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Abstract

The concept of self-organized criticality was introduced to explain the behaviour of the sandpile
model. In this model, particles are randomly dropped onto a square grid of boxes. When a
box accumulates four particles they are redistributed to the four adjacent boxes or lost off the
edge of the grid. Redistributions can lead to further instabilities with the possibility of more
particles being lost from the grid, contributing to the size of each 'avalanche'. These model
'avalanches' satisfied a power-law frequency-area distribution with a slope near unity. Other
cellular-automata models, including the slider-block and forest-fire models, are also said to
exhibit self-organized critical behaviour. It has been argued that earthquakes, landslides, forest
fires, and species extinctions are examples of self-organized criticality in nature. In addition,
wars and stock market crashes have been associated with this behaviour. The forest-fire model
is particularly interesting in terms of its relation to the critical-point behaviour of the site-
percolation model. In the basic forest-fire model, trees are randomly planted on a grid of
points. Periodically in time, sparks are randomly dropped on the grid. If a spark drops on a
tree, that tree and adjacent trees burn in a model fire. The fires are the 'avalanches' and they are
found to satisfy power-law frequency-area distributions with slopes near unity. This forest-fire
model is closely related to the site-percolation model, that exhibits critical behaviour. In the
forest-fire model there is an inverse cascade of trees from small clusters to large clusters, trees
are lost primarily from model fires that destroy the largest clusters. This quasi steady-state
cascade gives a power-law frequency-area distribution for both clusters of trees and smaller
fires. The site-percolation model is equivalent to the forest-fire model without fires. In this case
there is a transient cascade of trees from small to large clusters and a power-law distribution
is found only at a critical density of trees.
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1. Introduction
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The concept of self-organized criticality was proposed by Bak et al (1987, 1988) as an
explanation for the behaviour of a cellular-automata model they developed. In this model
there is a square grid of boxes and at each time step a particle is dropped into a randomly
selected box. When a box accumulates four particles, the particles are redistributed to the
four neighbouring boxes, or in the case of edge boxes, lost from the grid. Redistributions
can lead to further instabilities, with 'avalanches' of particles lost from the edge of the grid.
Because of this 'avalanche' behaviour, this was called a 'sandpile' model. The noncumulative
frequency-area distribution of model 'avalanches' was found to satisfy a power-law (fractal)
distribution

N ~ A~ (1.1)

where N is the number of avalanches with area A and a is a constant with a value a « 1.
A second model that can exhibit self-organized critical behaviour is the slider-block model

(Carlson and Langer 1989a, b). In this model, an array of slider blocks are connected to a
constant velocity driver plate by puller springs and to each other by connector springs. The
blocks exhibit stick-slip behaviour due to frictional interactions with the plate across which
they are pulled. The frequency-area distribution of the smaller slip events again satisfies (1.1)
with a « 1. The area A is defined to be the number of blocks that participate in a slip event.
This model is completely deterministic whereas the sandpile model is stochastic. This model
also provides a direct bridge to deterministic chaos; for instance, Huang and Turcotte (1990a)
showed that a pair of slider blocks pulled over a surface can exhibit deterministic chaos with
a period doubling route to chaos.

A third model that exhibits deterministic chaos is the forest-fire model (Bak et al 1992,
Drossel and Schwabl 1992a, b). In the simplest version of this model, a square grid of sites is
considered. At each time step either a tree is planted on a randomly chosen site (if the site is
unoccupied) or a spark is dropped on the site. If the spark is dropped on a tree, that tree and
all adjacent trees are 'burned' in a model 'forest fire'. The frequency-area distribution of the
smaller fires again satisfies (1.1) with or = 1.0—1.2. The area A is defined to be the number of
trees that are burned in a fire. The forest-fire model is closely related to the site-percolation
model that is known to exhibit critical behaviour (Stauffer and Aharony 1992). If trees are
planted on a grid without fires, site-percolation behaviour is found. The critical point is reached
when a tree cluster spans the grid.

A satisfactory definition for self-organized criticality remains elusive. The three models
discussed above exhibit similar behaviours but there are also significant differences. Many
variations on these models have been proposed; some are considered self-organized critical but
many others are not. Totally different models have been proposed that exhibit self-organized
critical behaviour. Some of these models are applicable to problems in the biological and social
sciences. Bak (1996) has provided a comprehensive, if personal, review of developments. An
extensive discussion of self-organized criticality has also been given by Jensen (1998).

Shortly after the 'sandpile' model was proposed a number of laboratory studies were
undertaken to determine whether actual sandpiles exhibit the behaviour attributed to self-
organized criticality. A variety of frequency-size statistics for avalanches were found (Nagel
1992, Feder 1995); in some cases the results were consistent with the power-law relation (1.1),
but in other cases they were not.

Although the concept of self-organized criticality was conceived as an explanation for
simple 'toy' models, it has been associated with several natural hazards (Malamud and Turcotte
1999). Examples include the following:
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(1) Earthquakes. Stress accumulates on time scales of hundreds to thousands of years due to
the slow movement of the tectonic plates. Stress is relieved in seconds during earthquakes.
Earthquakes in a region occur on a mosaic of faults. A universal feature of earthquakes
in a region is that they satisfy the power-law relation (1.1) with a near universal value of
or. However, for earthquakes, a « 2 rather than the a ^ 1 associated with the models
discussed above.

(2) Forest and wildfires. Combustible material grows on long time scales and is destroyed in
fires on short time scales. The frequency-area distribution of forest and wild fires is well
approximated by the power-law relation (1.1) with a = 1.3-1.5.

(3) Landslides. Slope instabilities develop slowly and are relieved on short time scales in
landslides. The frequency-area distribution of landslides is well approximated by the
power-law relation (1.1) with a = 2.3-3.3.

Applications of self-organized criticality have also been proposed in the biological and
social sciences. Some examples are the following:

(1) Biodiversity. The diversity of species develops on long time scales and is wiped out
in extinctions on short time scales. There is some indication that the frequency-size
distribution of extinction events is power-law.

(2) Epidemics. A population develops that has little immunity to diseases over long time
scales. The disease spreads as an epidemic on a short time scale. Again there is some
evidence that the frequency-size distribution of epidemics is power-law.

(3) Wars. Instabilities between countries develop on relatively long time scales terminating in
wars that generally last relatively short periods of time. Richardson (1941) measured the
intensity of wars in terms of the numbers of battle deaths and showed that the frequency-
intensity distribution of wars is well approximated by a power-law distribution.

(4) Stock-market crashes. Stock markets expand and grow on relatively long time scales but
contract in stock-market crashes on relatively short time scales.

A rigorous definition of self-organized critical behaviour is elusive. A working definition
is that a system is in a state of self-organized criticality if a measure of the system fluctuates
about a state of marginal stability. In self-organized criticality, the 'input' to a complex system
is constant, whereas the 'output' is a series of events or 'avalanches' that follow a power-law
(fractal) frequency-size distribution. For example, in the case of the sandpile model, the input
is the steady addition of sand grains, and the output is sand avalanches.

Power-law (fractal) frequency-size distributions can be explained in terms of scale
invariance. The power-law distribution is the only distribution that does not require a
characteristic length scale. Thus, natural phenomena that do not inherently have a natural
length scale (i.e. that are scale invariant) would be expected to follow a power-law (fractal)
distribution. In the past ten years, numerous numerical models have been found that are
believed to exhibit self-organized critical behaviour; many believe this universal behaviour is
a fundamental basis for the applicability of fractal statistics.

In this review we begin by discussing the sandpile, slider-block and forest-fire models in
detail and the relation these models have with the idea of self-organized criticality. In addition
to an overall view of the mathematical formalism and statistics of each cellular-automata
model, and how each model relates to the other, we will discuss and provide a review of the
many 'applications' of these models in both the laboratory and the real world. We follow
these sections with one that discusses the inverse-cascade and site-percolation models and
a comparison of self-organized criticality and criticality. The final sections in this review
provide a detailed review of self-organized criticality applied to the physical, biological and
social sciences.
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2. Sandpile model

2.1. Cellular-automata model

The concept of self-organized criticality evolved from the 'sandpile' model proposed by Bak
et al (1987,1988). In this model there is a square grid of boxes and at each time step a particle
is dropped into a randomly selected box. When a box accumulates four particles, they are
redistributed to the four adjacent boxes, or in the case of edge boxes they are lost from the grid.
Since only nearest-neighbour boxes are involved in a redistribution, this is a cellular-automata
model. Redistributions can lead to further instabilities and avalanches of particles in which
many particles may be lost from the edges of the grid. The input is the steady-state addition of
particles. A measure of the state of the system is the average number of particles in the boxes.
This 'density' fluctuates about a quasi-equilibrium value. Each of the multiple redistributions
during a time step contributes to the size of the model 'avalanche'. One measure of the size of
a model avalanche is given by the number of particles lost from the grid during each sequence
of redistributions; an alternative measure is given by the number of boxes that participate in
the redistributions.

This model was called a 'sandpile' model because of the resemblance to an actual sandpile
on a table. The randomly dropped particles in the model are analogous to the addition of
particles to an actual sandpile and the model avalanches are analogous to sand avalanches
down the sides of the sandpile. In some cases the sand avalanches lead to the loss of particles
off the table.

The sandpile model depends only on the size of the grid considered. As a specific example
of the sandpile model, consider the 3 x 3 grid illustrated in figure 1. As shown, each box is
identified by a row and column. The simulation has been run for some time so that a quasi-
equilibrium beginning configuration has been established. In steps 1-4, particles have been
added randomly to cells '22', '00', '11' and '12' without requiring any redistributions. In
step 5a, a particle is added to box '11 ' ; this box is now 'unstable' and the four particles are
redistributed to the adjacent boxes '01 ' , ' 10 ' , ' 12' and '21 ' . This redistribution causes three of
these boxes, '01 ' , '10', '12' and '21' to become unstable, requiring further redistributions. The
selection of which box to redistribute next is arbitrary; however, the choice does not influence
the statistical evolution of the model. In step 5c, the four particles in box '01' are redistributed:
one particle is lost from the grid and particles are added to boxes '00', '02', and '11 ' . Eight
further redistributions are required before an 'equilibrium' configuration (all boxes with less
than four particles) is reached. These redistributions are illustrated in steps 5d-5k. During
this sequence of redistributions, all nine boxes were unstable and box '11' was unstable twice.
During the sequence of redistributions, 12 particles were lost from the grid and the number of
particles on the grid was reduced from 25 to 13. In step 6a, a particle is added to box '01' and
it is unstable. A single redistribution is required and one particle is lost from the grid.

Having specified the size of the grid, a simulation is run for Ns time steps and the number
of avalanches NL with area AL is determined. The area AL is defined to be the number of
boxes that participate in an avalanche. The noncumulative frequency-area distribution for
model avalanches is given for a 50 x 50 grid in figure 2. There is a good correlation with the
power-law relation (1.1) with a « 1.0. Large-scale simulations (Kadanoff et al 1989, Manna
1990, Lubeck and Usadel 1997) show that this correlation is valid over the entire range of areas
from a single box to the entire grid and is independent of the size of the grid.

The time series associated with the average number of particles in the boxes has been said
to exhibit 1 / / or red noise, where / is the frequency (Bak et al 1987, 1988). If the time T
associated with an avalanche is taken to be the number of particle redistributions during an
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Figure 1. Illustration of the sandpile model. A 3 x 3 grid is considered and seven time steps are
shown. Model 'avalanches' occur in steps 5 and 6. For the first avalanche, there are ten required
redistributions (steps 5b-5k), all nine boxes were 'unstable' at least once, and 12 particles were lost
from the grid. In the second avalanche, only one box became unstable, and only one particle was
lost from the grid.

avalanche, it is found that

N^T-1 (2.1)

where N is the number of events with T redistributions. This was the basis for the 1 / /
argument. However, the usual definition of a 1 / / noise is in terms of the power spectral
density S with

S~/-'. (2.2)
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Figure 2. Noncumulative frequency-area distribution for a sandpile model on a 50 x 50 grid. The
number of model events, Ni, in which a specified number of boxes, At, become unstable, is given
as a function of A i.

When the actual time series behaviour of the sandpile model is studied it is found that fi « 2
(Jensen et al 1989, Kertesz and Kiss 1990, O'Brien and Weissman 1992).

Dhar (1990) has shown that the sandpile model described above is Abelian, i.e. the final
state of the system is independent of the order in which steps are taken. One consequence of
this is that the order in which redistributions are carried out during an avalanche does not affect
the final structure of the avalanche (Dhar and Majumdar 1990, Majumdar and Dhar 1992,
Speer 1993, Ivashkevich et al 1994, Dhar et al 1995, Dhar 1996, 1999, Tsuchiya and Katori
1999).

