
K the
united nations

and cultural
organization international centre for theoretical physics

international atomJc O/\1 /lOftO
energy agency OU 1 / ± j D d

MCIROPROCESSOR LABORATORY SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

29 October - 23 November 2001

EXERCISES BOOK

This exercises book is intended only for distribution to participants.

strada costjera, I I - 34014 trieste italy - tel,+39 04022401 11 fax +39 040224163 - sci_info@ictp.trieste.it -www.ictp.irieste.it

SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 1

Exploring a Chip Layout

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Exercise Description

In this exercise you will edit a Cull chip layout with a specific Alliance tool called Graal. This tool allows

you to explore the layout of a chip seeing most of the standard layers needed by the designer to implement

a CMOS chip.

In this exercise you will

• Edit a CMOS Chip layout.

• Identify the chip core and the ring of Pads.

• Explore the hierarchical structure of the layout.

• Explore the electrical connectivity of different layout elements.

• Edit a standard cell layout.

• Recognise simple CMOS logic gates by inspecting its layout.

• Get used to invoice rnan pages of standard cells.

/*#* ****

Exercise guide

Legend

Give the command that appear immediately after this symbol, at the coounand line.

Explanation ol a topic

Exercise 1, Exploring a chip layout. Page 1

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

A VLSI chip is supposed to process information in a wide sense. To do that a large
number of transistors are built in and interconnected in order to handle the binary
information. A quantum of information is represented by a bit which can assume two
values only. Each of these values is physically represented by an electric signal (voltage),
which assumes two values; JMW or High. The logic-electrical elementary structures are
the gates. The physical implementation of a logic gate is a circuit that "maps" a Boolean
operation. Some of the main characteristics of these gates arc:

• Small area
• Easy interconnection
• High speed
• Low power consumption

These gates are designed to exchange information among them inside the chip, and then
they are not prepared to exchange information with the external world in an efficient way.
A typical parasitic capacitance of an external chip connection is about 2 or 3 orders of
magnitude larger than a typical internal one. Sometimes there are input signals that are
spread inside the core of the chip, and due to this, the large associated parasitic
capacitance could degrade the signal at some critical point compromising the correct
behavior of the chip. As an example of this consider potential critical signals like "set",
"reset" or "clock". A correct handling of input output signals at chip level is mandatory in
order to ensure a correct functioning chip.

Alliance has a library (padlib) of specific cells to interface the core of the chip with the
external world. These cells arc Pad Drivers. There are different types of them according
to its function like:

• Input
• output
• input-output
• power-supplies
• clock.

A common characteristic to all pad-drivers is that they have an uncover square piece of
metal (the pad) for bonding. The area of this square metal is typically ~100us x -lOOus.

The output drivers must be able to force fast electrical transitions between logic levels
loading big parasitic capacitance. During these transitions a large peak of current is
required from the power supplies and consequently the voltage of these power supply
lines can vary due to a non-zero resistance connection to the voltage source. Then the
voltage of the power supply lines for the drivers become dirty and it is not advisable to
use it to feed the core where many delicate elecuical transitions take effect. Hence for the
core there are separate power supplies.

In alliance the distribution of powcT is facilitated by mean of rings around the core. The
same strategy for one privileged signal (typically clock, although could be any other). For
this signal there is a.pad driver (pck_sp) which takes the external signal to drive the ring
and another pad driver (pvsseck_sp) that takes the signal from the ring and drives it to the
core.

Exercise 1, Exploring a chip layout. Page 2

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

There are five concentric metallic rings: vdde & vsse for pad-drivers, vddi & vssi for the
core, and the clock ring. All pad-drivers contain five piece of metal in order to generate
these rings when they are disposed all around the core. In a structural description this
means that at least five ports must be specified for any Pad-driver.

Begin by creating a design directory, at a convenient position in your workspace:

chip-layout

Change into this directory:

cd chip-layout

Copy in this directory the file chip.ap (The path of this file will be indicated by the tutors
in the Laboratory).

cp /<path>/chip.ap .

Now we can edit the layout of the chip with Graal, the Alliance hierarchical symbolic
layout editor. Give the following command at the command line

graa1 &

Click on the file section of the menu and then click open to load chip.ap. What is shown
is the top-level view of the symbolic layout of a four-bit microprocessor.
Now you can play with the options and some of the tools from the menu. Here is a menu
list with some brief description of some of the tool you will need in this exercise.

File: open: to load an ".ap" file.

quit: to end the graal session.

Tools: peek (unpeek): to show the layers.

Flat (unflat): To eliminate one hierarchical level.

equi (unqeui): to render evident the electrical connections.

real flat: to eliminate the hierarchical structure.

View: fit: to fit the layout in the windows.

zoom (in, out)- moo/: To zoom in out.

arrows: to move according to the arrow direction.

layers: to show/hide specified layers.

Windows: Identify: to identify cells, model, instance name, layers, etc.

