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Chapter 2

NORMAL MODE MODEL

1. DERIVATION OF THE EQUATION OF MOTION
In the following the mathematical model is described for the response of

the viscoelastic linear Maxwell Earth model to a delta function type of force.
After having derived the Green functions, the response of the Earth to arbitrary
loads or forces in space and time is found by convolving these functions with
the loads or forces.

We assume that the rheological laws (stress - strain and stress - strain rate
relations) are linear and that the strains are infinitesimal. We do not deal
with non-linear rheologies and finite strain theory, but that does not imply that
these are not important for the Earth Sciences. However, for an introductory
treatment of solid-earth relaxation processes we can neglect both.

For long time scale processes the inertial forces vanish, and conservation of
linear momentum requires that the body forces F acting on the element of the
body are balanced by the stresses that act on the surface of the element. At any
instant of time we thus have stresses aij on the infinitesimal block with density
P

V-a + pF = d (2.1)

Assume now that the block is situated somewhere inside the Earth and that
we displace the block by an infinitesimal amount u. Furthermore, assume that
the Earth is compressible, laterally homogeneous (but radially stratified!) and
hydrostatically pre-stressed. We also assume that the Earth is not rotating (we
will study rotation at a later stage). We will consider the elastic equations
of motion, since any linear viscoelastic problems, which are of interest to us,
is equivalent to an elastic problem in the Laplace domain, in agreement with
the Correspondence Principle, as in will be shown in the following. The
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6 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

stress tensor a^j is the sum of the initial pressure, due to the hydrostatically
prestressed conditions, plus a perturbation a}j9 so that a^j reads

a}j denotes a tensor which describes the acquired, non-hydrostatic, stress,
that will be related to the strain by means of the appropriate constitutive equa-
tions. The pressure enter the equation above with the minus sign, since it
denotes a compressive stress, which is negative according to the convention
that stressea re positive when they act in the same direction of the outward
normal to the surface. On the elementary surface enclosing the elementary
volume in which the equation of equilibrium holds, the stress due to the load
on the overlying material, namely the pressure, is negative according to this
convention. The equation of conservation of linear momentum thus reads

V • a1 - Vp0 + F = 0 (2.3)

If the body is subject to an elastic displacement u in to, then the pressure in
to + St at a fixed point in space, is given by

Po{tQ + St) = po(*o) - ft • Vp0 (2.4)

The minus sign accounts for the fact that the pressure has to increase at a
fixed point in space if the elastic displacement occurs in the opposite direction
with respect to the pressure gradient.

The equation of conservation of linear momentum after the elastic displace-
ment reads withpo(to + St) instead of po(*o)

V • a1 - Vpo(tQ) + V{u • Vp0) +F = o (2.5)

The gradient of the initial pressure is given by

Vp 0 = -Poger (2.6)

where er denotes the unit vector, positive outward from the Earth center.
With this explicit expression of the gradient of the initial pressure, the equation
of equilibrium becomes

V • a1 - Vpo(*o) - V{pogu -er) + F = 0 (2.7)

Combining (3.2) - (3.7) with (3.1) gives the following balance of forces in
the fixed position in space

V • cri - V(pogu -er)+pF = 0 (2.8)
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Normal Mode Model 1

The force F can generally be split into gravity and all kind of other forcings
and loads (e.g. tidal forces, centrifugal forces, loads due to ice-water redis-
tribution, earthquake forcings, etc.). Let us, for the moment, assume that the
force F is the gravity (so essentially the condition of a free, self-gravitating
Earth with no other forcings or loads acting on its surface or interior) and that,
as it is a conservative force, it can be expressed as the negative gradient of the
potential field <j>:

F = - V0 (2.9)

The potential field </> can be written as

</> = <£o + <£i (2.10)

with cj>Q the field in the initial state and <j>\ the infinitesimal perturbation.
Combining (3.4) with (3.9) - (3.10) and inserting this in (3.8) leads to the

following linearized equation of momentum:

V • <n - V(pogu • er) - p0V<£i - p!ger = 0 (2.11)

whereby use is made of the fact that, according to (3.1), in the initial state

V-ero + A)^o = O (2.12)

with FQ = go the volume force in the initial state. Note that there is not a
term with pi in the advective term of (3.8), as this would combine with u to a
second-order term. For the same reason the term p\<t>i does not occur in (3.11).
Note also that the first term of (3.8) is canceled by the term — po V0o> as

Vp0 = PoV^o (2.13)

according to (3.2) and (3.9).
The first term of (3.12) describes the contribution from the stress, the second

term the advection of the (hydrostatic) pre-stress, the third term the changed
gravity (self-gravitation) and the fourth term the changed density (compress-
ibility). In cases where self-gravitation is neglected, the third term will be zero,
while in the case of incompressibility the fourth term will be zero.

The perturbed gravitational potential </>i satisfies the Poisson equation

V 2 0i = 4TTGPI (2.14)

with G the universal gravitational constant. In the case of incompressibility
the right-hand term will be zero and (3.14) reduces to the Laplace equation

V2</>i = 0 (2.15)

D R A F T May 3 1 , 2 0 0 1 , 6 : 2 8 p m D R A F



8 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

Equations (3.11) and (3.14) (or (3.15) for incompressible deformation) need
to supplemented with a constitutional equation describing how stress and strain
(or strain rate) are related to each other, and for this we can, for instance, use
the Maxwell model.