The only control parameter in this model is the size of the square grid of boxes. This size
limits the size of the largest model avalanche but does not otherwise influence the behaviour
of the model. The frequency-area distribution of avalanches is power-law (fractal) whether
the area of the avalanche is specified by the number of particles lost from the grid or by the
number of boxes that participate in the avalanche. Thus the behaviour of the system is scale
invariant. It is also important to note that the slope of the power-law distribution is close to
unity in many examples.

When first introduced, the 'sandpile' model created a great deal of interest because of its
unusual behaviour. It is not a critical problem because there is no control parameter to tune. The
behaviour of the system does not approach a well-defined equilibrium and it does not diverge
to infinity. The system fluctuates about a quasi-equilibrium density of particles. Particles
accumulate slowly as they are randomly added to boxes and are lost precipitously in model
avalanches. Because of this great interest many variations on this basic 'sandpile' model have
been studied. Some exhibit a similar type of behaviour and others do not. Variations include
studies of the one-dimensional version (Ali and Dhar 1995a, b, Chang et al 1995, Kutnjak-
Urbanc et al 1996a, Head and Rodgers 1997a, Pinho et al 1997, Priezzhev and Sneppen 1998),
the three-dimensional version (Robinson 1994), singular diffusion (Carlson et al 1990), and
a slope instability rather than a height instability (Chhabra et al 1993). Variations have been
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studied that are directed (Dhar and Ramaswamy 1989) and dissipative (Bak 1992, Christensen
et al 1992, Lauritsen et al 1996, Lise and Jensen 1996, Chabanol and Hakim 1997, Ruskin
and Feng 1997, Dickman et al 1998). An example of a dissipative model is one where only
a fraction of the particles in a box are redistributed to other boxes. Many other techniques
have been applied to the analyses of sandpile models. Examples include mean-field studies
(Alstrom 1988, Tang and Bak 1988a, Gaveau and Schulman 1991, Janowsky andLaberge 1993,
Katori and Kobayashi 1993, Zapperi et al 1995, Vergeles et al 1997, Vespignani and Zapperi
1997,1998), universality (Chessa et al 1999), renormalization group methods (Pietronero etal
1994, Vespignani et al 1995), branching processes (Ivashkevich 1996), invasion percolation
(Roux and Guy on 1989) and damage analysis (Bhowal 1997). Authors have considered time-
dependent toppling rules (Broker 1996), hot sandpiles (Caldarelli et al 1996b, Vergeles 1997)
and many other topics (Tang and Bak 1988b, Wiesenfeld et al 1989,1990, Zhang 1989, Bak
1990, Grassberger and Manna 1990, Grinstein et al 1990, Manna et al 1990, McNamara
and Wiesenfeld 1990, Christensen et al 1991, Majumdar and Dhar 1991, Manna 1991a, b,
Pietronero and Schneider 1991, Diaz-Guilera 1992, Tadic et al 1992, Christensen and Olami
1993, Socolar et al 1993, Bak and Creutz 1994, Bonabeau and Lederer 1994, Dhar and Manna
1994, Family 1994, Garcia-Pelayo 1994, Priezzhev 1994, Cafiero et al 1995, Maslov and
Zhang 1995, Pietronero 1995, Stella et al 1995, Ben-Hur and Biham 1996, Flyvbjerg 1996,
Gil and Sornette 1996, Lubeck et al 1996, Priezzhev et al 1996, Lubeck 1997, Manna and Giri
1997, Tadic and Dhar 1997, Ceva and Luzuriaga 1998, Chessa et al 1998, Ivashkevich and
Priezzhev 1998, Milshtein et al 1998, Kinouchi and Prado 1999, Tsuchiya and Katori 1999).

Barriere and Turcotte (1991, 1994), Kutnjak-Urbanc et al (1996b), and Daerden and
Vanderzande (1998) studied 'sandpile' models with a power-law distribution of box sizes.
Redistributions from a large box always generated instabilities in adjacent smaller boxes.
These are very similar to the aftershock sequence following earthquakes. In some cases a
redistribution from a smaller box generated an instability in a larger box. This is analogous to
the occurrence of a foreshock before an earthquake. Edney et al (1998) have determined and
compared the critical exponents for eight sandpile models.

2.2. Laboratory sandpiles

A direct analogy can be made between the sandpile model and avalanches on actual sandpiles.
Consider a pile of sand on a circular table. Grains of sand are randomly dropped on the pile
until the slope of the pile reaches the critical angle of internal friction. This is the maximum
slope that a granular material can maintain without additional grains sliding down the slope;
in the case of sands, these angles are typically 34-37°. One hypothesis for the behaviour of
the sandpile would be that individual grains could be added until the slope is everywhere at
an angle of repose. Additional grains would then simply slide down the slope. This is not
what happens. The sandpile never reaches the hypothetical critical state. As the critical state
is approached, additional sand grains trigger avalanches of various sizes. On average, the
number of sand grains added balance the number that slide down the slope and off the table.

In order to test the applicability of the 'sandpile' model, many laboratory studies have been
carried out on actual sandpiles. The approach just discussed drops individual sand grains onto a
table until sand avalanches occur on the resulting sandpile. However, a preferred configuration
was to study a rotating drum half-filled with sand. From the classical point of view, the flat
surface will be rotated until the static angle of repose is reached. At this time an avalanche
is initiated and the avalanche will continue until the dynamic angle of repose is reached.
Periodic large avalanches would be expected. However, if the results of the 'sandpile' model
are applicable, a power-law distribution of avalanche sizes would be expected. Laboratory
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experiments have been carried out using spherical glass beads, rough aluminium particles, rice
grains and other granular materials in addition to sand. Frequency-volume distributions for
avalanches were obtained.

Experimental results have been quite ambiguous. Certainly not all studies exhibited
power-law distributions of avalanches. In some cases the results were dominated by quasi-
periodic large avalanches (Evesque and Rajchenbach 1989, Jaeger et al 1989, Evesque 1991 a, b,
Evesque et al 1993) and in other cases a power-law distribution was a good approximation
for the observed results (Rosendahl et al 1993, 1994, Somfai et al 1994, Frette et al 1996).
Bretz et al (1992) observed periodic large avalanches and a near-power-law distribution of
small avalanches. Held et al (1990) found power-law distributions for small sandpiles but not
for large sandpiles. A variety of other studies have been carried out (Puhl 1992, Frette 1993,
Grumbacher et al 1993, Baumann and Wolf 1996, Christensen et al 1996, Densmore et al
1997, Hager et al 1997, Head and Rodgers 1997b, 1999). Laboratory studies of sandpiles
have been reviewed by Nagel (1992) and Feder (1995).

Numerical studies of sandpile avalanches have also carried out with mixed results (Mehta
and Barker 1994a, b, Buchholtz and Poschel 1996, Malthe-Sorenssen 1996, Boguna and Corral
1997, Zhang 1997, Manna and Khakhar 1998). Dhar (1992) and Prado and Olami (1992) have
suggested that the reason that laboratory experiments do not generate power-law avalanche
distributions is due to inertial effects. This explanation is consistent with the experimental
studies of avalanches on rice piles carried out by Frette et al (1996). They found power-law
distributions for elongated grains in which inertial effects were minimized and deviations for
more circular rice grains.

When droplets of water fall on an inclined glass plate they adhere to the plate due to surface
tension. If there are enough water droplets, however, rivelets of water cascade down the plate.
These rivelets can be considered to be 'avalanches' in the sense of the sandpile model. Plourde
et al (1993) carried out laboratory studies of this problem and found that the frequency-size
distribution of rivelets was a power law.

2.3. Landslides

We now turn our attention to the frequency-area distributions of actual landslides. A number
of studies (Whitehouse and Griffiths 1983; Ohmori and Hirano 1988, Sasaki et al 1991, Noever
1993, Sugai et al 1994, Yokoi et al 1995, Hovius et al 1997) have presented evidence that
landslide frequency-area distributions are often well represented by the power-law relation
(1.1).

When considering actual data, results are generally presented using cumulative statistics;
for instance, the cumulative number of landslides NQL with areas greater than AL are plotted as
a function of AL. However, the frequency-area distribution for the model avalanches given in
figure 2 is noncumulative, i.e. the data is given in terms of unit steps of area. In order to make
a direct comparison of the sandpile model results with actual landslides, the noncumulative
model data could be converted to a cumulative distribution by summing model avalanches larger
than a specified area. However, since the slope of the noncumulative power law is near unity,
its integral or sum will be logarithmic. This is true of most models that exhibit self-organized
criticality, since the slopes are generally near unity using a noncumulative frequency-area
distribution.

Instead of converting the model results from a noncumulative to a cumulative distribution,
we present the frequency-area data for landslides in a noncumulative form. This could be
done by 'binning' the data; however, there would be ambiguities (for example, whether
the bin size is in linear or logarithmic coordinates). Therefore, in order to compare the
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(noncumulative) sandpile model results with actual landslides, we use a derivative method
to convert a cumulative distribution of actual landslide areas to a noncumulative one.

We start with cumulative data, where NCL is the number of landslides with area greater
than Ai. We define a noncumulative distribution in terms of the negative of the derivative (i.e.
the slope) of the cumulative distribution with respect to the area AL. The value is negative,
because the cumulative distribution is summed from the largest to the smallest values. The
derivative, diVci/dA^, is the slope of the best-fit line for a specified number of adjacent
cumulative data points.

Malamud and Turcotte (1999) have considered four data sets for the frequency-area
distributions of landslides. These authors derived the slopes, dNCL/dAL, of the cumulative
data using five adjacent points and a least-squares fit in linear space. The negative of each
slope is plotted as a function of the average of the five adjacent log AL points in figure 3. The
results suggest that the frequency-area distributions are similar despite different geographic
settings and triggering mechanisms.

Earthquakes have long been recognized as a trigger for extensive landslides. The first
data set (Harp and Jibson 1995) is a compilation of 11000 landslides located over an area of
10000 km2 that were triggered by the January 17, 1994 Northridge, California earthquake.
Harp and Jibson (1995) estimated that the inventory is nearly complete down to landslides
of about 5 m on a side, below which a significant number may have been missed. The
noncumulative frequency-area distribution is given in figure 3(a). The frequency-area
distribution for large landslides is in good agreement with the power-law relation (1.1) with
a & 2.3. The observed frequency-area distribution flattens out for areas less than about
10"1 km2, thus few landslides occur with small areas. Note that this change in the distribution
occurs at an area that is an order of magnitude larger than the resolution of the catalogue.
Therefore, it does not appear to be an artifact of completeness of the data set.

In the second data set, 3424 landslides with areas larger than 10~2 km2 in the Akaishi
Ranges, central Japan, have been compiled by Ohmori and Sugai (1995). In this region,
landslides occur as a result of both heavy rainfall and strong earthquakes. It was estimated
that the inventory is nearly complete for landslides with area greater than 10~2 km2. The
noncumulative frequency-area distribution is given in figure 3(b). The frequency-area
distribution for large landslides is again in good agreement with the power-law relation (1.1)
with a « 3.0. Again the frequency-area distribution flattens out for small landslides.

In the third set, a set of landslide areas was mapped in the Challana Valley, Bolivia by
Blodgett (1998). This is a relatively aseismic region of the Andes; therefore, the landslides
are thought to have been hydrologically triggered during the wet season. The noncumulative
frequency-area distribution is given in figure 3(c). The frequency-area distribution for large
landslides is again in good agreement with the power-law relation (1.1) with a « 2.6.

The fourth and final data set consists of the frequency-area distribution for 709 landslides
in the Eden Canyon area, Alameda County, California (Nilsen et al 1975). The smallest
landslide deposits mapped are about 50 m in dimension and the landslides range in age from
tens to several hundred thousand years old. The noncumulative frequency-area distribution
is given in figure 3(d); the frequency-area distribution for large landslides is again in good
agreement with the power-law relation (1.1) with a & 3.3.