For more information about Graal menu type

Exercise 1, Exploring a chip layout. Page 3

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Bonding pads

vsse ring

vdde ring

vssi ring

vddiring

clock ring

Pad-Drivers

By inspecting the layout identify the core and the pads. Compare the pads trying to
recognize its functionality by mean of its connections with the metallic rings.
To do this see figure 1 and use the functions: flat, zoom-in, equi, layers, etc.

bonding wire to
the package pad

CHIP

CORE

(. L

c

pvsse_sp

p\'SSi_Sp

po_sp

pvddc_sp

Exercise I, Exploring a chip layout. Page 4

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Now you can load standard cells from the Alliance Standard Cell. Library. Copy some
physical description files (<filename>.ap) from "/alliance/share/celh/sclib" in to your
working directory. For example we can copy a simple inverter gate:

cp /al 1.3 ance/share/cells/sclit>/nj.__y .ap .

Copy also from the previous location the following files:

no2_y.ap two input nor gate
na.2_y. ap two input natid gate
a2_y. ap two input and gate
o2_y.ap two input or gate
xr2_y. ap exclusive-or gate
msx__Y. ap D-flip-flnp with complementary outputs.

You can have more information about the previous cells by invoking the corresponding
man pages. Just type for example

no2_y

Once you have edited the cell with Graal, use the "layer" tool to inspect the different
layers: diffusions, polysilicon gates, metals, vias, etc. Identify the P-MOS and N-MOS
transistors and how they are connected in order to perform its logic function. Try several
standard cells till becoming familiar with them, and don't forget to make extensive use
of the Alliance man pages.

Exercise 1, Exploring a chip layout. Page 5

SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 2

Design of a 2 to 4 Decoder chip

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Introduction

This first design example is a two to four line decoder. It is presented to familiarize you with the
Alliance design environment and facilities, hi doing this example you will:

• Describe the decoder behavior using VHDL language.
• Check syntax errors by passing it through Asimut.
• Write the test pattern file to test the decoder.
• Simulate the behavioral description using the pattern file by using Asimut.
• Synthesize the logic and structural descriptions using Bop and Scmap.
• Optimize the netlist using GIop.
• Use the standard eel] router called Scr to place and route the core.
• Use Graal to see or edit the core layout.
• Add the necessary pads for the chip and compile using Genlib.
• Place the pads and generate the layout file using Ring.
• Analyze timing delays using Tas.
• Extract back the behavioral description from the layout using Lynx, Lvx and Yagle.
• Use Proof to compare the original behavioraJ description and the extracted one to complete formal

verification.
• Use S2r to generate the "cif " file ready for the foundry from the symbolic layout.

The design example consists of two phases. The first phase is to describe the behavior of the chip as is
seen at the pins of the chip. The second phase is to describe the functions of the core of the chip, and
then connect it to the pads.

In the first phase you will:
• Describe the decoder's behavior using VHDL (dec2to4.vbe).
• Write a test pattern file (dec2to4.pat).
• Simulate the behavioral description using the pattern file by using Asimut.

In the second phase you will:
• Describe the behavior of the core in VHDL as is seen inside the chip by the pads (decOcore.vbe).
• Synthesize the logic and structural descriptions using Bop and Scmap (decOcore.vst).
• Use Glop to optimize for critical path and fanout (decOopt.vst).
• Use the standard eel! router called Scr to place and route the core (decOopt.ap).
• Add the necessary pads for the chip and compile using Genlib (decOchip.vst).
• Use Asimut to simulate the 'decOchip.vst' file using the pattern file 'dec2to4.pat',
• Place the pads and generate the layout of the chip with pads using Ring (decOchip.ap).
• Use Lynx to extract the netlist from the layout file 'decOchip.ap' (decOchip.al).
• Use Tas to obtain static timing information.
• Use Lvx to compare the extracted circuit 'decOchip.al' and the original 'decOchip.vst' file created

by Genlib.
• Use Yagle to extract the behavior, 'decOchip.vbe' from the 'decOchip.al' netlist file.
• Use Proof to compare the extracted behavior file, 'decOchip.vbe' and the behavioral file created in

the first phase, 'dec2to4.vbe\
• Use S2r to generate the "cif " file ready for the foundry from the symbolic layout.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 1

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Ocl-23 Nov. 2001

Text. Editor
Behavioural
description
Decoder Chip

Text Editor i
Descritpion of ;

Relative
I Pos i ti on

of Pads

Text Editor
Behavioural
descr ip̂ . i on
of the core

Text Editor
Genlib
Description of
connectivity
between

core & Pads

Fig 1. Design Flow for the Decoder Chip

Exercise 2, Design of 2 to 4 Decoder Chip. Page 2

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Decoder Chip

The example is a 2 to 4 decoder. The decoder's function is summarized by the truth table
shown in Table 1. below.

a
X
0
0
1
1

b
X
0
1
0
1

enable
0
1
1
1
1

yo
0
i

0
0
0

y i
0
0
1
0
0

y2
0
0
0
1
0

y3
0
0
0
0
1

Table 1. Truth Table for the 2 to 4 decoder.

a

b

enable

nc

Vss

Vsse

L_

Vd

YO

Yl

Y2

Y3

Vd

Fig 2. Possible pinout of the decoder chip.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 3

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Legend

•>**•»» Give the command that appear immediately after this symbol, at the command line.

I"

Edit and save into a file, all that appears after this symbol.

Explanation of a topic

Set the environmental variables as shown immediately after this symbol.

The text or picture following this symbol appears on the monitor.

