocity characteristics, symmetrical about
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'

Figure 7. Direction of neck trace in a thin plate with respect
to the axis of maximum compression.

the principal incremental strain axes. For incompressible
plastic plates. the direction 8 between the neck and the axis of
maximum compression (Figure 7) is defined by the ratio p
between the rate of shortening €, and extension €,

tan®(8)=p=——L .
€
The orientations of preferred faults in a brittle material were
determined by Reches [1983] numerically and analytically for
different cases. For p<0 the orientation of a fault plane with
respect to the coordinate system of the principal strain axes is
given from equation (27) of Reches [1983]

2 .
S, = ‘/—2_-(1 + sm((p))y2 ,

S, = g[p[%(l ~sin(@)?,
(a)

50
B Damage (numerical) :
Plastic (Storen & Rice, 1975)|_—"|
40 f...... Brittle (Reches, 1983)

-
P
. ”
-

-
-
e "
-
-

0.8 1

0.4

0.6
p=—¢€ /¢,

27,645

where S, and S, are slip directions and ¢ is a friction angle.
The ratio S, to S gives the angle 6 between the fault plane
and axis of maximum compression as

-

Lg’-j =tan"(0) = lpl-—-—] —sin(Q)

- . (40)
1+ sin(Q)

-

Frictional sliding is characterized by p=1. and the angle be-
tween a fault trace and the axis of maximum compression can
be expressed through the Coulomb criterion as 6=1(45—¢/2).
Simple calculations show that equation (40) reproduces ex-
actly this angle for p=1.

Figure 8a shows 8 for a perfectly plastic plate and a brittle
plate with friction angle ¢ =30°, 40°. 50° (equation 40). Also
shown are results of nomerical simulations with the present
model of damage evolution for a material with the modified
internal friction &=-0.8. This corresponds to a friction angle
@ =40° for Poisson ratio v=0.25 (see Figure 3). Each numeri-
cal calculation starts from random initial damage distribution.
With time, the damage increases and forms localized zones of
very high damage (Figure 8b) with orientation depending on
the parameter p. The values based on the numerical simula-
tions fit well the prediction of the fault plane orientation in
brittle material. These results, and additional simulations dis-
cussed in paper 2. illustrate that our damage rheology model
is suitable for the study of the evolution of fault branching and
other structural irregularities.

6.2. State Dependent Friction and Nonlinear Healing

Following and confirming the pioneering experiments of
Rabinovicz [1965] on metals, studies of rock friction provide
evidence that the static friction increases slowly with the du-
ration of stationary contact [Dieterich, 1972). Dieterich

(b)

Figure 8. (a) Fault zone orientation in plastic material (heavy line), brittle material with friction angle ¢=30°,
40°, and 50° (dashed lines), and model of damage evolution of a material with the modified internal friction
&,=-0.8 (squares with vertical bars). The assumed &, corresponds to the friction angle ¢ =40° for Poisson ratio
v=0.25 (see Figure 3). (b) Numerical simulation of localized high damage zones in a thin plate under 2-D
loading with p=—¢,/g,=1. Bands of connected damage zones have developed at an angle of about 25" 10 the

principal stress direction &;.



27,646

[1979. 1981]. Ruina [1983] and others interpreted results of
laboratory friction experiments involving hold times of the
pulling mechanism and jumps in sliding velocities in terms of
rate- and state-dependent friction. As was mentioned in the
introduction. the RS friction. like our model. provides a con-
ceptual framework incorporating all important stages of an
earthquake cycle. It is therefore useful to compare results
based on our model predictions with laboratory measurements
of RS frictional parameters.

In contrast to laboratory frictional experiments, our model
does not have sliding surfaces. but rather damaged zones of
weakness. Nevertheless. a comparison of our model results
with laboratory RS (and other frictional) data is useful, since it
allows us to adapt our model to macroscopic situations involv-
ing various faulting phenomena.

Following equation (20). material healing starts when the
deformation is less than critical (§<&). As discussed in the
context of Figure 3. for zero initial damage the coefficient &,
may be estimated from the friction of the material. Once this
coefficient is fixed. substituting the effective elastic moduli
(13) into (37) we may calculate the friction angle as a function
of the initial damage (Figure 9). This is not the same as the
static friction that is measured in laboratory friction experi-
ments. but both coefficients have a similar physical sense, and
they are expected to be proportional to each other [Savage et
al., 1996].

Dieterich [1972] reported detailed results of frictional ex-
periments with different normal stress and hold times up to
10° s and fitted the static friction with the equation

uo=u" + A logy, (1+Bt), (41)

where t is the duration of the hold time in seconds, p'=0.6-0.8,
A=0.01-0.02. and B=1-2 s™'. The results were interpreted as
representing enlargement of the real contact area with time
due to indentation creep around geometrical asperities. Using
our previous assumption on the relation between o and i, and
employing equation (20) for material healing under normal
stress ©,. the damage rheology model predicts linear increase
of the static friction with time. This relation cannot fit the ex-
perimental data, and it leads to a quicker increase of ., than
the logarithmic law. This suggests that the rate of healing de-
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Figure 9. Variation of the friction as a function of damage o.
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Figure 10. Material recovering in stationary contact from ini-
tial damage oy, to O, due to normal stress. The increase of
static friction is proportional to the logarithm of the hold time
duration.

pends on the damage itself. This imposes that for healing the
damage rate coefficient is proportional to the exponent of the
current level of . Thus we substitute a function for the pa-
rameter C, in equation (20) to incorporate different coeffi-
cients for degradation and healing in the form

doo [ Cahh(§-&0)

—= o . )
di 1CICXP(C My (§-8p) for §<&,.

where C, is constant describing the rate of degradation and C,
and C, are constants describing the rate of healing. With this
modification the equation for healing has the logarithmic so-
lution

or=0,-C,In(10)x

C o
x logm[l - CI CXP[C—”:}lz(g—éu n }

"2

(43)

Thus a damage decrease (healing) starts from some initial
value oy, (Figure 10) which is critical value for any type of
deformation &. Normal compression reduces the actual strain
invariant ratio below &, and provides conditions for healing.
According to (43), the healing is logarithmic in time in
agreement with Dieterich [1972, 1979] and following works.
Comparing (43) with equation (41) for static friction, and us-
ing the relation between damage and friction (Figure 9), we
may suggest that the coefficient C,In(10) should be of the
same order as A (e, C»~107), and the relation
C/Caexp{[ow/Ca]1,} is of the same order as B.

Miao er al. [1995] reported experimental results showing
time changes of Young’s modulus during the healing of
crushed rock salt. In those experiments, Young’s modulus in-
creases relatively fast at the beginning of the process. After
2000-3000 min the evolution rate significantly decreases, pro-
ducing a logarithmic-like relationship between Young's
modulus and densification time [Miao er al., 1995, Figure
10]. Our model unifies this observed behavior with the ex-
perimental results of Dieterich on state dependent friction.
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7. Discussion

We have described a damage rheology model based on
thermodynamic principles and fundamental observations of
rock deformation in situ and in the laboratory. The model has
many realistic features of 3-D deformation fields which can be
summarized as follows

7.1. Strength Degradation and Healing

A state of stress corresponding to strain £>Z, leads to ma-
terial degradation. with a rate proportional to the second strain
invariant multiplied by (§-&,). Conversiy. when &<&,. the
same process results in material strengthening. At each time
the existing value of the damage parameter reflects an inte-
grated history of the damage process. The values of the dam-
age rate constants C, and C; in equation (42) define the dura-
tion of the rock memory for positive (degradation) and nega-
tive (healing) damage evolution, respectively. Infinitely large
C, and C, correspond to zero memory, in which case the
model gives ideal elastoplastic behavior. Infinitely small C,
and C, give Hookean elastic behavior.

7.2. Process Zone

Positive damage evolution starts at low loading when the
strain becomes critical &, and it produces gradual damage in
a “process zone™ around completely damaged (“destroyed™)
regions. Because of the finite size of the process zone, our
model does not have the unphysical stress singularities of the
ideal classical crack solution. The equations of stress have a
regular solution at every point, and they incorporate fracture
zones having a finite rate of growth. Such process zones are
observed in many experiments with rocks and design materi-
als [e.g.. Lockner er al., 1991)] and their existence often gov-
erns the rate and trajectory of the failure evolution.

7.3. Aseismic Deformation, Strain Localization, and
Seismic Events

When damage increases, values of the effective elastic
moduli decrease. and at some point the elastic energy may
lose its convexity. In that situation the slope of the stress-
strain relation is negative. The strain localizes in a high dam-
age zone with zero to negative effective moduli, and it may
become unbounded if loading continues. The deformation pre-
ceding strain localization is stable or with negligible energy
loss to seismic emission, while the deformation following
strain localization is abrupt or seismic. Thus our model ac-
counts for aseismic deformation, seismic events, and the
transitions between these two modes of failure.