All four data sets given in figure 3 exhibit similar behaviour. For the larger landslides, the
noncumulative frequency-area distributions correlate well with the power-law relation (1.1)
taking a & 2.3-3.3. This slope is considerably larger than the sandpile model slope of a & 1.0.
It must be noted, however, that landslides have a depth as well as an area, so any comparison
with the strictly two-dimensional sandpile model is only approximate. Nevertheless, all four
data sets give reasonably good power-law correlations for the larger landslides. There are
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Figure 3. Noncumulative frequency-area distributions for actual landslides (Malamud and Turcotte
1999). Four examples are given: (a) 11 000 landslides triggered by the January 17,1994 Northridge,
California earthquake (Harp and Jibson 1995). (b) 3423 landslides in the Akaishi Ranges of central
Japan (Ohmori and Sugai 1995). (c) 1130 landslides in the Challana valley, Yungas region, Eastern
Cordillera, Bolivia (Blodgett 1998). (d) 709 landslides in the Eden Canyon area of Alameda county,
California (Nilsen et al 1975). The noncumulative number of landslides, —dNd/^Ai, with area
Ai, is given as a function of AL. In each case a reasonably good correlation is obtained with the
power-law relation (1.1) with a = 2.3-3.3.

a number of similarities between the sandpile model and real landslides. Slope instabilities
develop slowly and are eliminated in 'avalanches'. Power-law distributions are obtained. It
is basically an arbitrary choice to decide whether landslides are an example of self-organized
critical behaviour in nature.

In all four data sets, the frequency of occurrence of small landslides falls systematically
below the predictions of the power-law correlation. This cannot be attributed to sampling
problems since the fall-off occurs at landslide sizes considerably larger than the resolution
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Figure 3. (Continued)

limits. The break in slope occurs at a scale of about 30 m, similar to that recognized in terms
of river networks. River networks are believed to form at a scale of 30 m, so slope instabilities
(landslides) related to rivers can only occur at larger scales.

Pelletier et al (1997) used observed power-law distributions of soil moisture in conjunction
with a slope stability analysis to model the frequency-area distribution of landslides. In their
model, landslides occur when a threshold shear stress dependent on cohesion, pore pressure,
internal friction, and slope angle, is exceeded. Since cohesion, pore pressure, and internal
friction are all primarily dependent on soil moisture, this implies a threshold dependence on
soil moisture and slope angle. With soil moisture modelled as above and topography modelled
as a Brownian walk, the cumulative frequency-area distribution of domains of shear stress
greater than a threshold value is a power-law function of area with an exponent of -1.8 for
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large landslide areas. This distribution is similar to that observed for landslides. The effect of
strong ground motion from earthquakes lowers the shear stress necessary for failure, but does
not change the frequency-area distribution of failed areas. This is consistent with observations.
The fact that the surface upon which landslides occur is a self-affine fractal (Turcotte 1997),
is an important difference between the sandpile model, laboratory studies, and real landslides.
An alternative model for the power-law behaviour of landslides has been given by Hergarten
and Neugebauer (1998).

2.4. Turbidites

Under some circumstances, sedimentary layers can be associated with landslides. Turbidite
currents, a suspension of particles denser than the surrounding water, are associated with slumps
(avalanches) off continental margins. Turbidity currents, triggered by a slump, can cover very
large areas (hundreds of thousands of km2) at high speeds (10-100 km h"1). These events
can be considered a natural analogue for sand slides, and thus the sandpile model considered
above. The lithologic product of a turbidity current is a turbidite, each deposit representing a
distinct event (slump). Each turbidite is composed of a general upward gradation from coarse-
grained sediments to fine-grained sediments, and individual turbidites are generally separated
by well-defined bedding planes.

Several studies of the frequency-thickness distributions of turbidite deposits have been
carried out. Rothman et al (1994) carried out direct measurements on an outcrop of the
Kingston Peak Formation near the southern end of Death Valley, California. Their results are
given in figure 4(a), where the cumulative number of layers with thickness greater than h, Nc,
is given as a function of h. Good agreement with the power-law (fractal) relation

Nc ~ h~D (2.3)

is obtained by taking D = 1.39. Rothman et al (1994) associated the observed power-law
distribution of turbidite deposits with the power-law distribution of sandpile model avalanches.
Hiscott et al (1992) have studied a volcanoclastic turbidite deposit in the Izu-Bonin forearc
basin off the shore of Japan. Layer thicknesses were obtained from formation-microscanner
images from well logs in the middle to upper Oligocene part of the section. Results for two
DSDP (Deep Sea Drilling Project) holes located 75 km apart are given in figure 4(b); a good
correlation with (2.3) is obtained by taking D = 1.12.

It is interesting to note that the fractal dimensions (power-law exponents) of the thickness
statistics given in figure 4 are greater than one. Because this is a one-dimensional set, the
fractal dimension would be expected to be in the range 0 < D < 1. The reason for this is
that the distribution will diverge as h -> 0. The Cantor set is a specific example of such a
fractal distribution. Thus, the observed distributions are not strictly fractal. However, real
distributions have both upper and lower cutoffs on the range of validity of (2.3). Thus, for
natural distributions D need not be restricted to values less than one. This kind of ambiguity
also arises in any association of natural phenomena with self-organized criticality.

3. Slider-block model

3.1. Chaotic behaviour

Slider-block models have also been said to exhibit self-organized critical behaviour. These
models are considered to be simple analogues for the behaviour of faults in the Earth's crust.
The simplest example, given in figure 5(a), is a single slider-block of mass m pulled over a
surface by a spring constant k attached to a constant velocity v driver plate. The interaction of
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Figure 4. Cumulative frequency-thickness distributions for turbidite sequences of sedimentary
layers, (a) Kingston Peak Formation near the southern end of Death Valley, California (Rothman
et al 1994). (b) Izu-Bonin forearc basin off the shore of Japan (Hiscott et al 1992). Both sets of
authors attribute the roll-off for thin layers to loss of resolution. In each case, Nc the number of
beds with thickness greater than h is plotted as a function of h. The straight-line correlations with
the power-law relation (2.3) give ZP = 1.39 for (a) and D = 1.12 for (b).

the block with the surface is controlled by friction. Many friction laws have been proposed;
the simplest is the static-dynamic friction law. If v = 0 the static frictional force is Fs, if
v ^ 0 the dynamic frictional force is Fd. If Fs > Fd, stick-slip behaviour is obtained and the
motion of the block is made up of periodic slip events.

The behaviour of a pair of slider blocks was studied in detail by Huang and Turcotte
(1990a, 1992). This model is illustrated in figure 5{b) and the equations of motion for the two
blocks were solved simultaneously. Solutions were governed by two parameters, the stiffness
of the system a = kc/kp (kc the spring constant of the connector spring and kp the spring
constant of the puller springs) and the ratio of static to dynamic friction 4> = Fs/Fd. For some
values of these parameters, deterministic chaos was found. Chaotic behaviour requires some
asymmetry in the problem, i.e. Fs\ ^ Fs2. The period-doubling route to chaos was observed
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Figure 5. Illustration of the slider-block model, (a)
A single block of mass m is pulled over a surface by a
constant-velocity v driver plate. The plate is connected to
the block by a spring with spring constant it. The motion
is restricted by a frictional force Fs. (b) Two blocks with
mass m are pulled over a surface. The two masses are
connected by a spring with spring constant kc. Each mass
is connected to the driver plate with spring constant kp.

Figure 6. Illustration of the two-dimensional slider-
block model. An array of blocks, each with mass m,
is pulled across a surface by a driver plate at a constant
velocity, V. Each block is coupled to the adjacent blocks
with either leaf or coil springs (spring constant kc), and
to the driver plate with leaf springs (spring constant kp).

with positive values of the Lyapunov exponent in the chaotic regions. The behaviour of the
pair of slider blocks is very similar to the behaviour of the logistic map (May 1976).

A modification of this model is to allow only one block to slip at a time. The first block to
become unstable is allowed to complete its harmonic motion before the stability of the second
block is considered; if the second block is then unstable, it is allowed to slip before the motion
of the driver plate is updated. This is a cellular-automata model. Extensive studies using this
model were carried out (Narkounskaia and Turcotte 1992, Narkounskaia et al 1992) and these
showed that its behaviour was essentially identical to the results obtained when both blocks
were allowed to slip simultaneously.

The chaotic behaviour of the low-dimensional Lorenz equations (Lorenz 1963) is now
accepted as evidence that the behaviour of the atmosphere and oceans is chaotic. Similarly,
the chaotic behaviour of a pair of slider blocks is evidence that earthquakes exhibit chaotic
behaviour (Huang and Turcotte 1990b).

3.2. Self-organized critical behaviour

The slider-block model with a pair of slider blocks considered above can be extended to include
large numbers of slider blocks. Multiple slider-block simulations were first considered by
Burridge and Knopoff (1967). Laboratory studies were carried out on a linear array of slider
blocks pulled from one end. Large slip events were quasi-periodic and the smaller slip events
satisfied a power-law dependence of cumulative number of events on size. Otsuka (1972)
obtained power-law frequency-size statistics for a two-dimensional array of 2000 slider blocks
using an electrical analogue without dynamic friction. Other early studies were also carried
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out (Dietrich 1972, Cohen 1977, Rundle and Jackson 1977).
The standard multiple slider-block model consists of a square array of slider blocks as

illustrated in figure 6. Each block with mass m is attached to the driver plate with a driver
spring, spring constant kp. Adjacent blocks are attached to each other with connector springs,
spring constant kc. A block remains stationary as long as the net force on the block is less than
the static resisting force, Fs. This static stability criteria requires that

kpxitj + kc(xi+u + Xi-ij + xij+i + xij-i - 4xitj) < Fs (3.1)

with xij the position of block (/, j) in the array. When the stability criteria is violated the
block begins to slip and its motion is given by

+ kc(xi+hj ) = Fd (3.2)

where Fd is the dynamic frictional force between the block and the surface when the block is
moving, and t is time in the slider-block model.

It is convenient to introduce the nondimensional variables
\ 1/2 k x- • F k

Fs

The stability condition (3.1) becomes

Xij +a(XMtJ + Xt-u + XiJ+l

and the equation of motion of a block becomes

u-i - 4Xitj)

— ^ + Xu + a(XMJ + Xi-ltj + XiJ+l + X^ - 4Xij) = <

(3.4)

(3.5)

Two parameters determine the behaviour of the system: <I>, the ratio of static to dynamic
friction, and a = kc/kp, the stiffness of the system. For very soft systems, a -> 0, the blocks
exhibit stick-slip behaviour independently. For very stiff systems, a —> oo, the array of blocks
behaves as a single block.

Carlson and Langer (1989a, b) considered long linear arrays of slider blocks with each
block connected by springs to the two neighbouring blocks and to a constant-velocity driver.
They used a velocity-weakening friction law and considered up to 400 blocks. Slip events
involving large numbers of blocks were observed, the motions of all blocks involved in a slip
event were coupled, and the applicable equations of motion had to be solved simultaneously.
Because of the strong similarities, these are often known as molecular-dynamics simulations.
Although the system is completely deterministic, the behaviour was apparently chaotic.
Noncumulative frequency-size statistics were obtained for slip events. The smaller events
obeyed a power-law (fractal) relationship with a slope near unity, but there were an anomalously
large number of large events that included all the slider blocks. The observed behaviour was
characteristic of self-organized criticality. The input in this model was the constant motion of
the driver plate. The output or 'avalanches' were the slip events, with a power-law frequency-
size distribution.

Nakanishi (1990, 1991) studied multiple slider-block models using the cellular automata
approach. A linear array of slider blocks was considered but only one block was allowed to
move in a slip event. The slip of one block could lead to the instability of either or both of the
adjacent blocks, which would then be allowed to slip in a subsequent step or steps, until all
blocks were again stable. Brown et al (1991) proposed a modification of this model involving
a two-dimensional array of blocks. The use of the cellular automata approach greatly reduces
the complexity of the calculations.
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Figure 7. The ratio of the number of slip events, Ne, with area Ae, to the total number of slip
events No, is plotted against Ae (Huang et al 1992). Results are given for systems with stiffness
a = kc/kp = 30, friction <D = Fs/Fd = 1.5, and grid sizes 20 x 20, 30 x 30, 40 x 40, and
50 x 50. The peaks at Ae = 400, 900, and 1600, correspond to catastrophic slip events involving
the entire system.

Huang et al (1992) carried out many simulations on a square array of blocks using static-
dynamic friction and a cellular-automata approach. Their noncumulative frequency-area
distribution statistics for model slip events are given in figure 7. The number of slip events per
time step with area Ae, Ne/No, is given as a function of Ae. Results are given for a stiffness
a = 30, friction 3> = 1.5 and grid sizes, 20 x 20, 30 x 30, 40 x 40, and 50 x 50. There
is agreement with the power-law relation (1.1) with power-law exponent a & 1.3. For stiff
systems, a = kc/kp large, the entire grid of slider blocks is strongly correlated and large slip
events including all the blocks occur regularly. These are the peaks for Ae = 400, 900, and
1600, illustrated in figure 7. For soft systems, a = kc/kp relatively small, no large events
occur.