Creating the design

Begin by creating a design directory, at a convenient position in your workspace:

mkdir dec2to4

Change into this directory:

cd dec2to4

Before starting the design you will have to set the environmental variables as shown below so
that you will not run into problems later.
The MBK_CATA_LIB environmental variable tells the Alliance software, the paths through
which it has to search for the cells that are instantiated in the design. More details are available
in the man pages (man MBK_CATA_LIB).
The MBK_1N_LO environmental vaiiable sets the logical input format of the mbk database.
Details of the valid formats that can be used are available in the man pages (man MBK_IN_LO).
The MBK_OUT_LO environmental variable sets the logical output format of the mbk data
structure. Details of the valid formats that can be used are available in the man pages (man
MBK_OUT_LO).
The MBK_IN_PH environmental variable sets the physical input formal of the mbk data
structure. Details of the valid formats that can be used are available in the man pages (man
MBK_iN_PH).
The MBK_OUT_PH environmental variable sets the physical output format of the mbk data
structure. Details of the valid formats that can be use are available in the man pages (man
MBK_OUT_PH).

Exercise 2, Design of 2 to 4 Decoder Chip. Page 4

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

setenv MBK_CATA_LIB . : /a l l iance/archi/Lim±x_elf /cel ls /scl ib:
/allicm.ce/archi/Lirmx_elf/cells/padlib

setenv MBK_IN_L0 vst
setenv MBK_OUT_L0 vst
setenv MBK..IN_.?H ep
setenv MBK_OtJT_PK ap
setenv MBK_WORX_LIB .

Many of the environmental variables needed during the Alliance practical exercises are set
automatically when you start your computer working session. A specific ".login" file does it for
you. Nevertheless we insist in setting all necessary environmental variables each time it is
required by the tools in order to have a better control on the design flow.

Describing the chip behavior

f
The behavioral description is done using a VHDL subset. Only concurrent statements are
supported. No sequential statements are allowed. More details are available in the man pages
(man vbe). We begin our design by describing the behavior of the signals at the decoder chip
pins, as is described by the truth table above in Table 1.
Create with the "pico" editor (or any other text editor you prefer) a file called dec2to4.vbe, enter
the following data, and save the file.

-- Port declaration of the simple 2 to 4 decoder

ENTITY dec2to4 IS

PORT (A, B, enable, nc, vdd, vss, vdde, vsse : in BIT ;
Y : out bit_vector (0 to 3));

end dec2to4;

ARCHITECTURE dEc2to4_data_flow OF dec2to4 IS

signal A_bar, B_bar ; bit;
signal al, a2, a3, a4 : bit;

begin

A_bar <= not A ;
B_bar <= not B ;

al <= A_bar and B_bar and enable ;
a2 <= A_bar and B and enable ;
a3 <= A and B_bar and enable ;
a4 <= A and B and enable ;

Y(0)<=al;
Y(l)<=a2;
Y(2) <= a3;
Y(3)<=a4;

end DeC2to4_data_flow;

Exercise 2, Design of 2 to 4 Decoder Chip. Page 5

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Asimut is a logical simulation tool for hardware descriptions. It compiles and loads a VHDL
description, which may be behavioral or structural. Only the VHDL subset discussed above is
supported. Information on Asimut's command line parameters, options, environmental variahles
required are available in the man pages (man asimut).

Any typographical or syntax error in a behavioral description can be found when the file is
passed through Asimut.

Give the following command at the command line:

asimut -b -c dec2Lo4

-b

-c

behavioral option
compile

I
The following is typically displayed.

[dcuuin@niifbh-42]$ asiaiut -b -c dee2to4

a

5 9 9
583

3 3'*
9 99

3 95
9959995

8 58
9 39

939? 9-395

5959 9

9 3 9
58 (»

9 3 9 *
9.3.99

939
5 03
53 99
395 9
•3 9999

d

9999
95
85
9?
93
99

89859^

959
585
M
59
£9
f iQ

£3
S-39s

59
39
59
•59

59
58
•399

1,2

•Si
99
39
89
39
9&
999

99
M
95
95
89
99

9
9S9-5

95
95
35

9S
•59?

9989 39

99
S>li

58
•39
f ; 9

59
£8
58

•SB-39

A SIMUlation Tool

Alliance CAD System 3.2b; asiniut v2.01
Copyright (c) 19914999, ASIM/LIP6/UPMC
E-mail support: alliQiice-support@asim.lip6.fr

Paris, France, Europe, Earth, Solar system, Milky Way,...
Initializing ...
Searching ~dec2to4~ ...
BEH : Compiling vdec2to4.vbe^ (Behaviour) ...
Making GEX...

Creating the test pattern for simulation

If the above step functions with out giving syntax errors then the behavioral description is ready
for simulation.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 6

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

A file with the test patterns in the pat format is required for the simulation. The pat fonnat file
has a declaration part and a description part of the signals. The declaration part consists of a list
of inputs, outputs, internal signals and registers of the design. Inputs arc forced to a particular
value while the outputs are observed during a simulation.