Simplified 1-D and 2-D versions of the damage rheology
model lead to analytical results incorporating a variety of de-
formational phenomena, such as strain localization (equation
30) and stick-slip behavior (equation 36). A practical version
of the general formulation provides a basic expression
(equation 20) for the evolution of damage in terms of two
model parameters: a critical deformation &, separating mate-
ria] degradation from healing, and a constant C, governing the
rate of damage evolution. We have attempted to constrain
these parameters with relevant laboratory friction and acoustic
emission data (Figures 4-8). Additional constraints are
needed, especially for C,. A variant of the basic damage
evolution law, motivated by the time-dependent friction meas-
urements of Dieterichk [1972). contains two different forms
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(equation 42) for damage evolution during material degrada-
tion and healing. The modified evolution law provides loga-
rithmic healing with time (equation 43) in agreement with the
experimental results.

The damage rheology of the present work is used. together
with additional developments. in a tollow-up paper where we
simulate the coupled evolution of regional earthquakes and
faults. A number of potential improvements to our damage
rheology model should be explored in parallel.
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Abstract. We study the coupled evolution of earthquakes and faults in a model
consisting of a seismogenic upper crust governed by damage rheology over a
viscoelastic substrate. The damage rheology has two types of functional coefficients:
(1) a "generalized internal friction" separating states associated with material
degradation and healing and (2) damage rate coefficients for positive (degradation) and
negative (healing) changes. The evolving damage modifies the effective elastic
properties of material in the upper crust as a function of the ongoing deformation. This
simulates the creation and healing of fault systems in the upper seismogenic zone. In
addition to the vertically averaged thin sheet approximation we introduce a Green
function for three-dimensional elastic half-space for the instantaneous component of
deformation. The formulation accounts in an internally consistent manner for evolving
deformation fields, evolving fault structures, aseismic energy release, and
spatiotemporal seismicity patterns. These developments allow us to simulate long
histories of crustal deformation and to study the simuitaneous evolution of regional
earthquakes and faults for various model realizations. To focus on basic features of a
large strike-slip fault system, we first consider a simplified geometry of the seismogenic
crust by prescribing initial conditions consisting of a narrow damage zone in an
otherwise damage-free plate. For this configuration, the model generates an earthquake
cycle with distinct interseismic. preseismic, coseismic, and postseismic periods. Model
evolution during each period is controlled by a subset of physical properties, which may
be constrained by geophysical, geodetic, rock mechanics, and seismological data. In the
more generic case with a random initial damage distribution, the model generates large
crustal faults and subsidiary branches with complex geometries. The simulated
statistics depend on the space-time window of the observational domain. The results
indicate that long healing timescale, t,, describing systems with relatively long memory,
leads to the development of geometrically regular fault systems and the characteristic
frequency-size earthquake distribution. Conversely, short 7, (relatively short memory)
leads to the development of a network of disordered fault systems and the
Gutenberg-Richter earthquake statistics. For intermediate values of t, the results
exhibit alternating overall switching of response from periods of intense seismic activity
and the characteristic earthquake distribution to periods of low seismic activity and
Gutenberg-Richter statistics.

1. Introduction

A decade-long surge of activity in the seismological and
physics communities is aimed at resolving fundamental
questions related to spatiotemporal patterns of earthquakes
and faults. These studies ftypically employ numerical
simulations of models based on different conceptual

Copyright 2001 by the American Geophysical Union,
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frameworks. Recent summaries and classifications are given
by, e.g., Gabrielov and Newman [1994] and Ben-Zion et al.
[1999a]. Most models to date were confined to studies of
seismic activity along a single or a few fault systems [e.g.,
Robinson and Benites, 1995]. A few works perform
two-dimensional  (2-D)  calculations of elastostatic
deformations in a thin plate to simulate respectively long
histories of regional seismicity and the development of
regional faults [Sornette et al, 1994; Ward, 1996; Cowie,
1998, and references therein]. Such 2-D models, however,
ignore the coupling of the seismogenic zone to other parts of
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the lithosphere and fault interactions involving the third
dimension. Depth plays a major mechanical role through
coupling of the upper seismogenic layer to a viscoelastic
substrate. This may produce time-dependent inelastic
deformation zones that spread in the ductile lower crust and
load faults in the brittle upper layer [e.g., Lehner et al., 1981;
Thatcher, 1983; Li and Rice, 1987, Ben-Zion et al., 1993;
Reches et al., 1994]. A second important shortcoming of the
foregoing models is that they employ either fixed imposed
faults [Ward, 1996] or material properties that are constant in
time [Sornette et al., 1994], and they thus neglect the fact that
the geometry and rheological properties of fault systems
evolve with the ongoing deformation [e.g., King, 1983;
Andrews, 1989; Scholz et al., 1993). Heimpel and Olson
{1996] simulated lithospheric rifting in models with
time-independent properties and approximated Elsasser-type
interactions (see section 2) with the depth dimension. Since
stress transfer mechanisms in a 3-D rheologically layered
solid and the evolution of fault properties with deformation
can be important over timescales longer than a few great
earthquake cycles, the existing models do not provide
conceptually complete frameworks for studying long histories

of crustal activity.
In the present work we attempt to overcome the above

shortcomings by using a model consisting of an elastic upper
layer governed by damage rheology [Lyakhovsky et al., 1997
a, b] over a Maxwell viscoelastic substrate. The calculations
employ vertically averaged variables of the thin sheet
approximation for the viscous component of motion and a
3-D elastic Green function for the elastic response of the
model to deformation. The damage rheology accounts for the
creation, evolution, and possible healing of fault zones in the
upper crust. The damage approach assumes that the density of
cracks is uniform over a length scale much larger than the
crack length, yet much smaller than the scale of the
macroscopic problem considered. In a specimen under rock
mechanics laboratory conditions, microcrack density can be
measured over a subcentimeter scale and considered as
distributed damage [Moore and Lockner, 1995]. On a plate
boundary length scale, individual faults that extend to a
kilometer length may be considered as distributed damage.
The distributed cracks are much smaller than the size of a
representative volume, in which crack density is considered
homogenous. Hence we define an intensive damage variable
o representing the ratio between the elastic shear modulus of
a spatial domain relative to the modulus of an ideal crack-free
solid. Two aspects of the physics of damage are treated by the
present model: (1) a mechanical aspect, the sensitivity of the
macroscopic elastic moduli to distributed cracks and to the
type of loading, and (2) a kinetic aspect, damage evolution
(degradation/recovery of elasticity) in response to ongoing
deformation. The theory of the damage rheology and
constraints to damage coefficients from laboratory data are
discussed in detail by Lyakhovsky et al. {1997 a, b] and A.
Agnon et al. (manuscript in preparation) and are briefly
presented in Appendix A.

In the following, we present theoretical developments
relevant to the large-scale structure of the model (layered
elastic/viscoelastic half-space). The developed framework
allows us to simulate long histories of crustal deformation and
to study the simultaneous self-organization of regional
earthquake and faults. The model formulation is used to
calculate various examples of geodetic fields, evolving upper
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crust properties, and seismicity patterns and to perform a
basic parameter- space study of different dynamic regimes.

2. Model of Crustal Stress Distribution

Strain accumulation and release at a strike-slip plate
boundary has been discussed by various authors [e.g., Sibson,
1982; Meisner and Strehlau, 1982. Li and Rice, 1987,
Ben-Zion et al.. 1993; Reches et al.. 1994]. The shallow
portion of the lithosphere is generally characterized as elastic
and brittle, while the deeper material is assumed to undergo
plastic shear flow and creep due to high temperature and
pressure. In this work the seismogenic upper crust is governed
by damage rheology and is coupled viscoelastically to the
substrate, where steady mantle flow drives the deformation.
We use different prescribed loads representing various types
of mantle flow, ranging from localized step function
underneath a single major fault to distributed loading for
simulations of regional evolutions of earthquakes and faults.

Most studies of surface deformation around a preexisting
plate boundary [Li and Rice, 1987; Ben-Zion et al., 1993;
Reches et al., 1994] approximate the velocity profile in the
mantle with a step-like function. In these models the mantle
on either side of the boundary moves with fixed, opposite
polarity, velocity parallel to the major fault trace. Such a
condition assumes that the mantle flow follows the fault trace,
although localization in the asthenosphere is not an
anticipated feature. Typical simulations of mantle convection
do not lead to strong horizontal shear flow localization even
in the colder lithosphere.