There are strong similarities between the behaviour of the sandpile model and the slider-
block model. In both cases smaller slip events have a noncumulative power-law frequency-
area distribution with similar power-law exponents, a ^ 1.0-1.3. Whereas the sandpile
model is stochastic in the selection of boxes, the slider-block model is fully deterministic.
The slider-block model provides a bridge between chaotic behaviour (two slider blocks) and
self-organized critical behaviour (large numbers of slider blocks). Adjacent solutions for the
chaotic behaviour of a pair of slider blocks diverge exponentially. Adjacent solutions for large
numbers of slider blocks have a power-law divergence.

Many papers have been written reporting simulations based on the slider-block model
(Carlson 1991a, b, Carlson et al 1991, 1993a, b, Feder and Feder 1991, Matsuzaki and
Takayasu 1991, Vasconcelos et al 1991, 1992, Crisanti et al 1992, Christensen and Olami
1992a, b, Ito 1992, McCloskey and Bean 1992, 1994, Olami and Christensen 1992, Shaw
et al 1992, Sornette 1992, Cowie et al 1993, Ding and Lu 1993, de Sousa Vieira et al 1993,
Knopoff et al 1993, McCloskey 1993, McCloskey et al 1993, Schmittbuhl et al 1993, 1996,
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Shaw 1993a, b, 1994, 1995, 1997, Espanol 1994, Lin and Taylor 1994, Lu et al 1994, 1998,
Senatorski 1994,1995, Xu and Knopoff 1994, Carlson and Swindle 1995, Ceva 1995, de Sousa
Vieira 1995,1996, Liu etal 1995, Middleton and Tang 1995, de Sousa Vieira and Lichtenberg
1996, Cartwright et al 1997, Leung et al 1997, 1998a, b, Lise and Stella 1998, Hainzl et al
1999). One extension was to consider a linear chain of slider blocks pulled at one end (de
Sousa Vieira 1992); this is a model for a propagating rupture on a fault.

Models with far field interactions and no inertia have been considered (Rundle and Klein
1989, 1993, 1995, Rundle and Brown 1991, Olami et al 1992, Rundle 1993, Grassberger
1994, Rundle et al 1996a, Ferguson et al 1998, Kinouchi et al 1998). Typically in these
models a redistribution occurs when the stress on a block reaches a critical value. This stress
is redistributed to a number of neighbouring blocks (not just nearest neighbours) in a specified
way. These neighbours may subsequently fail. In general, there is a noise added to specified
values. These models can be discussed in terms of a spinodal phase change. It has been found
that the distribution of energies in the springs in this class of models is Boltzmann (Rundle
etal 1995,1996c, 1997).

There is evidence that cellular automata versions of slider-block models behave
systematically differently than the molecular dynamics versions. Both generate power-law
distributions of small events but the molecular dynamic simulations appear to generate a
class of larger events not found in the cellular automata simulations. In order to study this
difference studies have been carried out on a multiple slider-block model with no driver
plate and no dynamic friction (Morein et al 1997, Morein and Turcotte 1998). Energy is
conserved and the static friction acts as a nonlinear switch. In the cellular automata approach a
Boltzmann distribution of energies was found but in the molecular dynamics approach normal-
mode oscillations were found. These oscillations strongly resembled the oscillons observed
in vertically vibrating granular layers (Umbanhowar et al 1996).

Studies have also been carried out on the predictability of the major slip events in slider-
block models with mixed results (Bak et al 1994, Pepke and Carlson 1994, Pepke et al 1994,
Rundle et al 1996b, Zhang et al 1996). Slider-block models have been reviewed by Carlson
et al (1994) and Turcotte (1997).

3.3. Earthquakes

Since the concept of self-organized criticality was first introduced, earthquakes have been
identified as an example of this phenomena in nature (Bak and Tang 1989). Earthquakes occur
primarily in the brittle upper crust of the Earth at depths of less than 20 km. Most earthquakes
occur at or near the boundaries of the tectonic plates, but a few earthquakes occur within plate
interiors. Stress is added to the crust slowly due to the tectonic motion of the plates and is
relieved rapidly in earthquakes (avalanches). The crustal stress oscillates about an equilibrium
value.

For over 50 years, it has been accepted that earthquakes universally obey Gutenberg-
Richter scaling; the cumulative number of earthquakes per year in a region with magnitudes
greater than m, NCE* is related to m by (Gutenberg and Richter 1954)

log NCE — —bm + log a (3.6)

where the constant b is known as the b-value and has a near-universal value b = 0.90 ± 0.15
(Evernden 1970). The constant a is a measure of the intensity of the regional seismicity.

When (3.6) is expressed in terms of the earthquake rupture area, AE, instead of earthquake
magnitude, this relation becomes a power law (Aki 1981)

NCE ~ AE
b (3.7)
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Figure 8. Worldwide cumulative, NCE, and noncumulative, —ANCEI&AE-. number of earthquakes
per year with rupture areas greater than AE as a function of AE • These data are from the Harvard
Centroid-Moment Tensor Data Base (1997) for the years (1977-94). Earthquake seismic moments
have been converted to rupture areas. The equivalent magnitudes, m, are also given.

which is very similar to (1.1), except that (3.7) is based on cumulative statistics and (1.1) is
based on noncumulative statistics.

We first consider the worldwide number of earthquakes per year from the Harvard
Centroid-Moment Tensor Data Base (1997) for the period 1977-94. Both the cumulative
number of earthquakes per year, NCE> with rupture area greater than AE and the noncumulative
number of earthquakes per year, —dTVcf/dAs, are given as a function of AE in figure 8. The
equivalent magnitudes, m, are also given in figure 8. The cumulative worldwide data per year
correlate with (3.6) taking b = 1.0 and a = 108 per year. The data given in figure 8 can
be used to estimate the frequency of occurrence of earthquakes of various magnitudes on a
worldwide basis. For example, about ten magnitude-seven earthquakes are expected each year
and a single magnitude-eight earthquake can be expected in a year. As expected, the slopes of
the cumulative and the noncumulative distributions differ by exactly one.

The deviation of the data from the Gutenberg-Richter law (3.6) at magnitudes less than
m = 5.2 can be attributed to the resolution limits of the global seismic network. Regional
studies indicate that good correlations are obtained down to at least m = 2.0 (Aki 1987). The
deviation of the data from the Gutenberg-Richter law at magnitudes greater than m = 7.5
is more controversial (Scholz 1997). Clearly, there must be an upper limit to the size of an
earthquake; but the deviations in figure 8 can be attributed either to a real deviation from the
correlation line or to the small number of very large earthquakes in the relatively short time span
considered. There is a physical basis for a change in scaling for large earthquakes (Pacheco
et al 1992). The rupture zone of smaller earthquakes can be approximated by a circle of radius
r, so that r ~ A)/2. However, the depth of large earthquakes is confined by the thickness of
the seismogenic zone, say about 20 km, whereas the length, /, can increase virtually without
limit. Thus for large earthquakes, / ~ AE. The transition would be expected to occur for

J/2
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As we have shown, the models we have considered typically have good agreement with the
noncumulative frequency-area power-law relation (1.1) taking a « 1.0-3.0. The cumulative
data shown in figure 8 are in good agreement with equation (3.7) with exponent b « 1.0.
Bak and Tang (1989) pointed out the similarity in slopes between self-organized critical
behaviour and earthquakes. However, the model data are noncumulative, and the earthquake
data cumulative; therefore, the agreement must be considered fortuitous. The equivalent
noncumulative frequency-area distribution of earthquake rupture areas would follow a power-
law relation (1.1) with a « 2.0. The power-law exponents for earthquakes are significantly
higher than for the corresponding model (the slider-block model).

In order to further consider the applicability of the Gutenberg-Richter relation to seismicity
we consider the frequency-magnitude distribution of earthquakes in southern California on a
yearly basis using data obtained from the Southern California Seismographic Network (SCSN
Catalog 1995). In figure 9, for each individual year between 1980-94, the cumulative number
of earthquakes NCE with magnitudes greater than m is plotted as a function of m. The
period 1980-94 taken together results in the Gutenberg-Richter power-law relation (3.6) with
b = 1.05 and a = 2.06 x 105 per year, shown as the solid straight lines in figures 9(a)-(c).
In figure 9, there is generally good agreement between each individual year's data and the
Gutenberg-Richter relation (solid straight line) for the period 1980-94. The exceptions can be
attributed to the aftershock sequences of the 1987 Whittier, 1992 Landers, and 1994 Northridge
earthquakes.

With aftershocks removed, the background seismicity in southern California illustrated in
figure 9 is nearly uniform from year to year, and is not a function of time. Small earthquakes
behave like a thermal background noise. This is observational evidence that the Earth's crust
is continuously on the brink of failure (Scholz 1991). Further evidence for this comes from
induced seismicity. Whenever the crust is loaded, whether in a tectonically active area or not,
earthquakes are induced. Examples of loading include the filling of a reservoir behind a newly
completed dam or the high-pressure injection of fluids in a deep well.

While there are important similarities between slider-block models and earthquakes there
are also important differences. Slider-block models would be representative of a distribution
of earthquakes on a single fault. However, the Gutenberg-Richter distribution of earthquakes
is not associated with a single fault but with a hierarchy of faults. Small earthquakes occur
on small faults and large earthquakes occur on large faults. The earthquakes included in the
southern California data given in figure 9 occur over a broad zone with a width of about 200 km
on a wide variety of faults associated with the San Andreas system.

There is extensive evidence that the distribution of faults in the crust is fractal (power-law).
This has led to the suggestion (Sammis et al 1987) that comminution of the crust has led to a
power-law distribution of tectonic blocks. The boundaries of these blocks are the power-law
distribution of faults. Typically the cumulative number of faults with areas greater than Ag
would satisfy (3.7) with b « 0.8.

A number of authors have considered the relationship between earthquakes and self-
organized criticality (Sornette and Sornette 1989, Ito and Matsuzaki 1990, Sornette et al 1990,
Bak and Chen 1995, Huang et al 1998). Although slider-block models are the primary basis for
associating earthquakes with self-organized criticality, other models such as crack propagation
(Chen et al 1991) and interface depinning (Paczuski and Boettcher 1996, Fisher et al 1997)
have been proposed.

An important aspect of self-organized criticality relative to earthquakes is the implications
for earthquake forecasting and prediction. Acceptance of the validity of the Gutenberg-Richter
relation (3.6), and the constant rate of occurrence of small earthquakes illustrated in figure 9,
implies that the observed frequency of occurrence of small earthquakes can be extrapolated
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Figure 9. The cumulative number of earthquakes per year,
NCE, occurring in southern California, with magnitudes
greater than m as a function of m. Fifteen individual
years are considered (SCSN Catalog 1995): (a) 1980-
4; (b) 1985-9; (c) 1990-4. The heavy straight line in
(a)-(c) represents the best fit to all data during 1980-
94, the Gutenberg-Richter relation (3.6) with b = 1.05
and a = 2.06 x 105 per year. The larger number of
earthquakes in 1987, 1992, and 1994 can be attributed to
the aftershocks of the Whittier, Landers, and Northridge
earthquakes, respectively. If aftershocks are excluded,
the background seismicity in southern California is nearly
uniform in time.

to estimate the recurrence frequencies of larger earthquakes. This is routinely done and is a
primary basis for published maps of the earthquake hazard (Turcotte 1999).

A Russian group developed pattern recognition algorithms to provide intermediate range
predictions of earthquakes (Keilis-Borok 1996). A number of successful predictions have been
made. The algorithms use increased intermediate level seismicity and changes in aftershock
statistics to make the predictions. These changes are observed over relatively large areas so
that they imply the long-range interactions associated with critical phenomena. It should be
emphasized, however, that this approach is controversial (Main 1996, Geller 1997, Geller et al
1997, Kagan 1997, Leary 1997). Bufe and Varnes (1993) have shown that there is a systematic
power-law increase in seismic activity before a major earthquake. This increase is restricted
to intermediate size events and does not extend to small events. Bowman et al (1998) have
carried out a systematic study of the optimum correlation length over which this precursory
activation occurs. They find the radius of the optimum region is about ten times the radius of
the subsequent earthquake rupture.
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4. Forest-fire model

4.1. Cellular-automata model

Although the forest-fire model (e.g. Bak et al 1992, Drossel and Schwabl 1992a, b, Henley
1993) was not the first model that was associated with self-organized criticality, it is probably
the most illustrative. The forest-fire model we consider consists of a square grid of sites, with
G the size of the grid. At each time step, a model tree is dropped on a randomly chosen site;
if the site is unoccupied, the tree is planted. The sparking frequency, fs, is the inverse number
of attempted tree drops on the square grid before a model match is dropped on a randomly
chosen site. If fs = -^, there have been 99 attempts to plant trees (some successful, some
unsuccessful) before a match is dropped at the 100th time step. If the match is dropped on
an empty site, nothing happens. If it is dropped on a tree, the tree ignites and a model fire
consumes that tree and all adjacent (nondiagonal) trees.