Create a test pattern file called dec2to4.pat, editing the following as is:

-- description generated by Pat driver v!04

date : Sep 12 12:55:24 1999

sequence : dec2to4

— input/ output list :
in vdd B;
in vssB:;;;;;
in aB;;
in bB;;;
in enable B;;;
out y (3downto0)B;;;

begin

- Pattern description :

vv a b e y
ds
ds

ii

a
b

10
10
10
10
10
10
10
10
10
10

00
0
1
J
1

1
0
1
0

00
0
1
1
1

1
0
1
1

0
0
0
0
0
1
1
1
1
0

70000
70000
70000
70000
70000
?0001
70010
70100
71000
70000

end;

In the previous file, lines starting with "—" are comments. In next exercises we will see a more powerful procedure
to generate larger pattern files.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 7

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Simulating the behavioral description

Give the following command at the prompt to start simulating

asiinut -b dec2to4 dec2to4 outl

-b - chooses the behavioral simulation option
first dee2to4 - dee2to4.vbe
second dec2to4 - dec2to4.pat
out 1 - simulation result in outl .pat

The following screen is typically displayed.

[cicuttin@mlab-42]$ asimut -b dec2to4 dec2to4 outl

999
999

a aa
a 6'3

Ih 93
9999993

•90-

aa

9
99
aaa
32

a
•9@-

aa.a

(«i

99
aa

'U'.'i
39

99
99

999999«!•$« 9S9599 9993 394 SB

A SIMUlation Tool

Alliance CAD System 3.2b, asimut v2.01
Copyright (c) 1991-1999, ASIM/LIP6/UPMC
E-mail support: alliance-suppori@asim.lip6.fr

Paris, France, Europe, Earfh. Solar system, Milky Way, .
Initializing ...
Searching :dec2to4'...
BEH : Compiling 'dec2to4.vbe' (Behaviour) ...
Making GEX...

Searching pattern file : 'dec2io4'...
Restoring ...

Linking ...
processing pattern 0
processing pattern 1
processing pattern 2
processing pattern 3
processing pattern 4
processing pattern 5
processing pattern 6
processj.ng pattern 7
processing pattern 8
processing pattern 9
[cieuttin@mlab-42]$

Exercise 2, Design of 2 to 4 Decoder Chip. Page 8

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

You can see the simulation result in the file outl.pat. To see this file give the following command
at the command prompt.

more outl.pat

Describing the core of the chip

The behavioral Hie "dee2to4.vbe" is the description of the decoder as is seen at the pins of the
chip. We have not thought about the pads that drive the pins. When the chip is described
physically in Alliance, it consists if two separate parts that are brought together, the core and the
pads. In Alliance, the core and the pads are brought together in a C description file. This file
when treated with Genlib, produces the structural description of the chip with the pads. In
practice, the core can be synthesized automatically from a behavioral description, whereas the
pads should be placed physically, one by one in the C file. Placing the pads require the structural
knowledge of the pads. One of the type of pads that is used in tfiis example is the po_sp output
pad.

Give the following command at the command line to see a description of this pad.

man po_sp

Behavioral Description of the Core

We can now describe the core in such a way, we get at the outputs of the chip.

Copy the file "dec2to4.vbe" to the file "decOcore.vbe" and edit it as shown below. Read the
comments carefully.

- Port declaration of the simple 2 to 4 decoder

ENTITY dec2to4 IS

PORT (A, B, enable, vdd, vss : in BIT ; - - <—nc, vdde and Vsse have been
removed

Y : out bit_vector (Oto 3)); - - < - - s ince the core does not need them

end dec2to4;

ARCHITECTURE dEc2to4_daia_flow OF dec2to4 IS

signal A_bar, B_bar; bit;
signal al, a2, a3, a4 : bit;

begin

A_bar <= not A ;
B_bar <= not B ;

al <- A_bar and B_bar and enable ;
a2 <- A_bar and B and enable ;
a3 <- A and B_bar and enable ;
a4 <- A and B and enable ;

Exercise 2, Design of 2 to 4 Decoder Chip. Page 9

Seventh Course On Basic VLSI Design Techniques Trieste-Italy. 29 Oct-23 Nov. 2001

Y(0)<=al;
Y(l)<=a2;
Y(2) <= a3;
Y(3)<=a4;

end DeC2to4_data_flow;

Synthesizing the logic and the structure

The file decOcore.vbe describes the behavior of the core in VHDL language, that is at the highest
available level. From this file it is possible to start a synthesis procedure towards lower levels of
description. The first step is to generate an equivalent file but in terms of Boolean expressions,
performing at the same time some optimization regarding number of Boolean operator, number
of intermediate signals, etc. To do this we use Bop, a Boolean optimizer, which takes the file
decOcore.vbe to create the new decOcorcl.vbe, that is still a behavioral description. There are
mainly two kind of available optimizations: global and local, and can be choose with an
appropriate option. Detailed information on Bop is available in the man pages (man bop).

bop -o decOcore decOcorel

-o - option for global optimization
decOcore - decOcore.vbe (input file)
decOcorel - decOcorel.vbc (output file)

The following is typically displayed:

[dcmtin@Tnlab-42]$ bop -o decOcore decOcorel

9@

89
89
89

@9 i

Boolean OPtimizatujn

Alliance CAD System 3.2b, bop 4.20 [1997/10/09]
Copyright (c) 1990-1999, ASIM/LIP6/UPMC
E-mail support: alliancc-suppoit@asim.lip6.fr

======~=~==™~==============;™=™™ Environment ========™==:~======;^====—======
MBK_WORK_L1B
MBK_CATA_L1B = .:/alliance/archi/Linux_elf/cclls/sclib:/alliance/archi/Linux_elf/cells/padlib
======================= Files, Options and Parameters =======================
VHDL file -decOcore.vbe

Exercise 2, Design of 2 to 4 Decoder Chip. Page 10

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

output file = decOcorel.vbe
Parameter file = default.lax
Mode = Global optimization
Optimization mode = 50% area - 50% delay optimization
Optimization level = 2

Compiling \iec0core7...