For the 3-D Maxwell model, stress and strain rate are related by

1 3 3

°ij + -(aij - o E akkSij) = 2jxey + A E tkkSij (2-16)

2. FUNDAMENTAL SOLUTIONS IN THE LAPLACE
DOMAIN

In principle, deformation, stress field and gravity field for free Earth models
can be solved by means of numerical integration techniques from the three
equations (2.8), (2.10) or (2.11), and (2.12) with appropriate initial, boundary
and continuity conditions. However, we will see that it is also possible to solve
these equations virtually completely analytically by means of normal model
modeling in the Laplace transformed domain. This analytical way of solving
has a few great advantages: it leads us to a deeper insight in the mechanisms of
the relaxation process with additional checking possibilities, and certainly for
spherical (global) models they often prove easier to use than numerical integra-
tion techniques. Numerical integration techniques have also their advantages.
For instance, they can generally easier deal with more elaborate models (e.g.,
those that use non-linear rheologies or lateral variations) and often prove sim-
pler to use in half-space (regional) models. So the numerical and analytical
models are more to be appreciated as being complimentary than redundant.

The Laplace transform F(s) of a function f(t) is defined by

/»o

H*) = /
Jo

(2.17)

with t time and s the Laplace variable (which has the dimension of inverse
time).

Laplace transformation of (2.12) gives:

1 3 3

^ ^ *J * = 1 i b = l

or

e^s) (2.19)

with the Laplace transformed Lame parameters (also called compliances)
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Normal Mode Model 9

AW = - r V (2.20)
S + fl/f]

~ Xs + fik/ri
\(s) = • -.— (2.21)

s + vh

and

with k the incompressibility (or bulk modulus).
Note that (2.15) has the form of a Hookean (linearly elastic) rheological

equation in the Laplace-transformed domain. This is a very important aspect
which greatly facilitates calculations. So we can derive equations for linear
Maxwell viscoelastic bodies in the time domain with formulas for linear Hooke
elastic bodies in the Laplace-transformed domain. It can be shown that this is
generally valid for all linear viscoelastic bodies (so also for, e.g., the Kelvin
and Burgers models). The so-called Correspondence Principle states that by
calculating the associated elastic solutions in the Laplace-transformed domain
the time dependent viscoelastic solutions can be found by Laplace inversion in
a unique way. Now on, in the other section of this chapter, the tilde over the
quantities will be neglected, in order to not overwhelm the text, although all
the equations and quantities are defined in the Laplace transform domain.

3. EXPANSION IN SPHERICAL HARMONICS
In a normal mode expansion, using spherical coordinates with axial sym-

metry, the displacement field u can be expanded into a spheroidal and toroidal
part

u = us + u T = V x V x [S{r)er] + V x [T(r)er] (2.22)

where S and T stand for spheroidal and toroidal
e r denotes the unit radial vector. The two scalar functions T S can be

expanded into spherical harmonics

f T(r) 1 _ ~ * f TT(r) \ m( ,

I 5(r) > " hnkl t *W J
where Tj71^) and S™(r) are the radial spectral coefficients, 0 the colatitude

and <f> the longitude, with Yl
m(d, 4>) the spherical harmonics defined by

y^(0 5 0) = (-l)mPF{co80) exp(tm^) (2.24)

where

pm(~\ — (* Z)
Pl {z) - ¥i\
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10 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

are the associated Legendre polynomials of degree / and order m. Substitut-
ing the expansions of the spheroidal and toroidal components in the expression
for the displacement results into

(2.26)
[ («5)</> J i=om=-l { ^m(r)V^ J

and

f (uT)r) oc i r o i
(2.27)

From now on, the superscript 5 and T for spheroidal and toroidal will
be neglected, being self-explanatory the case in which the spheroidal and
toroidal problem will be considered. The spheroidal and toroidal differential
equations will be solved separately, sinse the medium does not carry lateral
heterogeneities. Assuming axial symmetry, post-glacial rebound requires the
solution of the spheroidal equations, while dislocation sources, that mimic the
occurrence of faulting in the lithosphere, include the toroidal component of the
solution.

4. SPHEROIDAL EQUATIONS
The equilibrium and Poisson equations can be written in spherical coordi-

nates (Fung, 1965), with derivatives with respect to r and 6 denoted by dr and
d#. Assuming that there is no longitudinal components in the fields as well as
in their derivatives and taking account of the continuity equation written on the
following way, based on the assumption that the umperturbed initial density po
is constant in time

p \ = —V • (PQU) = —u - er drpo — po V • u (2.28)

where A = V • u and pi denotes the perturbed density, the two components
of the momentum and Poisson equations become

0 = -podr<j>i + poSoA - podr(ugo) + drarr
(2.29)

+ r d0are + r 1 (2arr — GQQ — a^ + ar$ cot 0)

0 = -poefa pogo^
(2.30)

cot 0 + $ar$)
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Normal Mode Model 11

(2.31)

and the stress components in spherical coordinates are expressed as follows

crrr = A A + 2nerr (2.32)

= AA + 2jiew (2.33)

= AA + 2jue^, (2.34)

ar$ — 2fier$ (2.35)

The strain tensor components are given in terms of the radial and horizontal
(along meridian) components of the displacement

err = dTu (2.36)

€06 = r \y$v + V>) (1.51)

e^ = ( r - 1 (v cot 0 + u) (2.38)

where ^ and v denote the radial and tangential (along meridian) components
of the displacement vector. The fields defined above can be expanded in
spherical harmonics

oo

) (2.40)

£vKr)d*Pj(cos0) (2.41)
1=0

Pi{cosO) (2.42)
l=o

oo

The r and 6 components of the momentum equations become
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12 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

0 = -podr<j)i + Po9o& - Podr(ugQ) + dr(\A + 2fj,dru)

+%[±rdTu - Au + rdedrv + drv cot 0) (2.44)