As a specific example, consider the 10 x 10 grid (G = 100) illustrated in figure 10. Each
grid site is identified by row and column as shown. The sparking frequency is l/fs = 5; four
trees are planted (or attempts to plant are made) before a spark is dropped. Sites are randomly
chosen. The beginning configuration has six trees, and is the result of running the simulation
for some time so that a quasi-equilibrium state is established. In steps 1-4, trees are dropped
on the randomly chosen sites '54', '71' , '85' and '19'. In the first three steps, the sites are
empty, so a tree is planted. In step 4, site ' 19' is already occupied, so nothing happens. In step
5, a spark is dropped on a site '99', but it is unoccupied so nothing happens. In steps 6-9, four
trees are planted on sites '17', '81 ' , '43' and '68'. Finally, in step 10, a spark is dropped on
site '54' which is occupied by a tree. This tree 'burns' along with the adjacent trees on sites
'44' and '43' and are eliminated from the grid. The tree in site '35' does not burn because,
although adjacent, it is diagonal to the sites being consumed by the fire. This 'forest fire' has
a size AF = 3, since three trees are burned.

For large time intervals, the number of trees lost in 'fires' is approximately equal to
the number of trees planted. However, the number of trees on the grid will fluctuate. The
frequency-area distribution of 'fires' is a statistical measure of the behaviour of the system.
This model is probabilistic (stochastic) in that the sites are chosen randomly. It is a cellular-
automata model in that only nearest-neighbour trees are ignited by a 'burning' tree. In terms
of the definition of self-organized critical behaviour, the steady-state input is the continuous
planting of trees. The avalanches in which trees are lost are the 'forest fires'. A measure of
the state of the system is the fraction of sites occupied by trees. This 'density' fluctuates about
a 'quasi-equilibrium' value.

Having specified the size of the square grid, G, and the sparking frequency, fs, a simulation
is run for Ns time steps and the number of fires NF with area AF is determined. The area,
AF, is the number of trees that burn in a fire. Examples of four typical fires during a run are
given in figure 11. In these examples the grid size is 128 x 128 (G = 16384), \/fs = 2000,
and fires with AF = 5, 51, 506, and 5327 trees are illustrated. Figure 11 (d) is an example of
a special class of forest fire that spans the grid.

The noncumulative frequency-area distributions for the model forest fires are given in
figures 12 and 13. The number of fires per time step with area AF, NF/Ns, is given as a
function of AF. In figure 12, results are given for a grid size 128 x 128 and three sparking
frequencies, \/fs = 125,500, and 2000. In figure 13, results are given for a spar king frequency
\/fs = 500 and three grid sizes, 64 x 64, 128 x 128, and 256 x 256. In all cases the smaller
fires correlate well with the power-law relation (1.1) with a = 1.0-1.2.

These results clearly indicate the finite-size effect of the grid. If fs is large, the frequency-
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Figure 10. Illustration of the forest-fire model. A 10 x 10 grid is considered with sparking
frequency \/fs = 5. White boxes are unoccupied sites. Lightly shaded boxes are sites occupied
by one tree. Match drops are indicated by a criss-cross pattern. Black boxes are the forest fires.
Ten time steps are shown. The model 'fire' at step 10 consumes three trees.

area distribution begins to deviate significantly from a straight line, such that there is an upper
termination to the power-law distribution. In figure 12, the deviation begins for \/fs = 125
and G = 128 x 128 at AF « 1000. In figure 13, the deviation begins for \/fs = 500 and
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Figure 11. Four examples of typical model forest fires are given for a 128 x 128 grid with sparking
frequency \/fs = 2000. The heavily shaded regions are forest fires. The lightly shaded regions
are unburned forest. The white regions are unoccupied sites. The areas Ap of the four forest fires
are (a) 5, (b) 51, (c) 505 and (d) 5327 trees. The largest forest fire is seen to span the entire grid.

G = 256 x 256 at AF « 4000. It is also seen that large forest fires become dominant when
the sparking frequency is very small. This is easily explained on physical grounds. This
transition is clearly illustrated in figure 12. With large sparking frequencies (for example
\/fs = 125), trees burn before large clusters can form. For small sparking frequencies (for
example l//5 = 2000) clusters form that span the entire grid before ignition occurs.

In figure 13, with a large grid (for example 256 x 256), trees burn before large clusters
can form. However, for a small grid (for example 64 x 64) clusters form that span the entire
grid before ignition occurs. For very small firing frequencies or very small grid sizes, there
will be very few fires that form with small values of area, AF. The grid will become very full
before a match sparks a fire. The areas of the fires will all involve a large number of trees, and
in most cases the fires will span the grid.

Comprehensive studies of the forest-fire model have been given by Mossner et al (1992)
and by Clar et al (1996, 1999). Many variations on the basic 'forest-fire' model given above
have been studied. Simulations have been carried out in one to six dimensions (Christensen
et al 1993), other one-dimensional studies have been undertaken (Drossel et al 1993, 1994a,
Paczuski and Bak 1993, Honecker and Peschel 1996), phase transitions have been considered
(Clar et al 1997), immune 'trees' have been introduced (Drossel and Schwabl 1993b, Albano
1994,1995), therenormalization group approach has been applied (Loreto etal 1995a, b, 1996)
and a variety of other studies have been carried out (Grassberger and Kantz 1991, Drossel and
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Figure 12. Noncumulative frequency-area distributions of model forest fires with constant grid
size and changing sparking frequency. The number of fires per time step with size AF, NF/NS,
is given as a function of A F , where A f is the number of trees burned in each fire. Results are
given for grid size 128 x 128 and sparking frequencies, \/fs = 125, 500, 2000. For each fs the
model was run for Ns = 1.638 x 109 time steps. The small and medium fires correlate well with
the power-law relation (1.1) taking a = 1.02-1.18. The finite grid size effect can be seen at the
smallest sparking frequency, \/fs = 2000. At \/fs = 2000 fires begin to span the entire grid.

Schwabl 1993a, 1994, Grassberger 1993, Clar et al 1994, 1995, Strocka et al 1995, Drossel
1996, 1997, Broker and Grassberger 1997, Honecker and Peschel 1997).

4.2. Forest and wild fires

An obvious application of the forest-fire model is to actual forest and wild fires (Malamud
et al 1998). From this study, four forest-fire and wildfire data sets from the United States and
Australia are given in figure 14. The first data set includes 4284 fires on US Fish and Wildlife
Service land during the period 1986-95. The second data set includes the areas of 120 forest
fires as interpreted from tree rings for the western United States for the period 1155-1960.
The third data set includes the areas of 164 fires in Alaskan Boreal Forests during 1990-91.
The fourth data set includes 298 fires in the Australian Capital Territory during 1926-91.
The data sets come from a wide variety of geographic regions with different vegetation types
and climates. In each case, the cumulative number of fires per year, NCF, with area greater
than AF has been converted to a noncumulative distribution using the technique described in
section 2.3. The results given in figure 14 correlate well with the power-law relation (1.1)
taking a = 1.3-1.5.

The actual forest fires (figure 14) have good power-law distributions over many orders of
magnitude, consistent with the model data (figures 12 and 13). However, the model data have
power-law exponents (a = 1.0-1.2) that are somewhat less than those calculated for the actual
data. The model is in reasonable, but not exact, agreement with the actual data.

Considering the many complexities of the initiation and propagation of forest fires and
wildfires it is remarkable that the frequency-area statistics are very similar under a wide variety
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Figure 13. Noncumulative frequency-area distributions of model forest fires with changing grid
size and constant sparking frequency. The number of fires per time step with size Af, NF/NS, is
given as a function of Af where A F is the number of trees burnt in each fire. Results are given for
three grid sizes, G = 64 x 64, 128 x 128,256 x 256 and a constant sparking frequency, l/fs = 500.
The number of time steps, Ns, that the model was run for each grid size is noted.

of environments. The proximity of combustible material varies widely. The behaviour of a
particular fire depends strongly on meteorological conditions. Fire-fighting efforts extinguish
many fires. Despite these complexities, the application of the frequency-area distributions
associated with the forest-fire model appears to be robust. Further confirmation of the
applicability of the forest-fire model to real forests is the observation that clusters of trees in
forests obey fractal (power-law) statistics (Sole and Manrubia 1995a, b). Another application
of the forest-fire model has been to the spread of disease (Johansen 1994) and, in particular,
to measles epidemics (Rhodes and Anderson 1996a, b, Rhodes et al 1997).

5. Criticality versus self-organized criticality

5.7. An inverse-cascade model

The behaviour of the forest-fire model can be understood using an inverse-cascade model. The
one-dimensional forest-fire model has been discussed in terms of a cascade by Paczuski and
Bak (1993). In the model presented here (Turcotte et al 1999) clusters of 'trees' are considered
that contain 1, 2, 2 2 , . . . , 2" trees. Single trees are introduced to the cascade and coalesce to
form larger clusters. Fires burn clusters of all sizes, but significant numbers of trees are lost
only in model fires that burn the largest clusters. There is a cascade of trees from smaller to
larger clusters and this cascade gives a power-law frequency-size distribution of clusters. The
loss of large clusters in fires terminates the cascade.

From figures 12 and 13 it is seen that the frequency-area distribution of the smaller model
forest fires correlates well with the power-law relation (1.1) with exponent a = 1.0-1.2. We
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Figure 14. Noncumulative frequency-area statistics for actual forest fires and wildfires in the
United States and Australia (Malamud et al 1998). Four examples are given: (a) 4284 fires on US
Fish and Wildlife Service land during 1986-95 (National Interagency Fire Center 1996). (b) 120
fires in the western United States during 1155-1960, calculated from tree ring data (Heyerdahl et al
1994). (c) 164 fires in Alaskan Boreal Forests during 1990-91 (Kasischke and French 1995). (d)
298 fires in the Australian Capital Territory during 1926-91 (ACT Bush Fire council 1996). For
each data set, the noncumulative number of fires per year, —dA^cf/dAf, with area Ap, is given as
a function of A p. In each case a reasonably good correlation over many decades of A F is obtained

by using the power-law relation (1.1) with a = 1.3-1.5.

approximate this behaviour with a « 1, giving
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Figure 14. (Continued)

where Nf0/Ns is the number of fires per time step that burn a single tree. It must be emphasized
that this is a noncumulative distribution with Nf/Ns the number of fires per time step that
burn A trees, A = 1, 2 ,3 ,4 , . . . , G where G is the number of sites on the square grid.

The frequency-area distribution of model forest fires can be directly related to the
frequency-area distribution of model tree clusters. A tree cluster is defined to be trees that will
burn if a spark is dropped on any one of them and the cluster area A is the number of trees that
will burn. If N is the number of tree clusters with area A and G is the total size of the system,
we can write

£ - £ ' (5-2>
Ns G
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where Ns is the total number of time steps that the model has been run, N//Ns is the probability
that a fire of size A will occur at each time step, NA/G is the probability that a randomly
dropped match will land on a cluster of size A, and / the sparking frequency. Combining (5.1)
and (5.2) with / « 1 we have

N = % (5.3)

with

No =
GNfo
fNs

(5.4)

where No is the number of clusters on the grid containing only single trees. The number of
fires Nf of area A is proportional to A"1 from (5.1), whereas the number of clusters N of area
A is proportional to A~2 from (5.3). The cumulative number of clusters with areas greater
than A, Nc, is given by

Nc = Nof ^ = ^- (5-5)

The cumulative number of clusters with area greater than A has the same dependence on A as
the noncumulative number of fires of size A given in (5.1).

A very simple inverse-cascade model can be introduced as an approximation to the forest-
fire model. This process is referred to as being 'inverse' since the cascade proceeds from the
smallest to the largest scales. Small clusters of trees coalesce to form larger clusters until the
cluster is destroyed in a fire. It is assumed that clusters contain 2°, 2 1 , 2 2 , . . . , 2" trees; the
number of clusters with 2" trees is Nn. Here, No is the number of clusters consisting of one
tree, as before. A set of population equations can be written to describe the behaviour of the
inverse cascade

-T— = \CQ,\NQ - Ci)2ivf - D\N\

— = \Ch2N
2 - C2,3Ar2

2 - D2N2 (5-6)

^ = \Cn^nN
2

n_, - Cn<n+lN
2 - DnNn.