Elsasser [1969] developed a vertically averaged thin sheet
approximation for a brittle upper crust over a viscous
substrate. Rice [1980]; Lehner et al. [1981}, and Li and Rice
[1987] provided a generalized Elsasser model replacing the
viscous rheology of the substrate with viscoelasticity. A few
attempts have been made to calculate crustal deformation in a
3-D model with a depth-dependent rheology [e.g., Ben-Zion et
al., 1993; Reches et al., 1994]. These simulations used the
finite element code ABAQUS, and they are very demanding
computationally even for modern supercomputers. The
results from those studies show that outside the space-time
vicinity of a large earthquake, the 3-D calculations do not
differ much from those obtained by the Elsasser and
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generalized Elsasser models. Reches et al. [1994] presented a
direct comparison between a thickness-averaged fault-paraliel
velocity of the elastic layer from 3-D calculations and the
analytical solution of Li and Rice [1987] for the generalized
Elsasser model. After ~50 years into the earthquake cycle the
difference between the 2-D and 3-D models is negligible, and
at such times both models fit the available geodetic data with
about the same accuracy. However, the calculations of
Reches et al. [1994] and previous results of Rice and
coworkers summarized by Bewn-Zion et al. [1993] show that
the generalized Elsasser model is not a satisfactory
approximation to deformation in the early part of the
earthquake cycle. In section 2.1 we discuss the main features
of the generalized Elsasser model and present a hybrid model
incorporating 3-D elastic Green function. The hybrid model
provides a good approximation of the deformation field even
in spatiotemporal domains close to the occurrence of large
earthquakes, while being computationally much more
efficient than a fully 3-D model.

2.1. Generalized Elsasser Model

Figure 1 shows a model consisting of an elastic upper crust
governed by damage rheology over a viscoelastic lower crust
with imposed basal loading. For a damage- free upper crust
the model corresponds to the framework of Rice [1980],
Lehner et al. [1981], and Li and Rice [1987]. The horizontal
components of a stress tensor o,,, averaged over a thickness /
of the upper crust are

0
Cppl(x. V) =— jok,,,(x.y,z)dz (1)
H y

Substituting (1) into the 3-D equation of equilibrium gives for
the crustal stress distribution,
ao'km =

T
ax,, H

(2

where 14 is shear traction acting at the boundary between the
upper and lower crust layers. This shear traction satisfies an
equation of motion of the lower crust, which for a Maxwell
viscoelastic element is [/ and Rice, 1987]

b (“:"Ck h allk (k)
T T plate 3)

e €1 M

where A, 1, and p,, are thickness, viscosity, and rigidity of the
lower crust layer, respectively; } ... is the k-th component of
the steady mantie velocity, and b is a scalar discussed below.
Expression (3) includes two different terms on the left-hand
side. The first describes approximately an instantaneous
elastic response of the lower crust to evolving displacement
(T4 =L, W /b), and the second corresponds to viscous response
of a layer with different velocities on its upper and lower
boundaries (t1,=n/k (Bu/or — l'mp,m)). A term pgH VS, with
VS giving the slope of the lower-upper crust interface, should
be added to the viscous response if the upper crust has a
variable thickness. Such cases are not considered here. The
coupled equation of stress distribution, obtained by putting (2)
into (3). is

ﬁﬁifi’ﬂl+ﬂi\gﬁﬂ=£ﬂ_y({k} (4)

Hp O Ox,, N &y, ot plate
Lehner et al. [1981] showed that a vertically averaged stress
drop in a homogeneous upper crust governed by (4) gives a
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displacement similar to a mode III crack in an elastic half
space if b~(m/4)’H. However, this is associated with an
exponential decay of the elastic displacements with distance
from the fault, while the exact elastic solution follows an
algebraic decay. For long-term deformation the elastic field is
only a small perturbation around viscous deformation, and the
difference between exponential and algebraic decay of the
elastic component is not very important. A comparison of
deformations generated by an imposed large model
earthquake in the generalized Elsasser framework [Li and
Rice, 1987] and full 3-D simulations [Reches et al., 1994]
shows that the former overestimates displacement
components have relatively short horizontal wavelengths.
However, the difference in thickness-average velocity profile
at times larger than tens of years after the earthquake is
negligible.

To understand the spatiotemporal evolution of deformation
associated with the generalized Elsasser model, we analyze
the relaxation time of structures with different length scales
by using a Fourier decomposition of a 1-D version of (4). We
simplify (4) by assuming that the upper crust obeys Hooke’s
elasticity and that the deformation field (including imposed
plate velocity) has only a “y” component of motion, which

depends only on the “x” coordinate (antiplane strain). All

material parameters are "assumed constant. For these
conditions, equation (4) reduces to
Hby 8 0’ L Hh 0% _O )

o plate

He Otox? M ax?

7

For a zero plate motion (V,,.=0) we look for a basic solution
in the form u{x,))=A1) p(x). With this equation (5) becomes

Hby . , Hh .

2 for+ R fo" = fo (6)
a 1

which may be separated into two equations:

Hbu .. Hh

RLUp L

.._El_‘l___,..._n__._'_ = (P" = —-7\,2 @)

f ®

This procedure gives a basic solution to (5) in the form
X
=4- j—
® ‘ exP(z )\J
(8)

hH
f: B.exp _.._2..__—_“1]’_]_._(
X +bH}1/“a
According to this solution, the relaxation time of spatial
structure with a horizontal wavelength A is

2
t*=)\ +bH u/p, ©)

hH.u/n

In the short wavelength limit (A-—>0) the relaxation time

approaches bn/hp,. For long wavelenghts (A->c0) we obtain

t*=A"n/hHy, which also represents the relaxation time for the

original Elsasser model corresponding to b=0. Figure 2
shows how the relaxation time changes as a function of

wavelength between these limits. Figure 2 also shows the

relaxation time for a new hybrid model described in section

2.2 and used later in our work.
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Figure 2. Relaxation time versus horizontal wavelength for
the Elsasser and generalized Elsasser models (heavy lines).
The numerically calculated relaxation time for the hybrid
model (symbols) is similar to that of the generalized Elsasser
model for very short iength scales, but it approaches the
Elsasser solution for long wavelengths (viscosity of the lower
crust n=5 10" Pa S).

2.2. A Hybrid Model Incorporating 3-D Green Function

As mentioned above, the substitution 1,=p,u/b essential to
the generalized Elsasser model does not reproduce correctly
the elastic component of deformation of the lower crust. Our
proposed modification of that model follows the usual
seismological assumption [e.g., Kasahara, 1981; Stein et al.,
1994] that the instantaneous response of the Earth to a sudden
stress redistribution is accommodated by an elastic half-space.
This assumption is realistic, since the relaxation of strain is
not instantaneous even with a lower crust of extremely low
viscosity. For example, with a viscosity of 10" Pa s the
Maxwell relaxation time is of the order of tens years.

We represent the horizontal displacement field at the
boundary between the upper and lower crust layers as a sum
of two components: elastic () due to instantaneous
deformation in the upper crust and viscous (u,”) due to slow
flow in the lower crust:

), (el
+uy

up =uf’ (10)
Equating the stress on the both sides of the lower-upper crust
interface, the rate of viscous flow is
out”’
k = iTk + Vk
|

plate )
For the elastic part of the displacement field we use a 3-D
Green function (G,,) in an elastic half-space. The elastic
displacement at the boundary surface (S) between the lower
and upper crust layers is claculated as a convolution of Gy,
with forces acting at S:

u,(,e) = J-IGknfde

N

(12)

Taking partial derivative of (12) with respect to time,
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combining the result with (10) and (11). and substituting back
into (2) gives the equation of motion for the hybrid model:
¢ Co hH éo Cuy (k)
HI[G,, L Cum o hH Oy _ Cup _ (13)
'g n ot éx,, ds N O, o ’ plate
A strictly rigorous Green function for our calculations would
account for the varying topograph)' and varying elastic
properties simulated by our model (see section 3) and for the
fact that the forces operate at a depth H (=15 km here) below
the free surface. However. since elsewhere we use in the
model the thin sheet approximation (i.e.. vertically averaged
variables), we employ a Green function for a homogeneous
elastic half space [Landau and Lifshit=. 1970] multiplied by
the thickness of the upper layer. insiead of precise integration
along vertical direction inside the upper crust. The Green
function components become

G, H l~\'+\'.\:J

w = i
2rp, o -

= 3

- 2my, L r =

R

H (l——\' \{\'3]
+
(14)
H vy

Xy 21‘“(’ ’,3
where # is a radius vector from the origin (»"=x"+y") and v is
the Poisson ratio.