+d$u + {dgu) cot 0 - 3{dev + v cot 0)]

The 0 component of the equilibrium equation is given by

0 = -{f)d9<h. - (*fL)d9u + fldr(v - f + \deu)

+ % (df t> + d0v cot9-v cot2 9 - v) (2.45)

Making use of the expansion of the displacement components u, v and A
and 4>i defined above and of the properties of the Legendre equation and of its
derivative

cot 0±Pi{d) = -1(1 + l)PHO) (2.46)

= 0 (2.47)

^Pi + ^Pi cot 9 - ±Pl[l + cot2 9 + 1(1+ l)]=0 (2.48)

the momentum and Poisson equations become

0 = podr<f>i + pogoxi - Podr(goUi) + dr(Xxi )
(2.49)

1(1 + 1)(-Ui - rdrVi W)}

rdr{n(drVi - )}
(2.50)

-Vt- 21(1 l)V}

(2.51)

where all the terms in in the 9 component of the momentum equation have
been with respect to 9 and multiplied by r. In particular the derivative of the
Legendre equation has been used to deal with the term in brackets in (3.45) that
contains d2.
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Normal Mode Model 13

From the expression of the divergence V- in spherical coordinates it is
possible to express A in terms of the harmonic components of the displacement
vector. From A = V • u and from the expression of the divergence in spherical
coordinates, equatio A. 123 in Ben-Menahem and Singh (1981), where the
Legendre equation is used to deal with the v component of the displacement, it
is obtainedo

Xl =

The solution vector is defined by

- 1 ( 1 (2.52)

2/2 =

2/jidrUi

(2.53)

2 /5 = -<t>l

2/6 = -bin -

where 11/ = Ax*. The quantity yQ is for obvious reasons sometimes nick-
named the potential stress. Why this parameter Q is chosen rather than dcfr/dr
will become clear when the boundary conditions are discussed in the next
section.

Exercise. Prove that with the above definition of solution vector, the mo-
mentum and Laplace equations can be cast in the matrix form

(2.54)

where

2A

r

4 / 2 -(? " «) "

4nGp(l+l)
\ r

0
4nGpl(l+l)

1

?
0

4/j,

fir
\JT

0

0

0

KI+1)
T

__3
r

0

0

0

0

P('+l)
r

_ ^
r

r
0

0

0

0

1
In

(2.55)
with
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14 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

p(s)=\(s)+2»(S)

and

7(«) = /*(*)
3A(a)
A(a)

(2.56)

(2.57)

In the incompressible case the Lam6 parameter A becomes infinitely large
in such a way that AV • u(s) is finite and equal in magnitude to the isotropic
pressure. For the incompressible case, (2.17) results in \(s) -> oo, implying
that P(s) -* oo according to (2.37), and 7(3) -¥ 3/u(s) according to (2.38).
With this, the matrix (2.36) becomes for the incompressible case

At(r,s) =

-4irGp

i(W)
I

2(2l2+2l-l)f>i

4nGpl(l+l)
r

5. ANALYTICAL SOLUTION FOR THE
INCOMPRESSIBLE CASE

From the condition of incompressibility

0

0

0

r
0

0

0

r

r
0

0

0

0

P(W
r

r

7*

0

0

0

•^ — p

0

i 1

7*

(2.58)

XI = 0

and homogeneity of each layer

(2.59)

(2.60)

we obtain for the Laplace and momentum equations

= 0 (2.61)

0 =

1(1
(2.62)
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Normal Mode Model 15

0 = po<h - PogoUt +UL+ firdridrVt - % + UL)

+^Ut + SrdrVi -Vx- 21(1 + l)Vi

where we have taken into account that the product Xxi remains finite for an
incompressible body. From the equation (A. 125) of Ben-Menahem and Singh
(1981) and the Legendre equation

v;=af+?a-^±il (2.64)
Deriving (3.64) with respect to r and summing the result of this derivation

to (3.65) multiplied by 2/r and with (3.65) multiplied by -1(1 + l ) / r 2 , we
obtain, taking into account the equation (3.66) above

v2
r(po<t>i - pogoUi + n o - o (2.65)

where it has been made use of the relationship between V\ and XJ\ derived
from the condition of incompressibility xi — 0 font gives

rdrUl + 2Ul
Vl = 1(1 + 1) ( 2 ' 6 6 )

This results derives from (A. 123) by Ben-Menahem and Singh (1981)

V - u = dru + -u + -dov + ^^-v (2.67)
r r r

From (3.64), collecting the derivative with respect to r

(2.68)
The right hand side can be put in the form

4 [ ^ ^ ^ H ) ^ K R ^ ( ) z ] ( 2 . 6 9 )

that becomes with (3.65) and (3.61)

^ ^ (2.70)

Multiplying (3.70) by r2 and equating to the left member of equation (3.68),
taken with the opposite sign and multiplyed by r2, we obtain

(2.71)
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16 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

We define

Po9oUi - pQ(j>i - Hi = Ti (2.72)

Exercise. Show that the solution of the Laplace equation (3.63) takes the
form

(2.73)

where rl denotes the regular solution in r = 0 and r~^+1) denotes the
singular one.

