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Extended Abstract

Geophysical Fluid Dynamics defines a part of Fluid Dynamics which concerns the pro-
cesses related to the Earth system, namely the processes in atmosphere, oceans, and the solid
Earth. During the lecture the term is used in more restrictive sense, defining it as dynamics
of very viscous fluid, and hence considering the slow movements in the Earth interiors: in
the mantle, asthenosphere, and lithosphere.

The dynamics of the descending lithosphere plays an important part in general dynamics
of the lithosphere, because major earthquakes occur in subduction zones. The rheological
properties of the lithospheric slab is very complex: it behaves as elastic (or rigid), visco-
elasto-plastic and viscous materials at the time scales of seconds to thousand years, of ten
thousands to million years, and of more than million years, respectively. The evolution of
the descending lithosphere for several million years is considered in the study, and hence the
lithospheric slab and its surroundings are approximated by a viscous fluid.

In this lecture we discuss the problems of modeling of the dynamics of the descending
lithosphere (see Fig.l).

The first problem in modeling is a simplification of the reality. A model should be
as simple as possible, but not oversimplified. A model should present essential features of
geological structures under study and reveal major phenomena and processes associated with
the structures. All complexities should come later into sophisticated models.

The second problem is to introduce a geometrical shape for the domain under study.
We consider two- or three dimensional rectangular domains and various geometries of the
lithospheric slab descending in the mantle.

The third problem in modeling is a mathematical statement of the problem under study.
We need to employ the equations, which describe very slow movements of the lithosphere and
surrounding mantle. The governing equations* are presented by the momentum equations
(Navier-Stokes equations) of viscous inhomogeneous incompressible flow

P (~^+<u,\/>u) = - v P + div(/xey )+F, (1)

the incompressibility condition
div 5 = 0 , (2)

the heat balance equation

fo(pcT)+ < u, v(pcT) >= div ( k V ^ ) + ^ + PQ, (3)

the equation of state

p(t,x) = p,(t,x)(l-a(T(t,x)-T0)), (4)

and the advection equations for thermally unperturbed density and viscosity

-£+<\/p*,u>=0, -£+<Vii*,u>=0. (5)
at at
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Figure 1: Sketch of Numerical Modeling.

Also we have to adopt a rheological law for the lithosphere. It can be modeled as Newto-

nian or non-Newtonian fluid. The rheological law may include some other parameters as

temperature and/or pressure:

fj,(t,x) =//*(*, x)exp(
E Eo

RT RT0
(6)

Together with Eqs (l)-(6) we have to consider boundary and initial conditions. At model

boundaries we set impenetrability conditions with either perfect slip or no-slip conditions,

or prescribe an initial velocity to the part of the model boundaries (in order to investigate

effects of horizontal shortening or extension).

The fourth problem is to find solution of the problem stated. The best solution of model

problem is known to be an analytical solution. But two-dimensional and even more three-

dimensional models do not allow analytical solutions for reasonable physical parameters, and

the numerical methods to solve model problems should be employed.

Hence the fifth problem is to find an appropriate numerical methods of high accuracy to

solve the system of governing equations together with boundary and initial conditions.

Finite-difference (FDM), finite-element (FEM), spectral and some other methods can

be employed to solve such problems. We present and discuss our numerical approach to

modeling of lithospheric dynamics. The approach is based on the introduction of a stream

function (in 2D case) or a vector velocity potential (in 3D case) and on the application of

the Galerkin method (Eulerian FEM) with two- or tri-cubic splines as basis functions for

computing the stream function or vector potential. The advection equations are solved by the

method of characteristics, and the heat balance equation by a FDM based on a tridiagonal

algorithm.

The sixth problem is a comparison of observed data with model predictions. All available



field and experimental data should be splitted into two parts: data for tuning of model pa-

rameters and data for testing of the model results. Tuning parameters of the model can be

viscosity of the lithospheric slab, its density and temperature structures (which can be recov-

ered from seismotomographic data). The less tuning parameters, the easier to understand

effects of the parameters on model results. GPS, stress, heat flow data can be employed as

testing parameters of the model.

The attached reprint of the article "Numerical approach to problems of gravitational

instability of geostructures with advected material boundaries" by Naimark, Ismail-Zadeh

and Jacoby describes a numerical technique based on a Galerkin method with tracking

of interfaces between layers with distinctive physical properties. The application of the

technique to problems of slow movement in the crust and uppermost mantle are considered.

The other attached reprint of the article "Numerical simulation of three-dimensional

viscous flows with gravitational and thermal effects" by Ismail-Zadeh et al. describes a

numerical approach to determine slow viscous flow, introduces a new two-component repre-

sentation of the vector velocity potential, and discuss algorithms for solving the problem on

multi-processor computers.

governing equations contain the following variables and parameters: time t\ a spatial

point x with Cartesian coordinates (xi, x<i, #3); velocity vector u = (ui(t, re), ̂ ( t , x), us(t, #));

pressure p = p(t,x)\ absolute temperature T = T(t,x)\ density p = p(t,x)\ viscosity /i =

/i(*,x); thermally unperturbed density p* = p* (£,#); thermally unperturbed viscosity /i* =

/i*(i, x)\ acceleration due to gravity g\ universal gas constant R\ external body force (gravity)

per unit volume F = —gpe3 = (0,0, — gp)\ unit basis vector e3 for the Oxs axis; specific heat

c; heat conductivity fc; coefficient of thermal expansion a] activation energy E\ activation

volume V] a dissipation function $ = $(£, x) representing the rate of heat production due to

internal friction; the rate of heat production per unit volume due to nonviscous heat sources

Q — Q(t,x)\ poi go, k, Eo Vo, and To are reference physical parameters.
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SUMMARY
We present a numerical approach for solving 2-D mantle flow problems where the
chemical composition changes abruptly across intermediate boundaries. The method
combines a Galerkin-spline technique with a method of integration over regions
bounded by advected interfaces to represent discontinuous variations of material
parameters. It allows direct approximation of a natural free surface position, instead
of a posteriori calculation of topography from the normal stress at the upper free-slip
boundary. We formulate a model where a viscous incompressible fluid filling a square
box is divided into layers (not necessarily horizontal) by advected boundaries, across
which the density and viscosity change discontinuously. No-slip or free-slip conditions
are assumed at the model sides. The suggested approach, being Eulerian, avoids the
difficulties due to material discontinuities at intermediate boundaries, like the Moho
or the Earth's surface, and is also free from the deficiencies of the Lagrangian approach,
always resulting in mesh distortion. We present two geophysical cases analysed by this
technique. The first case concerns the formation of sedimentary basins under the effects
of heavy bodies sinking in the asthenosphere and of load due to sedimentary infills.
The second case demonstrates the evolution of salt diapirs and shows how their growth
is affected by a laterally inhomogeneous sedimentary layer. This numerical approach
is well suited for problems of gravitational instability with discontinuities of density
and viscosity across advected boundaries.

Key words: advection, diapir, numerical techniques, sedimentary basin.

INTRODUCTION

The problems of gravitational instability involving distinct
chemical layers are challenging in geophysical fluid dynamics.
Motions of material interfaces separating geomaterials of
differing material properties are essential to layered mantle
convection, subduction of lithospheric slabs, ascent of mantle
plumes, sinking of heavy bodies in the asthenosphere, salt
diapirism and many other processes (Jacoby 1970; Romer
& Neugebauer 1991; Ribe & Christensen 1994; Schubert,
Anderson & Goldman 1995; Naimark & Ismail-Zadeh 1995).
The advection of material interfaces was studied analytically
for cases of small perturbations and displacements by Biot &
Ode (1965), Chandrasekhar (1968), Ramberg (1968), Naimark
& Yanovskaya (1976) and Naimark & Ismail-Zadeh (1994).
A numerical approach is needed to examine finite displacements
of material boundaries. Numerical schemes usually produce

errors originating from discontinuities of physical properties,
where a step function needs to be advected (Lenardic & Kaula
1993). To minimize such errors, methods of representing these
discontinuities were developed by Christensen (1982, 1992)
and Naimark & Ismail-Zadeh (1995, 1996).

The problem is simple for the case of discontinuous density,
because it enters the right-hand side of the momentum equation.
The method of tracer chains suits the purpose, because it
reduces the problem of density discontinuities to the integration
of relevant terms along the curves (tracer chains).

The problem is much more difficult for the case of dis-
continuous viscosity. It enters the momentum equation and
hence, in the Eulerian approach, must be locally smoothed
over several grid steps (e.g. Woidt 1978; Christensen & Yuen
1984; Christensen 1992; Naimark & Ismail-Zadeh 1995, 1996).
Additionally, a global filter technique (Lenardic & Kaula 1993)
is used to remove overshoots and undershoots of an advected
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step function. Dense enough grids are needed to approximate
discontinuities by smooth functions, which requires much
computer resources.

We present a numerical approach for solving 2-D Stokes'
flow problems where physical properties (density and
viscosity) change discontinuously across advected boundaries.
The approach combines a Galerkin-spline technique with a
method of integration over advected layers, where a finite-
dimensional space of spline weights is used together with
Cartesian coordinate representations of discontinuous viscosity
terms. It allows approximation of the natural shape of a free
surface, instead of a posteriori calculation of its topography
from the normal stress at the upper free-slip boundary. We
present two geophysical cases analysed by this technique. The
first case concerns the formation of sedimentary basins under
the effects of heavy bodies sinking in the asthenosphere and
of loads due to sedimentary infills. The second case demon-
strates the evolution of salt diapirs with laterally homogeneous
and inhomogeneous overburdens of sediments.