Equation (13) differs from (4) of the generalized Elsasser
model by incorporating a 3-D elastic response to rapid stress
variations. Below we refer to the framework described by (13)
as a "hybrid model". Similar to the analysis in the context of
(4-9), we may calculate the relaxation time of spatial
structures in the hybrid model with horizontal wavelength A
from (13) as

B 2+ Huén,(‘)\)
- hHu/n

[*

where G, (%) is the Fourier transformation of the Green
function. The solid squares in Figure 2 show the calculated
relaxation time for different wavelengths in the hybrid model
incorporating the Green function (equation (14)). The
relaxation time of this model is similar to that of the
generalized Elsasser model for very short length scales, but it
approaches the basic Elsasser solution for long wavelengths.
The spectral response of the hybrid model, bridging the
Elsasser and generalized Elsasser models, corrects the
shortcoming of the latter framework associated with
overestimation of the lifetime of localized stress anomalies
after brittle failures. This shortcoming leads to significant
local deviations from 3-D calculations [e.g., Ben-Zion et al.,
1993; Reches et al., 1994] during the first few years after
rapid slip events. This is illustrated in Figure 3 where we
compare fault parallel velocity at two normal distances from
the fault as a function of time, calculated with the generalized
Elsasser model [Li and Rice. 1987, equation A6] and our
hybrid model. -

3. Upper Crust Deformation and Damage
Evolution ‘

Our model of a lithosphere. incorporating upper crust
material governed by damage rheology over a viscoelastic
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Figure 3. Fault-parallel velocity at two normal distances 10
and 20 km from the fault as a function of time after a seismic
event, calculated with the generalized Elsasser model {Li and
Rice, 1987, equation (A6)] and simulated with the hybrid
model.

substrate, can simulate four stages of a seismic cycle:
preseismic, coseismic, postseismic, and interseismic
deformations. These stages may be anticipated from the
behavior of a viscoelastic damaged material: a stick-slip
behavior appears if the viscous relaxation time of the
nondamaged medium <, is longer than the loading time scale
1, (inverse strain rate) [Lyakhovsky et al, 1997a]. The slip
instability corresponds to the coseismic stage. The
interseismic stage, spanning most of the stick period between
the postseismic and preseismic stages, is represented by a fast
healing and localization of damage, respectively (A. Agnon et
al., manuscript in preparation).

The hybrid version of the lithospheric model (Figure 1)
generates an earthquake cycle under constant loading. Each
element of a two-dimensional horizontal mesh may follow a
stick-slip cycle, and the collective behavior of a group of
elements model the faulting process and macroscopic
earthquake failure. When deformation in an element reaches
a threshold state, damage starts to increase with degradation
of elastic moduli and concentration of elastic strain. This
spatially localized initial perturbation in strain corresponds to
the preseismic stage. with small geodetic signals at the free
surface (possibly below the typical detection limit). A critical
damage level for brittle instability marks the onset of the
coseismic stage during which the local stress drops. This
local stress drop may provide a nucleus for rupture that
propagates by reiloading the other elements to the critical
level. The rupture propagation process continues as long as
one or more elements experience brittle failure. When no
element sustains brittle instability, the model earthquake ends.
The brittle failure leads to an increase in the cumulative
irreversible plastic strain, corresponding to the coseismic slip
in models that idealize the fault zone as a surface.

The instability during a stress drop requires that we specify
the subsequent stress conditions. Earthquake slip histories
inferred from observed seismograms [Heaton, 1990},
laboratory experiments [e.g.. Brune et al, 1993;
Anooshehpoor and Brune. 1999). theoretical models {e.g..
Mora and Place, 1994; Andrews and Ben-Zion, 1997}, and a
variety of geophysical observations summarized by Ben-Zion
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and Andrews [1998] suggest that earthquake ruptures
propagate in the form of narrow slip pulses associated with
strong local dynamic stress drops. A complete local stress
drop is a physical consequence of the damage mechanics
approach since the instability is associated with a vanishing
elastic modulus [Lyakhovsky et al., 1997a). Averaged stress
drop along a sliding narrow damage zone reproduces rate- and
state-dependent friction (A. Agnon et al, manuscript in
preparation).  Thus, following a model earthquake, the
deviatoric stress is fully dropped locally and the crustal stress
is rendered lithostatic, favorable for healing of damage in the
postseismic stage. This stage may last from a fraction of a
year to a few years, depending on the rate of material
recovery.

The imposed plate velocity distribution, the length scales
for the lithospheric layers, and the rheological coefficients of
each layer comprise the parameters of the model. Some of the
parameters can be constrained directly from geophysical data.
The structural and kinematic values chosen follow a
simplified Californian crust with a representative thickness of
35 km [Fuis and Mooney, 1990] sheared between plates
moving at the surface with differential velocity of 36 mm/yr.
Seismic activity is mostly restricted to the upper 10-15 km.
We therefore use H=15 km and A=20 km in the simulation
(Figure 1). From seismic refraction and other data [Fuis and
Mooney, 1990; Mooney et al., 1998] the average rigidity of
the crust is estimated at 35-40 GPa for the upper crust and
40-70 GPa for the lower crust and upper mantle. Since the
elastic moduli weaken with damage, a reference upper bound
of u=40 GPa is chosen for damage-free upper crust rigidity.
Below we constrain simulation results with geodetic data to
obtain lower crust viscosity (1) and rigidity (u,). We also
provide additional details on each stage of deformation
evolution and discuss the role of the remaining parameters.
We begin the survey of the parameter space with a simplified
model that contains a single straight preexisting fault zone.

3.1. A Single Fault System

To study the model setting in incremental complexity level,
we start with a step-like profile of the mantle velocity driving
the fault. This profile leads to strain localization and damage
evolution in a narrow zone above the step that is set in the
center of the model (x=0), while other regions in the crustal
model develop no damage. With an appropriate choice of
boundary conditions the numerical simulation is required only
in a small portion of the space around the fault zone. The
interaction of the model region with the outer part of the
lithosphere is represented by the boundary conditions at the
horizontal edges of the model. Periodic boundary conditions
at the edges normal to the fault trace represent infinite
repetitions of the fault segment along strike. Conditions at the
edges parallel to the fault zone should mimic steady plate
motion away from the fault zone. .A4ndrews [1978] and
Wdowinski and O’Connel [1990] give useful discussions of
the interaction between fault slip and the chosen boundary

" conditions. The condition (V=V),,, for x—w) may be replaced

for a finite model as either (1) constant and uniform
fault-parallel velocity (V=V,. for x=tL) or {2) constant and -
uniform shear stress (o, =const for x=+L). These seemingly
equivalent boundary conditions generate very different
solutions for fauit-parallel velocity and stress distributions
during the interseismic period. To illustraie the different
behavior under the two types of boundary conditions, we
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Figure 4. Velocity profiles 100 years after a large earthquake
simulated for model relaxation times t,,=5, 12.5, and 25 years.
The shaded line represents the best fit of geodetic data with
dislocation model after Savage [1990]. Two asymptotic
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examine the quasi-static limit appropriate for the long-term
(t—>c0) asymptotic solution by neglecting the temporal
derivative on the left-hand side of (13). In the case of
constant velocity boundary condition the velocity profile in
the model is a straight line (V(x)=V,.. X/L) between zero
velocity at the locked fault zone (V=0, x=0) and plate velocity
“at the boundary (V=Vyme, x=tL). This leads to unbounded
increase of stress in the upper crust independently of the
viscosity of the lower crust and the rate of motion in the upper
mantle. England and McKenzie {1982], who used a thin sheet
viscous model for the problem of long-term continental
deformation assumed a similar decoupling between the plate
and the substrate. This “England-McKenzie loading” does
not provide an appropriate description for relatively
short-term brittle-elastic behavior of the upper crust. By
contrast, the constant stress boundary condition leads to zero
velocity profile and uniform stresses equal the sum of the
stress applied at the boundary and the loading from the
mantle. In this case the stress in the model region depends on
the viscocity of the lower crust and the rate of motion at the
bottom of the model. This “Elsasser loading™ [Elsasser,
1969] corresponds to a situation where the mantle-crust
interaction is an essential part of the crustal processes. Since
our simulations include short-term processes of brittle failure
in the upper crust, we use the Elsasser loading.

During the interseismic period the damage |is
approximately frozen, and damage evolution does not
significantly affect the strain rate of the upper crust. Thus the
velocity profile in this period is governed mainly by two
model parameters: the imposed mantle velocity and the
viscosity of the lower crust. In the following, the mantle
velocity is chosen to give far field surface velocity of 1/2
Voae™ 18 mm/yr, hence long-term slip velocity is 36 mm/yr.
Figure 4 shows simulated surface velocity profiles during the
interseismic stage, 100 years after the last seismic event, for
various relaxation times (z,,) defined as
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The definition of 1, is based on the solution of the
generalized Elsasser model for the elastic layer (equation (9)
with A=0). The relaxation times used in Figure 4 are 1,5,
12.5, and 25 years. The lower value corresponds to
n=2.5x10"" Pa s and p,=60 GPa. The intermediate one
corresponds to n=5x10"" Pa s and .= 60 GPa, or n=3x10"
Pa s and p,=40 GPa. The value 1,=25 years corresponds to
n=10% Pa s and 11,=60 GPa.

Observed interseismic fault parallel velocities in geodetic
measurements are particularly easy to model in the case where
the fault is long and straight and the deformation is uniform in
the direction of fault strike. In that case a screw dislocation in
an elastic half-space is sufficient to model the observed
velocity field at the free surface [Savage, 1980] as

=V, —l—arctan(?—x—]
n D

This profile, shown in Figure 4 with a shaded line for slip
velocity },=36 mm/yr and dislocation depth D=30 km,
provides the best fit [Savage, 1990] to interseismic geodetic
data for the San Andreas Fault in the Transverse Ranges of
southern California. Lisowski et al. [1991] show that a model
with one dislocation fits the geodetic data even better than a
multidislocation model. They also show that this fit
corresponds to the middle part of the earthquake cycle time T
(0.4-0.6 T) by comparison with the compiled data of Thatcher
[1983].