The subscript 3 in (3.73) is used for <f>\ for convenience. V satisfies the
Laplace equation (3.67) and thus takes the following form, with the same
dependence of (j> with respect to r, where the constants c\ and cj, with the
subscript 1, are multiplied by ji for convenience, as it will be apparent in the
following

T - iicXTl + nclr-V+V (2.74)

The homogeneous equation

Ar drUi + 2Ui-l(l + 1)17, = 0 (2.75)

obtained from (3.72) has two solutions, a regular one

1) (2.76)

and a singular one

c*2r-«+V (2.77)

A particular solution for the regular component can be obtained substituting
the regular component of T, providing

-1(1 + 1)17J - r 2 ^ ' - 1 ) (2.78)

The regular solution is thus

Cl1
 r«+D

The singular component of the solution becomes, with the same procedure
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Normal Mode Model 17

(2.80)

Summing up all the contributions we obtain

From (3.55) and (3.82) we obtain

Exercise. Verify that with the definitions of the solution vector (3.55) and
(3.81), (3.82), the components yz, y± and y& take the form

y3 = Cl [
{lp9r%^r'] + <*fo*r + 2(Z -

+C3 [-^] + cj [^^ffiff-1*] (2-83)

_J]_
(2j+3)(j-|-i)

r -r C2 - D (1-2)

(2.84)

(2.85)

For each of the JV layers of the Earth model (assuming that each layer has
material parameters which are constant inside it, while also the gravity g is
assumed to be constant inside such a layer), the solution can be written as

i (2.86)

in which Yj is the fundamental matrix and Cj a 6-vector integration constant.
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18 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

The fundamental matrix Yj(r, s) reads

lrl+l

2(21+3)
(l+3)rl+l

2(21+3) (J+l)
(lp9r+2(l2-l-3)n)rl

2(2J+3)

(2J+3)(J+1)
0

2J+3

(p0gr+2(l-l)iiy

I
0

1-2
-por

-l-2

J+i)
(l+l)pQgr-2(l2+3l-l)n p0gr-2(l+2)n

-(2l+l)rl~

0
27rGpo(/+l)

(2.87)
Each column of this fundamental matrix represents an independent solution

of the system (3.56) of ordinary differential equations. The analytical expres-
sion of the fundamental solution (3.87), which includes the regular and singular
part in r = 0, has been first obtained in Sabadini, Yuen and Boschi (1982),
while the regular part, which is appropriate for the solution of an homoge-
neous, viscoelastic sphere, has been first obtained by Wu and Peltier (1982).
The inverse of the fundamental matrix Y has the form

+3

Yf1{r,s)=Dl(r)Yl(r,s)

with D being a diagonal matrix with elements

(2.88)

diag(D|(r))

and

21 + 1 \
l + l 1(1 + 1)

2(21 - r1'1 r
2(21 + 3)

(2.89)

Yt(r,s) =

pgr
A* I

AnGpr

o o

-21(1+2) J

0 0

IT

(2-Qr

0

0 \

0
- 1

0

0

0 21+1 -r )
(2.90)

Although it would be quite laborious to derive such an analytical compact
form of a 6 x 6 inverse matrix 'by hand', this can be done nowadays by means
of an algebraic software package like Mathematica. This was first done by
Spada et al. (1992). Of course, it is not so difficult to show analytically that
Y x Y " 1 = I, with I the identity matrix, by hand!
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Normal Mode Model 19

6. TOROIDAL SOLUTION FOR THE
INCOMPRESSIBLE CASE

The analogous of the A matrix for the toroidal case has been obtained by
Alterman, Jarosh and Pekeris (1959) for the elastic case, that remains valid also
for the viscoelastic case once the Correspondence Principle is considered. It
reads, with the superscript T to distinguish the toroidal case

The vector solution y T is given by

yi = tr (2.92)

I M )

Exercise. Show that the I component of the fundamental solution is given
by

The inverse matrix of the fundamental solution reads

7. SOLUTION FOR AN ARBITRARY FORCING
SOURCE

After the solution for the homogeneous system of ordinary differential equa-
tions has been provided, it is now necessary to derive the solution of the
non-homogeneous equations that account for the forcing term F entering equa-
tion (3.1), to deal with surface or internal loads, centrifugal forces and seismic
dislocations.

The general solution of the non-homogeneous system of ordinary differential
equations, where f is the vector characterizing the source
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20 EARTH ROTATION, SEA LEVEL AND GEODYNAMICAL PROCESSES

^y-A-y + f (2.96)

is given by

y(r) = Y(r)[ f V^r'jf (r')dr' + Y-^nOyfo)] (2.97)
Jro

In the following derivation it is assumed that the source is embedded in the
outermost layer of radius a, denoting the radius of the Earth, and internal radius
6, denoting the interface between the bottom of the lithosphere and underlying
layer. This procedure can generalized to a source embedded in an arbitrary
internal layer. If the vector f has this form

f = fS(r - rs) (2.98)

with rs denoting the radius of the source the non homogeneous system of
ordinary differential equations takes the following form

y(r) - { Y(r)[Y-Hrs)If + Y~\b)y<P)l r. < r <
b<r<rs;

Exercise. Show that, if the forcing vector has the form

f = fS{r - rs) + ffd'(r - r8) (2.100)

the solution is given by

v(r\-) *vn* v5A"T-(r5)f
;)+Y H ŷW] rs<r<a;

y\r) ~ 1 VMV-VMV/M b<r <rs;

(2.101)

& PROPAGATOR MATRIX TECHNIQUE
For each layer of a spherical Earth model the solution vector (2.39) can be

determined from the fundamental matrix. This solution vector expresses the
most general solution for the displacements (radial and lateral), the stresses
(radial and lateral), the gravity and the parameter y^ from which the gravity
gradient can be derived, for each layer of the spherical model and for each
harmonic degree / in the Laplace domain. Each viscoelastic layer of the model
is bounded by either another internal viscoelastic layer or an external layer (free
outer surface, inviscid outer core layer at the core-mantle boundary). For each
of these cases we need to determine the boundary conditions.
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Normal Mode Model 21

The internal boundary conditions are quite easy: for a boundary between
two viscoelastic layers we require that £/j, Vj, &rri, aToi and fa are continuous.
This implies that during deformation there will be no 'cavitation' and no slip,
while it is also assumed that no material crosses the boundary (otherwise
we should have considered continuity of flow, pUu rather than Ui). Internal
boundaries where no material crosses are called chemical boundaries. Internal
boundaries where material does cross, undergoing a phase change, are called
phase-change boundaries. The boundary between the upper mantle and lower
mantle at about 670 km depth is likely to be partly a chemical and partly a
phase-change boundary, but we will assume here that in our Earth models there
are only chemical boundaries.

