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SUMMARY

In a previous paper (Correig and Urquizii, 1998) it was shown that microseism time series are

non-stationary, non-linear and stochastic, and that these characteristics can be reproduced by

a forced non-linear damped oscillator. In the present study we show that such an oscillator is

also able to explain other features widely observed, such as the variation, for a given seismic

station, of the frequency of the secondary peak; the variation of the frequency of the primary

peak for different seismic stations relative to the same source; the variations of amplitude of the

power spectrum for stormy days with respect to quiet days; and the incoherent propagation of

microseisms. Numerical simulations with the proposed phenomenological model suggest i) that

the main spectral peak may be due to a competitive process between the resonant response of

the medium and an external harmonic force (Longuet-Higgins model), ii) that the secondary

peak may be generated by the process associatesd with the activity of the coastal waves or as

a sub-harmonic of the resonant frequency and iii) that the large amplitude variations between

quiet and stormy days refers in fact to variations in the source (storm) distance. From a general

point of view we can say microseism activity can be interpreted as the resonant response of the

Earth to atmospheric cyclonic storms coupled with the oceans.

K e y WOrClS: numerical techniques, seismic noise, seismic spectra.

1 INTRODUCTION

Microseisms are world-wide phenomena usually understood as strong background noise, tem-

porally and spatially varying, that strongly influences the detection of transient wave arrivals.

As described by Aki and Richards [1980], two maxima of the power spectrum, at about 0.07

Hz, the primary peak, and 0.14 Hz, the secondary peak, are typical features of almost all the

recordings at seismic stations. The primary peak is usually less intense than that the secondary

one and, as proposed first by Wiechert in 1904, has been attributed to the direct impact of

ocean waves on nearby coasts, since it roughly coincides with the primary peak of ocean wave

oscillations. The most intensive peak was interpreted by Longuet-Higgins [1950] as the result

of fluctuations of pressure caused by standing waves along the sea-bed.

The existence of the two above-mentioned peaks (although the primary peak may be absent)

can be considered as a basic feature of seismic noise, which may suffer some shift in the

frequency location of the two peaks from place to place (although preserving an approximate



relation 2:1) and strong amplitude variations, (up to two orders of magnitude), due either to the

location of the seismic station in quiet or noise places or, if in the same place, to the presence

or absence of storm waves at sea. The above observations can be summarized by saying that

the shape of the power spectrum is preserved.

In his review on microseism studies, Bath [1974, Ch.9] states that "the studies of micro-

seisms, the steady unrest of the ground, is a border-line field between meteorology, oceanogra-

phy and seismology. Microseisms are no doubt of greatest concern to seismologists, but when

their generation is to be explained, recourse must be taken to meteorological and oceanographic

conditions. As a consequence, microseisms constitute a random process, like atmospheric tur-

bulence and ocean surface waves." No further comments appear in Bath's book on the charac-

teristics of microseism time series and, as far as we know, microseisms have only been analyzed

from the point of view of spectral (i.e. linear) analysis. At the same time, it is commonly ac-

cepted now (see Webb [1998], Kibblewhite and Wu [1991] and the references therein) that the

principal mechanism for the generation of microseism oscillations (i.e., the source mechanism)

is intrinsically non-linear: two ocean waves traveling in opposite directions, if certain resonant

conditions for their frequencies are met, can give rise to an elastic (or seismoacoustic) wave

that spreads up to thousands of kilometers from its source location under the sea-bed and is

eventually recorded as a microseism.

In this study an attempt is made to look at the microseism phenomenon from a differ-

ent viewpoint than that of seismic detection, by considering the 3-phase system atmosphere,

hydrosphere (ocean or lake) and solid earth as a coupled non-linear dynamical system that

generates microseism oscillations as a result of its complex dynamics. Accordingly, we consider

the microseism time series as a signal that brings information relative to this complex dynam-

ical system. Such an approach is close in spirit (e.g. from the point of view of the time series

analysis) to the study of fully developed turbulent flow in hydrodynamics, when a scalar time

series, say, of fluid velocity is measured at some point to extract qualitative information on the

extended multidimensional system. To gain a deeper insight into the dynamics of microseisms,

microseism time series were analyzed from the point of view of dynamical systems by Correig

and Urquizu [1999] (hereafter referred to as CU), in an attempt to determine whether they

are linear or non-linear, deterministic or stochastic. It should be noted at this point that in

analyzing observed noisy time series, very often the results are ambiguous, usually due to the

fact that the time series do not satisfy the hypothesis on which the method is based. For ex-

ample, many methods have been designed under the hypothesis of stationarity (as for example

the computation of the correlation dimension), which in our case is not satisfied. To overcome

these difficulties, Theiler and Prichard [1996] and Schreiber [1998] propose the comparison of

observations with computer generated time series with well controlled statistical properties.