Our model does not produce an exact arctangent velocity
profile. On the basis of the solution of Chinnery [1961] the
fault parallel elastic component of the displacement (12) with
the Green function (14) generated by a stress drop localized
along a straight fault follows an arctangent profile [Kasahara,
1981, equation 4.30]. The deformation field in our model has
additional nonelastic components. Nevertheless, the
calculated velocity profiles in Figure 4 at 100 years after the
earthquake (the middie part of simulated 200-year earthquake
cycle) are very similar to arctangent curves. As shown in
Figure 1, we consider a model with #=15 km, #=20 km, and a
horizontal extent of 150 km x 75 km. The shear modulus and
the Poisson ratio of the damage-free upper crust material are
u=40 GPa and v=0.25, respectively. and the Poisson ratio of
the lower crust is v=0.25. We try two different values of the
lower crust shear modulus 11,=40 and 60 GPa, and three
different values of the lower crust viscosity n= 10", 5 10'°,
and 2.5 10" Pas. The line with T,=12.5years (=35 10" Pa
s, and pg = 60 GPa) fits well the geodetic arctangent model.
We use these parameters for all simulations to follow.

The interseismic period lasts until the current strain
diagonality £ (see Appendix A) is below a critical value &,
separating states of damage increase (degradation) and
decrease (healing) [Lyakhovsky et al, 1997a}.  This
coefficient was estimated to vary between —0.8 and —1.0 using
laboratory data on damage onset, Coulomb friction, and
internal friction. In the current simulation, &, together with a
prescribed width of the damage zone control the duration of
the interseismic period and therefore the length of the
earthquake cycle for a model with a single fault. In this work
we use triangular elements of 2.5 km x 2.5 km. This gives a
lower bound to the fault zone width in the simulations.
Computational limitations prevent us from using a smaller
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grid size that maybe more appropriate for natural fault zones.
A smaller grid size would define the lower magnitude cutoff
for the simulated earthquakes, mildly affect our choice of &,
but not the main conclusions of this work. The grid size
dependency of some results is discussed further below.

Exploratory simulations indicate that for the prescribed 36
mm/yr rate of plate motion and average (effective) lithostatic
(confining) pressure p=(p—p,)g/2=0.1 GPa (using p=2500
kg/m’ and p,=1000 kg/m’), the shear strain in the upper crust
never reaches values of &; inferred from the laboratory data
for typical intact crustal rocks. Figure 5 shows that the
change of current strain diagonality £ with time during the
inter-seismic period is very small. After ~100 years, & is
almost constant, and thus a small variation in the material
property &, has strong effects. With the increase of &, from
—1.40 to —1.35 the Iength of the cycle increases by more than
twice, from ~80 years to ~190. Further increase of &, gives
even a stronger incremental effect. As shown in Figure 3 of
Lyakhovsky et al. [1997a}, &, =-1.35 corresponds to an
internal friction of ~0.3 for the Poisson ratio equal to 0.25. It
is reasonable to expect that the value of internal friction
characterizing a wide insitu gouge zone with internal cracks
(i.e., damage) is smaller than laboratory values associated
with small rock samples. A low value of friction coefficient
is compatible with the lack of localized frictional heat along
the San Andreas Fault [e.g., Brune er al., 1969, Lachenbruch
and Sass, 1973}, calculations of changes in seismicity rates
[Simpson and Reasenberg, 1994] and analysis of aftershock
mechanisms [Zoback and Bero-a. 1993} following the Loma
Prieta earthquake, simulated b-values on faults in elastic
half-space [Robinson and Benites, 1995], and calculations of
stress transfer favoring observed earthquake histories [e.g.,
Harris and Simpson, 1996: Stein et al.. 1997].
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The damage model of brittle material does not include any
prescribed surfaces that represent planar faults. Instead, we
have fault zones associated with regions of high damage
having a minimum width equal to the size of one numerical
element. While a finite fauit zone width is more realistic than
a fault surface idealization, the existence of a prescribed
minimum fault zone width makes some simulation results,
like details of the evolving fault zone geometry and minimum

model earthquake, dependent on the numerical cell size. This
also renders our model inherently discrete in the sense of Rice
[1993] and Ben-Zion and Rice [1995]. The smallest simulated
earthquake whose source occupies one element has a vertical
size equal to the thickness of the upper crust and should have
a magnitude M>6. For given loading and material parameters
of the model, this lower cutoff defines an appropriate element
size. The isometric cell choice for the simulation, instead of a
narrow and elongated one, eliminates any preferred direction
related to the numerical procedure. The amount of energy
released during a seismic event is proportional to stress drop
muitiplied by the volume of the elements involved in the
rupture process. This energy scales linearly with the width of
the damage zone. Similarly, the seismic moment of a
simulated earthquake and the associated plastic strain (see
below) also increase proportionally to the width. The rate of
elastic energy accumulation does not depend on the element
size, but the energy release rate is proportional to it. Thus the
change of element size leads to proportional change of the
duration of the earthquake cycle for a model with a single
fault. However, this effect is much weaker than that induced
by small changes of the critical strain diagonality (see
Appendix A), and it may be compensated by a small variation
of &;. The focus of this work is on different possible dynamic
regimes of evolving seismicity patterns for a major strike-slip
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fault system. Since we use the trade-off between fault zone
width and &, to get a realistic average repeat time of large
earthquakes, we expect the results on these issues for
earthquakes in the approximate magnitude range 6.0<M<8.5
not to be affected significantly by the grid size choice.

The interseismic period ends and the preseismic period
begins when the current strain diagonality achieves a critical
value for “subcritical” crack growth. The condition for
damage onset (£>&o) is satisfied and the damage begins to
increase. Increasing damage leads to higher strain and further
damage localization since the elastic moduli explicitly depend
on the damage variable o as discussed by Lyakhovsky et al.
[1997a]. In addition, for our elastic upper crust governed by
damage rheology, the temporal derivative of stress in
equations (13) and (A4) includes a term of a type
Oof/do-dufdt that implicitly decreases the effective material
stiffness for increasing damage. The process of material
weakening and increasing preseismic deformation is localized
in a small region (one numerical element), and for a grid size
that represents realistic fault zone width (e.g., order 100 m or
less) this “nucleation” process is not expected to produce an
observable surface geodetic signal. The preseismic period
ends when the localized damage reaches a critical value for
brittle failure. The duration of this period depends on a
damage rate coefficient C,,. This is set here as C,=0.3-0.5s"', a
value which is somewhat below those (0.5-5 s™') estimated
from laboratory data [Lyakhovsky et al., 1997a], to increase
the stability of the numerical procedure. This slightly enlarges
the duration of the nucleation weakening period that ends
(Figure 5) with initiation of dynamic rupture when o achieves
its critical value (a=0,). At the present modeling ievel we do
not simulate details of the dynamic failure process and use a
quasi-static solution. However, we introduce a quasi-dynamic
procedure for rupture front propagation by recalculating the
stress field after a stress drop in every numerical element and
by incorporating a dynamic weakening of material everywhere
via reduction of the critical value of the damage parameter to
1dynamic given by

do

 — 15
K (15)

X vnamic = Ao —
where 1, is relaxation time given by the ratio of the effective
viscosity of the damaged crust to its rigidity. The effective
viscosity is moderated by the rate of damage accumulation
and depends on the model structure in a manner similar to that
described above. For the numerical simulations shown below
we vary 1, between 10 and 1 year. Detailed derivation and
implications of (15) are discussed by A. Agnon et al
(manuscript in preparation).  For infinite viscosity the
dynamic weakening (15) implies an ideal brittle behavior. In
the initial set of calculations for a single fault model the
parameter T, is set unrealistically big, so every nucleation of a
brittle failure event in some part of the damage zone
propagates through the entire area. This leads to relatively
simple failure histories consisting of system-sized events
occurring in a single fault zone. In section 3.2 we use smalier
values of 1, allowing for the arrest of the rupture front in
regions where the preexisting damage is not high enough.
The role of this parameter will be explored further in section
3.2 dealing with distributed faulting.