Trees are introduced only at the lowest n = 0 level. Two clusters of size 2n~l coalesce to
form a cluster of size 2". Particles cascade from small clusters to larger clusters. Fires destroy
clusters of all sizes. The constant Co is the rate at which single particles are introduced to
the cascade. The transition probability Co,i is the rate at which single particles combine to
form particle pairs, n = 1. In this simple model, clusters of size 2n are obtained only from
the combination of two clusters of size 2n~l\ the rate at which this occurs is ^[Cn_iinA^_j].
This is equivalent to a collision probability for clusters; since each cluster can combine with
the Nn-\ other clusters, the probability is proportional to N2_l. Similarly, clusters of size 2"
are lost as they combine to form clusters of size 2"+1; the rate at which this occurs is Cw>n+i N

2.
Clusters of size 2" are also lost directly at a rate DnNn. These are the fires in the forest-fire
model and they are proportional to the number of clusters of size 2".

In terms of the forest-fire model, a unit of time t is the planting interval and Co is the
rate at which single trees are planted. In the forest-fire model the number of trees in a cluster
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(*>) (c)

Figure 15. The trees marked by x have been added, (a) A new single-tree cluster is formed.
(b) A pre-existing cluster has been increased in size by one. (c) The gap between two pre-existing
clusters has been bridged so that the two clusters have coalesced to form a single cluster.

can take any integer value. The cascade model is a renormalization group approximation in
the sense that clusters are boxed into sizes 2n. It is similar to other dynamic renormalization
group models that have been proposed (Newman and Wasserman 1990, Newman and Turcotte
1990, Newman and Knopoff 1990). In a sense it is also a mean-field approximation because
a range of cluster sizes are treated as having the same mean size. An important assumption in
the model is that cluster growth is dominated by the coalescence of clusters of approximately
equal size. In the forest-fire model clusters increase in two ways as illustrated in figure 15. If
a tree lands in a space adjacent to a cluster it increases in size by one. But if a tree bridges a
gap between two clusters with n\ and n2 trees, a cluster with n\ + n2 + 1 trees is formed. In
the analogy between the inverse-cascade model and the forest-fire model it is argued that the
latter process dominates and is proportional to the number of clusters squared multiplied by
the transition probability Cn>n+i. It is hypothesized that the addition of single trees to clusters
is negligible compared with the coalescence of clusters. Although clusters of all sizes coalesce
with each other, it is further hypothesized that the coalescence of clusters of approximately
equal size (in the same renormalization bin) dominates. It is further assumed that the transition
probability is proportional to the cluster area so that

Cn,n+l = 2naC (5.7)

where a is a positive constant.
The dependence of the transition probability on area is similar to a collision cross section.

An example would be the use of the set of equations (5.6) to model coagulation in a colloidal
suspension. However, in our case the clusters are only in relative motion due to their growth.
Statistically, the coalescence of randomly growing clusters is no different that the coalescence
of clusters in random relative motion. The assumption that the transition probability is
proportional to the cluster area is somewhat arbitrary and will be discussed further when
solutions are given. In terms of the forest-fire analogy, the loss term DnNn represents fires.
The probability that a spark will hit a cluster is proportional to the cluster area so that we take

Dn (5.8)

where /8 is a positive constant. The rate at which clusters of area 2" are lost is proportional to
the product of the area and the number of clusters; this is true for the forest-fire model. The
constants a and p can be related to parameters in the forest-fire model.

The constant Co can be absorbed into the definition of time with no loss of generality

--Cot. (5.9)
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Figure 16. Schematic flow diagram
for the inverse-cascade model. Clus-
ters of size 2° combine to form clus-
ters of size 2l with probability a AoN$
(where Ao = 2°) and clusters of size
2° are lost in fires with a probabil-
ity pAoNo- Similarly, clusters of size
21 combine to form clusters of size
22 with probability aAiN$ (where
A i = 21) and clusters of size 21 are
lost in fires with a probability fiAiN0.

Substitution of (5.7) to (5.9) into (5.6) gives

(5.10)

— = l2n~laN2 - 2naN2
n - 2npNn.dr l

The behaviour of this inverse-cascade model is illustrated schematically in figure 16. The
steady-state solution to this set of equations is obtained by setting dNn/dr = 0 with the result

No = -
2a

N2 = -
2a

(5.11)

Nn =
-P + (P2+a2N2_x)

l/
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The second solutions of the quadratic equations can be discarded because they give negative
values for Nn. The set of equations (5.11) generates an inverse cascade with a power-law
frequency-area distribution if p « a . In this limit it is found that

No*a~l/2, N^^No, N2^\NU . . . , Nn ̂  ^Nn^. (5.12)

With a = NQ2 and An = 2" this result gives

N» = !2T = Tn- ( 5>13)

This dependence is a direct consequence of the assumption that the transition probability Cn,n+\
has a linear dependence on cluster area in (5.7). This model has been extended to include the
coalescence of clusters of all sizes (Gabrielov et al 1999); the inverse cascade remains scale
invariant and (5.13) remains valid.

The binning used in this inverse-cascade model is equivalent to a logarithmic binning:
that is, NQ includes clusters of size 1, N\ includes clusters of size 2 and 3, N2 includes clusters
of size 4-7, N3 includes clusters of size 8-15, and so forth. When binned logarithmically, the
noncumulative frequency-area power-law distribution yields the same power-law exponent
as the cumulative distribution. When binned linearly, i.e. 1-2,2-3,3-4, . . . , the power-
law exponent for the noncumulative distribution is exactly 1.0 different from that of the
corresponding cumulative distribution. Thus the result in (5.13) (Nn = No/An) is identical to
the result applicable for the forest-fire model given in (5.5) (Nc = No/A). The simple inverse
cascade reproduces the frequency-size distribution that is a characteristic of models that are
said to exhibit self-organized critical behaviour.

This behaviour of the model is relatively easy to explain. As long as p «; 2~"a, the loss
of clusters of size 2" and smaller due to fires is negligibly small compared with the number
of clusters moving through the cascade. Significant numbers of clusters are lost only in the
largest fires that terminate the cascade. Clusters of size 1 are continuously introduced and
combine to form clusters of size 2, the clusters of size 2 combine to form clusters of size 4, and
so forth. As long as a negligibly small number of clusters are lost in fires, the inverse cascade
from small to large clusters results in the power-law relation (5.13). When p « 2~na, large
numbers of cluster are lost in fires and the inverse cascade is terminated.

In order to complete the analogy between the inverse-cascade model and the forest-fire
model it is necessary to relate the loss parameter p to the sparking frequency / . The rate at
which clusters are lost per time step in the inverse-cascade model is 2nNnp, the rate at which
clusters are lost per time step in the forest-fire model is 2nNnf/G, equating these gives

(5.14)

Substitution of this result and a « No
 2 from equation (5.12) into equation (5.11) gives

(5.15)
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Figure 17. Theoretical frequency-area distributions for clusters obtained from the inverse-cascade
model set of equations (5.15) with No/G = 0.05 and 1 / / = 25, 125, and 500. For each firing
frequency, / , the number of clusters, Nn, of size An = 2", divided by the number of grid points
G, is given as a function of An.

In the application of the inverse cascade approximation to the forest-fire model this result gives
the complete cluster size distribution Nn/G when NQ/G and / are specified.

Taking 1// = 125, we see from figure 12 that Nf0/Ns = 4 x 10"4 and from (5.4) that
No/G = 0.05. Using these two values for / and No/G, we calculate the resulting Nn/G for
n = 0 , 1 , 2 , . . . , 13 using (5.15), and in figure 17 plot these with respect to the corresponding
An = 2". Also included in figure 17 are results for 1/ / = 25 and 1/ / = 500, again using
No/G = 0.05. The solid straight line in figure 18 represents the equation (Nn/G = 0.05/An),
a result of the limiting case equation (Nn = N0/An) (5.13) with the given No/G = 0.05.
These results for the inverse-cascade model can be directly compared with the cluster statistics
of the forest-fire model. The frequency-area distributions for clusters from forest-fire model
runs with G = 1282 = 16384 and 1// = 25,125, 500 are given in figure 18. Clusters have
been logarithmically binned in sizes An = 2n. Comparing figures 17 and 18 it is seen that the
agreement is excellent.

This inverse-cascade model can also be used to study the influence of a finite-size grid.
For a finite-size grid the last term in the cascade from (5.10) is

dNn (5.16)

where the size of the grid G =2". In writing (5.16) we have considered a cluster that is equal
in size to the grid. No further coalescence of clusters is possible and the cascade is terminated.
Because clusters of size Nn cannot combine to form larger clusters, there is no —2nftN% term
in (5.16). Clusters of size Nn can only be lost in fires, resulting in the —2npNn term in (5.16)).

Substitution of (5.14) and a « No~
2 into (5.16), with dNn/dr = 0 gives

G 4/ \N0) V (5.17)
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Figure 18. Frequency-area distributions of clusters in the forest-fire model with G = 1282 and
1 / / = 25, 125, 500. The logarithmically binned number of clusters per grid point, Nn divided by
G, of size An = 2 " , is given as a function of An. The theoretical results from the cascade model
(figure 17) closely match the forest-fire model results presented in this figure.
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Figure 19. Frequency-area distributions of clusters with finite size grids with G = 256,1024,4096
from the inverse-cascade model, (5.15) and (5.17), 1 / / = 125 and NQ/G = 0.05. The number of
clusters, Afn, of size An =2", is given as a function of An.

Equation (5.17) is used only for the terminal step, Nn = G. For lower values of n, (5.15)
is used. Taking 1/ / = 125, No/G = 0.05, and G = 256, 1024, and 4096 the resulting
distributions of cluster sizes are given in figure 19. For the smaller grid sizes the peak in the
number of largest clusters due to the termination of the cascade is clearly illustrated.
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Although this inverse-cascade model is very simple, it appears to reproduce the basic
behaviour of the forest-fire model and, therefore, the other cellular-automata models that are
said to exhibit self-organized criticality. The behaviour of the model is easily explained.
Particles are continuously introduced at the lowest-level clusters containing single particles.
These clusters combine to form larger clusters and particles continuously migrate from smaller
to larger clusters. This is the inverse cascade. This cascade is self-similar and thus leads to a
power-law frequency-size distribution of clusters. Particles must also be lost. Although some
particles are lost from all clusters, significant numbers of particles are lost only from the very
largest clusters. This loss of particles leads to a break in the power-law behaviour and the
termination of the cascade.

The inverse-cascade model can be applied to the sandpile and slider-block models in
much the same way that it is applied to the forest-fire model. An initiation of an avalanche is
equivalent to a spark being dropped on a cluster of trees. Tree clusters are equivalent to the
metastable regions over which an avalanche will spread after rupture is initiated,

5.2. The forest-fire model versus the site-percolation model

It is instructive to compare the forest-fire model with the site-percolation model, which is
known to exhibit critical behaviour. The site-percolation model also consists of a square grid
of sites and can be discussed in terms of forest fires (Stauffer and Aharony 1992). Inits standard
formulation the site-percolation problem is specified in terms of the probability that there is a
tree on a site p . If Nt is the number of trees on the grid of size G, then we have p = Nt/G. The
probability p is increased until there is a cluster of trees that spans the grid, this is the critical
probability p c . If the forest-fire model is run without any fires it becomes the site-percolation
model. This is a transient problem in which pit) = N(t)/G is a monotonically increasing
function of time. We have p = pc when a cluster of trees first spans the grid. Monte Carlo
simulations show that pc = 0.59275 (Stinchcombe and Watson 1976).

It is recognized that the site-percolation model is a critical-point problem. The percolation
probability, p , is a tuning parameter and the critical point corresponds to the critical percolation
probability p c . Many power-law scalings have been found to be valid in the vicinity of this
critical point, i.e. \p - pc\ <K 1. One of these power-law scalings is the frequency-area
distribution of all clusters. The number of clusters N with size A scales with A according to

N~A~k (5.18)

where k is known as the Fisher exponent and takes a value k = ĵ-p = 2.055 for a variety
of two-dimensional percolation models (Stauffer and Aharony 1992). However, unlike the
forest-fire model, the power-law frequency-area distribution of clusters is only valid when
Nt « PcG.