We have followed this procedure, and as a first approximation to the mathematical description

of microseisms, the model of a non-linear damped oscillator with multi-frequency external ex-

citation has turned out to be useful. Another question in analyzing non-linear time series is

which are the invariants of the underlying dynamical system; that is, which parameters remain

constant as the system evolves. For a linear system the invariant is the time series itself, and

any model has to be able to predict it through a (reduced) number of parameters. However,

in dealing with chaotic or stochastic systems the time series is no longer an invariant due to

the sensitivity to the initial conditions or to the intrinsic randomness. In chaotic systems the

invariants are the correlation dimension, Lyapunov exponents and Kolmogorov entropy. In the

present study, however, no invariants have been found. Thus, our goal has been to look for a

mathematical model able to reproduce the main characteristics of the observed time series, that

is their statistical properties in a generalized sense (non-stationarity, autocorrelation, coherence

time, redundancy, etc., see Appendix), and the properties of the motion in phase space. The

real invariants in dynamical systems are the statistical properties of the time series and the

motion in phase space.

Hasselman [1963] performed a study of the origin of microseisms from a statistical analysis

point of view and explicitly formulated the displacement field in terms of resonances of a layered

elastic motion, a basic phenomenon in our interpretation. Hasselmann centered his study on the

spectrum of the primary and secondary peaks, the so-called teleseismic microseisms, covering a

frequency interval from about 0.05 Hz to about 1 Hz., through the computation of the transfer

function of a layered medium due to the action of a random distribution of external forces.

The aim of the present study is to present a phenomenological model able to explain the

seismic microseism spectrum for a wider interval, from about 0.01 Hz to 10 Hz, the interval

well covered by broadband seismic stations, that include the infra-gravity waves as well as the

local high frequency local noise. Contrary to Hasselmann, the model we actually propose is not

derived from first principles, but rather designed to capture the main statistical characteristics

of observations, which has proved to be a powerful tool in numerical simulations. In some sense,

our model can be viewed as a generalization of Hasselmann's, including non-linearity and noise

as an external force.

2 MAIN FEATURES OF MICROSEISM TIME SERIES

Fig. 1 displays a short interval of two microseism time series (vertical component) recorded at

the broad-band seismic station CAD in the eastern Pyrenees, at about 50 km from the sea [Vila,

1998] for a quiet day (bottom) and for a stormy day (top). Fig. 2 displays their corresponding

power spectra; the location of the two main peaks are at 0.07 Hz and 0.2 Hz. Figs 1 and 2 are



striking. Apart from the scaling, they display the same spectral characteristics for a stormy

day as for a quiet day. Fig. 1 shows that, apart from the differences in the scale of amplitudes

and the time series of the quiet day being poorer in low frequencies, both seismograms display

the same kind of modulations, roughly defining two wave packets of length ~ 17 s and ~ 70

s, each composed of oscillations of ~ 5 s period. From Fig. 2 we can see that the 5 s period

oscillation corresponds to the main peak of ~ 0.2 Hz, the wave packet of 17 s to the secondary

peak located at ~ 0.07 Hz, and the wave packet of 70 s to a very low-frequency peak located

at ~ 0.016 Hz. Following Webb (1998), the peaks located at 0.2 Hz and 0.07 Hz correspond

to teleseismic microseisms, whereas the 0.016 Hz peak corresponds to infra-gravity waves. The

two teleseismic microseism peaks of the spectra appear to be too wide to be considered as

spectral lines corresponding to Fourier components. Although we cannot exclude a priori that

both peaks correspond to the superposition of several incommensurate frequencies [Abarbanel

et al., 1993, pp. 1338-1339], the broadness of these peaks suggest we could be in the presence of

chaotic or stochastic processes. Accordingly, a rigorous time series analysis has been performed.