As was already alluded to when the parameter ^was defined in (2.34), we
do not take the gravity gradient as sixth component of the solution vector
but a combination of gravity, gravity gradient and radial displacement. The
reason becomes clear when the boundary condition for the gravity gradient at
the free outer surface of the model is considered. If (jf denotes the gravity of
the external layer and <f> of the top layer of the Earth model, then at the free
surface

(2.102)

As the gravity gradient of the external layer satisfies (note that </> proportional
to l/rn+1 is a solution of (2.10), while the other solution, being proportial to
rn , becomes irregular at infinity)

_ * (

and

fi = <h (2-104)

we can express the external boundary condition as

y6 = - ^ - — < £ + 4irGpUt = 0 (2.105)
or r

With this it is clear that also yQ is continuous for internal boundaries between
viscoelastic layers.

At the interface r = r<, the top layer i, in which

W (2.106)

can be linked to the layer i + 1 below it, with
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by

y (0 = y (*+ i ) (2.108)

as a consequence of the boundary conditions at the internal boundaries.
With (2.50) it is possible to express the unknown constant vector C^ into
the unknown constant vector C^%+1\ Doing this for every internal boundary
of an N layer model (layer 1 is the top layer (crust or lithosphere), layers
2,3,..., JV — 1 the layers below it, and layer N the core), the solution vector at
the surface of the Earth at r = a can be related to the conditions c\ ' (rc) at
the core - mantle boundary (CMB) r = rc as

(2.109)

The conditions at the CMB have been disputed among geophysicists since
the 1960's. This controversy concentrates on the treatment of the continuity
conditions for the vertical deformation at the CMB. Without going into details,
if it is required that the vertical deformation at the CMB should be continuous,
then this restricts the core to being either into a state of neutral equilibrium
(homogeneous with neutral adiabatic temperature gradient) or that the radial
stress at the CMB is zero. Both could be the case, but such restrictions are
obviously not always the case in reality. Therefore the vertical deformation
should in general not be continuous at the CMB. This might seem strange,
as one would think that this could lead to 'cavitation' or to overlap of layers
occurring. The way out of this conundrum is that the fluid core layers are rather
to be interpreted as equipotentials rather than material layers.

The gravity should be continuous at the CMB, at least: if we assume that
there are no additional masses positioned at the CMB. Inside the core, the
gravity should be proportional to rl, as the other solution of (2.10) is irregular
at the center of the Earth. Note that this is in contrast to the surface gravity that
we used to derive (2.45). So for the lowermost mantle layer at the CMB we get

yiN\rc)=K1r
l
c (2.110)

with yl ' the fifth component of the vector y W and K\ a constant.
Assuming that the core is inviscid (fluid), we can readily deduce that the

tangential displacement of the mantle is not restricted, so for the lowermost
mantle layer at the CMB we can set

yiN)(rc) = K2 (2.111)

with K2 a constant and y^ the second component of the vector y W .
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This leads to the following condition for the lowermost mantle layer at the
CMB (note the minus sign of </> in (2.33)):

9c

J-l
(2.112)

[ 'with gc the gravity at the CMB, K% a constant, and y[ ' the first component
of the vector j /W.

The radial stress (pressure) should be continuous over the CMB. With (2.54)
this leads for the lowermost mantle layer at the CMB to the condition

yiN)(rc) = 4
37 (2.113)

with y^N' the third component of the vector yW.
The tangential stress in the fluid core is zero, and thus continuity of stress

requires for the lowermost mantle layer at the CMB that

yiN\rc)=0 (2.114)

with y[N' the fourth component of the vector y W .
Finally, the parameter Q should also be continuous at the CMB, leading for

the lowermost mantle layer at the CMB to the condition ((2.52) and (2.54) in
(2.34)):

with y^ the sixth component of the vector y W .
If we treat the core as the innermost boundary layer, then with (2.52) - (2.57)

the conditions at the CMB can be expressed as a 6 x 3 interface matrix IC)j(rc)
as

(2.116)

with

7 A
0

0

0
4

: 0
1

0

0

0

1
0

PcAcrc

0

0

0 ZAC

(2.117)

with pc the (uniform) density of the core, Ac = |7rGpc, and Cc =
a 3-vector constant.
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The solution vector y(a, $) (2.51) with (2.58) can either express the condi-
tions for a free surface, or express the conditions for a (tidal) forcing or (surface)
loading. The loading/forcing case will be treated in section 2.5.

The solution vector y (R, s) can be split into two parts: one part that contains
the unconstrained parameters Uu V\ and <$>\ (which we are solving for), and the
other containing the constrained y$ = <rrr, y± = ar$ and y§.