Running abl ordonnancer on fdec2to4'

Running Abi2Bcid on 'dec2to4'

—> Final number of nodes = 13(9)

Running Global Optimizer on 'dcc2to4!

===^===:====== INITIAL COST
Total number of literals = 12
Number of reduced literals - 18
Nuoiber of latches = 0
Maximum logical depth - 2
Maximum delay = 1.000

Total number of literals = 12
Number of reduced literals = 12
Number of latches = 0
Maximum logical depth = 2
Maximum delay ~ 1.000

BEII: Saving 'decOcorel: in a vhdl file (vbe)

[cicuUUi@m]ah-42]$

The second step is the synthesis of the structural view of the circuit. The structural description
consists in a set of elementary interconnected blocks. At this level must be describe which blocks
are used and how they arc connected each other (gate network). The behavior of each block is
supposed to be known. In our case since the circuit is very simple, we map with the Alliance
standard cell library. This is performed by Scmap which can accomplish further optimization.
Detailed information on Scmap is available in the man pages (man scmap). To pass from the
optimized behavioral decOcorel.vbe to the structural decOcore.vst, give the following command
at the command prompt.

scmap decOcorei decOcoxe

Exercise 2, Design of 2 to 4 Decoder Chip. Page

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

The following is typically displayed:

[cicuttin<s!mlab~42]$ scmap decOcorel decOcore

3333 3
9 33
00 2
©00
9999
3333

333
@ 93
3@ 33
000 3
0 9333

33
•23

33
93
33
33
93
33
33

3333 3
99

e
0

9
00

3333

000 @6 S
900 6 is
99 @!is
00 @!=
00 01=
99 93
00 (4E

0000 003

S3
33
33
33
33
33
33
333

9333
99 3
00 33

33333
99 33

30 33
99 333
9999 33

333
33 %
3@
33
33
33
3 as
33
33
9933

Mapping Standard Cells

Alliance CAD System 3.2b, scmap 4.20 [1997/10/09]
Copyright (c) 1990-1999, ASIM/LIP6/UPMC
E-mail support: alliancc-support@asim.lip6.fr

K4BK_WORK_LIB
MBK_CATA_.LIE - .:/alliance/arciii/Linux_elf/ce]ls/sclib:/alliance/arcm7Linux_elf/ceIis/padlib
MBK_TARGET_LIB =/alliance/archi/Linux^elf/ceils/sclib
MBKJNJLO =vst
MBK_OUT_LO = vst

VHDL file = decOcorel.vbe
output file ~ dccOcore.vst
Parameter file = defaultJax
Mode = Mapping standard cell
Optimization mode ~ 50% area - 50% delay optimization
Optimization level - 2

Compiling 'decOcorer...
Running Standard Cell Mapping
======================== INITIAL COST =====================:;:
Total number of literals = 12
N'umber of reduced literals =12
Number of latches = 0
Maximum logical depth - 2
Maximum delay ~ 1.000

Exercise 2, Design of 2 to 4 Decoder Chip. Page 12

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Compiling library '/alliance/archi/Linux_clf/cdis/sclih'
Generating Expert System ...
Cell 'cmx2_y' Unused
Cell 'cry_y'Unused
Cell 'sum_y' Unused
Cell \ie_y: Unused
162 rules generated
===^^^=^^^==============:== FINAL COST

Number of cells used =3
Number of gates used - 7
Number of inverters = 3
Number of grids — 6552
Depth max. (gates) = 2

(eq. neg. gates) = 2

MB.K Driving VdecGcore.vst'..,

[cicuttin@m!ab-42]S

The structural description tile generated by Scmap can be examined by giving die Unix ''more"
command:

more decOcore.vst

Using Asimut to simulate the structural description

You can do the simulation with the structural description with the same pattern files that are used
for the behavioral description.
To do the simulation on the structural description, give the following command at the command
prompt.

asimut decOcore dec2to4 r3

no option - takes the structural description by default
decOcore - dec2to4corcl,vst
dec2to4 - dec2to4.pat
r3 - result of simulation inr3.pat

The following screen is typically displayed

Exercise 2, Design of 2 to 4 Decoder Chip. Page 13

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oet-23 Nov. 2001

[cicutdn@mlab-42"|$ asiniut dec2to4corel dec2to4 r3

$$® *H-i i? 3 Q aa-
3&0 #a-3 a a a @£ ^f?* £(jlv& (H9^& &&

S 3 S &-a@(£ &S ^i4 yii ^(i &£ &-9 6 i *
•̂ (ji -̂ rt (H y H •£ -9 ̂ •? ̂ 2- £ fi-5 &'̂ i^ij

a. .3 a ^a ?a a^ %a ^ g î ?^ ^.3 g ^ gra
ft -J?Î -^a^ -jj ft,'£ ?y- 5^ a a a^ ^ a ^ .̂15.

a^a-i -̂ a-n ft^£-

A SIMUlation Tool

AJliance CAD System 3.2b, asiraut v2.01
Copyright (c) 1991-1999, ASIM/LIP6/UPMC
E-mail support: allianuc-suppori@asiiiiljp6.fr

Paris, France, Eiu:ope. Earth, Solar system, Milky Way,...
Initializing ...
Searching 'decOcove' ...
Compiling 'decOcorc (Structural) ...