In the already mentioned study, CU analyzed 50 seismic records of microseism time series,

all recorded at CAD station (Vila, 1998), in a 30 minutes time window interval, starting at

03:00 and with a sampling rate of 80 Hz. The methodology was that of dynamical systems

(Abardanel, 1993; Kantz and Schreiber, 1997). As the former paper is in Spanish, a brief

account is provided in the Appendix. The main results are the following:

1. Microseism time series are non-stationary

2. Microseism time series are stochastic.

3. From the point of view of data analysis, there is strong evidences in favor of a non-linear

character of microseism time series.

The same results (i.e., non-stationarity, stochasticity and non-linearity) were also obtained

for time series generated by a Duffing oscillator (Guckenheimer and Holmes, [1997]), as well as

for a n-well potential forced oscillator, having added, in both cases, additive noise to account

for stochasticity . It is worth to point out that the results were the same for both observations

and generated time series for all applied tests (see CU). Hence, we have adopted a Duffing

oscillator with noise as a toy model for the study of microseism time series.

Further, inland observations, widely reported, provide us with the following constraints

4. For a given seismic station, the central frequency of the main spectral peak may suffer

slight variations, following the time variations of the source of cyclonic storms.



5. For a cyclonic storm fixed in space, the central frequency of the main spectral peak may

be shifted when comparing different seismic stations.

6. By comparing records corresponding to stormy and quiet days (see Fig. 2), the location

of the spectral peaks is preserved, and for frequencies higher than 2 Hz the corresponding

power spectra tend to coalesce to the same level.

7. Microseisms propagate incoherently.

Observation [4] can be interpreted in terms of time variations of the external harmonic

force and observation [5] as medium lateral variations. Observation [6] can be interpreted in

the following way: the high frequency contents of microseisms can be attributed to local weather

conditions as well as cultural noise (traffic, industrial activities, etc.), and it has been observed

that the high frequency contents are clearly stochastic and as such has been modeled in studies

of local seismic medium response (Lachet and Bard, 1994; Morikawa et al., 1998). From now

on, we will consider the high frequency stochastic interval as noise, whereas the remaining low

frequency interval, where microseism and infra-gravity waves are located, as signal. It is also

well known that microseisms propagate incoherently, so that their corresponding phase can be

considered as random (as confirmed through the generation of surrogate data), thus accounting

for observation [7]. At this point it is worth it to point out that the following study has to be

considered as a mean field one, in the sense that it is our purpose to explain average properties

that may suffer important fluctuations. Compare, for example, Fig. 2, a typical display, with

Fig. 4 (also a record from CAD station), in which the main peak has been split into two and

shifted to lower frequencies, (0.115 Hz and 0.180 Hz instead of that of 0.2 Hz of Fig. 2), and

in which the primary peak is not present. This figure constitutes a good example of the large

fluctuations that the standard picture suffers.

3 MODEL DESCRIPTION

As previously stated, CU found that a Duffing oscillator with additive noise was able to generate

time series that capture the main characteristics (observations [l]-[3]) of microseisms, as well as

by using oscillators with more general potentials, suggesting that any non-linear forced oscillator

with additive noise could be used to simulate the observed microseism time series. Hence, as a

starting point we will center our interest in the classical and well studied Duffing oscillator:

q + 5q — aq + (3q3 = 7 cos(cjt) (1)

where 5 is the coefficient of damping, a the proper or resonant frequency of the system in the

absence of external forces, /5 the coefficient of non-linearity and 7 the amplitude of the external
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harmonic force. In the following we will generalize our model eq. (1) to be able to account

for the observational constraints described in the preceding section. As it is well known, a

Duffing oscillator generates time series that may be periodic, quasi-periodic or chaotic, but

not stochastic, hence the need to add white noise to the external force. This white noise

can account for observation [6] in the sense that local high frequency noise contents may act

as a driving force. It was also found that to generate a time series qualitatively similar to

the observed one, we had to add a second harmonic force with a driving frequency of about

0.015 Hz (corresponding to the 70 s period wave packet, the infra-gravity wave), added to an

harmonic force with driving frequency of 0.2 Hz (the secondary microseism peak) as observed

in the recorded microseisms; there is no need to add a third harmonic force to account for the

primary peak at half the frequency of the secondary one because it appears naturally as a sub-

harmonic. Whereas the last frequency is related to the oceanic standing wave, the infra-gravity

wave with a predominant frequency of 0.015 Hz could be related to wind waves (Wells, 1986).