MODEL CONCEPT

Fig. 1 illustrates the rectangular model region Q: 0 < x < L,
— H < z < 0, L and H are model width and depth; a Newtonian
fluid with variable density p and viscosity \x fills this region.
Curves J5?e, e = l9 2, . . . , £ divide the model region Q into
several subregions Qe, e = 1, 2, ... , E + 1. We assume that each
curve J2?e is closed or starts and terminates at the boundary of
Q and has no self-intersections; however, different curves can
intersect each other. Fig. 1 shows two curves, J5fx and J2?2, and
three subregions Q l5 Q2 and Q3. In what follows, we consider
one curve i f for simplicity, though the number of curves can
be arbitrary. We also use dimensionless forms of equations
governing the model, so that after the appropriate change of
variables the model region Q occupies the square 0 < x < 1,

Introduce the following notation: Dx = d/dx9 Dz = d/dz,
Dxx = DXDX, Dzz = DZDZ, Dxz = DXDZ, Dt = d/dt, and

zils + (Dzz - Dxx)fi(Dzz - DXX)^J ,

^Dxz(p + (DZ2iA - Dxxil/)(Dzz(p - Dxxcp)l,

D(A, \jj) = Dx\jjDzA - Dzi//DXA,

where \j/(x, z, t), cp(x, z, t) and A(x, z, t) are functions having
continuous derivatives entering in the notation.

-H
0 L

Figure 1. Geometry of the model for the case of two interfaces.

We seek the stream function \\i, density p(x, z, t), viscosity
/j.(x9 z, t) and the family of curves <£\x = x(q, t)9 z = z(q91) (q is
a parameter of points on a curve, 0 < q < Q) satisfying the
differential equations (g is the acceleration due to gravity)

(1)
dx
It''
the

xjj =

and

P =

dz
sD-+> It = -D**>
impenetrability and free-slip

Dxxi^ = O at x = Oand

Dzzi// = O at z = Oand

initial conditions at t = t0

p°(x9z)9 ii = u°(x9z)9

boundary conditions

2 = 1 ,

The first equation is the 2-D Stokes equation represented in
terms of the stream function \j/9 the second and third equations
describe the transfer of density and viscosity with the flow,
and the remaining equations determine trajectories of points
x(q91) and z(q, t) located at t0 = 0 on the curve if0.

We define a weak solution of the problem, that is, a solution
satisfying an integral relation rather than the equation itself.
Let us multiply the first equation in (1) by a function (p(x, z, t)
satisfying the same boundary conditions as i//(x, z, t), integrate
by parts the left- and right-hand sides of the product twice
and once, respectively, and observe that the integral over
the model boundary vanishes. Multiply the second and third
equations in (1) by functions S and £ respectively, and integrate
the results. A weak solution of the problem stated above is the
set of functions i//(x, z, t), p(x9 z, t), /i(x, z, t)9 x{q, t) and z(q91)
satisfying the above boundary and initial conditions and the
following equations:

Q(fi;ij/,(p)dxdz = pDx(pdxdz,

D(p,ils)3dxdz,

dx
-

(Dt/j)Cdxdz=

dz
(2)

where q>(x9 z) e 33, S(x, z) e 9* and ((x, z) e ft are any functions
(called test functions) from sets S3 and ft properly chosen.

Numerical solutions are obtained in the form of weighted
sums of basic bicubic splines. However, bicubic splines, being
excellent for the case of smooth unknown functions, become
inadequate when these functions are discontinuous. To preserve
the accuracy of spline representations for cases of discontinuous
unknowns, we suggest the method described below.

Let us represent unknown functions p(x, z, t) and fi(x, z, t)
as sums of two functions, one smooth and the other constant
over Qj and Q2:

p(x, z, t) = po(x, z, t) + px(x, z, t),

fi(x9 z, t) = HQ(X9 z, t) + ^i(x, z, t),

) 1998 RAS, GJI 134, 473-483



where pt(x, z, t) and ̂ {x, z, t) have continuous first and second
derivatives, whereas po(x, z, t) and no{x, z, t) take on constant
values in fix and fi2:

p%\

pi2

if (x.zjefli,

if (x,z)en2 ,

if (x I:)efl11

if (x,z)eQ2,
(3)

where poS Po2> Âo1 a nd ^o2 a r e functions of time, but do not
depend on x and z. Let us substitute representations (3) into
the first relation in (2) and obtain the result

(T

J JQ2

p1Dx<pdxdz + gp^1
x(pdxdz

+ gp°o2

J Jn2
x(pdxdz,

and in the interior of any region Q( (see Fig. 1)

rr
(Dtp1)Sdxdz= D(pl9\l/)3dxdz9

(4)

(5)

because Dtp0 = Dtfi0 = D(p0, \ji) = D(fi0, \jj) = 0 in this interior.
These equations, together with

dx

dt

dz

dt
(6)

and with boundary and initial conditions described above,
define a weak solution for the case of discontinuous density
and viscosity.

N U M E R I C A L M E T H O D

Approximations to unknown functions x//, p± and \i± are
represented as linear combinations of basic bicubic splines
with unknown coefficients (here and below we assume sum-
mation over repeated subscripts taking on the following values:
i, k, m = 1, . . . , / ; and j , /, n = 1,... , J):

= \l/ij(t) spy(x, z), , z),p1 =

where spo(x, z) and spy(x, z) are basic bicubic splines satisfying
the required boundary conditions. These splines are con-
structed from basic cubic splines: spy(x, z) = Sj(x)sJ(z) and
sptj(x, z) = Si(x)Sj(z). The basic cubic and bicubic splines used
here were described by Naimark & Malevsky (1986). The
curve 3? is approximated by a polygon whose vertices have
coordinates Xp(t), zp(t)9 P = 1, ... , B. These vertices are located
on j ^ o at t = t0. Let us substitute the above representations
into eqs (4) and (5) and integrate forms involving products of
basic splines and their derivatives. This results in sets of linear
algebraic equations for unknowns \j/tj, ordinary differential
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equations for pij9 fj,ij9 x(x°, z°, t) and z(x°, z°,t):

~7T

dx

dt

dz_

dt

dst(x)
]-dx~S (7)

Coefficients Cijkl are sums of three terms, Cijkl =
Cljki + Cfjiz + Cm •> where the first term is obtained from ^ by
substituting its spline representation into the first integral in
(4), rearranging sums, and integrating products of splines and
their derivatives. The result takes the form

(8)

where

= f
Jo

(9)

Here (...)(p) denotes the derivative of order p of a function
(...) and the zero-order derivative is the function itself. The
terms C^ and Cfj^ are obtained by integrating products of
splines and their derivatives over regions Qx and Q2, which
results in the forms

S{ 1; ) , sk(x)st(z)) dxdz. (10)

We see that elements C\m depend on the continuous term /i1?

but are independent of the curve J£P. On the other hand,
elements C^kl and Co

tfkl depend on the curve S£ and on the
constants \$ and fi®2, but are independent of the continuous
term fj.1.

Coefficients Fijki on the right-hand side of the first equation
in (7) are obtained by integration:

, = (S;(x))(1)Sk(x)<k
Jo

Sj(z)Sl(z)dz. (11)

The term W^ is obtained from the last two integrals on the
right-hand side of eq. (4), where q> is set to sk{x)sl{z). The sum
of these integrals takes the form

sk(x)Sl(z)dz (12)

explained in detail by Naimark & Ismail-Zadeh (1995).
Coefficients Gijkl and Eijkl entering the second and third

equations in (7) are also calculated by integrating basic splines
and their derivatives:

Gijkl= §i(x)§k(x)dx \§3(z)Sl(z)dz,
o Jo

^OOl/ j^lOO r^/100 /52>OO1\
^ikm^jln ~ <& ikm^jln ) ,,/. /^OOl/j^lOO r̂

ijkl-¥mn\^ikm^jln ~ <&

where j/ffe^ and M% are obtained from A^ and B% in eqs (9)
with Si(x), sk{x), §Jx)9 Sj(z), st(z) and sn(z) replaced by §t(x)9

sk(x), sm(x), §j(z), st(z) and sn(z), respectively.

) 1998 RAS, GJI 134, 473-483
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The unknowns to be found from eqs (7) are the following:
Pij(ts), tofts), ^ij(ts), xp(ts) and zp{ts), s = l , 2 , . . . , S . The

second, third, fourth and fifth relationships in (7) constitute
the set of ordinary differential equations (ODE) for unknowns
Pip Htj, Xp and Zp. We solve this set by the fourth-order Runge-
Kutta method. The right-hand sides of these equations include
unknowns y\fVj found from the first set of equations in (7).
Initial values Pij(t0) and Hij(t0) are derived from the conditions

P1(X, Z, 0) = Py(0)$(xft(z) , MX, Z, 0) =

by using spline interpolation programs. Let us describe the
calculation of the right-hand sides. Assume that the unknowns
have been calculated at t = ts. Use eqs (8)—(10) to find the
matrix Cijkl and eqs (11) and (12) to compute the right-hand
sides of the first set in (7). Solve this set for i/̂ 7- and use
the values so found, together with eqs (13), to calculate the
right-hand sides of the above ODE.

Coefficients (9), (11) and (13) can be computed once and
used in all calculations. Certain difficulties arise in eqs (10).
The integrals in eqs (10) depend on the curve =£?, changing
with time. We reduce calculations of the forms (10) to direct
integration of polynomials over regions bounded by the curve
S£ and model boundaries; these polynomials are products of
splines and their derivatives. To clarify this reduction, consider
Fig. 2. This figure shows part of a rectangular grid, the curve
J2? passing through it, and parts of Q1 and Q2- The integrals
in eqs (10) can be treated as sums of integrals over all grid
squares. They are easily computed for squares that are not
intersected by if. When a grid square is intersected by the
curve, as shown in the figure, the integration is carried out
over a region bounded by the square sides and the part of i f
in this square. This is done by summing up integrals over all
trapezoids bounded by the edges of the polygonal curve if,
vertical lines and horizontal segments of the lower grid square
side; one such trapezoid is shaded in Fig. 2. The integral over
each trapezoid is computed directly by repeated integration of
polynomials. Obviously, horizontal trapezoids are treated
instead of vertical ones when i f passes through a square from
top to bottom. The crucial part of this procedure is the
analytical integration over regions whose boundary includes
^, which can intersect grid squares in many ways.