Flattening the root figure ...

Searching La3_y' ...
BEH.: Compiling "a3_y.vbe' (Behaviour)...
Making GEX...

Searching 'no3_y'...
BEH : Compiling 'no3_y.vbc' (Behaviour) ...
Making GEX...

Searching 'n'!....y' ...
BEH : Compiling "nl_y.vbe' (Behaviour) ...
Making GEX...

Searching pattern file : ldec2to4i...
Restoring...

Linking...
processing pattern 0
processing pattern 1.
processing pattern 2
processing pattern 3
processing pattern 4
processing pattern 5
processing pattern 6
processing pattern. 7
processing pattern 8
processing pattern 9

[cicuUi.n@tnlab-42]S

Optimizing for Fanout and Timing

The structural description created above has been created without worrying about the standard"
cells fanout limits and critical path signals. Glop can analyze the structural description and create

Exercise 2, Design of 2 to 4 Decoder Chip, Page 14

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

a new description by adding buffers to the appropriate nets so as to solve fanout problems and to
optimize on signal delays. Detailed information on GIop is available in the man pages (man
glop). Give the command:

glop -g decOcoEe decOopt -i -t

-g invokes a timing optimization.
decOcore decOcore.vst input file
decOopt dccOopt-vst output file
-i gives fanout information about the gate netlist.
-t gives timing information about the gate netlist.

The following is typically displayed.

[cicuttin@m!ab-42]$ glop -g decOcore decOopt -i -t.

@@@g @ 3939 i
99 99

@8 8
99
99
88

99
88
8(

aaaa 333333 888 33 »

3!Sg@

Gate Level OPtimizer

99
8

8s@eg

9 9E-

33
93
33
93
93
33
33
•39

33

88
99

a a
98
99
88
a@
99
89

(̂@

33
@g
33
3 r3
33
33

^3

a fi e @ ra a
3@9 99
BS 99
Q® 88
®S 99

Alliance CAD System 3.2b, glop 4.20 [1997/10/09]
Copyright (c) 1990-1999, ASIM/LIP6/UPMC
H-mail support: alltance-support@asimJip6.fr

MBK_WORK_LIB
MBK_CA'FA_T.JB = .:/al)iance/archi/Unux_elf/cells/sclirj:/alliance/arc hi/Li nax_elf/eells/padlib
============:===== Files, Options and Parameters ==============
Netlist fde - decOcore.vst
Output file =dccOopt.vsl
Parameters file = defaultiax
Mode = global optimization with liming analysis

Loading decOcore...
Flattening decOcore...
Loading models ... in /allianee/archi/Linuxmeif/cel1s/sclib

3 models - 7 cells - 6552 pitehs
Critical path UP = 2486 ps

from external connector enable
to external connector y 0

[enable]->auxsc3->y_0->[y 0]
-> 2 gates

Critical path DOWN = 2407 ps
from external connector enable

Exercise 2, Design of 2 to 4 Decoder Chip. Page 15

Seventli Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

to external connector y 1
Lenable]->auxsc3->y_l->[y 1]

=> 2 gates

Power Gate Optimization
==> Model to use for y_3 [a3_y] : a3p_y

Timing Analysis : Delay UP 2498 (y_0) - Delay DW 2432 (y_l)

1 repowered gates

Critical path UP = 2498ps
from external connector enable
to external connector y 0

[enable] ->anxsc3->y 0->[y 0]
=> 2 gates

Critical path DOWN = 2432 ps
from external connec for enable
Lo external connector y 1

[enable]->auxsc3->y_l->[y 1J
=> 2 gates

Buffer Optimization

0 inserted buffers

Critical path UP -2498ps
from external connector enable
to external connector y 0

[enable] -> auxsc 3 - >y_0- > [y 0]
=> 2 gates

Critical path DOWN = 2432 ps
from external connector enable
to external connector y I

[enable] ->auxsc 3->>'„!->[>' 1]
=> 2 gates

NO_FACTOR= 3.201
3 models - 7 cells - 6552 pitchs

Saving ./decOopt...

This command takes "deeOcore.vst" structural description and generates a "decOopt.vst" file after
buffers have been added to die critical paths. We can run Glop again, this time with the option -f
to optimize the critical path and the cells interface. Give the command:

-f invokes the fanout optimization option.
decOopt decOopt.vst structural file to be modified.

The following is typically displayed.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 16

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

[cicuttin<s!mlab-42]$ glop -f decOopt decOopt

33
qq

99
9fl

99
99
S3
99

9999 9
33
9

aaaaa
9 99
9 99

33
99

9999

999©
33
@£
9S
<F~f~
Qie,
jaia

@ @

S@
S3

9@9@£4

999
39 «

a a
33
99

aa
CJ9
§9
99
33 6

S 333

}9
93
33
99
99
@3
@9

99
S9

933
993
99
99
33
qq
999
99
39

999
33
qq
99
99
33

99
999

Gate Level Optimizer

Alliance CAD System 3.2b, glop 4.20 11997/10/09]
Copyright (c) 1990-1999, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