As mentioned earlier, the brittle failure process is set here
to drop initially the deviatoric stresses in the rupture zone to
zero and to conserve only the volumetric stress. This stress
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drop produces coseismic displacements in the “surrounding
material and nonreversible plastic strain in the rupture zone.
The latter is modeled in simpler traditional frameworks as slip
on a planar fault surface. The amount of plastic strain in the
damage zone is related to the total amount of slip deficit
during an earthquake cycle. The magnitude of the simulated
earthquake may be estimated. from the known stress drop or
the accumulated plastic strain. Following Madariaga [1979],
the tensor of the seismic moment (1/,) is a volumetric integral
of the stress drop

My = [Acydv (16a)
;

where V" is the volume of the zone sustaining the stress drop
(Ac;). This relation is more general than the usual definition
of the seismic moment

My = [ iyt v (160)
!

where C, is the tensor of elastic moduli. = Unfortunately,
stress drop determinations are subjected to large uncertainties,
and it is not possible in practice to obtain Ac, through the
failure zone. Another option is to calculate the potency
[Ben-Menahem and Singh. 1981] of the event as

Pij - JAC/A‘[/;/axlic ! v (17)

I

Heaton and Heaton [1989). Ben-Zion [1989] and Amelung
and King [1997] argued that the potency provides a better
physical measure of the overall size of an earthquake than the
seismic moment. In general, routine processing of
seismograms for seismic moment (the zero spectral
asymptote) provides no information on material properties,
and the rigidity part of the moment is assumed rather than
being derived from the data. Furthermore. the inclusion of
rigidity in the definition of the seismic moment makes it
ambiguously defined for the general case of laterally
heterogeneous fault zones. For simple cases of constant
elastic properties the potency. also referred to as geometric
moment [Kanamori and Anderson, 1975]. is equal to the
seismic moment divided by rigidity. However, for the more
realistic case discussed here. this simple relation does not
hold a priori since the elastic properties evolve very strongly
during the earthquake rupture process. The relation between
moment and potency in our model with variable rigidity is not
unique, and we analyze it with results based on the distributed
damage model of section 3.2. We calculate the earthquake
magnitudes in two ways: (1) from the seismic moment (16a)
using the empirical relation Af=2/3[log,(M;)-16.1], where
My=(M,M, ) is moment in dyne cm [Hanks and Kanamori,
1979], and (2) from the potency using the empirical relation
M=(2/3)log\o(P)+3.6, where P=(P,P)'" is in km® cm
[Ben-Zion and Rice, 1993]. '

Figure 6 shows a good correlation between event
magnitudes in the model with distributed damage (see section
3.2) calculated in these two different ways. Note that we used
the moment definition (16a) that does not include explicitly
material properties, rather than the relation usually used by
seismologists to derive seismic moment from data, (16b) or its
Fourier transform. The relation (16b) contains material
properties and does not have a unique well-defined meaning
for deformation process involving spatio temporal changes of
elastic moduli studied here and presumably occurring during
earthquakes. ‘
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Figure 6. Correlation between earthquake magnitudes
calculated using seismic moment and potency based on model
runs with different parameters.

In contrast to rupture nucleation, material healing after the
seismic event occurs in the whole rupture zone
simultaneously during the postseismic period. The same term
dof/do-dafdt that was responsible for stiffness reduction
during the preseismic period reverses its sign and locks the
damage zone by increasing the effective rigidity. This
produces rapid transient strengthening that is followed by
actual material healing (i.e., decrease of damage). This
temporarily prevents an increase of the strain diagonality
during a few years after the event (Figure 5) when the damage
level is still very high. The characteristic time scale for
material healing depends on values of the coefficients C,, C,
in the equation for healing in the damage rheology model
{Lyakhovsky et al.. 1997a. equation 42]. Figure 7 shows the
decrease of damage due to confining pressure during 3 years
of the postseismic period for three different pairs (C,, Cy)
used in the simulations and referred to as fast, medium and
stow. The material recovers 20-30% of its damage-free
rigidity to =0.7-0.8 during the first half a year for all the
cases. After that, the healing rate significantly decreases, and
total recovery after 3 years of the postseismic period
approaches 30-50% (a=0.5-0.7). The most active period of
locking of the damage zone is around half a year. This time
scale is comparable with that reported by Savage and Svarc
{1997] based on postseismic deformation associated with the
1992 Landers earthquakes and by Zhao et al. [1997] based on
inferred states of stress before and after the 1994 Northridge
earthquake. The rate and level of material recovery do not
significantly change the behavior of a single fault model, but
they govern the style of strain localization and earthquake
statistics in the model with distributed faulting discussed in
section 3.2.

3.2. Regional Earthquakes and Fault Networks

The following simulations are aimed at the study of the
process of damage-strain localization, evolution of fault
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networks, and statistics of simulated seismic events. We start
each simulation with randomly distributed damage (and hence
stiffness) such that the stress and strain are in equilibrium.
Instead of the localized step function velocity of the upper
mantle, employed in section 3.1, we use a linear velocity
profile at the base of the substrate. The values of the base
velocities on the left and right edges are equal to those used
for the single-fault model. All material properties except
those responsible for the kinetics of the damage process are
the same as in the single-fauit model.

The ratio between the rate of healing and the rate of
loading is central to the model behavior. It controls the style
of localization and type of earthquake statistics. We define
the loading timescale, 1, as the time needed to reaccumulate
(rebuild) the elastic shear strain from a stress drop of a brittie
failure to a level that gives strain ratio £ equal to the critical
value (£,=—1.35). This loading timescale depends on the
relaxation time of the viscoelastic system of upper and lower
crust layer (Figure 2), and the amplitude of the imposed
mantle motion. The healing time scale, 1,, characterizes the
rock memory, or how long a material that is broken in a
seismic event stays significantly weaker than its unbroken
surrounding. This value depends on confining pressure and
healing rate coefficients (Figure 7). In the following set of
simulations we keep the loading timescale constant and vary
the healing rate coefficients.

The first set of simulations corresponds to slow healing
(solid line in Figure 7). The geometry of the high damage
zone formed by the first few events reflects the initial random
distribution and keeps its overall geometrical features during
more than a thousand model years. Most of the seismic
events occur in the same zone and occupy a similar volume.
The slip accumulates in a relatively narrow and regular
damage zone (Figure 8 and Plate 1 on the left) and preserves
some features of the initial random damage for a long period.
This behavior leads to a preferred event size manifested as a
narrow local maximum in noncumulative frequency-size
statistics of model earthquakes. We refer here to such
statistics with a preferred event size as characteristic
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Figure 7. Material recovering (damage versus time) under
constant lithostatic pressure and zero shear stress. Three
different sets for healing rate constants represent slow,
medium, and fast healing.
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Figure 8. Typical distribution of the cumulative strain for the
model with slow healing. The slip and high damaged material
(Plate 1 on the left) are concentrated in relatively narrow and
regular zone.

earthquake distribution. The magnitude of the characteristic
events strongly depends on the prescribed dynamic
weakening.  Relatively small values (7,=0.1 year) give a
maximum in the non-cumulative statistics for earthquakes
with magnitude from 6.7 to 6.9 (Figure 9). Relatively large
values of the dynamic weakening (1,=0.3 year) shift the
maximum to event magnitude of ~7.2-7.4 without changing
the form of the statistics.

Increasing of the material recovering (dashed line in Figure
7) leads to broadening of the maximum in the non-cumulative
frequency-size statistics (Figure 10), changing it towards a
Gutenberg-Richter power law distribution. The cumulative
number of events with magnitude larger 7.2 could be
approximated by a linear relation with 5=2.5, a value
significantly larger than the observed & value near unity.
Further small increasing of the material recovering (dotted
line in Figure 7) significantly increases the geometrical
complexity of the evolving damage zones (Figure 11 and Plate
I on the right). The large conjugate structures accumulate
significant amount of displacement. The offsets between fault
segments increase, and some of them produce branching that
prohibits their further propagation. Part of the simulated
region can preserve distributed damage (Plate 1) without
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Figure 9. Cumulative and noncumulative frequency-size
statistics of seismic events for slow damage healing (long
material memory) and different t,. The statistics have a
preferred event size manifested as a narrow local maximum in
the noncumulative distribution.

being involved in the process of damage localization for a
long time. The frequency-size earthquake statistics for the
fast healing case are much closer to the Gutenberg-Richter
distribution. A linear relation with #=1.3 can approximate the
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Figure 10. Frequency-size statistics of seismic events for
medium damage healing and different damage rate constants
C,.  The cumulative number of large events may be
approximated by a linear relation with $=2.5. a value
significantly larger than typically observed b values near
unity.
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Random damage

Plate 1. Typical patterns of damage distribution and its evolution for (left) a model with siow healing, and (right) a model with
fast healing.
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Figure 11. Cumulative strain for a model with fast healing.
Large conjugate structures accommodate significant amount
of displacement.
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Figure 12. Frequency-size statistics of seismic events for fast
damage healing. A linear relation with 4=1.3 can
.approximate the cumulative statistics of events with
magnitude larger 6.8.
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Figure 13. Frequency-size statistics of seismic events for fast
damage healing and small spatial variations of material
strength. The statistics are compatible with the
Gutenberg-Richter power law distribution for the entire
simulated magnitude range (compare with Figure 12).

cumulative statistics of events with magnitude larger 6.8
(Figure 12). 1If the crust properties other than damage are
perfectly homogeneous, the geometrical complexity of the
fault system (Figure 11 and Plate 1 on the right) is not
preserved during a period of many earthquake cycles. In this
case a broad damage zone has a tendency to collapse into a
narrow one similar to that shown in Figure 8 and Plate | on
the left, sustaining characteristic earthquakes that produce
deviation from the Gutenberg-Richter distribution for events
with magnitude 7.0-7.3. The situation is, however, different
for a slightly heterogeneous crust. Even small spatial
variations in material parameters representing the strength of
the upper crust as critical strain diagonality (&;) or dynamic
weakening (1) or both prevent the foregoing regularization
tendency and lead to fault zones with sustained geometrical
complexities. The corresponding frequency-size statistics
follow a power law with 4=1.3 (Figure 13) for the entire
simulated magnitude range. This value falls in the range of the
observed 5=0.7-135 in regional and global earthquake
catalogs [Frohlich and Davis, 1993].