Let us discuss the conditions at advected material boundaries.
Physically, velocity and stress are continuous across these

Figure 2. A sketch of the curve passing through a rectangular grid.
A current trapezoid T is shaded. The integrals in eqs (10) are calculated
as sums of integrals over all trapezoids in the grid square intersected
by the curve.

boundaries. It follows that the viscosity discontinuities across
the same boundaries lead to discontinuity of the second
invariant of strain rate. In the approach described here the
second derivatives of the stream function \jj are continuous,
which can look inconsistent with the physical conditions.
However, the suggested algorithm leads to fitting these con-
ditions with a continuous \j/9 which results in a ^ smoothed
over a chosen grid. Overshoots and undershoots of a stream
function so found are not as great as might be expected,
because the algorithm fits these conditions for second partial
derivatives of x//, rather than for \jt itself.

It is, of course, impossible to formulate strictly conditions
at free boundaries in the stream function approach, because
the order of equations changes when viscosity equals zero.
However, when viscosity at one side of a surface is sufficiently
low compared to that at the other side, the algorithm still
works and leads to correct results. This is verified here in the
case of isostatic adjustment in a layered medium. We call
boundaries of this kind 'free', to emphasize that they are
approximations to physical free boundaries.

Let us note that an interface <£, being advected, stretches
or compresses, so that the distance between adjacent vertices
of its polygonal representation can become too long, and
computations lead to erroneous results or deteriorate. To avoid
this, we periodically update the polygonal line ^£. Denote by
| if | the length of S£ and by n the number of its vertices. New
vertices are placed on if with the step h = \J?\/(n—l) along
it. This results in an almost uniform spacing of vertices on ^£
at any time step.

VERIFICATION OF THE METHOD

An exact solution of eqs (4)-(6) is unknown even for the
simplest cases and boundary conditions. Previous methods
were tested for eqs (4) and (5) separately (Ismail-Zadeh,
Naimark & Lobkovsky 1996; Naimark & Ismail-Zadeh 1996).
The suggested algorithm and codes were verified by comparing
numerical results with experimental data and analytical results
from the linear theory of the Rayleigh-Taylor instability.

We studied a model of viscous layers with stable density
stratification and used data employed in the experimental
isostatic test performed by Ramberg (1968). In Ramberg's
physical experiment a heavy syrup was supporting a less dense
layer of a silicone putty. Initially, a sinusoidal deflection was
prescribed at the free surface, whereas the interface between
the substratum of syrup and silicone putty was straight and
horizontal. The experiment showed that the free surface
tended to flatten, and the interface was deflected into a wave.
After passing a maximum amplitude, the secondary wave at
the interface began to flatten until a stable equilibrium was
attained.

We modelled this experiment as follows. The model region
was divided into three layers by two curves: i ^ : 0 < x < L,
z = 0.105 + 0.077 COS(2TDC/L), and if2: 0 < x < L, z = 0.07. The

densities, viscosities and thicknesses of the layers are shown in
Table 1. Curve ^ approximates a free surface; the wavelength
of the perturbation X equals model width L. We used two
rectangular grids (20 x 25 and 46 x 48) and obtained the same
results. The pattern of layers obtained numerically is very close
to the experimental results of Ramburg (1968).

Fig. 3 shows an amplitude of wave versus time at the upper
boundary and the interface obtained from measurements and

) 1998 RAS, GJI 134, 473-483
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Figure 3. Amplitude versus time for a model of isostatic adjustment in a layered medium. Solid lines show results obtained by the suggested
numerical model. Points and crosses represent results from three experimental runs (Ramberg 1968, Fig. 25).

Table 1. Nomenclature of and values used in the model.

Notation Meaning Value

A

V

hi

Pi

Pi

P3

wavelength of the perturbation, m

amplitude of the perturbation, m

thickness of the upper layer, m

thickness of the middle layer, m

thickness of the lower layer, m

density of the upper layer, kg m~3

density of the middle layer, kg m~3

density of the lower layer, kg m~3

viscosity of the upper layer, Pa s

viscosity of the middle layer, Pa s

viscosity of the lower layer, Pa s

0.136

0.0077

0.031

0.035

0.07

0

1.25 x 103

1.44 x 103

102

8.4 x 104

4.2 x 103

the numerical test. The solid lines calculated by the suggested
method are indistinguishable from theoretical curves predicted
by the linear theory of gravitational instability (Ramberg 1968;
Naimark & Yanovskaya 1976). We also see that the computed
curves agree closely with experimental data.

EFFICIENCY OF THE METHOD

We analysed two numerical approaches, one proposed pre-
viously by Naimark & Ismail-Zadeh (1995), hereinafter called
'old', and that suggested in this paper, called 'new', for the case
of a model consisting of three layers. This model is sketched
in Fig. 4(a) with the grid used in the calculations. Region 1
has zero density and low viscosity; region 2 is highly viscous,
heavy and thin. We call this region thin because it contains
two or three grid levels in the z direction. Region 3 is less
dense and viscous than region 2. The values of the dimen-
sionless model parameters are presented in Fig. 4(a). Figs 4(b)

and (c) show the positions of layer boundaries calculated by
the 'old' and 'new' methods at different times.

We see that the 'old' method leads to erroneous perturbations
of advected boundaries. It is seen that these perturbations
grow with time, while they are absent when the positions of
the boundaries are calculated by the 'new' method. Subsequent
calculations by the 'old' method lead to an almost instant
deterioration of the pattern when time reaches a threshold
(in this case about 3000), whereas the layered pattern remains
adequate with the 'new' method.

The deficiency of the 'old' method in cases of thin layers
can be explained as follows. When the number of grid points
across a layer is small, overshoots and undershoots of viscosity
lead to large errors in computing the stream function, hence
to erroneous velocities controlling advection of boundaries.
The values of viscosity at some points can even become
negative (as in this test where the viscosity changes from 1
to 1000 across the upper boundary). Naturally, negative
viscosity results in erroneous velocities. This effect leads to the
deterioration of the overall pattern. On the other hand, there
are no overshoots and undershoots of viscosity in the 'new'
method. Viscosity remains constant in each of the advected
regions.

It is possible to obtain correct results by the 'old' method
with denser grids, advanced approaches to smoothing viscosity
across the boundaries, and very small time steps. However,
the computer resources required will become much greater
than those needed in the 'new' method.

SAMPLE CALCULATIONS

Sinking of heavy bodies and sedimentary basin formation

In the magmatism-eclogitization mechanism of sedimentary
basin evolution (Lobkovsky et at. 1993; Ismail-Zadeh et al.
1996) eclogitic bodies evolve from magmatic melts accumulated
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Figure 4. Testing the 'old' and 'new' numerical approaches for the case of a layered model with a heavy, highly viscous layer and a 'free' surface,
(a) A sketch of the model and the grid chosen for calculations. The curves depict initial positions of boundaries between layers, (b) The positions
of upper and lower boundaries, shown separately and appropriately scaled, at times 479.5 ('old', solid lines) and 473.7 ('new', dashed lines), (c) The
same for times 2525.0 ('old') and 2421.0 ('new').

at a depth of 60-80 km in a post-rift phase. These bodies,
being denser than the surrounding material, sink in the astheno-
sphere and induce viscous flows that change surface topography
and lead to the formation of sedimentary basins. At least
three boundaries where physical properties are discontinuous
should be introduced in this model: £?u the 'free' surface; J*?2,
the sediment/basement interface; and j£?3, the heavy body/
asthenosphere interface. Naimark & Ismail-Zadeh (1995)
described a similar model where sediments were absent and
where the surface topography was calculated a posteriori from
the normal stress at the upper free-slip surface. The present
model includes sedimentary infill and viscosity discontinuities.

The model of sedimentation, chosen here for its simplicity,
is based on two assumptions: (1) the depression is filled by
sediments instantaneously; (2) this filling stops when the upper
level of sediments achieves the value prescribed by a constant

a. Sediments in this model appear 'from nowhere'; we do not
consider processes leading to sedimentation. However, the
law of conservation of mass is not violated: the initial mass
remains constant, and the new mass is added by sedimentation
processes. Note that it is quite easy to incorporate other
models by introducing the rate of sedimentation or considering
mechanisms based on the shape of the free surface.

According to this model, boundaries J^ and JS?2
 a r e initially

(at t = 0) coincident with straight horizontal lines z = b, where
b < 1 is a constant. Boundary j£?x is deflected by the viscous
flow, and boundary ££2 is calculated in the following manner.
Denote by z1=f1(x,t) the function representing curve J2\
at time t. Find zmax = maxJC/1(x, t) and zmin = minJC/1(x, t)
at a current time t and put z0 = zmin + a(zmax - zmin) where
a, 0 < a < 1, is a constant controlling the filling of the basin
with sediments. The curve J§?2 is computed at any time t from

© 1998 RAS, GJI 134, 473-483
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the condition

&2.Z=f°2(x9t) =
z0 if f1(x,t)<z0,

fi(x, 0 if fi(x9t)>z0.
(14)

Hereinafter all variables are dimensionless, unless otherwise
stated. The following initial geometry was assumed: the 'free'

surface z = 0.77 and the heavy ellipse centred at x = 0, z = 0.5
with vertical and horizontal semi-axes 0.03 and 0.4, respectively.
The density above the 'free' surface was 0.0, within sediments
2.5, in the asthenosphere 3.5, and 4.0 in the ellipse. The
viscosity was 1.0 above the 'free' surface, 100.0 in the astheno-
sphere and sediments, and 110.0 within the ellipse. Numerical
tests showed that viscosity variation above the 'free' surface
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Figure 5. Four phases of sedimentary basin evolution under two effects: the flow produced by a sinking heavy body (shaded) and load due to a
sedimentary infill (shaded). Two panels illustrate each phase. The lower panel depicts the position of the 'free' surface and heavy body. The upper
panel shows the vicinity of the 'free' surface stretched in the vertical direction to make sedimentary infill and changes of topography clearly visible.
We see how the 'free' surface, initially flat, deflects under the actions of the sinking heavy body and of loads due to sediments.
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from 1.0 to 10 2 resulted in very small changes in numerical
solutions. The constant a was taken equal to 0.7: at any time
the depression is filled with sediments to 0.7 of its depth.
Calculations were made with a rectangular 20 x 25 grid.