Eq. (1) is thus rewritten as:

q = p

where Vo is the potential defined as

V0 = -a— + 8— (3)
0 2 ^ 4 y J

and e is the amplitude of the random noise F(t).

Observation [4] can be interpreted in terms of spatial and temporal variations of the source,

that is, the cyclonic storm. Time pressure variations would imply slow variations of the central

peak frequencies of the microseism. Variations in sea-bed topography along with variations

in the thickness of the wave guide may account for the incoherent propagation of microseisms

(Weeb, 1998). Stochasticity due to incoherent propagation can be modeled by randomizing the

phase of the signal, that is, by randomizing the proper frequency a of the system (i.e., the

response of a linear system in the absence of external forces), thus accounting for observation

[7]. The coefficient a that appears in eq. (3) in substitution of the coefficient a of eq. (1) is

defined as

a = a$ + Tjf{t). (4)

where rj is the amplitude of /(£), a white noise term. The coefficient a (or a^ if rj / 0) can be

positive or negative. For a < 0 we are in the presence of only one potential well, whereas for

a > 0 there are two of them, known as the bistable potential.



On the other hand, spatial variations of the location of the storm would imply variations of

the travel path. As microseisms are mainly composed of Rayleigh waves (guided waves), they

should be very sensitive to the upper layered structure of the Earth. This would also account

for observation [5], in which case we should also have to take into account seismic absorption,

which would shift seismic waves to lower frequencies with increasing distances. The factor that

takes into account the dissipation of energy is the damping coefficient 5, and the amount of

dissipation will depend on the length of the travel path. We then propose a phenomenological

model, similar to the classical Longet-Higgins one but contemplated from a different point of

view. Instead of attempting to describe a traveling perturbation, our model eq. (2) describes

the ground motion (the oscillatory motion generated by the non-linear oscillator) that would

be recorded by a seismic station at a given distance from the source of micro-seismic activity.

Looking at eq. (2) we can see that the model is composed of two contributions: medium

properties on the left, and external forces on the right.

4 PHASE SPACE AND POWER SPECTRUM

The broad-band records of microseism time series that we have analyzed consist of velocity

records sampled at a rate of 80 Hz. The time series has been integrated to obtain the dis-

placement field, and the evolution of the system has been plotted in phase space (velocity vs.

displacement). Fig. 3 displays an example of the motion of a microseism time series recorded

on 95/03/10 at 03:00 for a time window of 1024 seconds, Fig. 3(a), and for a time window of

125 seconds, Fig. 3(b), to emphasize the details. As we can clearly observe, the motion follows

well defined trajectories, similar to those of a particle bouncing irregularly in a potential well.

This motion consists on a superposition of loops of different mean radius (i.e. motion with

different frequencies) with the axis of the loops displaying separate irregular oscillations, over

a well defined path. The corresponding motion is random in the sense that it is not possible to

predict neither the time evolution of the axis of the loops nor the mean radius of the loop. Fig.

4 displays the power spectrum of the time series presented in Fig. 3; as previously mentioned,

this figure is representative of the large fluctuations that the standard power spectrum may

suffer.

The evolution of microseism in phase space is qualitatively well represented by our model.

Fig. 5 displays an example of the evolution in phase space of a time series generated by

eq. (2) with only one potential well, with the following numerical values of the parameters:

5 = 0.01,/? = 0.05,/i = 0.05,7i = 7.5, f2 = 0.2,72 = 1.0, e = 10.0, a0 = -4,7/ = 0.03. The

structure of motion in phase space is the same as in the case of microseisms: loops of different

mean radius oscillating irregularly along a well defined path. Its power spectrum is presented
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in Fig. 6. It is composed of a main broad peak at 0.233 Hz, and another located at 0.198

Hz. The peak at 0.198 Hz corresponds to the external force /2 , whereas the peak at 0.330 Hz

corresponds to the resonant frequency of the potential, which has been obtained by generating

a time series with the same value of the parameters except that the force term is composed of

only white noise.