====.===.=====.============= Environnement. =========================
MBK_WORK_LIB
MBK_CATA_L1B - .:/alliance/archi/Liiiux_elf/cells/sclib:/alliance/archi/Linux_e]!7ceUs/padlib
================= Files, Options and Parameters =================
Netlist file = decOcore.vst
Output file = decOopt.vst
Parameters file = default.lax
Mode = local optimization with max fanout

Loading decOcore...
Flattening decOcore...
Loading models... m/alliance/archi/Linux_elf/cel]s/sc]ib

3 models - 7 cells - 6552 pitchs

==> BUFFER added after b : netopi 16 [pl_y / area = 756]
=:=> BUFFER added aftcT a : netopi 17 fpUy / area = 756J

4 models - 9 cells - 8064 pitchs (+23.08 %)

Saving ./decOopt...
Generation of staiisLics file : ./decOopt.stat
[ci.cuttin@ml.ab-42]S
Using the Standard Cell Router Scr

The Standard Cell Router Scr is used to place and route the cells of the core. By doing this we
synthesize a physical description of the core from the structural view More information on Scr is
available in the man pages (man scr).. This tool takes the structural file dceOopt.vst and generates
the physical file deeOopt.ap. The extension "ap" stands for the Alliance internal physical format,
this format is described in man pages (man ap). Type the following command.

scr -p -r -1 3 - i 5000 decOopt

-p - invokes the automatic placement process.
-T - invokes the automatic routing process.
-1 - allows the designer to set the number of rows.
-i - iteration number (to improve the placement quality).
decOopt - input (vst) filename, and output (ap) filename.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 17

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

The following is typically displayed.

I"
[cicuUin@mlab-42j$ scr -p -r -13 -i 5000

as
@@a

©

@C4(4

deeOopt

@& C4C4 @
a @C4

•@s
j @@

â@ @@
asa sa

@s se
@@ @@
& @@ @

s s a s a @@a@

@ c

@
8

@
g

C

as s
@@
@@
as @
a@esa
@@ e@
a@ @
as s
as

a
as
@s
a

a
as
asa

Standard Ceil router

Alliance CAD System 3.2b, scr 5.2
Copyright (c) 1991-1999, ASIM/LIP6/UPMC
E-mail support: aIliance-suppO3rt@iisim.lip6.rjr

Loading logical view : decOopt
Placing logical view : decOopt
Loading SCP data base ...
Generating initial placement...
9 cells 14 nets in 3 rows
Placement in process of treatment: J 00%
5% saved in 13.1 s
Saving placement 100%
Checking consistency between logical and physical views
Loading SCR data base ...
Deleting MBK data base ...
Global routing...
Channel routing...
I Routing Channel : scrmp2
I Routing Channel: scr_p4
I Routing Channel : scr_p6
I _Routing Channel: scr_p8
Making vertical power and ground wires
Saving layout: decOopt
[cicuttin @ ml ab -4 2] $

Using the symbolic layout editor

To see the core layout, "decOopt.ap" we use Graal a symbolic layout editor.

Give the command

graai

A new window is opened. Choose the File menu from the menu bar and choose the open option
from the menu that pops up. Another sub window inside the main window will be opened. In this
window the files with the extension .ap will be listed. Choose the decOopt.ap file and press the
ok button. The layout will appear on the sereen, but only at the standard cell level. Now you can
choose the Tool option from the menu bar and from the pop-up menu choose the peck option.
Now with the mouse mark the window where you want to "peek" at the layout. If the whole
layout is "peek"ed typically you will see the layout as shown below:

Exercise 2, Design of 2 to 4 Decoder Chip. Page 18

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

• £ ' •>•

[Sa^I'f'i^liij1

* ^

Now the eorc is ready to be connected to the pads, which interface the heart of the chip to the
outside environment.

Here we require to edit two files one with extension ".c" and the other with ",rin"

Create a file with the text editor called "decOchip.c" and enter the following;

#include <genlib.h>

main()
{

DEF_LOFTG(ndec0chipir);

LOCONfA", IN, "A");/* input B */
LOCON("B\ IN, "B");/*inputA*/
LOCON("NC", IN, "NC");/* not connected */
LOCON("enable", IN, "enable"); /* input enable */
LOCON("vdd", IN, "vdd"); /* core power supply */
LOCON("vss", IN, "vss"); /* core ground */
LOCON("vdde", IN, "vdde");/* pads power supply */
LOCON("vsse", IN, "vssc");/* pads ground */
LOCON("Y[0:3]", OUT, "Y[0:3]"); /* output */

I* power supplies:
pxxxe_sp arc external power supplies, ie used only by the buffers inside the pads.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 19

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

pxxxLsp are internal power supplies, for core logic only. */
LOINS ("pvsse_sp", "pl6", ':ckiM, "vdde", "vdd", "vsse", "vss", 0);
LOINS ("pvdde_sp", "p20", "cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS ("pvssi_sp", "p!8", "cki", "vdde", "vdd", "vsse", "vss",0);
LOINS ("pvddLsp", "pl9", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS("pck_spn,"NCpad",MNC";"cki","vdde"1"vdd"("vsse","vss",0);

LOINS{"pusp", "pl2", "enable", "en", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS("pi_sp", "pl3", "a", "aa", "cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("pLsp", "pl4", "b", "bb", "cki", "vdde", "vdd", "vsse", "vss11, 0);