Fig. 5 shows four snapshots of a flow at different times.
Each snapshot consists of the lower and upper panels. The
lower panel depicts the position of the 'free' surface and heavy
body. The upper panel shows the vicinity of the 'free' surface

0.000-,

-0.002-
<D
c -0.004-
0)

]§ -0.006-

0 0 -0.008

-0.010
1000 2000

Time
3000

Figure 6. Modelled subsidence curves: in the absence of sedimentary
loads (1) and with sediments (2).

stretched in the vertical direction to make sedimentary infill
and changes of topography clearly visible. We see how the
'free' surface, initially flat, deflects under the actions of the
sinking heavy body and of loads due to sediments.

A test with a = 0 (no sediments) leads to similar patterns,
but with less subsidence. Fig. 6 shows two subsidence curves:
for the cases a = 0 (curve 1) and a = 0.1 (curve 2). The sub-
sidence was calculated as a depth from the initial position of
the 'free' surface to the deepest point of the deflected boundary.
We see that sedimentary loads can increase the basement
subsidence by a factor of 2 or more.

Evolution of salt diapirs

Salt diapirism is another process involving viscous flows with
material boundaries. Salt tectonics is quite important from the
practical point of view, because various types of hydrocarbon
traps are closely associated with salt domes (Talbot 1992).
Numerical models of salt diapirism were extensively studied
by Woidt (1978), Schmeling (1987), Romer & Neugebauer
(1991), Poliakov & Podladchikov (1992), Zaleski & Julien
(1992), Poliakov et al. (1993), Podladchikov, Talbot & Poliakov
(1993), Keken et al. (1993) and Daudre & Cloetingh (1994).
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Figure 7. Evolution of salt diapirs, model A. Viscosities and densities are as follows: 1020 Pa s and 2.3 x 103 kg m * (overburden, medium shading)
and 101 8Pas and 2 . 2 x l 0 3 k g m " 3 (salt, heavy shading), (a) t = 0; (b) t = 27A Ma; (c) t = 33.7 Ma; (d) t = 36.6 Ma; (e) t = 41.8 Ma;
(f) t = 47.1 Ma. The timescale used is t* = fi*/(p*gH) = 33.3 yr, where ^* = 1017 Pa s and p* = 23 x 103kgm~3 . Flow velocities are shown by
arrows. The velocity scale is given at the top of each figure.
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Natural salt structures have various shapes (Jackson &
Talbot 1986, Volozh, Groshev & Sinelnikov 1994), which
strongly depend on the thickness of the salt layer and that
of the surrounding overburden (Schmeling 1987) and on the
horizontal gradient of loads due to sediments (Poliakov et al.
1993). We present two cases of a salt layer evolution: model A,
with the 'balloon on a string' geometry, and model B, where
nappes superimposed on the sedimentary overburden lead to
asymmetric diapirism. The square model box is 15 km long
and 5 km deep. This box is divided into 76 x 26 rectangular
elements in the x and z directions, respectively.

Model A

A salt layer 0.5 km thick at the bottom of the model is covered
by a sedimentary overburden 2.5 km thick. The salt/sediment
interface is initially perturbed by a peak of cosine shape with
amplitude 0.2 km and length 0.57 km. The viscosities and
densities are 1020 Pa s and 2.3 x 103 kg m~3 for the overburden
and 1018 Pa s and 2.2 x 103 kg m" 3 for the salt.

Fig. 7 shows the evolution of a diapir evolved from the
initial perturbation in 47 Myr. The shapes of salt structures
closely agree with classical cases of the Rayleigh-Taylor

instability with high viscosity contrasts and a thin lower
layer.

Model B

This model presents salt motions in the presence of laterally
asymmetrical loading. We feel that nappes of sediments can
lead to asymmetrical shapes of salt structures (C. Talbot,
personal communication, 1996). The nappe of sediments in
model B has maximum thickness 0.99 km, viscosity 1020 Pa s
and density 1.9 x 103 kg m" 3 . Fig. 8 shows the evolution of the
resultant salt structure. The nappe of sediments was imposed
on the overburden with the growing symmetrical diapir
(Fig. 8a). The velocity of nappe sinking in the overburden is
greater than the rate of diapiric growth. This is clearly seen
from velocities presented in Figs 8 (a) and (b). Fig. 8(b) demon-
strates also how the shape of the diapir becomes slightly
asymmetrical. When the nappe attains its equilibrium, the rate
of diapiric penetration increases (Fig. 8c). Subsequent phases
of diapiric evolution are shown in Figs 8(d) and (e). It is seen
that the diapir remains only slightly asymmetric. However,
even this minor asymmetry leads to a quite asymmetric shape
of the diapir in its subsequent evolution (Fig. 8f).
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Figure 8. Evolution of salt diapirs under the effect of laterally inhomogeneous sedimentary loads, model B. Three layers are present: salt
(heavy shading), overburden (medium shading) and nappe of sediments (light shading). Viscosity and density of sediments' nappe are 1020 Pa s
and 1.9 x 103 kgm~3 . Viscosities and densities of other layers, the timescale and velocity representations are the same as in Fig. 7. (a) t = 0;
(b) t = 0.3 Ma; (c) t = 3.3 Ma; (d) t = 6.4 Ma; (e) t = 10.2 Ma; (f) t = 30.5 Ma.
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DISCUSSION AND CONCLUSIONS

The method suggested here results in advection of step
functions (density and viscosity) free of overshoots and under-
shoots: the values of p0 and fi0 in regions bounded by interfaces
remain unchanged by definition. However, the method has its
limitations, because the difficulty of representing discontinuous
changes of physical properties shows up elsewhere. When
viscosity is discontinuous across an interface, natural boundary
conditions (continuity of stress and velocity) result in discon-
tinuous strain rate, expressed in terms of the second derivatives
of the stream function. However, the stream function, being a
spline in the assumed approach, must have continuous second
derivatives. As a result, the Galerkin method yields the strain
rate locally smoothed in the vicinity of the interface. The
velocity in the vicinity of the interface is continuous but has a
sharp variation. This leads to overshoots and undershoots of
the velocity. However, these overshoots and undershoots are
not great, because second derivatives of \j/ rather than \j/ itself
are smoothed at the interface.

Numerical tests of the previous method (Naimark & Ismail-
Zadeh 1995) show that errors in advected step functions grow
with time. A smoothing technique can reduce these errors,
but they always tend to increase; they can be treated as
perturbations giving rise to new instabilities. Sometimes this
leads to erroneous patterns that look like mixing and can
result in wrong conclusions. In the suggested method, over-
shoots and undershoots of velocities do not grow with time;
moreover, numerical tests show that these errors tend to
decrease on attaining a certain level. From this viewpoint, the
present method is more stable than other Eulerian numerical
methods involving advection of step functions. Testing of the
method for the case of a thin layer shows its advantages.

A numerical model of isostatic adjustment of a layered
medium demonstrates a very close agreement with experi-
mental data and results predicted by the linear theory of
gravitational instability. The method allows one to take into
account the appearance of additional structures bounded by
material interfaces, such as nappes of sediments or sedimentary
infills.
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SUMMARY
We consider a three-dimensional model of thermal convection in a highly viscous fluid
with temperature-dependent density and viscosity. The model is described by the equa-
tions of quasi-steady viscous inhomogeneous incompressible flow, advection equations
for density and viscosity, and a heat balance equation. The numerical solution is based
on the introduction of a vector velocity potential and on the application of a finite
element method with a tricubic-spline basis for computing the potential. The advection
equations were solved by the method of characteristics, and the heat equation was solved
by a finite-difference method based on a tridiagonal algorithm. A new two-component
representation (in some cases, a one-component representation) was found for the veloc-
ity potential, which allowed to substantially reduce computational costs. The numerical
algorithms employed were designed to be implemented on parallel computers. The prin-
cipal results of the study are summarized as follows: a numerical method is developed
for simultaneous solution of the Stokes flow equation, heat balance equation, and ad-
vection equations for physical parameters of the fluid; it is shown that computational
costs can be reduced by decreasing the dimensionality of the vector velocity potential;
a model example is computed and computational performance is analyzed.

Key w ôrds: Thermal convection, Diapirism, Eulerian FEM, Galerkin-spline approach

1 INTRODUCTION

We consider the numerical simulation of three-dimensional,
inhomogeneous, highly viscous, incompressible flows under
gravitational and thermal effects. Problems of this kind fre-
quently arise in geophysics when various processes taking
place in the earth's interior are to be modeled (McKenzie
et al. 1974; Turcotte & Schubert 1982; Ismail-Zadeh et al.
1996; Rykov &; Trubitsyn 1996). A particular problem of in-
terest is the simulation of evolution of slat and other evap-
orite structures in the crust, development of sedimentary

basins, thermally driven convection in the earth's mantle,
and other processes. Three-dimensional numerical models
of geophysical processes provide a basis for the most real-
istic simulations, but entail high computational complexity,
which can be dealt with only on high-performance comput-
ers. Therefore, solution of three-dimensional problems must
rely on highly efficient computational methods. Moreover,
their numerical implementation frequently requires special
procedures consistent with the architecture of the computer
employed.
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In geophysical problems, three-dimensional simulations
of thermally driven convection in a rectangular domain have
been performed by various investigators both for constant
viscosity (e.g., see Cserepes et al. 1988; Houseman 1988;
Travis et al.1990) and for variable viscosity (e.g., Frick et
al. 1983; Busse & Prick 1985; Christensen & Harder 1991;
Ogawa et al. 1991; Tackley 1993; Rykov & Trubitsyn 1996;
Trompert & Hansen 1996). They were based on the use of
finite-difference, spectral, and multigrid methods.