In order to get some insight on the dynamical features of microseism time series through

our model, and to check its capacity to explain observations [4-7], a numerical study of the

influence of the values of the parameters of eq. (2) has been performed. (As already stated,

features [1-3] of microseism time series, that is non-stationarity, stochasticity and non-linearity,

are well reproduced by the model, as well as the shape of the power spectrum and the motion

in phase space). The parameters / i and 71 that characterize the low frequency external force

and its amplitude, responsible for the motion of the axis of the loops, have been kept fixed in

the numerical simulations, as they account only for the motion for long time scales.

4.1 Potential

The potential, equations (3) and (4), is characterized by parameters a, /?, a0 and 77. For

/3 — 77 = 0 we are in the presence of the well known linear forced damped oscillator with noise.

If fi jk 0 but 77 = 0 the system is non-linear and the frequency becomes dependent on the

amplitude, so that the resonant frequency will be a slowly varying function. For the case /3 = 0

rj ^ 0, the coefficient a will be time dependent a — a(ao,t) and we will be in the presence

of parametric resonance, i.e., a steadily increase of the amplitude of oscillations caused by the

time variation of a. In the more general case, with /?, rj ^ 0, the phenomenon of resonance will

be the result of a competitive process between the time variation of a and the frequency of the

external force, and contrary to the case of the linear oscillator, in the absence of damping the

amplitude will grow without being singular.

First of all we have determined the resonant frequency for the following numerical values

of the model parameters: a — —4.0, 77 = 71 = 72 = 0, e — 1.0, 5 = 0.01 and (3 = 0.05. The

corresponding spectral peak (the resonant frequency) is located at fr — 0.34 Hz. By introducing

the parameters f\ = 0.05, 71 = 7.5, fa — 0.35, 72 = 1.0 and rj = 0.03, the shape and frequency

of the resonant peak are preserved whereas new high frequency peaks have been generated.

Fig. 7 displays the power spectrum of the oscillations for the above parameters, solid line; the

shape is preserved for noise amplitudes up to e = 10.0. For higher amplitudes of the additive

noise, the amplitude of the spectral peak grows slightly and the peak broadens and is shifted

to 0.4 Hz for a noise amplitude of e — 50 (dashed line in Fig. 7). With respect to the higher

harmonics, their central frequency also shifts to higher frequencies, although their amplitudes



are reduced. It is of interest to observe an amplitude growth at both sides of the resonant peak,

with only a slow variation in the amplitude of the resonant peak. Note also the generation

of sub-harmonics in the power spectrum, one located at 0.171 for the continuous line and two

located at 0.149 Hz and 0.205 Hz for the dashed line, and that the approximate relation 2 : 1

hold relative to the resonant peak.

With respect to the random variations of the resonant response, accounted for through the

parameter rj defined in eq. (4), the influence of this additive noise on the resonant peak consists

on a broadening of the peak, although preserving its central frequency for moderate values of r\

and contributing, at the same time, to the generation of sub-harmonics, see Fig. 8 for r\ — 0.00

(continuous line) and 77 = 0.06 (dashed line).

The last term to be taken into account is the coefficient /? of non-linearity. Fig. 9 displays

the variation of the spectral peak for /? = 0.00 (continuous line), /3 = 0.05 (large dashed line)

and y5 = 0.10 (short dashed line). A shifting to higher frequencies for increasing values of /? is

clearly seen.

4.2 External force and damping

The external force is characterized by two parameters: the frequency of the harmonic force

and its amplitude. Fig. 10 shows the influence on the power spectrum of the variation of the

frequency f2 for a constant resonant frequency fr = 0.34. For f2 = 0.15 Hz (solid line) and

f2 — 0.65 Hz (short dashed line) their corresponding spectral peaks are present, the power

spectra display only slight differences at low frequencies, and the shape and central frequency

of the resonant peak are preserved. However, for an external frequency f2 close to the resonant

frequency (large dashed line), there appears to be an important growth and broadening of the

resonant peak and of higher harmonics.

Fig. 11 shows the variation of the power spectrum due to variations of the amplitude of

the external force for 72 = 1.0 (continuous line) and 72 = 10.0 (dashed line). There appears to

be a slight transfer of energy from low to high frequencies and a magnification of the spectral

peaks, specially at high frequencies. The influence of the amplitude of the additive noise has

already been discussed in the preceding section.