In such cases we also find that the seismic response of the
model (Figure 14) exhibits long-term fluctuations that we
have called “mode switching” activity [Ben-Zion et al.,
1999b]. The temporal evolution of seismicity switches back
and forth between intervals with clusters of intense seismic
activity lasting several large earthquake cycles and relatively
quiet intervals of similar duration. Most earthquakes in the
relatively active intervals have magnitudes above 6.8, and the
frequency-size statistics in these portions of the response are
compatible with the characteristic earthquake distribution.
During the relatively quiet periods the event magnitudes are
below A=6.8, and the frequency-size statistics are compatible
with a truncated power law. The earthquake sequences before
and after the largest model events (Figure 14, insets) show
diverse patterns. The largest earthquake in the left inset is
surrounded by a cluster of strong events, while the largest
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Figure 14. Seismicity record with mode-switching activity, consisting of time intervals of several large
earthquake cycles with ciusters of large events, separated by intervals of similar duration with only small and
intermediate size earthquakes. The insets show a variety of different event sequences before and after the

largest model earthquakes.

events in the middle and right insets have narrow and wide
foreshock and aftershock sequences. respectively. If the
material recovery is increased further, so that effective healing
occurs in a small fraction of a large earthquake cycle, the
behavior changes from mode switching to sustained response
with disordered networks of faults and frequency-size
statistics compatible with the Gutenberg-Richter distribution
[Ben-Zion et al., 1999b].

4. Discussion

We introduce a nonlinear continuum mechanics framework
for simulating the coupled evolution of earthquakes and faults
in a regional model consisting of a seismogenic upper crust
governed by damage rheology over a layered viscoelastic
half-space. The damage rheology [/Lyakhovsky et al., 1997a]}
incorporates nonlinear and irreversible aspects of rock
deformation, including localization and nucleation phases,
strength evolution with slip and time, and branching from the
main rupture plane. The model accounts for interactions
between evolving fault zones, and interaction of the brittle
seismogenic crust with a viscoelastic substrate. The results
illustrate the importance of four different timescales for the
evolution of the crust and frequency-size earthquake statistics.

Our previous analysis [Lvakhovsky et al., 1997a] focused
on three of the controlling timescales. One for degradation,
T4, is the inverse of the modulus degradation rate and
characterizes the duration of the period between damage onset
and brittle failure. The second one for loading, 1, is the
inverse of the total strain rate and characterizes the time
needed to reaccumulate the elastic strain from a stress drop of
a brittle failure to the critical level for onset of damage. The
duration of the earthquake cycle in a single fault model is
equal to the sum of t,and t,. The third timescale. t,, comes
from the Maxwell relaxation of elastic stresses and is equal to

the viscosity divided by rigidity. The dynamic weakening
(15) depends on the value of 1, and thus controls the preferred
event size for the characteristic frequency-size distribution.
The present work highlights the role of an additional
timescale, the healing time 1, controlling fault pattern
evolution and earthquake statistics in the model for the
crust-mantle system [see also Ben-Zion et al., 1999b].

Lyakhovsky et al. [1997a] show a stick-slip cycle with three
stages: degradation, instability, and healing. These stages
correspond to the interseismic, coseismic, and postseismic
stages of a seismic cycle, respectively. The existence of a
fourth preseismic stage is indicated by the analysis of
localization in a degradable and purely elastic
one-dimensional material [Lyakhovsky et al., 1997a]. The
localization is also anticipated in a degradable viscoelastic
medium if the loading is faster than the viscous relaxation of
elastic stress in the undamaged medium (1,>1;). A. Agnon et
al. (manuscript in preparation) further show that once the
degradation is faster than the relaxation (1,>1,), the preseismic
equivalent stage of subcritical crack growth is terminated and
a dynamic stress drop ensues. These results are similar to a
transition from quasi-static nucleation phase to dynamic
rupture in rate- and state-dependent [e.g., Okubo, 1989;
Dieterich, 1992; Ben-Zion and Rice, 1997] and slip-
weakening [Shibazaki and Matsu'ura, 1992; Ohnaka, 1996]
frictional frameworks.

The full four stages in the seismic cycle are manifested in
the present model. The model provides an improvement over
the generalized Elsasser model [Li and Rice, 1987] in
simulating geodetic signals with algebraic decay compatible
with observations, close to the fault as well as in the far field. -
The calculated velocity profile for the fault parallel velocity
fits well an arctangent curve (Figure 4) that represents the
average geodetic measurements for the middle part of the
earthquake cycle. all the way to the fault zone. During the
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preseismic stage the elastic degradation is localized in a small
area (one numerical element) and does not produce a
significant geodetic signal. The dynamic weakening (15) and
the proper 3-D elastic stress transfer calculated using the
Green function (14) allow a failure in a hypocenter to extend
into a region with possible complex geometry. The high
healing rate in the postseismic period increases the effective
rigidity across the fault zone. The corresponding healing
time-scale, 1,, is comparable to that reported by Savage and
Svarc [1997] based on postseismic deformation following the
1992 Landers earthquakes and by Zhao et al. [1997] based on
inferred states of stress before and after the 1994 Northridge
earthquake.

Ben-Zion and Rice [1993, 1995] and Ben-Zion [1996]
simulated seismicity patterns along a strike-slip fault with
fixed prescribed heterogeneities. Their models represent
approximately geometric disorder of a narrow fault zone by
various types of disorder in strength properties.  The
simuiations of the present work allow us to compare results
from evolving complex structures with true geometric
disorder to the simple planar approximations of Ben-Zion and
Rice. In our model, the ratio between the time-scales of
healing and loading (t,/1;) provides a guideline for
understanding different dynamic regimes of fault pattern
evolution and earthquake statistics that are evident in the
simulations (Figures 8-14 and Plate 1). When the system has
long-term memory (t,/1; is relatively high), it produces fast
damage localization during a time interval less than one large
earthquake cycle. This leads to the development of
geometrically regular fault systems and frequency-size event
statistics compatible with the characteristic earthquake
distribution. In such cases, the event statistics are similar to
those simulated by model realizations of Ben-Zion and Rice
[1993, 1995] and Ben-Zion [1996] with relatively regular
heterogeneities. Conversely, if the memory of the system is
short-term (t,/t; is relatively low), it develops highly
disordered fault systems and produces power law
frequency-size statistics compatible with the
Gutenberg-Richter distribution. In these cases, the event
statistics are similar to those simulated by model realizations
of Ben-Zion and Rice with highly disordered heterogeneities.
The correlation between fault complexity and frequency-size
statistics suggested by the present model and the previous
simulations of Ben-Zion and Rice [1993, 1995] and Ben-Zion
[1996] is in agreement with field and seismological
observations of Wesnousky [1994] and Stirling et al. [1996].

For intermediate ratio of timescales 1,/1;, the results exhibit
switching of response between two distinct modes of activity
(Figure 14). The first mode is associated with clusters of
large earthquakes and frequency-size statistics compatible
with the characteristic earthquake distribution, while the
second mode is characterized by relatively low
moment/potency release and frequency-size event statistics
following a truncated power law. The average duration of
each activity mode scales with the time interval of a large
earthquake cycle in the system. As discussed by Ben-Zion et
al. [1999b] and Dahmen et al [1998], similar activity
switching exists for a range of parameters in the simpler
planar models of Ben-Zion and Rice [1993, 1995]. Long-term
switching of seismic activity between relatively active and
relatively quiet time intervals has been indicated by disturbed
sediments and surface faulting in the Dead Sea transform, in a
continuous record spanning 50 thousand years [Marco et al.,
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1996]. Qualitatively similar alternating deformation phases
have been documented in the eastern California Shear Zone
[Rockwell et al, 2000], the Great Basin Province in the
western United States [Wallace, 1987), the Loreto basin, Baja
California [Dorsey et al. 1997], and other locations
summarized by Ben-Zion et al. [1999b]. In the Dead Sea
transform sites studied by Marco er al. [1996], each active
period may exceed 10,000 years and contain up to 15 large
events, sevenfold to tenfold more than in the relatively quiet
periods. A similar picture would emerge from Figure 14 for
events with A7>7.5. The first half of the record shows a
cluster with 17 AM>7.5 events, whereas the second shows only
4 events. The scaling of this model to the Dead Sea transform
should account for an order of magnitude lower loading rate
[Joffe and Garfunkel, 1987; Ellenblum et al.. 1998; Pe ‘eri et
al., 1999].