In this paper, we propose methods and algorithms that
can be used in numerical simulations of the problems men-
tioned above on modern parallel computers. The numerical
simulation of the problem analyzed here relies on general
equations of inhomogeneous viscous incompressible flow: a
momentum equation, a heat balance equation, transport
equations for physical parameters of the fluid, and an equa-
tion of state. These equations are modified and simplified by
taking into account certain fluid properties and flow char-
acteristics (high viscosity and low velocity). We eliminate
the convective terms from the equation of motion (since the
Reynolds numbers of typical flows under study are very low)
to reduce it to the corresponding Stokes quasi-steady flow
equation. We introduce a vector velocity potential and trans-
form the governing equations, applying the curl operator to
eliminate the incompressibility condition and pressure. The
vector velocity potential is approximated by a linear combi-
nation of suitable basis functions consisting of certain local-
ized tricubic splines. The approximation is determined from
an appropriate variational equation corresponding to the
Stokes flow equation. We write out a system of linear alge-
braic equations for the approximation coefficients, which has
a high dimension even for relatively coarse grid discretiza-
tions of the computational domain. This system is nonsin-
gular by virtue of a special choice of basis functions in the
finite element method, but the condition number of its ma-
trix tends to infinity as the computational grid is condensed.
Such systems of equations must be solved repeatedly, be-
cause their coefficients and right-hand sides are updated at
each time step. This leads to certain conditions to be satis-
fied by the choice of solution procedures, and parallel algo-
rithms prove to be definitely advantageous since test com-
putations have shown that a greater part of the CPU time
resources consumed is required to solve the systems of equa-
tions in question. Density and viscosity are found from the
relevant first-order partial differential equations (advection
equations) or from the ordinary differential equations for the
characteristics of the advection equations (with subsequent
transfer of the initial density and viscosity along the charac-
teristics). Temperature is determined from the heat balance
equation by a finite-difference method. The well-posedness

and solvability of the corresponding two-dimensional bound-
ary value problems were analyzed by Naimark (1986, 1988).

Numerical analysis of problems of this type is difficult
to perform because of the high dimensionality of finite-
difference approximations. Considerable progress achieved
in dealing with this difficulty became possible by construct-
ing a special set of basis functions in the finite element
method and using a two-component representation of the
vector velocity potential proposed here. As a consequence,
we managed to reduce computational costs and obtain ade-
quate qualitative and quantitative results for relatively low-
dimensional discretizations.

In what follows, we state the problem, restate it in a
more tractable form, describe the overall computational pro-
cedure and some of its details, and present the results ob-
tained by computing a model example reflecting some es-
sential features of the real process.

2 DESCRIPTION OF THE MODEL AND
STATEMENT OF THE PROBLEM

In a spatial domain Q we consider an inhomogeneous vis-
cous incompressible flow in the presence of a gravity field
and a temperature gradient. We describe the flow in terms
of Eulerian variables. In Cartesian coordinates, the flow is
governed by the following equations (Chandrasekhar 1968;
Landau & Lifshitz 1987):
the momentum (Navier-Stokes) equations

p ( ^ + < u, V > u ) = - VP + div ( /A dj ) + F, (1)

the incompressibility condition

div u = 0,

the heat balance equation

— (pcT)+<u,S7(pcT) >= div (k

the equation of state

p(t, x) = p*(t, x)(l - a(T(t, x) - To)),

the rheological equation

fi(t, x) = p. (t, z)exp

(2)

, (3)

(4)

J, (5)
and the advection equations for thermally unperturbed den-
sity and viscosity

-J^+ <\/p*,u >= 0, -i^ i*,u>= 0. (6)

Equations (l)-(6) contain the following variables
and parameters: time t\ a spatial point x with
Cartesian coordinates (xi,£2,#3); velocity vector u =
(ui(t,x),U2(t,x),U3(t,x))] pressure p = p(t,x)] absolute
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temperature T = T(t,x)\ density p = p(t,x)] viscosity
/i = /j,(t,x)] thermally unperturbed density p* = p* (£,#);
thermally unperturbed viscosity //* = /!*(£,#); acceleration
due to gravity g\ universal gad constant R; external body
force (gravity) per unit volume F = —gpez = (0,0, — gp)\
unit basis vector e$ for the Ox$ axis; specific heat c; heat
conductivity k\ coefficient of thermal expansion a; activa-
tion energy E\ activation volume V; a dissipation function
<3> = &(t,x) representing the rate of heat production due to
internal friction; the rate of heat production per unit volume
due to nonviscous heat sources Q = Q(t,x)\ and reference
physical parameters po, go, h, Eo Vo, and To defined below.

Here, v , div , and e»j denote the gradient operator,
divergence operator, and strain rate tensor e%j = e%j{u) =
dui/dxj +duj/dxi, respectively

div (fjieij)

Equations (l)-(6) make up a closed set of equations
that determine the unknown m, U2, ̂ 3, T, p, p*, and /u
as functions of independent variables t and #. Appropriate
initial and boundary conditions for the desired functions are
formulated below.

Thus, we seek functions u\ = ui(t,x), U2 = U2(t,x),
u3 = us(t,x), T = T(t,x), p - p(t,x), p = p(t,x), and
H = ^(t^ x) that satisfy both Eqs. (l)-(6) in a domain Q, at
t > to (where to is an initial time) and prescribed boundary
and initial conditions.

3 TRANSFORMATION OF THE PROBLEM

Equations (1)—(6) can be simplified by changing to dimen-
sionless quantities and taking into consideration the char-
acteristic values of these quantities. As characteristic values
of parameters and variables, we introduce the following ref-
erence quantities: length IQ, density po, viscosity /xo, tem-
perature To, specific heat co, heat conductivity &o, the rate
of heat production per unit mass Qo, the acceleration due
to gravity go, coefficient of thermal expansion ao, activa-
tion energy Eo, activation volume Vo, thermal diffusivity
aeo = &o/(poco), time to = /o/aeo, velocity ^0 = lo/to, and
pressure po = go polo-

We define new dimensionless variables and parameters
(denoted by prime) as follows: t = t' - to, x = x' • fo, u =
(uY-uo, T = T'To, p = p'-po, p = p /-po, p*=p /*-po,

fi = /if-fio, /x* = //* / i0 , g = g'-go, a = a'-ao, k = k''k0,

E = E'-Eo, V = V'-Vo, c = d- co, and Q = Q' • Qo.
After the change of variables the governing equations

have the form

Pr • p I h < u, \7 > u
\ ut

= - V V + j ^ ' div ( /i eij ) + F,

div u = 0, —(pcT)+ < u, v(pcT) >

= div ( k V T) + Di • /i$ + He • pQ,

p(t,x) = p*(t,rr)(l - aa0T0(T(t,x) - 1)),

EQE + p*poggoxzhVoV
^

_Eo_-\-_pogoloVo\
RTo ) '

- ^ + <\7p*,u >= 0, - j ^ >= 0.

These equations are written in terms of dimensionless vari-
ables and parameters. Hereinafter, we omit the primes to
simplify notation, which is thus made similar to the original
dimensional notation. The equations contain the following
dimensionless parameters:

J52_
goto

Here, Pr is the Proude number, Di is a parameter character-
izing the rate of heat production due to the conversion of
mechanical energy into internal energy through viscous fric-
tion, and He is a parameter characterizing the heat produc-
tion due to other internal sources. Also we use Ra = aoToLa,
the Rayleigh number. Let us estimate these parameters by
using the following typical values of the physical parame-
ters for the uppermost layers of the Earth: go = 9.8 m-s~2;
a0 = 10"5 K"1; p0 = 2.2 x 103 kg-m"3; fi0 = 1018 Pa-s;
lo = 5 x 103 m; k0 = 3 J -K^-m"1 -s"1; c0 = 1250
J kg-^K"1; To = 673 K; Eo = 2 x 104 J mol"1;

Vb = 4 x l 0 ~ 6 m^mol"1; R = 8.3 J 1; Qo = 0
J -kg"1^""1. As a result, we obtain Pr = 0.95 x 10~24,
La = 2.52 x 103, Ra = 16.96, Di = 0.24 x 10"4, and
He = 0.27 x 108 Qo = 0. The effective values of these param-
eters can substantially differ from those listed here, because
the problem is solved for the density p and viscosity fi cal-
culated by using formulas (4) and (5) or their dimensionless
counterparts. The resulting effective value of the Rayleigh
number is sufficiently high to be indicative of an unstable
flow. Thus, since the geodynamical processes are slow and
the inertia-to-gravity force ratio is a small quantity, one can
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set Pr = 0 and drop the terms on the left-hand side of the
Navier-Stokes equations.