For a free surface, the components of the latter, as we have seen already, are
all zero at the surface. If P\ denotes the projection vector of (2.51) with (2.58)
on the third, fourth and sixth component of (2.51) with (2.58), then we get the
following condition:

0 = Piy(a,s) = Px (j[ YW^sJYW^n+^s)^ Ic,i(rc) - Cc

(2.118)
and this condition puts constraints on the s-values in the sense that only those

s-values for which (with (2.58))

(rils)Yjfr\ri+1,8))Icj{re)) = 0 (2.119)

are non-zero solutions of (2.60). The expression (2.61) is called the secular
equation and the determinant the secular determinant Its solutions s = SJ (j =
1,2,3,..., M) are the inverse relaxation times of the M relaxation modes of the
Earth model. These SJ are dependent on the harmonic degree I (and thus must
be determined for each harmonic degree), but the index I is left away in order
not to complicate the indexing. The total number of relaxation modes for each
harmonic degree, M, is the same for each harmonic degree (with the exception
of degree 1, but we will not digress on the differences between degree 1 on the
one hand and degrees 2 and higher any further).

Experience and (extremely laborious) analytical proofs have led to the fol-
lowing results:

• The surface contributes one mode, labeled MO.

• If there is an elastic lithosphere on top of a viscoelastic mantle, then there
is one mode triggered by the lithosphere - mantle boundary, labeled L0.

• At the boundary of two viscoelastic layers, one buoyancy mode is triggered
if the density on both sides of the boundary is different. Buoyancy modes
between two mantle layers are usually labeled Mi, with i = 1,2,3,...,
whereby M l is usually the buoyancy mode associated with the 670 km
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discontinuity (upper / lower mantle) and M2 with the 400 km discontinuity
(shallow upper mantle / mantle transition zone).

• At the same boundary two additional viscoelastic modes are triggered if
the Maxwell time on both sides of the boundary is different (so if the
viscosity and rigidity are different, but the ratio of viscosity and rigidity not,
then these viscoelastic modes are absent). These 'paired' modes are also
called transient modes as they have relatively short relaxation times, and
are therefore usually labeled Ti, with i = 1,2,3,....

• The boundary between the lowermost mantle layer and the inviscid core
contributes one mode, labeled CO.

It is thus possible, with the above rules, to determine the total amount of
modes of (2.61). This is of importance, as solving (2.61) has to be done
numerically. However, this root-solving is the only non-analytical part of the
viscoelastic relaxation method as described in this chapter.

The root-solving procedure usually consists of two parts: grid-spacing,
followed by a bisection algorithm. In the grid-spacing part, the s-domain is
split into a number of discrete intervals. For each s-value at a boundary of
an interval, the value of the determinant of (2.61) is calculated, after which
this value is multiplied with the value of the determinant of the s-value of
the boundary next to it. If this product is positive, then the determinant has
not either not changed in sign (or has changed an even amount of times).
If the product is negative, then we are sure that there is (at least) one root
inside the interval bounded by the two s-values for which the determinant was
calculated. In that case, the interval is split up in two parts, and the procedure of
determining the product of the determinant of the bounding s-values is repeated.
The interval where the determinant changes sign will result again in a negative
product, and for this interval the procedure of cutting the interval in two, etc.,
is repeated. Thus the s-value where the determinant of (2.61) is equal to zero
becomes progressively better estimated with each further step in this bisection
algorithm. Of course, it can happen that the determinant of (2.61) changes sign
over a small s-interval twice or even more times. It is thus necessary to choose
the grids small in the s-domain (in practice, it appears that especially the two
modes of each T-mode pair have inverse relaxation times (s-values) that are
very close to each other). Only after the complete number (determined with the
rules above) of roots/modes of (2.61) has been found, can one be sure that the
complete signal will be retrieved after inverse-Laplace transformation. For this
final step in the relaxation modeling procedure we use the so-called method of
complex contour integration. Those readers who are not acquainted with this
technique will find an overview in Appendix I.
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9. PROPAGATION OF THE TOROIDAL SOLUTION
The same procedure discussed above can be used to propagate the toroidal

solution. At the CMB the boundary condition is

lfe(c)=0 (2.120)

that states that at the core-mantle boundary the tangential stress are zero
(Smylie and Manshina, 1971).

Exercise. In analogy with the spheroidal case, it is possible to build Ic(rc),
which is now a vector, that allows to make use of the same propagation proce-
dure described for the spheroidal case. Making use of the boundary condition
at the CMB for the tangential stress, show that Ic(rc) takes the form

^ j (2.12D

10. INVERSE RELAXATION TIMES FOR SIMPLE,
INCOMPRESSIBLE EARTH MODELS

In order to gain insights into the physics of th erelaxatio processes, it is
important to have a close look at the relaxation times corresponding to the
modes excited by discontinuities in teh physicsal parameters of simple Earth
models. We will considel only the spheroidal case. The relaxation times for
a four and five layer model, depicted in Fig. (3.1), are shown In Fig. (3.2)
and (3.3), as a function of the harmonic degree L The relaxation times TT

are expressed in years, ranging from / = 2 to I = 100. Fig. () deals with a
viscosity increase in the lower mantle, with the ratio between the lower and
uppr mantle viscosity ranging from 1 to 200. OM stands for an old viscosity
model, in which the upper mantle viscosity is fixed at 1021 Pa s, while NM
stands for a new viscosity model, in which VUM is fixed at 0.5 x 1021 Pa s, in
agreement with the recent analyzes by Lambeck et al. (1990), Vermeersen et al.
(1999) and Devoti et al. (2000), based on postglacial rebound modeling from
different perspectives, sea-level changes in the far field and long wavelength
geopotential variations due to Pleistocene deglaciation. These models are
chemically stratified at 420 and 670 km depth and the viscosity is uniform in
the whole upper mantle; this stratification supports nine relaxation modes. The
slowest modes have been named Ml and M2 by Wu and Peltier (1982) and are
associated with the two internal chemical boundaries. At low degrees they are
followed by the lithospheric (L0) mode and by the core (CO) and mantle (M0)
modes, as portrayed in the panel NM by B = 1, with B = VLM/VUM denoting
the ratio between the lower to upper mantle viscosity. When B is increased
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Schematic diagram that shows the rheological models which include a hard
transition zone, model (a) and a two layer mantle, model (b), considered for
the evaluation of the relaxation times, carried out in the following twi figures.