Our simulated event statistics depend in general on the
space-time window of the observational domain; that is,
temporal sequences from different regions are not statistically
equivalent among themselves, nor are they statistically
equivalent to spatial ensembles of earthquakes occurring in
different zones. The results imply that extrapolations of
observed earthquake statistics based on low-magnitude
seismicity and short time intervals to large earthquake
behavior over longer duration require careful justification
tailored to the particular case in hand.

Appendix A: Damage Mechanics

The macroscopic effects of distributed cracking and other
types of damage require treatment by constitutive modeis that
include nonlinear stress-strain relations together with material
degradation and recovery. In order to simulate a process of
fracturing in terms of continuum mechanics, a
nondimensional intensive damage variable o is introduced.
The variable o is related to the density of microcracks in a
laboratory specimen, or the density of small faults in a crustal
domain. For the sensitivity of elasticity to distributed cracks,
consider the response of a single crack. Across the crack
there is no cohesion, so under extension the crack dilates,
diminishing the resistance to loading. Conversely, under
normal pressure, contact forces across the crack resist
deformation. Lyakhovsky et al [1997b] derive the
macroscopic stress-strain relations for a 3-D elastic solid
accounting for the cumulative effect of microcrack opening
and closure and test the solution against rockmechanics
experiments. Following their formulation the elastic potential

is written as
1A
U=g(5112 +'H12—Y/|\//z)

where A and p are Lame constants, /,=g4 and /,=¢,€, are two
independent invariants of the strain tensor g,, and y is an
additional elastic modulus (summation notation is assumed).
The second order term with the new modulus y accounts for
microcrack opening and closure in a damaged material. The
term incorporates nonlinear elasticity even for an infinitesimal
strain, and it simulates abrupt change in the elastic properties
when the loading reverses from compression to tension. The
stress tensor 6, derived from (A1) is

R Lo
G = A,-"Y—[—l— []b,j*!' zu-‘{T-I:" €ij

(A1)

(A2)
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The stress-strain refation (A2) can be rewritten to mimic the

usual form of Hook’s law by introducing effective elastic
moduli

2=r-L

g

where the strain diagonality £=/,/V/, characterizes the type of
deformation. Agnon and Lyakhovsky [1995] suggested that
the elastic moduli p and y are linear functions of the damage
o and chose only the modulus X to be constant:
A=Ky =const; u=py+akgy,, y=ay,

I
pe =M—'2‘Y§ (A3)

(A4)

where v, is calculated from the conditions [Lyakhovsky et al.,
1997a, equations (14) and (15)] of convexity loss for the
maximum value of the damage variable (x=1). They also
related the critical strain diagonality (&) to the friction angle
¢ by considering the critical shear stress for Mohr-Coulomb
sliding:

T=tan(p)o, (AS5)

where o, is normal stress. Consider a saw-cut interface
between two intact blocks in a friction experiment carried out
under confining pressure. The condition for fault slip is then
[Agnon and Lyakhovsky, 1995]

. -3
gy =

0 - (A6)
\/2q~(x0 Jug +2/3F +1

where g=sin(¢)/[1-sin(p)/3]. Physically, (A6) means that the
critical strain diagonality &, is some modification of the
internal friction. Savage er al. [1996] draw a connection
between macroscopic friction measured on saw-cut specimens
and internal friction that characterizes shear fracture of intact
rock. They write the strength of an intact rock as the sum
over the piane of the incipient fault of both friction on closed
microcracks and strength of the remaining grains. The
approach taken by damage mechanics [Lyakhovsky et al.,
1997a] extends that connection. Under confining pressures
sufficient for closure of microcracks, stress concentration may
arise only once the shear stress meets the frictional criterion.
Then favorably oriented cracks slide and load their tips giving
rise to damage increase. The difference between the frictional
strength of prefaulted surfaces and the strength of the intact
rock is given by the excess stress that is needed to increase the
damage from its initial value to critical. That stress difference
is rate-dependent, and it can be calculated readily from the
model damage kinetic equations:

do
o {e—Ey)
) (& -%p).

(A7)
where C depends on & and o (see Lyakhovsky et al. [1997a]
for thermodynamic derivations and more details).

Appendix B: Numerical Scheme

The system of equations that should be solved numerically
consists of the equation of motion of the hybrid model and
equations describing damage evolution and transient stress
redistribution. Here we rewrite all these equations with brief

comments on the numerical approach to their solution. We
start with the equation of motion (13)
8 oo _fi/iﬁc/\.,” =E’ll/\._ (k) (B])

plate

HI{[ G, — 212 ds + ——
'Sf[ " ot ak',,, N Xy or
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which is solved by iterative procedure similar to “FLAC”
[{Cundall and Board, 1988]. For the known elastic strain and
all material parameters from the previous time step an
iterative procedure gives new velocities (V=0u/0t) in the
simulated area. The computational Lagrangian mesh consists
of quadrilateral elements, which are subdivided into pairs of
constant strain triangles, with different diagonals. This double
overlay scheme ensures symmetry of the solution by
averaging results obtained on two meshes. Linear triangular
element shape functions L, (k=1,3) are defined as
Ly =a +xb, + yc, (B2)

where a;, b, and ¢; are constants and (x, y) are grid
coordinates. These shape functions are used to interpolate the
nodal velocities v,* within each triangle element:

defined as

3
k
vi(x,y)= Zvl( )Lk
k=1

(B3)

Equation (B3) enables calculation of the strain rate tensor e;
in each triangle. The stress tensor o is calculated using elastic
deformation, g, from the previous time step according to
nonlinear stress-strain elastic relations [Lyakhovsky et al,
1997b]. Being partially differentiated respect to time
coordinate, equation (A2) gives the relation between do /0t
and strain rate tensor e;:

do epen +€xey +28pep

— = hen -
ot ﬁ;
e +éxn g€y +Epey +28e,
—ve -
¥ nt: \/72— g I
dh
+(2u -y ey +'d't‘11 ‘% 1,
+(2‘4ﬁ‘ﬂ§)8” (B4a)
dt dt
06y ., En€y +Epney +28e
= Aeyy —
ot 2~ \/E
~ve € tén _5811611 +epeyn +2epep
22 \/-1—2‘ 12
dr
+(2u-yE)en +7t_[‘ ‘% 1,
+(z-‘-’ﬂ-ﬂ )522 (B4b)
dat dt
60'12
202 - p-yE e
py (2p —vE Jeyy
€y ten enen +HEpney +28 e
—— 8 —
¥ 12[ JTZ- & 12 }
dp dy )
H2E e
( i dr 12 (B4c)

When stresses ; and their temporal derivation do /0t are
known, the summation on the left side of (B1) results in some .
vector (F,) at each node, which is used for calculation of new

velocities by simple iterative procedure:

V:{» =
I

vi x5V {BS)

plate ™ Vi
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The iteration parameter y provides a convergence of the
procedure, which is repeated until the maximum difference
between previous v, and next v," values of velocities become
negligibly small. Calculated velocity distribution is used for
the Lagrangian transport equation for node coordinates:

x; = x7 vt (B6)
and new total strain
_ . Ov;
E;}-——e,j—%-l— LRI (B7)
2 an ax,‘

The new - component of elastic strain is defined according to
the average lithostatic pressure (6., =—pgH/2):

£ = __._1___[)\%’(6'“ + 8_\')')'*' pg '[21}

B8
21+ 2uf it

New thickness of the upper crust is calculated using
continuity equation (div(v,)=0) and local isostasy assumption:

v v,
H*:H‘{l_(ﬂu e, Jdt}
ox Oy

New damage distribution is calculated using evolution
equation:

(B9)

at =a” +[Calr(e-8g )t (B10a)
for degradation (E>£,), and
ot =a- +]:C1 exp(é‘—)/z(g—go )}d: (B10b)
2

for healing (£<&;). The time step dr used for all these
numerical procedures is selected after two conditions:

1. Damage change in each time step does not exceed some
constant value (Act,,) selected by comparing a series of
similar runs

max

Aa
dtdamage = _(E)"—
(5.

(B11)
dt

2. Numerical stability of the parabolic equation (B1) based
on the Fourier stability analysis requires that the time step As
is less then half of the relaxation time of the shortest wave
length, related to the grid size Ax [4mes, 1977]. The upper
boundary for the time step used in the simulations is equal to
one third of the characteristic time of the attenuation of the
wave with length equal to Ax:

_lad 1A G, (G (B12)
"3 hHp/y 3 hHu/n

At some stage of evolution the level of damage in one or

several elements achieves the critical level, corrected after the

dynamic weakening (15). These elements can not further

keep stress, which should be dropped. The immediate change

of the stress Ao, is equivalent to distributed force along the

element boundary, S, with vector », normal to it:
Fj = chknk

At

(B13)

and the coseismic elastic displacements are calculated using
the Green function (14):
ll/(‘,e) = IJGI‘IF/dg
N

(B14)
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The elements involved in the failure process accumulate
plastic strain components that are recorded together with the
values of the stress drop for calculation of the earthquake
moment and potency. ’
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