We note that the parameters c, k, a, and ae, character-
izing properties of the fluid, are advected by fluid particles
in the same manner as the thermally unperturbed density
and viscosity. Therefore, these parameters should satisfy the
following equation:

dt + < V ^ ' ^u>=0'

These parameters may be complicated functions of tempera-
ture, pressure, and other flow variables. To simplify analysis
and avoid unnecessary solution of additional equations, we
assumed that c, &, a, and ae are constant parameters. Ac-
cordingly, transport equations for these parameters were not
included in the set of relations that determine the flow dy-
namics. Assuming also that the gravitational acceleration,
activation energy, and activation volume are constant pa-
rameters, we set c = 1, k = 1, a = 1, ae = 1, g = 1, E = 1,
and V = 1 in the governing equations. The heat equation
was considered in the Boussinesq approximation. The sim-
plifications and assumptions introduced above lead to the
following simplified system of equations for the desired di-
mensionless flow variables:

La • = div ( A* eij ) — La • p

div u = 0,

g-t(p*T)+ < u, v(p.T) >= AT + Di • M

p{t,x)=p.(t,x)(l-a0T0(T(t,x)-l)),

' Eo + p*t,x) = (j,*(t,x)exp( -
RTTo

) + PoVo \
RTo ) '

(7)

(8)

0)
(10)

(11)

(12)

To eliminate the incompressibility condition div u =
0 and pressure p, we define the vector potential ift =
(V'l?^, V*3) by ̂ ne relation u = curl-0 and apply the curl
operator to Eq. (7). Using the identities curl(vp) = 0 and
div (curl^) = 0, we derive the following equations from (7)
and (8):

3 ' r?~(M ei3) _ crt/xe i 2n =

dx2dxi dx3dxi J V ;

(14)

fLa(l + | ^ - Rap, | ^ - ,
OX\ OX\

Pressure p can be determined from (7) up to a constant.
The components of velocity vector u = (^1,^2,^3) can be
found from the equation u = rot %\> as

8x2 dxs 0x3 dxi dxi dx2

Equations (9)-(15) should be satisfied within the do-
main fi at t > to- The functions t/>i, -02, ip3, and T should
satisfy the conditions at the boundary F of the domain 0,
and the functions T, p*, and fi* should satisfy the initial con-
ditions. We now proceed to formulating these conditions.

4 BOUNDARY AND INITIAL CONDITIONS

We set the initial time at zero: to — 0. For simplicity, the
domain ft is supposed to be a parallelepiped: O = (0,/i) x
(0,̂ 2) x ((M3). On the boundary F of O, which consists of
the faces T(xi = 0) and T(xi = U) (i = 1,2,3), we set
impermeability conditions with either perfect slip or no-slip
conditions.

In the case of impermeability conditions with perfect
slip, the velocity vector satisfies the following conditions at
any t > 0:

dur/dn = 0, < u, n >= 0 at F.

Here, n is the outward unit normal vector at a point on the
boundary F, and uT is the projection of the velocity vector
onto the tangent plane at the same point on F.

In the case of no-slip conditions, the velocity vector sat-
isfies the following condition at any t > 0:

u = 0 at F.

Using the equation u = curl^, we represent the corre-
sponding natural boundary conditions in terms of ip. In the
case of impermeability conditions with perfect slip, we have

= 0,

= 0,

dx\dx\

dx\dx2

= 0,

dxidxi dxidxi = (15)

dx%dxz 8x38x3 ' 8x38x3 8x18x3

In the case of no-slip conditions, we have

r(Xl=0,Xl=h): _ - _ = 0,

= 0;

= 0;

= 0.
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Oipi 0ip3 Ofa Oipi
0x3 Oxi ' Oxi ^~

Ofa Ofa
_

0x3
= 0, 7 x ^ 3 Ofa

0x2 OX3

a^i ~ ' a^i dz2 ~

However, we consider somewhat less specific and more

restrictive boundary conditions for ip to simplify natural

boundary conditions in the case when the variables in ip

are separated as follows:

In the case of impermeability conditions with perfect slip,

the following more restrictive conditions are set:

T(xi = = h) : fa = fa = 0,

1 — n ^ 2^2 _ d2fa

—— = 0
0X2 '

^ i = i

C? ^ 1

ipl = i

C? "01

dx{

dxi
02=0 ,

" '

= 0;

In the case of no-slip conditions, we set the following condi-

tions:

0ip2 0ip3
= 0, Xi = li) '. Xpi = 1p2 == 1p3 = 0, = : -^ = 0j

Oipi 0ip2
= 0, X3 = h) - fa = fa = fa = 0, —— = —— = 0.

For the temperature on the side faces on O, we set zero

heat flux conditions (as in a homogeneous Neumann prob-

lem). On the top and bottom faces of fi, the following con-

ditions for temperature are prescribed (as in a nonhomoge-

neous Dirichlet problem):

T(xi = 0, xi = h)

T(x2 = 0, x2 = h)

OT/Ox! = 0, t > 0;

0T/0x2 = 0, t > 0;

x2,0) = T1(t,xux2), t > 0;

x2,h) = T2(t,xux2), t > 0.

The initial conditions for temperature, density, and vis-

cosity are set as follows:

Here, the prescribed functions T*0, pS, and ^2 define the

temperature and thermally unperturbed density and viscos-

ity at the initial time.

Equations (7)-(12) combined with the boundary and

initial conditions uniquely determine the unknown functions

uij U2, 1̂ 3, T, p, and JJL within O at any t > 0. Equations

(13)-(15) (with prescribed functions T, p*, and //*) do not

uniquely determine fa, fa, and fa under boundary condi-

tions of any form. This is explained by the fact that u can

be expressed in terms of the corresponding vector poten-

tial ip only up to the gradient of an arbitrary differentiable

scalar function ip, because u = curh/> = cxn\(ip-\- V^)? which

implies that u = curl0i, u = cm\fa, TO fa = fa -f \/<p.

When a potential ip satisfies these relations, the potential

ip + S7<p, where ip is an arbitrary sufficiently smooth func-

tion of x G O with a compact support in Q, satisfies these

relations as well. Since (p is a compactly supported function

on fi, the gradient v<£ does not contribute to the bound-

ary conditions for ip. In particular, this implies that Eqs.

(9)-(15) combined with the boundary and initial conditions

do not uniquely determine the unknown functions fa, fa,

and fa, whereas the unknown functions T, p*, and /z* (and,

therefore, T, p, and /1) are uniquely determined within SI at

any t > 0. For our purposes, any potential found by solving

the equations above is suitable, because the same velocity

field is obtained.

5 VARIATIONAL EQUATION OF THE

PROBLEM

To apply a finite element method, we replace Eqs. (13)—(15)

with an equivalent variational equation. We multiply Eqs.

(13)-(15) by the components ui of a test vector function u

satisfying the conditions set for the vector function tp. Per-

forming these operations and using the boundary conditions

for the desired and test vector functions, we obtain the vari-

ational equation

L (2enen -+• + 2633633 + 612612

+613613 + 623623)^ = — / Lapw3dx,
Jn

which can be represented as

;) = L(v) (17)

for any arbitrary admissible u = (a;i,u;2,a;3). Here, E(ip,u)

and L(u) denote the corresponding bilinear and linear forms.

The expressions for eij in terms of UJ are identical to the

expressions for eij in terms of ip.
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The bilinear form E(tp,uj) is symmetric, E(ip, u) =
E(UJ, ip) for any arbitrary admissible ip and UJ. Moreover, it
is nonnegative, E(U,UJ) > 0 for any arbitrary admissible UJ.

However, it is not positive definite; otherwise, the potential
would be uniquely defined, which is not the case here, as
shown above. Thus, the problem is reduced to computing
the functions ipi = ?/>i(£,#), ip2 = ?/>2 (£,#), ip3 = t/>3 (£,#),
T = T(t,x), p = p(t,x), and fj, = ii(t,x) that satisfy
Eqs. (9)-(15) in the domain Q at t > 0 (or the variational
equation (17) combined with Eqs. (9)-(12)), supplemented
with the boundary and initial conditions formulated above.

6 TWO-COMPONENT REPRESENTATION OF
THE VECTOR POTENTIAL

Let us discuss the possibility of reducing the number of func-
tions to be computed by reducing the number of required
components of the vector potential ip. Since numerical so-
lution of the problem involves repeated computation of the
flow velocity field (at different times t) based on the cor-
responding current potential field, and the problem under
analysis is three-dimensional, the reduction of the number
of computed components of ip (say, from three to two) would
result in a substantial economy of computing resources. This
is a feasible task, because, as noted above, the vector poten-
tial is determined by the velocity field except for an additive
gradient of a scalar function. Therefore, one can try to use
the freedom in choosing a vector potential to accomplish this
task.

We show here that, for a wide class of problems, it can
be assumed a priori that ip3 = 0 in the required vector veloc-
ity potential ip. To make this possible, we should find cases
where the vector velocity field u admits the representation

u = cmlip, ip = (ipi,ip2,ip3), (18)

where the two-component potential ip = (^1,^2,0) satisfies
certain boundary conditions. The existence of such a rep-
resentation would imply that the vector velocity potential
could be sought in the two-component form and could be de-
termined by solving either a simplified version of Eqs. (13)-
(15) or a simplified variational equation derived from (17)
under appropriately simplified boundary conditions with
ip3 = 0. In what follows, we indicate some cases when this
is possible.

Omitting a detailed analysis, we note the following fact
verifiable by direct computation: for any sufficiently smooth
vector field @u satisfying only the incompressibility condi-
tion and an impermeability condition with either perfect slip
or a no-slip condition, there exists a sufficiently smooth vec-
tor field ip that satisfies Eqs. (18) and the corresponding

natural boundary conditions equivalent to impermeability
with either perfect slip or no-slip. As an example of such
a ^ , we consider the field defined by the following simple
expressions:

1p3 =

= /
Jo

P

= - /
Jo

= 0 ,

X3

jr¥- ,(19)

-£^- ,(20)

(21)

where (p = <£>(£, #i, #2) is an arbitrary sufficiently smooth
scalar function with a compact support in the rectangular
domain (0, l\) x (0, h) (the variable t is treated here as a
parameter). However, as mentioned above, it is more conve-
nient from a computational perspective to deal with more
restrictive boundary conditions for the velocity potential,
because suitable basis functions are much easier to construct
under such conditions in the finite element method to be
used here in the approximate computation of the potential.
In the analysis below, we use basis functions constructed
from tricubic splines.