Finally, Fig. 12 displays the variation of the power spectrum with the damping coefficient

S. The effect is very pronounced for 5 = 5.0 (dashed line) with respect to S = 0.0 (solid line),

for the frequency range 0.1 Hz - 2.0 Hz. The amplitude reduction is quite severe, although the

resonant peak is preserved. For low and high frequencies, both spectra coalesce.
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5 DISCUSSION AND CONCLUSIONS

Microseisms have been widely studied, both observationally and theoretically, through its power

spectra, with the aim of improving the detectability of the arrival time of seismic waves. This

problem is especially severe in planning seismic networks of Ocean Bottom Seismographs. As

the main interest is focused on their power spectrum, linear theory suffices.

In the present study we have focused our interest on the time series and its evolution in

phase space, as well as in its power spectra. In a previous study CU found that these time

series are non stationary for short time scales (less than 350 s, which include microseisms),

stochastic and non linear, and that these characteristics were well reproduced by a non-linear

forced, damped oscillator. In this study we have attempted to explain some commonly observed

features (observations [4-7]) by using a Duffing oscillator with additive noise as a predicting

model. We do not claim that the model we have used is the model, but a phenomenological one,

able to provide us with some insight on some properties of the time series we have analyzed.

Moreover, as previously stated, we should emphasize that this study has the meaning of a "mean

field" one, in the sense that we are able to explain average properties (a study of the records

of daily observations display severe fluctuations in power spectrum, see Fig. 4). Through

numerical simulations with model eq. ( 2), the following results have been obtained.

A first result is that there is no need (although it does not means that the phenomenon does

not exist) of a special source for the secondary spectral peak (at about half the frequency of

the primary one). These primary peaks, or sub-harmonics, arise naturally because of the non-

linearity of the system. The enhancement and broadening of the main peak can be explained

in terms of a competitive process between the external force of frequency fa with additive

driven noise, and the time varying parameter a, giving rise to a parametric resonance. This

competitive process, as opposed to superposition, is possible only in non-linear processes, and

is thus governed by coefficient /?. In this model, the random fluctuations of the coefficient

a account for the observed incoherent propagation of microseisms, which in turn constitutes

another source of non-linearity. Following Hasselmann (1963), the observed phenomenon of

resonance can be interpreted in terms of the layered structure of the upper crust that acts as a

wave guide. The variation of its thickness, along with variations of medium properties (density

and velocities) may act as a source of non-linearity.

Of fundamental importance is the damping coefficient 5, which is able to explain the differ-

ences in the amplitude levels of the power spectra for stormy and quiet days (compare Figs 2

and 12), as well as its reduction to the same level at high frequencies. This behavior cannot be

obtained by amplitude variations of the external forces and/or amplitude of the additive noise,

which effect mainly consist of broadening and shifting of the spectral peaks and of moderate
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amplitude variations. Thus, according to our model, the amplitude variations of microseisms

should be due to the distance of the atmospheric storm instead of its strength: as there is a

continuous transfer of energy from the atmosphere to the land surface and oceans and, due

to solar heating, from land surface to the atmosphere, there will always be some atmospheric

storm somewhere. Thereafter the term quiet day has only a relative meaning. Quiet day is

defined with respect to a given place, for which an atmospheric storm is far away. As an ex-

ample, Hasselmann reports storms as a source of microseisms located at 11,500 km from the

recording station. Similarly, a stormy day is that for which the source is relatively close (a few

thousand km) to the recording location. Naturally, the intensity of the storm will suffer large

fluctuations. The phenomenon of resonance can now be extended in the sense that the reso-

nance is permanently excited through the combined action of atmospheric and oceanic activity

that occurs at any location on the planet.

As generic features, we can say that a broadening of the spectral peak is achieved by

increasing £, rj and 72, whereas a shifting of the resonant peak to higher frequencies is obtained

by increasing e and /3. The secondary peaks or sub-harmonics naturally arise for £,77 > 0,

whereas they vanish for increasing /?. The amplitude variations are governed by 5 and j3. Table

1 summarizes the influence of the distinct parameters on the spectral shape of the microseism

time series.