from 1 to 200, all the curves are moded upward toward slower relaxtion times.
This upward migration occurs first fow longer wavelengths, say lower than
/ = 10, followed by the shorter ones which are less affected by lower mantle
viscosity. For shorter wavelengths only the Ml, M2 and core modes have
slower relaxation times, while the lithospheric and mantle modes are rather
unaffected, being the deformation at such high harmonic degrees concentrated
in teh upper mantle and thus unaffected by lower mantle viscosity variations.
The NM curves, in the left panel, can be obtained from their counterparts in
the right panel by a uniform downward shift towards faster relaxation times, in
agreement with the lowering of the global mantle viscosity of this model.

Fig. () carries out the effects of a viscosity increase in the transition zone for
the new model NM, with C = VTZI^VM denotes the ratio between the viscosity
in the transition zone with respect to the viscosity in the upper mantle. These
models with a stiff transition zone at the upper lower mantle boundary are based
on the laboratories studies by Karato (1989) and Meade and Jeanloz (1990),
that suggest that the transition zone may form a layer of relatively high viscosity
between the upper and lower mantle. The C parameter is varied between 1
and 200. The panel LB corresponds to an upper mantle viscosity of 0.5 x 1021

Pa s and J/LM = 2 x 1021 Pa s, while UB corresponds to the same upper
mantle viscosity and to a higher lower mantle viscosity of V^M = 2 x 1022

Pa s. Viscosity increase in the hard layer influences all the modes for all the
models, in particular, the Ml and M2 modes, which is not surprising, being
these modes excited by the discontinuities that bound the region where the
viscosity is varied. With respect to the previous figure all the modes are now
affected by the viscosity increase in the transition layer which lying close to
the surface, is able to affect also the short wavelegth, high degree modes.

11. SURFACE LOADING
In the case of surface loading, (2.60) can be replaced by the condition

(
(2.122)

where b constrains arru <rrei and ye at the surface. For a Heaviside function
mass load, the vector b reads
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Figure 2.1. Relaxation times in years as a function of the harmonic degree I and varying lower
mantle viscosity. The parameter B = VLM/VUM is varied from 1 to 200. OM corresponds to
V\JM = 1021 Pa s, while NM corresponds to i/UM = 0.5 x 1021 Pa s.

b = (~g(R)(2l + I)/R2 , 0 , -G(2l + 1)/R2)T (2.123)

The derivation of (2.89) will follow later.
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Figure 2,2. Relaxation times in years as a function of the harmonic degree I and varying lower
mantle viscosity. The parameter C = VTZJVUM is varied from 1 to 200. LB corresponds to
V\JM = VLM = 1021 Pas, while UB corresponds to VVM = 0.5 xlO2 1 Pa sand vLM = 2xlO2 2

Pas.

The unconstrained parameters E7j, V\ and <f>\ at the surface can be expressed

as
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Cc(2.124)

with P 2 the projection vector of (2.51) with (2.58) on the first, second and
fifth component of (2.51) with (2.58).

Elimination of C c from (2.88) and (2.90) results in

{UhVh - <f>if(R,s) = P 2
V i=l

. U TjjY«\ri,s)Y«r\ri+l,s)ICil(rc)) b (2.125)

Each of the M solutions SJ of (2.119) represents a singularity for the right
hand member of equation (2.125). The quantity in the second brackets, can be
written as l\fii(s — SJ), where the Sj are the solutions of equation (2.119).
Each SJ in (2.125) is thus responsible for the appearance of a singularity that
corresponds to a first order pole (see in subsection 14.1 for further discussion
concerning this point).

The inverse Laplace transform of (2.125) can be carried out by means of
the residue theorem, as shown hereafter. The inverse Laplace transform f(t)
of a function F(s) is formally defined by complex contour integration by (cf.
(2.12))

rj+ioo

ns)estds (2.126)

in which the real constant 7 is chosen such that singularities of F(s)est are
either all on the left or all on the right side of the vertical line running from
7 — ioo to 7 + ioo. Closing the contour with a half-circle (either on the left of
the line or on the right, depending on where the singularities are situated) leads
to a complex contour that is known as the Bwmwich path.

The residue theorem states that if F(s) in (2.131), in our case the right hand
side of (2.125), is an analytical function with M singularities of first order, then

— / F(s)estds = Y ^ f ®\»='j (2.127)

where the residue in the pole of first order s = Sj is given by

Resf(t) = lims->8j (s - Sj)f(t) (2.128)
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For the Heaviside surface loading the solution of the field E7j, Vi and — fa
can thus be cast in the following form

M

{Uh Vh -<&)T(r, t) = Ke(r)6(t) + £ K'(r)e** (2.129)

in which the K?(r) are the vector residues of the solution kernel vector
y(r, s) given by

/P2BIc(rc)>(P1BIc(rc))tI
with

'B = ]jY«(r«,*)Y«'W,*) (2.131)
z = l

and

(PiBIc(rc))t = (PaBIeCre))"1 • det(PiBIc(rc)) (2.132)

and K e(r) the elastic limits

K e(r) - lim (P2BI c(r c) • ( P i E I ^ ) ) - 1 ) • b (2.133)
S~~TOG

This gives the radially dependent part of the Greenfunctions for the variables
for each degree I. Multiplying the Green functions with the Laplace transformed
forcing functions (which is the same as a convolution in the space - time
domain) and performing an inverse Laplace transformation gives the sought-
for expressions.