In order to compare the behaviour of the site-percolation model with the forest-fire model
we consider a specific example of the transient behaviour of the forest-fire model without any
fires. Trees are planted on randomly chosen grid sites until the entire grid is filled with trees.
The time evolution of the number of clusters of various sizes is given in figure 20. Clusters are
logarithmically binned in sizes An = 2" as described in the previous section. The number of
clusters of size An, Nn, is given as a function of time t. The unit of time, At = 1, represents
G (the total number of sites in the grid) attempts to plant trees. Initially, single-tree clusters,
Ao = 2°, dominate; subsequently clusters grow and coalesce to form larger clusters of size 21,
22, 23, and so forth. The example given has G = 10242. This is a transient inverse cascade
from smaller to larger clusters.

The frequency-area distributions of the binned clusters from figure 20 are given in figure 21
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Figure 20. Dependence of the number of cluster, Nn, of a specified size An on time t for the
forest-fire model without any fires. Results are given for logarithmically binned clusters with Nn

being the number of clusters with area An = 2". For this example G = 10242. One unit of time,
At = 1.00, is equivalent to G (the number of sites in the grid) time steps or attempts to plant trees.
For instance, / = 2.00 represents the time after 2.097 152 x 106 time steps, where an attempt is
made at each time step to plant one tree.

for various times, t, and percolation probability, p = N,/G. The total number of trees on the
grid Nt is given as a function of time by the simple relation

P = - p = t1 - exp(-f)]. (5.19)

The critical density associated with the percolation, pc = Nt/G = 0.59275, is reached
when t = 0.898. It is seen from figure 21 that the frequency-area distribution of clusters when
t = 0.898 has a good power-law (fractal) distribution with an exponent of-0.96. In comparing
this result with the Fisher exponent it is important to note that this is a logarithmically binned
distribution, which is equivalent to a cumulative distribution. The equivalent noncumulative
distribution when binned linearly will have an exponent exactly 1.0 lower, resulting in an
exponent of -1.96, close to the expected Fisher exponent of -2.055.

Although this transient problem clearly exhibits an inverse-cascade behaviour, the
resulting frequency-size distribution is only power-law at the critical percolation threshold.
At other times, when the density of trees is either less than or greater than the critical values
of 0.592 75, the distribution deviates strongly from a power law as illustrated in figure 21.

To further illustrate the difference between critical and self-organized critical behaviour
we give an example of cluster size statistics for the forest-fire model. Again, the clusters are
logarithmically binned in sizes An = 2". With G = 1282 and 1 / / = 700 the number of
binned cluster are given as a function of time in figure 22. The times at which large fires of
various sizes occur are also given. It is seen that large fires occur when clusters of size 1 and
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slope = -0.962

1 0 4 105

Figure 21. Frequency-area distributions of clusters for the transient behaviour of the forest-fire
model without any fires. The logarithmically binned number of clusters, Nn, of size An = 2" is
given as a function of An at various times, /, and corresponding percolation densities, p.

2 are at a minimum. The growth and fall in numbers of small clusters is very similar to that
illustrated in figure 20. It is easily explained in terms of the density of trees. After a large fire
the density is low and there is a transient filling of empty sites. As the sites fill the number of
small clusters decrease until another major fire occurs. Although it is not possible to predict
when large fires occur, it is seen that large fires do not occur when the numbers of small clusters
is increasing.

A comparison of figures 21 and 22 clearly illustrate the differences between self-organized
criticality and criticality. For the forest-fire model the numbers of binned clusters fluctuate
but are well approximated by a power-law distribution at all times. The cascade of trees from
small clusters to large clusters is continuous and can be approximated by the inverse-cascade
model. The power-law (fractal) distribution of cluster sizes (and thus fire sizes) is a direct
consequence of this continuous cascade.

The forest-fire model without fires is identical to the site-percolation model. This is a
transient problem with the density of trees increasing with time until the grid is covered by
trees. Power-law frequency-area distributions of tree clusters are only found near the critical
value of the density of trees. This corresponds to the first cluster that spans the grid. The forest-
fire model is a quasi-steady-state model. Trees are continuously planted and continuously
destroyed in model fires. The cascade of trees from small to large cluster results in power-
law frequency-size distribution for the clusters. A number of authors have discussed the
relationship of self-organized criticality to criticality (Drossel et al 1994b, Sornette 1994,
Paczuski 1995, Sornette et al 1995, Alencar et al 1997).
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Figure 22. Dependence of the number of clusters, Nn,ofa specified size An on time, t, for the
forest-fire model. Results are given for logarithmically binned clusters, with Nn being the number
of clusters with area An = 2". For this example G = 1282 and 1 / / = 700. The unit of time,
At — 1.0, corresponds to G (the number of sites on the grid) time steps, with an attempt to plant a
tree at each time step. The vertical straight lines are instances during the model run at which large
forest fires occur, where the numbers 1-4 represent, respectively, fires that have a size of between
10-20%, 20-30%, 30-40% and 40-50% of the size of the grid, G.

6. Other applications in the physical sciences

A wide variety of other applications of self-organized criticality in the physical sciences have
been proposed. Grieger (1992) has considered applications to climate fluctuations, Nagel and
Raschke (1992) have considered cloud formation, and Andrade et al (1998) have considered
rainfall. Kawasaki and Okuzono (1996) have considered foams. Applications to solar flares
have been given by Lu and Hamilton (1991) and Lu et al (1993) and to accretionary discs by
Dendy et al (1998). Applications to plasma physics have been given by Carreras et al (1996),
Kishimoto et al (1996), Medvedev et al (1996), Sivron (1998), and Rhodes et al (1999).
Field et al (1995), Zieve et al (1996), Olson et al (1997), Bassler and Paczuski (1998), and
Prozorov and Giller (1999) have considered vortex avalanches in super-conductors. Babcock
and Westervelt (1990) and Che and Suhl (1990) have considered magnetic domain patterns.
The Barkhausen effect and self-organized criticality have been studied by Cote and Meisel
(1991) and by O'Brien and Weissman (1994). Cottrell (1996) has studied Andrade creep and
Marchesoni and Patriarca (1994) dislocation networks. Corral et al (1995) and Mousseau
(1996) have studied lattice models of integrate and fire oscillators. Pia and Nori (1991) have
studied pinned lattices, Ciliberto and Laroche (1994) friction, and Sneppen and Jensen (1993)
interface dynamics. Petri etal (1994) have considered microfracturing, Caldarelli etal (1996a)
annealed disorders, Jogi and Sornette (1998) random directed polymers, Bernardes and Moreira
(1995) fracture of fibrous materials, and Drossel and Schwabl (1995) autocatalytic surface
reactions. Traffic flows and jams have been studied by Nagel and Herrmann (1993), Nagel and
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Paczuski (1995) and Nagatani (1995, 1996). Applications have been made to the avalanches
associated with interface depinning (Paczuski et al 1996, Jost 1998).

Some authors consider that the evolution of landforms is an example of self-organized
criticality (Takayasu and Inaoka 1992, Rinaldo et al 1993,1998, Rodriguez-Iturbe and Rinaldo
1997). A cellular-automata model for the development of river networks similar to the sandpile
model was given by Chase (1992). The development of a fractal branching network is an
essential feature of landform evolution. Because landform evolution is not associated with
any form of 'avalanches', it seems to be inappropriate to associate landform evolution with
self-organized criticality (Sapozhnikov and Foufoula-Georgiou 1996). This problem appears
to be more closely associated with diffusion-limited aggregation (Masek and Turcotte 1993).

7. Applications in the biological sciences

7.1. The Game of Life

Models that exhibit self-organized criticality have also been applied to problems in the
biological sciences. The first of these was the Game of Life, originally conceived by John
Conway (Gardner 1970). This is a cellular-automata model that may approximate interactions
between living organisms. A square grid of lattice points is considered. Each point represents
an organism that is in one of two states: alive or dead. The fate of an organism depends on
its eight nearest neighbours. The organism will die if there are less than two live neighbours
(overexposure) and will also die with four or more alive neighbours (overcrowding). Otherwise,
the organism will remain alive. At a dead site, a new organism will be born only if there are
three live neighbours.

This model can be run from random initial conditions using a 'checkerboard' algorithm.
The distribution will evolve until a stable critical population is reached. This stable state is then
perturbed by selecting a random grid point and killing the organism if it is alive or introducing
a live organism if the site is dead. An avalanche of births and deaths follow a perturbation.
The frequency-area distribution of avalanches is a power law and satisfies (1.1) with a « 1.4.
A number of articles discuss in detail the relationship of the Game of Life to self-organized
criticality, including Bak et al (1989), Bak (1992), Garcia et al (1993), Sales (1993), Alstrom
and Leao (1994), Nordfalk and Alstrom (1996), Blok and Bergersen (1997), Newman et al
(1997) and Ninagawa et al (1998).

7.2. The Bak-Sneppen model

Bak and Sneppen (1993) introduced a cellular-automata model for evolution. A one-
dimensional linear set of L sites is considered and each site is assigned a random number
/ between 0 and 1. At each time step, the site with the smallest value of / is chosen. That site
and the two neighbouring sites are then assigned new random values of / from the uniform
distribution. A quasi-stationary state is established. In this state all sites have values, / , above
a critical value, fc. The sites have a uniform distribution of values in the range fc < f < 1.
The value of fc is found to be 0.6670. At the next time step a new random number of / is
assigned to the site with the smallest value of / . If the new value of / is less than fc an
avalanche is initiated until all sites again have values greater than fc. Only adjacent sites
participate in the avalanche. The number of sites that have values less than the critical value fc

define the size of an avalanche. If a site has smaller values several times, these are counted. As
in other examples of self-organized criticality, the noncumulative frequency-size distribution
of avalanches is power law with a slope very near unity; (1.1) is satisfied with a « 1.0 for the
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one-dimension model and a & 1.26 for the two-dimensional model.
Considerable work has been carried out on a mean-field approach to this model (Fly vbjerg

et al 1993, de Boer et al 1994, 1995, Ray and Jan 1994) and renormalization group methods
have been used (Marsili 1994). A variety of other studies have been published (Plotnick and
McKinney 1993, Maslov et al 1994, Paczuski et al 1994, 1996, Sutherland and Jacobs 1994,
Adami 1995, Bak and Paczuski 1995a, b, Fernandez et al 1995, 1998, Ito 1995, Newman
and Roberts 1995, Schmoltzi and Schuster 1995, Sneppen et al 1995, Boettcher and Paczuski
1996, 1997, Daerden and Vanderzande 1996, Sole and Bascompte 1996, Sole and Manrubia
1996, Somette and Domic 1996, Bak and Boettcher 1997, Boettcher 1997, Corral et al 1997,
De Los Rios et al 1997, 1998, Fernandez and Plastino 1997, Pang 1997, Head and Rodgers
1998, Labzowsky and Pis'mak 1998, Tamarit et al 1998, Valleriani and Vega 1999).

In associating this model with evolution, the random numbers represent the fitness of the
species (Kauffman and Levin 1987). The selection of the smallest random number represents
the hypothesis of evolution that the least fit species is replaced or mutates. The influence of this
mutation on the rest of the ecology is simulated by changing the fitness of neighbouring species
on the lattice. An avalanche of mutations is considered to be the analogue of extinctions in
the biological record. These avalanches are basically cascades of species with bad genes that
become extinct. Sole et al (1999) have given a general discussion of criticality and scaling in
terms of evolutionary ecology.

7.3. Applications to extinctions

The temporal variability associated with self-organized criticality is certainly consistent with
the concept of punctuated evolution (Gould and Eldredge 1993). The fossil record provides
ample evidence that evolution is associated with periods of rapid evolution of species and
sudden rapid extinctions.

The largest of all extinctions was the Permo-Triassic extinction at 248 Ma (millions of
years ago), which is estimated to have wiped out 96% of all marine species (Erwin 1993).
While not the largest extinction, the Cretaceous-Tertiary extinction at 65 Ma has received the
most attention. This can be attributed in part with its association with the extinction of the
dinosaur. This extinction has been directly associated with a giant meteorite impact. This
association was first documented by a discovery of a global iridium anomaly deposited at
this time (Alvarez et al 1980). Subsequently other supporting features were found including
impact glasses and tsunami deposits. This 10 km diameter impact is now associated with the
Chicxulub impact crater in the northern Yucatan Peninsula, Mexico. Although there is little
doubt that this impact occurred, there is still considerable controversy regarding its association
with the extinction. A massive volcanic eruption of flood basalts in the Deccan Traps, India
also occurred at about this time and has been associated with the extinction (Officer and Page
1996). Also, due to details of the timing, many paleontologists question the association of
either the impact or the volcanism with the extinction. Other major extinctions occurred in the
Late Devonian at 365 Ma with about a 75% loss of species, in the late Ordovician at 445 Ma
with about 50% loss, and late Triassic at 220 Ma again with about a 50% loss. These are
known as the 'big five' extinction events. It should also be noted that there is no evidence for
a giant impact as a cause of the Permo-Triassic extinction (Retallack et al 1998).