The proposed model is able to explain the main average features observed for microseism

time series, i.e., the features listed in Section 2. Also, this model is minimalist in the sense that

it contains the minimum number of parameters needed to explain observations, although not

excluding other external contributions, such as coastal sea waves (Okeke and Asor, 2000) or

resonances generated by the geometry of coastal Fjords (Friedrich et al., 1998). As a novelty this

model reveals that the main peak corresponds to the fundamental harmonic of the potential;

that is, it represents a medium property, and when the frequency f2 is close to the resonant

frequency / r , a competitive process is trtiggered which results in an enhancement of the resonant

(secondary) peak.

The above interpretation is consistent with the discovery of the existence of free oscilla-

tions of the Earth in the absence of earthquakes for the frequency interval 0.001 Hz - 0.01 Hz

(Kanamori, 1998; Nishida el al., 2000), resonances attributed to be generated by atmospheric

turbulence. According to our model, the recorded ground motion in the absence of seismic

activity can also be interpreted in terms of atmospheric turbulence of moderate wavelengths,

that is, again a resonant process. The resonances for the interval 0.001 Hz - 0.01 Hz would be

related to the general atmospheric circulation. The interval 0.01 Hz - 1 Hz would be related to

the triple interaction cyclonic storm - ocean - Earth (Longuet-Higgins model). Finally, for fre-

quencies higher than 1 Hz would be related to local meteorological activity along with cultural
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noise. The ubiquitous local meteorological activity, of random nature, justifies the additive

noise term we have incorporated as a source term together with the external forces. From a

global point of view, we can summarize the present study by saying that the observed resonant

response of the earth, for the whole interval of frequencies, can be attributed to the coupling

between the atmospheric turbulence and the Earth.
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FIGURE CAPTIONS

FIGURE 1. Examples of microseisms of large amplitude (951227) recorded during a cyclonic

storm (a) and of low amplitude (950701) recorded during a quiet day (b). Note the

difference in amplitude scales. All seismograms (velocity records) are measured in counts.

1 count = 0.345 (is'1 = 3.45 x l O ^ 1

FIGURE 2. Power spectra of the high and low amplitude microseisms of Fig. 1.

FIGURE 3. Motion in phase space of a microseism time series recorded on 950310 at 03:00

for a time window of 1024 s (Fig. 3(a)) and of 125 s (Fig. 3(b)).

FIGURE 4. Power spectrum of the microseism time series presented in Fig. 3(a).

FIGURE 5. Motion in phase space of a time series generated by the model eq. (2).

FIGURE 6. Power spectrum of the time series presented in Fig. 5.

FIGURE 7. Evolution of the power spectrum as a function of the amplitude of additive

noise.

FIGURE 8. Evolution of the power spectrum as a function of the amplitude of the noise

added to the resonance coefficient.

FIGURE 9. Evolution of the power spectrum as a function of the value of the coefficient of

non-linearity.

FIGURE 10. Evolution of the power spectrum as a function of the variation of the external

frequency.

FIGURE 11. Evolution of the power spectrum as a function of the amplitude of the external

force.

FIGURE 12. Evolution of the power spectrum as a function of the coefficient of damping.
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Table 1. Influence of the model parameters on the spectral features.
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APPENDIX

The following dynamical tests were applied by CU to analyze microseism time series and time

series generated by a non-linear forced oscillator through equation (2), with different values of

the parameters and different levels of noise.

Stationarity. Many physical phenomena can be described in terms of statistical equilibrium,

that is, if we consider a given interval of a time series and divide it into subintervals, the distinct

sections appear "the same". More precisely, we can say that the statistical properties of the

process (the moments of different order) are independent of time. If this is the case, the process

is stationary; and if not, non-stationary. The property of stationarity is crucial for subsequent

calculations of dynamic invariants, like correlation dimension or redundancy. For the analyzed

data, time series are clearly non-stationary.

Autocorrelation. The autocorrelation function of a linear process is a measure of the degree

of dependence in the values of a time series s(t), delayed by an interval r known as delay time.

For a random process, the autocorrelation function fluctuates randomly around zero, indicating

lack of memory of a given past time. For a periodic process, the autocorrelation function is

also periodic, indicative of a close relation between values that repeat in time. The first zero

crossing of the autocorrelation function is a measure of the time for which data are independent.