Now, let us explore the applicability of representation
(18) under more restrictive boundary conditions for ip. We
begin with the case of more restrictive impermeability condi-
tions with perfect slip. We show here that the scalar function
ip in (19)-(21) can be adjusted so that the two-component
potential defined by these expressions satisfy the more re-
strictive boundary conditions mentioned above. To do this,
we need an additional condition: the velocity field must sat-
isfy certain equations of state as well. In brief, this require-
ment can be substantiated as follows.

Consider a sufficiently smooth vector field u satisfy-
ing the incompressibility condition (8), the impermeabil-
ity condition with perfect slip, and the momentum equa-
tion (7) with admissible and sufficiently smooth p = p(t, #),
fj, = fj,(t, x), and p = p(t, x). Using the boundary conditions,
we can represent the velocity field u as Fourier series:

!i, 0 : 2 , 2 : 3 ) = (22)

00 00 00

i=o i=o fc=o

00 00 00

z=0 j=0 k=0

00 00 00

(23)

(24)

i=0 j=0 k=0
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Henceforth, the variable t is treated as a parameter. The ve-
locity u can always be represented as u = rot if), where the
three-component potential tp = (^1,^2,^3) satisfies more
restrictive boundary conditions. Using the boundary condi-
tions, we represent the components of tp as Fourier series:

00 00 00

i=0 j=0 k=0

00 00 00

«=o i=o *=o

CO OO OO

)sin(

s i n ( 1 T ) cos(

\ • /

(25)

(26)

(27)

cos(
t l fc2 *3

i=U j=U /e=0

Here, the Fourier coefficients obey the following constraints:

Substituting this representation of the vector potential into

the variational equation (17) and consecutively using the

test vector functions Co = (o;i,0, 0), Co = (0,u>2,0), and Co =

(0,0, U3) with

=cos(

= sin( )sm(

= sin(——) sin(——) cos() sin(
h h

we obtain a system of linear equations that can be compactly
written as

An A12 A13

A2i A22 A23 I I V ( 2 ) I = I p{2) I • (28)
A31 A32 A33 ) \ </>(3)

The entries of the infinite matrices Apq are constructed from
the numbers

limn _ ( T2 ^ 2 \ / M 2

+ILKNi£$lmn •

if^P = LiV(J2 - .

al%n = (I2 ~ K2)(L2 -

= IK(M2 - L2)tf*Cklmn ~

JK[L2 - M2)ri$mn - MN{K2 -

rifc
klmn-I

(I2 ~ J2)(L

where the following parameters are used:

ccc f
fJ>ijklmn= /

x cos(
h

cos(

h ) C 0 S ( V ) s i n ( z2
ifijklmn — I

JQ

x sin(—-—) sm(——) sm(——)dx,
h h h

Vijkimn — I A*sin(—-—)sin(——)sm(-^—
7fi «i h h

x s i n ( — — ) c o s ( ) c o s (
h h h

)dx,

scs f •
Vijkimn= / /isin

,7rmx2, . ,7vkx3^ . ,7rnx3^,
x cos(—=—) sin(—-—) sin(—^—)dx,

h h h

_7ri 7TJ nk

- / 7 ' J " 7 2 - ' K=l3~'

To formulate the rule for constructing Apq from a 9^ n ,
we introduce a one-dimensional indexing system for the
equations and unknowns, using any one-to-one mapping
/ : No x No x No —> No such that any triple index
(i, j , k) G No x No x No is mapped to an index /(i , j , k) GiVo,
where No = {0,1,2,...}. The entries (a£)a/g of a matrix Apq

are now defined as (a£)aig = a^JJ.n, where (Z, m, n) = /~1(a)

The components of the vectors p (1), p (2), ^ ( 1 ) , '0(2)
)

are defined as
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fl\ V*Mj \_ \. s t i l l U*AJ Ji \ • / ' *'**-/ O \ 7

x cos(—-—) cos(—=—) sm(—-—)dx,
«i h h

Pf(l

,-KIXI.
(
,KIXI. ,7rmx2^ . .TTUXS,

x cos(—;—) cos(—;—) sin(—;—)dx,
h h h

If we multiply by TTZ/ZI, irni/h, and nn/h, respectively,
each entry in the rows indexed by /(/ , ra, n) in the sets of
rows (An,Ai2,Ai3), (^21,^22,^23), and (A31,^32,^33) in

(28) and add up the results, then we obtain a zero row,
because

TTTTl qimn

1 7 ' a 2
qimn pj

*lijk ^ l^~ "2iifc

q = 1,2,3, i,j,k,l,m,n G iVo-

As a result, we set to zero the last set of rows in the matrix of

system (28). The elements in the column of absolute terms

remain zero as well, because

TTJ (i) Trra (2) 7m n o / M
ll **• ' m ' n ' ' Z2 •'̂  ' m ' n ' ' 63

This means that the vectors -
system of linear equations

A2 i A22 A23

0 0 0

and ip^ satisfy the

= P
( 2 ) (29)

0

Moreover, the linear dependence of rows in the matrix
of system (28) implies that systems (28) and (29) are equiv-
alent. These systems are solvable since I/J satisfies the vari-
ational equation. The columns of the matrices of systems
(28) and (29) are also linearly dependent, because

limn 3lmn
amn

y- * a
Pijk j j

p = 1,2,3, ij,k,l,m,n G iVo-

Therefore, the solvability of (29) entails the solvability of
the system

(30)

and its solution is given by the vectors xpi and ipl whose
components are

^(2) _ . (2) _ jh_ . , (3)

i,j,keN0, MO,

The reverse proposition is also valid: if vectors ipi1^ and î i2^
constitute a solution to system (30), then the vectors ijj^ =
^ \ %!)&) = i/;i2\ and ̂ ( 3 ) = 0 constitute a solution to both
(29) and (28).

The analysis above implies that one may set ip^ = 0
when considering systems (29) and (28). Therefore, the ve-
locity field u can be represented as in (18), where the po-
tential ij) = (^1,^2,0) satisfies the more restrictive bound-
ary conditions corresponding to impermeability with perfect
slip.

Now, we consider the case of no-slip conditions. The cor-
responding representation (18) subject to more restrictive
no-slip conditions is relatively simple to find when viscosity
has the form /i = /i(t, X3) or fi = /i(t, £1,0:2). This asser-
tion can be validated by an analysis that does not rely on
the scheme developed above for the impermeability condi-
tions with perfect slip. However, the desired representation
(18) has been neither proved nor disproved in the case when
viscosity has the general form fi = /z(£, x).

Remark. The problem formulated for a horizontally
uniform viscosity /x = //(£, X3) can be substantially simplified
by replacing a three-component potential I/J — (^i> ^2^3)
or a two-component potential xp = (^1,-02,0) with the
single-component potential

= (d<p/dx2, -d<p/dxu0), (31)

where <£> = <p(t, x) is a scalar function satisfying appropriate
boundary conditions. This can be done because the velocity
field u can be represented as u = rot rot (^€3) (note that
this representation is not unique). Omitting a detailed anal-
ysis, we can define the scalar function ^ a s a solution to the
equation

In the case of impermeability conditions with perfect slip,
this solution must satisfy the boundary conditions

=0;

Y{x2 = 0, x2 = h) : d(p/dx2 = 0;

= 0, x3 = h) : V = 0 = d2if/dx\-

in the case of no-slip conditions, it should satisfy the bound-
ary conditions

T(xi = 0,zi = h) : tp = 0 = d(p/dxi]

T(x2 = 0, x2 = h) : (f = 0 = d(p/dx2]

r (z 3 = 0, x3 = h) : (p = 0 = d(p/dx3.

Thus, the determination of u for /J, = /j,(t, X3) can be
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reduced to computing a single scalar function tp that satis-

fies both the corresponding simplified version of Eqs. (13)-

(15) (or simplified variational equation (17)) and appropri-

ate boundary conditions. In this case, it should be kept in

mind that

u3 = -d2cp/dxl - d2<p/dx2
2.

7 APPROXIMATION OF THE PROBLEM

Now we consider some universal aspects of approximate so-

lution to the basic equations for the desired functions. For

example, the vector potential rj) can be found, together with

the thermally unperturbed density p* and viscosity /i*, by

applying a finite element method with basis functions of a

special form. The construction of the basis functions and

the implementation of the finite element method were de-

scribed in detail by Ismail-Zadeh et al. (1998). Here, the

vector potential is also approximated by a linear combina-

tion of tricubic basis functions expressed as tensor products

of appropriate cubic splines:

xl)P{t,xux2,xs) (32)

i=0 3=0 k=0

i=0 j=0 k=0

p = l,2.

Density and viscosity are approximated by linear combina-

tions of appropriate trilinear basis functions expressed as

tensor products of linear functions:

p*(t,XUX2,X3) (33)

(34)

i=0 j=0 k=0

Trilinear basis functions provide good approximations of dis-

continuous fluid properties.

By substituting approximations (32)-(34) into (17), the

approximate vector potential is found for prescribed density

and viscosity distributions by solving a system of linear al-

gebraic equations with a positive definite band matrix for

the unknown coefficients {ip\fl{t)}. However, the condition

number of the system tends to infinity as the grid is con-

densed. This leads to difficulties in solving high-dimensional

systems, since iterative methods tend to exhibit progres-

sively slow convergence, and may even diverge in some cases

because of roundoff errors. Here, a solution is obtained by

directly applying the square-root method. Some versions of

this method implemented on parallel computers were de-

scribed by Ortega (1991), Ismail-Zadeh et al. (1998), Ko-

rotkii et al. (1999), and Ismail-Zadeh et al. (2000).