Solution (2.96) shows that for each harmonic degree I, the horizontal dis-
placement, vertical displacement and change in gravity consist of an immediate
response to the (Heaviside) load (the elastic response), followed by M expo-
nentially decaying (viscous) responses. At least, the viscous responses are
decaying only if the inverse relaxation times SJ for each harmonic degree are
negative. For incompressible models this turns out to be always the case if the
Earth layers show no density inversions in the radial Earth profile. However, if
there is a layer with a greater density than its neighboring layer below, then the
buoyancy mode for the interface will have a positive inverse relaxation time
for each harmonic degree L Such a positive relaxation time leads, according
to (2.96), to an exponentially increasing response in the displacements and
gravity variations, and thus the interface becomes Rayleigh-Taylor unstable. If
this occurs, convective motions will be triggered in the Earth model, and the
linearization assumed in the normal-mode theory as developed in this chapter
breaks down.
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\2. DISLOCATION SOURCE
With respect to the surface loading, the boundary conditions for dislocations

are the vanishing of the stress components and y$ at the Earth's surface

Vz{a) = y4(a) = y*(a) = 0 (2.134)

These conditions can be cast in the following form

P2Y(a)[Y-1(r8)(If + A(r#)f) + Y ^ M * ) ] = 0 (2.135)

where P2 denotes the projection operator on the third, fourth and sixth
component of the solution vector.

If the three component vector bp is defined in the following way

b F = - P a Y ^ Y - V s X l f + A(r , ) f ) (2.136)

the boundary conditions at the surface become

P2Y(a)Y~1(%(&)] = b F (2.137)

With these definitions, the boundary conditions at the surface for dislocation
sources become formally equivalent to those appropriate for surface loading.

13. APPROXIMATION METHOD FOR HIGH-DEGREE
HARMONICS

When using spherical harmonics to describe Earth surface deformations
we always have to face the problem of how many terms we should sum up
in order to obtain an accurate solution. Since every harmonic represents a
standing wave on the earth's surface, whose equator is about 40,000 km long,
it is easy to determine the resolution given by each term of that series where
the wavelength is given by the length of the equator divided by the harmonic
degree. Concerning pointlike seismic sources we find in the modelling carried
out in Chapter 13 that this wavelength is uniquely related to the source depth
for the elastic response and to the thickness of the elastic layer for (viscoelastic)
relaxation: the summation of several thousands of harmonics is thus required
to get saturated convergence of the solution in case of shallow earthquakes.

The analytical propagator matrix technique, due to the stiffness of the fun-
damental matrices, doesn't not allow, in practice, a straigthforward calculation
of more than a few thousands degrees. This is due to the r±l dependence of
the fundamental matrix, that causes numerical problems of over- and under-
flow for high order harmonic degrees. However, it is possible to mathematically
demonstrate that the irregular fundamental solutions in non-homogeneous Earth
models are not necessary for calculating all the harmonic degrees, their weight
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getting smaller and smaller with increasing order. From a certain degree on-
wards, namely / > 102 — 103, depending on the Earth model, it is possible
to obtain an approximated expression of the fundamental solutions by keeping
only the regular part. This allows to remove the rl growth of this part by
rescaling procedures, as shown in detail in Riva and Vermeersen (2001).

14. MULTI-LAYER MODELS

14.1 INTRODUCTION

Multi-layer, spherically stratified, self-gravitating relaxation models with a
large amount of layers (more than 100) can be dealt with analytically. Relax-
ation processes are studied for both Heaviside surface loads and tidal forcings.
Simulations of the relaxation process of a realistic Earth model with an in-
compressible Maxwell rheology show that models containing about 30 to 40
layers have reached continuum limits on all timescales and for all harmonic
degrees up to at least 150 whenever an elastic lithosphere is present, irrespective
of the viscosity profile in the mantle. Especially fine-graded stratification of
the shallow layers proofs to be important for high harmonic degrees in these
models. The models produce correct long-time (fluid) limits. It is shown that
differences in transient behavior of the various models are due to the applied
volume-averaging procedure of the rheological parameters. Our earlier pro-
posed hypothesis that purported shortcomings in the fundamental physics of
(discrete) normal mode theory are artificial consequences of numerical inac-
curacies, theoretical mis-interpretations and using incomplete sets of normal
modes is reinforced by the results presented. We show explicitly that the models
produce both continuous behavior resulting from continuous rheological strat-
ifications and discrete behavior resulting from sharp density contrasts, as at the
outer surface and the core mantle boundary. The differences between volume-
averaged models and fixed-boundary contrast models are outlined. Reducing
many-layer models with a volume-averaging procedure before employing a
normal mode analysis is both economical and highly accurate on all timescales
and for all spherical harmonic degrees. The procedure minimises chances of
missing contributing modes, while using models with more layers will not
result in any substantial increase of accuracy.

In Vermeersen et al (1996a) it was explicitly shown that development and
building of analytical models containing a large amount of layers are practically
possible. We have shown results on 30-layer models in Vermeersen et al
(1996a), here we go up to models containing more than 100 layers. Formulas
for these models have been expressed in Vermeersen et al (1996a) in a concise
form, where it was shown that simulations have high accuracies, and many
aspects that remain elusive in numerical models become understable. A nice
example to illustrate this may be found in the purely compressible relaxation
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