This time is relevant in aperiodic systems because it may provide us with a criterion to select

the delay time in phase space reconstruction. In the present case, the autocorrelation function

displays a minimum at about 1 s.

coherence time. The coherence time of the autocorrelation function is the time for which the

absolute value of the autocorrelation is lower than a given e for al i i > e. If the autocorrelation

function vanishes exponentially for t —> oo, the coherence time is finite, and otherwise infinite.

A long coherence time, of the order of the length of the analyzed time series, may be indicative

of non-linearity. In our data we can distinguish two coherency times, a finite one of about 15

s, and a seemingly infinite one defined by an average value of the autocorrelation of 0.1 s. The

influence of the infinite coherency time may be indicative of non-linearity.

Mutual information. Let x and y be two random variables (or, equivalently, two samples

s(t) and s(t + T) of a time series). The mutual information provides us with the amount

of information that the variable y contains on the variable x. The mutual information is

computed in terms of Shanon entropy and can be viewed as a non-linear generalization of the

autocorrelation function. If two samples are independent, the mutual information is zero. For

a time series, the first local minimum in the plot of mutual information vs. delay time is

considered a closer estimate of the optimal value of the time delay than the first zero crossing

of the autocorrelation function (which is defined for linear processes). The mutual information
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presents a minimum at 1 s, as for the case of autocorrelation.
Redundancy. Constitutes an extension of mutual information, which is defined for two di-
mensions (variables), to n-dimensions (variables). One should distinguish between redundancy
and linear redundancy. Linear redundancy is computed from the correlation matrix of a given
time series and constitutes a characterization of its linear structure. Thus, if by comparing
linear redundancy and redundancy we observe significantly different structures, we can assert
the presence of non-linearity. For the embedding dimensions m = 2,..., 10, the structure of the
curves of the linear redundancy and the redundancy are significantly different, thus providing
strong evidence in favor of non-linearity in the system.

Correlation dimension. The dynamics of a dissipative deterministic system is defined by the
geometry of the attractor in the phase space (the region where a dissipative system evolves once
the transients have vanished). If the attractor is of low dimension the system is deterministic;
otherwise it is, or behaves as, stochastic. A good approximation of the attractor's dimension is
provided by the correlation dimension, computed from the correlation integral. The correlation
integral is defined as the fraction of all pairs of points on the attractor with distance less than
a given distance £, and is computed for a range of distances. The power law dependence of the
correlation integral on e enables its exponent to be calculated when the distance tends to zero.
The correlation dimension of the attractor is the limiting value of the exponent in phase spaces
of increasing dimension. For the analyzed data, the correlation dimension saturates to a value
close to 5 for a delay time r of about 0.25 s, but do not saturate for r ^ 1 as suggested by the
mutual information. We thus conclude that microseisms behave stochastically.
Surrogate data. Surrogate data consist of a series of artificially generated data for use instead
of the original time series, and provide a baseline for comparison with the original data. In other
words, this method gives us a mechanism to test null hypothesis. Surrogate data are generated
from random process in such a way that the autocorrelation function of the original time series
is preserved. A widely used way to generate surrogate data is to apply the Fourier transform
to the original time series, randomizing the phases and applying the inverse Fourier transform.
If, when analyzing a set of surrogate data, we get the same result as for the original time series
(for example a low-dimensional chaotic system), the null hypothesis cannot be rejected (i.e.,
the series is not chaotic). In the present analysis the series of surrogate data present the same
characteristics as the original time series, as far as correlation dimension analysis is concerned,
and their phase spectra display random behavior, similar to a random walk. Hence, we must
rule out any deterministic character of observations.

Determinism versus stochasticity (DVS). This test consists in fitting a set of locally linear
models to several sets of data. Once the different models are fitted, the precision of each short-
term prediction for an interval of data not used in the fit is computed. If the error is lower

17



for a short interval of data points than for a longer one, it is inferred that the time series is

deterministic and non-linear. If, on the contrary, the minimum is for a longer interval (longer

prediction time), the underlying system is stochastic. This test has been applied for embedding

dimensions m = 2,4,6,8 and for a time delay on one sample (results are independent of the

time delay used). For all dimensions the prediction error is higher for the larger number of

points used for the local prediction, up to a constant value. This behavior is indicative of the

stochasticity of the time series.

As a consequence, we conclude that microseism time series are non-stationary, stochastic

and non-linear.
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