Substituting approximations (33) and (34) into (12),

we computed approximations of the thermally unperturbed

density and viscosity for a prescribed velocity distribution by

the method of characteristics, i.e., by transferring the initial

conditions along the characteristics of Eqs. (12) (for details,

see Ismail-Zadeh et al. 1998). This method can be used in

computations with relatively weak density and viscosity dis-

sipations (Marchuk 1989; Ismail-Zadeh et al. 1998; Korotkii

et al. 1999). The characteristics of transport equations are

defined by systems of ordinary differential equations of the

form (e.g., see Ladyzhenskaya 1970; Antontsev et al. 1983;

Marchuk 1989)

= u(t,x(t)).

The thermally unperturbed density and viscosity have con-

stant values on the characteristics:

p*(t,x(t))=po(x(to)), fjt*(t,x(t)) = no(x(to)), t>t0.

These relations can be used to find density and viscosity

in f£ at t > to for the prescribed initial density and vis-

cosity distributions, provided that the velocity fields at t

have already been computed. When trilinear basis functions

are used to approximate density and viscosity, a sufficiently

large number of independent modules can be organized to

compute the characteristics of transport equations and the

corresponding densities and viscosities on them. Note that

a finer grid can be used to approximate both density and

viscosity, as compared to the grid used for computing the

vector potential.

The temperature T = T(t,x) was approximated by

finite-difference methods. The derivatives dui/dxj were de-

termined by differentiating the relation u = rot \j) with

the use of (32). Temperature was computed by the implicit

alternating-direction method (Marchuk 1989). At each itera-

tion step in time, a large set of linear algebraic systems with

tridiagonal matrices was solved, and a corresponding num-

ber of independent modules could be organized for parallel

solution of these systems by means of tridiagonal algorithms.

In summary, the numerical solution of the problem con-

sisted of the following basic stages: (1) a set of linear alge-

braic equations was solved for the coefficients of a decom-

position of the vector velocity potential in terms of basis

functions, (2) the heat equation was integrated, and (3) the

equations for advection of density and viscosity were inte-
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grated. All of these stages require substantial computing re-
sources.

8 COMPUTATIONAL PROCEDURE

Here we describe briefly the procedure of solving the prob-
lem. A uniform discretization of the time axis, tn = to + rn
(n G Z), is defined a priori, where r is the discretization
parameter. Next, an iterative process is organized in which
n is consecutively assigned integer values ranging from 0 to
m. (The integer m is prescribed prior to computations to set
the length of the interval [to,tm] of integration). When nec-
essary, the process can be continued further, starting from
tm as an initial time. At each iteration step in time, the
following three steps are executed sequentially.

Step 1. The distributions of temperature, T — T(£n, •),
and thermally unperturbed density and viscosity, p* =
p*(£n,-) and fi* = /j,*(tn,-), at t = tn are used to deter-
mine from (10) and (11) the thermally perturbed p = p(tn, •)
and /i = /j,(tn, •) at the same t = tn- Then, the distribution
of ip = ip(tn, •) is found by solving Eqs. (13)-(15) or varia-
tional equation (17), and (8) is used to calculate the velocity
u = u(tn,-).

Step 2. The distributions of velocity, u = u(tn,-), and
thermally perturbed density and viscosity, p = p(tn, •) and
/i = //(tn,-)j a r e u s ed to compute a new temperature dis-
tribution T = T(£n+i,-) at t — tn+i by solving Eq. (9)
supplemented by boundary conditions.

Step 3. The distributions of velocity, u = u(tn,-), and
thermally unperturbed density and viscosity, p* = p*(tn, •)
and fi* = /x*(£n,-), are used to compute new thermally
unperturbed density and viscosity, p* = p*(£n+i,-) and
/i* = /i*(£n+i, •)> a t t — *n+i by solving Eq. (12).

The iterative process results in distributions of tempera-
ture T = T(tn, •)) potential vector I/J — ip(tn, •)? velocity u =
u(trn-), and thermally unperturbed density p* = p*(£n,-)
and viscosity /i* = /x*(tn, •) as well as thermally perturbed
density p = p(tn,-) and viscosity JJL = ii(tn,'), at t = tn

{n = 0, ...,ra). Once these distributions are available, the
evolution of the system on the interval [£o,£m] can be re-
covered in more detail by interpolation. The time step can
be chosen automatically so that the largest displacement of
fluid elements does not exceed a preset small amount.

9 NUMERICAL EXAMPLE

As a typical example, we computed a flow in the paral-
lelepiped Cl = [0,3] x [0, 3] x [0,1]. At t0 = 0, we set p°(x) = 1,
lfi(x) = 1, and T2(x) = 1.05-^3//3. On the faces r(z3 = h)

and T(x3 = 0), we set T2 = 0.05 and T\ = 1.05, respec-
tively. We set Q = 0 and restricted ourselves to the case of
impermeability conditions with perfect slip. The values of
physical parameters given in Section 2 were adopted in the
modeling. We introduced a small temperature disturbance
at xo = (3/2, 3/2,1/3) at the initial time, which led to the
development of a thermal diapir (or plume).

We used a 25 x 25 x 25 grid for vector potential and
viscosity and a 73 x 73 x 73 grid for density and tempera-
ture. The time step was set equal to 0.1. Table 1 shows the
processing characteristics of various parallel computers with
distributed memory used to compute our numerical exam-
ple.

Figure 1 illustrates the shapes of isotherm T = 0.9 com-
puted at successive times. The numerical results are consis-
tent with those obtained in analyzing the Rayleigh-Benard
instability at small overcritical Rayleigh numbers (Chan-
drasekhar 1968) and two-dimensional thermal convection
(Trompert & Hansen 1998).

10 CONCLUSIONS

We proposed a numerical approach to the problem of
slow, highly viscous, incompressible flows with temperature-
dependent density and viscosity under gravitational and
thermal effects. The approach relies on a finite element
method and a representation of a two-component vector
velocity potential for an incompressible viscous fluid by a
linear combination of tricubic splines with unknown coeffi-
cients. The use of tricubic splines leads to a highly accu-
rate solution to the problem, as compared to other finite-
different or finite-element methods, while the discrete ap-
proximations employed have relatively low dimensions. The
advection equations for density and viscosity are solved by
the method of characteristics; the heat balance equation, by
means of a tridiagonal algorithm.

The two-component representation (18) of the vector
potential proposed in this study is computationally advan-
tageous as compared to the two-component representation

u = curh/>, (35)

with scalar poloidal and toroidal potentials ipi and <£?2 (e.g.,
see Chandrasekhar 1968; Busse & Prick 1985; Christensen &
Harder 1991). Representation (18) is simpler than (35). It
entails simple relations (19)-(21) between the components
of the velocity and potential vectors, which are equivalent
to u\ = —dtp2/dx3, U2 = dipi/dx3, and us = dfa/dxi —
dipi/dx2- When representation (35) is used, one has to deal
with equations of higher order as compared to Eqs. (13)-
(15), which require a more cumbersome and complicated
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Table 1. Operational characteristics of various parallel computers.

Computer No. of processors Time CPU Communication rate

MVS-100
MVS-1000

Alpha
IBM SP2

30

8

2

16

180' 1860/80 MHz 1 Mb/s
7'15" Alpha/300 MHz 10 Mb/s
55' Alpha/540 MHz 10 Mb/s

3'25" RS6000/133 MHz 3 Mb/s

a b

c d

Figure 1. Evolution of thermal plume at time t: 0 (a), 120 (b), 150 (c), and 180 (d).

numerical analysis. Moreover, representation (18) is valid
not only in the domain Q,. It remains valid under the addi-
tional requirement that the boundary conditions considered
here are consistently satisfied by the velocity vector and the

corresponding vector potential. It is also important that the
contributions previously made by various authors, including
those published in (Ismail-Zadeh et al. 1998, 2000; Korotkii
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et al. 1999), as well as available software, remain effective
and may even turn out to be more efficient.

A greater part of computational resources is required to
solve the system of linear algebraic equations obtained by
discretizing the variational equation (17). The correspond-
ing algorithm factorizes the matrix of the linear system and
solves the resulting linear systems with upper and lower
triangular matrices. The square root method (Choleskii
method) is advantageous in that the solution is obtained
up to the computer arithmetic accuracy. Its disadvantages
include higher requirements for memory and CPU time
resources. Iterative (e.g., Gauss-Seidel or Schwarz) meth-
ods require much less memory, but test computations have
shown that the convergence rates of the iterative processes
are too low. The multigrid iterative approach is also dis-
advantageous as applied to simulate thermally driven con-
vection, since the corresponding convergence rate is too low
when large variations of viscosity are to be computed (Tack-
ley 1993; Trompert & Hansen 1996). When the conjugate
gradient method is applied, convergence cannot be improved
to an acceptable degree, whereas the CPU time increases
immensely (Trompert k, Hansen 1998). It should be kept in
mind that a high numerical accuracy is essential for com-
puting the evolution of unstable flows, which are extremely
sensitive to small disturbances (such as those resulting from
numerical errors). This motivates the use of the highly ac-
curate square root method for solving such problems. When
the two-component velocity potential and, in some cases,
the one-component potential proposed here are employed,
the computing resources and CPU times required to solve
the systems of equations are substantially reduced, and the
basic disadvantage of the present approach is thereby elim-
inated.

The principal results of this study are summarized as
follows:

1. We develop a numerical method for simultaneous so-
lution of the Stokes flow equation, heat balance equation,
and advection equations for physical parameters of the fluid.

2. We show that computational costs can be reduced by
an introduction of two-component (or even one-component
in some cases) representation of vector potential.

3. Numerical test experiments are carried out for a
three-dimensional model of thermal convection.
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