It must be emphasized that the causes of major extinctions remains extremely controversial.
This is summarized by the title of the book by Raup (1991): Extinction: Bad Genes or Bad
Luck? Impacts and volcanic eruptions fall in the bad luck category. Climate changes have also
been proposed as a cause of global extinctions (Sole et al 1996). The approach to extinctions
discussed above, yielding self-organized criticality, certainly falls in the bad genes category.
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Figure 23. Noncumulative frequency-intensity statistics for extinctions in the geological record
(Raup 1986). The measure of extinction intensity / is the number of extinctions of marine animal
families during a geologic stage (time interval) during the Phanerozoic. The noncumulative (linearly
binned) number of extinctions N/AI is given as a function of intensity / . The correlation with the
power-law relation (7.1) is obtained taking a = 2.2 and is given by the solid straight line.

It is clearly desirable to test whether this hypothesis is valid. One approach is to consider
the frequency-size distribution of extinctions. Raup (1986) has given the intensities of 39
extinctions in the geological record. His noncumulative frequency-intensity distribution is
given in figure 23. His measure of extinction is defined as the number of extinctions of marine
animal families during a geological stage (time interval). The noncumulative (linearly binned)
number of extinctions N/AI is given as a function of intensity /. This data is compared with
the power-law relation:

with a = 2.2. Considering the limited nature and scatter of the data, the fit is reasonable.
Although caution must be exercised, the results given in figure 22 tend to support extinctions
as an example of self-organized criticality. Further support for this conclusion comes from
power-law correlations of planktic foraminiferal extinctions (Patterson and Fowler 1996) and
extinctions of Hawaiian avifauna (Keitt and Marquet 1996). Alternative models for extinctions
have been given by Caldarelli et al (1998), Drossel (1998) and Killingback and Doebeli
(1998). Newman and Sneppen (1996) introduced a coherent external noise model for avalanche
behaviour and this model has been applied to extinctions (Newman 1996, 1997a, b, Sneppen
and Newman 1997, Wilke and Martinetz 1997, Wilke et al 1998, Standish 1999). Hewzulla
et al (1997) have discussed the application of self-organized criticality to extinctions in terms
of time series.

7.4. Other studies

A variety of other studies have been carried out relating self-organized criticality to biological
problems. O'Toole et al (1999) have considered termite nest architecture. Vandewalle and
Ausloos (1995) have considered applications to phylogenetic (evolutionary) trees. Herz and
Hopfield (1995) and da Silva et al (1998) have related slider-block models to the neural
reverberations of spiking nerve cells. Chialvo and Bak (1999) have considered learning and

1418 D L Turcotte

memory. And Barabasi et al (1996) have considered applications to breathing avalanches in
the lung.

8. Applications in the social sciences

Applications of self-organized criticality to the social sciences are much more controversial
than applications in the physical and biological sciences. Certainly the social sciences involve
complex interactions, but it is unclear whether these interactions can be qualified beyond
applying random statistics such as Gaussian distributions and Brownian motions. The most
quantitative of the social sciences is economics and power-law (fractal) distributions are often
found (Mandelbrot 1982, Levy et al 1996).

Stock markets are characterized by crashes, which certainly resemble avalanches
(Scheinkman and Woodford 1994, Mantegna and Stanley 1997). Bak etal (1993, 1997) have
considered whether the behaviour of stock markets is an example of self-organized criticality,
but relatively little other work has been done. It has been argued that there are log-periodic
(complex fractal) fluctuations prior to stock market crashes (Feigenbaum and Freund 1996,
Sornette et al 1996, Somette and Johansen 1997), but both their validity and interpretation
remain uncertain.

One interesting application of self-organized criticality is to wars (Roberts and Turcotte
1998). It is first shown that the statistical distribution of war intensities is well approximated
by a power-law distribution. This distribution is then interpreted in terms of the forest-fire
model. An obvious measure of the intensity of a war / is the number of battle deaths. The
frequency-size distribution of war intensities is then simply the dependence of the number of
wars, N, on the number of battle deaths, /. Richardson (1941) was the first to carry out this
type of study using logarithmic binning. He considered 82 wars between 1820 and 1929 and
found that N = 1 war had log/ = 7.0 ± 0.5 (i.e. between 3 160000 and 31600000 battle
deaths, N = 3 wars with log / = 6.0 ± 0.5 (i.e. between 316 000 and 3 160 000 battle deaths),
N = 16 wars with log/ = 5.0 ± 0.5 (i.e. between 31600 and 316000 battle deaths), and
N = 62 wars with log / = 4.0 ±0.5 (i.e. between 3 160 and 31600 battle deaths). Richardson
(1941) pointed out that his statistical data correlated well with the relation

N = cr (8.1)

taking D = 1.0. Richardson (1960) extended and updated his studies in his book Statistics of
Deadly Quarrels. Because logarithmic binning was used, Richardson's results were equivalent
to cumulative distributions.

One of the major criticisms of the use of the number of battle deaths as a measure of a war's
intensity is the substantial change in the global population over the period of time considered.
A more logical measure would be the ratio of battle deaths to the world's population prior
to the war. However, for the earlier wars, estimates of the world's population are unreliable.
For this reason Levy (1983) defines the intensity of a war / as the ratio of battle deaths to the
population of Europe in millions at the time of the war.

Levy (1983) has tabulated the intensities of 119 wars beginning with the war of the League
of Venice in 1495-97 and ending with the Vietnam War in 1965-73. The largest wars were the
Second World War with / = 93 665 and the First World War with / = 57 616. The cumulative
number of wars, Nc, with intensity greater than /, has been converted into a noncumulative
distribution using the derivative technique. The derivative dNc/dI is obtained by taking the
mean slope of a specified number of adjacent data points, in this case five. The dependence of
dNc/dI on/ for the Levy (1983) distribution of war intensities is given in figure 24. If afractal
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Figure 2 4 Noncumulative frequency-intensity distribution of wars based on the Levy (1983)
tabulation of war intensities. The noncumulative number of wars, —dNc/dI, is given as a function
of / . The larger wars correlate well with the power-law relation (8.2) taking D = 1.39.

(power-law) distribution is applicable we would expect a good correlation with the relation

ir=c'-D- (8.2)

This correlation is illustrated in figure 24 taking D = 1.39. This is the best-fit result for wars
with intensities greater than 100. The fit is seen to be quite good for war intensities greater
than about / = 30 and extends over about three orders of magnitude of data. The deviation
for small wars may be real or may be due to the incompleteness of the data set.

Although it is certainly of interest that war intensities obey power-law (fractal) statistics,
a more fundamental question is why? Are wars an example of a self-organized critical
phenomena? In particular, can an association be made between the number of battle deaths in a
war and the number of trees that burn (the area) in a forest fire? If this is done, the frequency-
size distributions for wars given in figure 24 is remarkably similar to the frequency-size
distributions for forest fires given in figure 14. For wars we have a = 1.39 from (8.2). For the
four data sets for forest fires given in figure 14 we have a = 1.3, 1.3, 1.4, 1.5. We can explain
this behaviour for forest fires in terms of the forest-fire model, a key question is whether this
explanation is also valid for wars.

In terms of the forest-fire model a spark ignites a tree and the model fire consumes the
entire cluster to which this tree belongs. This is similar to real forest fires where ignition of the
forest must take place for a fire to take place and the fire then spreads through the contiguous
flammable material.

Similarly, a war must began in a manner similar to the ignition of a forest. One country
may invade another country, or a prominent politician may be assassinated. The war will
then spread over the contiguous region of metastable countries. Such regions of metastability
could be the countries of the Middle East (Iran, Iraq, Syria, Israel, Egypt, etc) or of the former
Yugoslavia (Serbia, Bosnia, Croatia, etc). These are then the metastable clusters. In some
cases the metastable clusters could combine. Albania and Greece bridge the gap between the
metastable clusters of the Middle East and the former Yugoslavia.

Saperstein (1995) has discussed the relation of wars to complexity theory in a general
way. One can qualitatively discuss the breakdown of order in the world in a similar manner to
the 'forest fires' in the forest-fire model. In the forest-fire model, sometimes a match starts a
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fire and sometimes it does not. Some fires are large and some are small. But the frequency-
size distribution is power-law. In terms of world order there are small conflicts that may or
may not grow into major wars. The stabilizing and destabilizing influences are clearly very
complex. The results we have shown indicate that world order behaves as a self-organized
critical system independent of the efforts made to control and stabilizer interactions between
people and countries.

It is easy to argue that the results given here cannot be significant. The introduction of
weapons of mass destruction, particularly the atom bomb, must change global interactions
and the associated wars. However, as we have shown, the noncumulative frequency-area
statistics of real forest fires are well approximated by power-law distributions with exponents
near 1.3. Again it can be argued that attempts to extinguish fires, changing land use practices,
and other human interventions should have affected the resulting distribution of fires. But a
variety of correlations show that the power-law, frequency-area distributions of these complex
phenomena remain valid.

9. Concluding remarks

A number of models and natural phenomena have been discussed that may or may not exhibit
self-organized critical behaviour. It is desirable to provide a 'clean' definition of what self-
organized criticality is, but there is not a universally accepted definition. In fact, some authors
would submit that self-organized critical behaviour is the same as critical behaviour.

This inability to provide a generally accepted definition for self-organized criticality is
quite similar to the concept of fractals. Mandelbrot (1982), in his book The Fractal Geometry
of Nature, did not provide a definition of a fractal distribution. Certainly it is agreed that the
Cantor set is a fractal. But what about a power-law distribution of fragment masses? Are
all or only some of the power-laws observed in nature fractal? In some cases, two power-
law distributions are found in nature for different parts of a parameter space, are these both
fractal? Mathematicians tend to favour restricted definitions, engineers broad definitions, and
physicists are somewhere in between. Although the definition of a fractal remains elusive, the
concept is widely used and has great utility. What about self-organized criticality?

Most authors would agree that the original sandpile model proposed by Bak et al (1987)
is an example of self-organized critical behaviour. But, this agreement does not extend
to the slider-block and forest-fire models. It is certainly possible to provide a rigorous
mathematically-based definition of self-organized criticality. For example, full self-similarity
would be required. However, such a restricted definition may not address the real utility of the
basic concept. The essential question is whether a broad range of real complex phenomena
exhibits similar behaviour under very broad conditions. This seems to be true for earthquakes,
landslides and forest fires. It may also be true for a variety of other examples in the physical,
biological and social sciences. A few examples are species extinctions, epidemics, stock-
market crashes and wars.

A universal feature of these phenomena is that they are driven systems that involve
'avalanches' with a fractal (power-law) frequency-size distribution. There is a steady-state
'input' and the 'output' occurs in the 'avalanches'. Although it has not been widely established,
there is evidence that a system with self-organized criticality is on the 'edge' of chaos. Adjacent
solutions exhibit power-law divergence in time, whereas chaotic solutions exhibit exponential
divergence (a positive Lyapunov exponent).

The simple forest-fire model exhibits many of the characteristics associated with self-
organized criticality. This forest-fire model is also closely related to the site-percolation model
that exhibits critical behaviour. The transient forest-fire model without fires is identical to
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the site-percolation model, the critical point is when a cluster has formed that crosses the
grid. For both the quasi-steady-state forest-fire model with fires, and the transient forest-fire
model without fires, there is an inverse cascade of trees from small to large clusters. In the
quasi-steady-state forest-fire model this cascade gives a power-law frequency-area distribution
for both the smaller clusters of trees and the forest fires. In the transient cascade associated
with the site-percolation problem, a power-law distribution is found only at a critical density
of trees. The quasi steady-state, self-similar cascade can explain major differences between
critical and self-organized critical behaviour, at least for some models.

The above discussion has focused on the power-law (fractal) distributions of the
'avalanches'. However, there are other important aspects of the behaviour of models and
natural phenomena that are associated with self-organized criticality. One of these concerns
correlation lengths. Studies of critical phenomena emphasize the systematic increase in the
correlation length as the critical point is approached. It has not been established whether
there are systematic temporal variations in correlation lengths in models with self-organized
criticality. There is observational evidence for a well-defined correlation length for seismic
activation prior to a major earthquake.

As indicated by the large number of references given in this paper, there is a broad interest
in self-organized critical behaviour, both in terms of understanding its behaviour and in terms
of applications. What has been written above is certainly only a progress report on a rapidly
evolving subject, with concepts and applications of self-organizing criticality being published
at a rapid rate.
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