LOINS("po_sp", "pO", "yy[O]\ "y[0]ir, "cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("po_sp", "pi", "yy[l]", "y[l]u, "cki", "vdde", "vdd", "vsse". "vss", 0);
LOINS("po_sp", "p2", "yy[2r, "y[2]", "cki", "vdde", "vdd", "vsse", "vss", 0);
LOTNS("po^sp", "p3", "yy[3]\ "y[3j", "cki", "vdde", "vdd", "vsse", "vss", 0);

L01NS("decOopt", "core", "aa", "bb", "en", "vdd", "vss", "yy[0:3]M, 0);

SAVEJ.OFTG0;
exit(0);

Exercise 2, Design of 2 to 4 Decoder Chip. Page 20

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

This file describes the external chip pins, and the connectivity between the pads and the core. It
is written in the Genlib procedural language, which is basically a set of C macro functions. The
connection between the pads and the core is described in this language using the NetUst capture
macro functions. More details on Genlib and related macro functions can be obtained from the
man pages (man genlib).

Now give the following command at the command line:

genlib -v

The following screen is typically generated.

[cicuLtin@m[ab-42"|$ genlib -v decOchip

@
@®
@® @

®@@@@ @@@ @@@ @®
@ ® @-@@ @ @® @@@®
a@ S@ &@ @@. @@ @@

® @@ @@®@@®@@@ @-@ @@- @@ @@
@ @@ ®@ &@ @@ @@ @@

®@ ®@ @ &@ @@ @@ g- @®
i @@ @@. @@ <a@ @a @@ @ @@
@@@@ @@®@

Procedural Generation Language

Alliance CAD System 3.2b, genlib 33
Copyright (c) 199M999, ASIM/LIP6/UPMC
B-mail support: aliiajice- support® as in Ulp6.fr

Generaring tlie Malcefile
Compiling,...
Currem. execution environment
MBK_CATA_I,re : .:/aniance/archi/Linux_eif/cells/sclib:/alliance/archi/Unux_eIf/ceHs/padlib
MB K_ WORK LIB : .
MBKJN J1O : vst
MBK_OUT_LO :vst
MBK_IN_PH : ap
MBK_OUT_PH : ap
MBK_CATAL_NAME : CATAL
Executing ...
Removing tmp files ...

Lcicuttio@mlah-42]$

This generates the structural description file dccOehip.vst, which has the core and the pads put
togedier.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 21

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Simulating the completed chip

The chip with the pads can be simulated with the original pattern file. The pads need a separate
ground and power supply, then two pins of the chip provides these specific signals. The file
dec2to4.pat can be used to test the structural view of the chip but as it is docs not provide the
stimulus to the signals vdde and vsse needed by the pads. Thus warning messages could appear
telling something like "power supply Is missing on po_sp".

asimut decOchip dec2to4 r5

no option
decOchip
dec2to4
r5

lakes the structural description (,vst) by default
decOchip.vst
dec2to4.pat
r5.pat simulation result file

Now check the output file r5.pat by using the more command.

Placing and routing the pads

Now the chip's pads and the core has to be connected together physically in a layout. The
physical placement and routing of the core to the pads is done by using Ring. The relative
position of the pads on the four sides of the chip is described in a ".rin" file. For more
information on Ring and its capabilities, see the man pages (man ring).

Edit a file called "decOchip. rin" and enter the following as is:

width (vdd 20 vss 20)

west(p0p)9p20)

north (pi p2 p3)

I east(p14pl8pl6)

south (pl2pl3NCpad)

SSh

Now give the command:

ring decOchip decOchip

The following is typically displayed.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 22

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 200]

I
[cicuttinfeJab~42] $ ring dscOctlip decOchip

99 @e a

a @s

99 @@ @@ S S @@ 9 @@
Jira g@ @@ g@ @g g@

PAD ring router

Ailience CAD System 3.2b, ring 2.3
Copyright (c) 1991-1999, ASIM/LIPS/UPMC
E-mail support: alliance-supportSasim.Iip6.fr

o reading netlists, layout, views of core and pads.
a reading file of parameters, including the placements of pads
• making equipot.ential list.
o making the first placement of pads.
o filling data internal structures.
o reading the connectors positions of the core.
o computing the best placement of the pads,
o reading the connectors positions cf the pads.
o routing deportation of connectors.
o routing supply tracks.
o routing equipotentials.
O compressing channels.
o saving in MBK data structure,

lucky, no error.
[cicuttin@mlab-42]$

As before with Graal you can see the complete chip file "deeOchip.ap".

Static Timing analysis

The "decOchip.ap;' contains the layout information. However we do not know if the physical
description produced reflects the desired behavior. Therefore to check the layout we use two
tools, Lynx and Tas.
Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout. The
file created by Lynx will be the input file for Tas.
Tas is a switch level timing analyzer for CMOS circuits.

Give the following command at the command line:

setenv HBK_OUT_L0 a l

This tells that the output Hie should be in the ".al" (Alliance) format.

lynx -v -L decOchip decO.ch.ip

-v - verbose
-t - build the netlist to the transistor level.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 23

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

first decOchip - take the "decOchip.ap" layout file as input,
second decOchip - generate the "decOchip.al" netlist file.

The following is typically displayed.

[dcuttin@mlab-421$ lynx -v -t decOchip decOchip

ea
88
33
33

aa
88

ae
ea a
88 8

eeeeeeeeee

3890© 9
39

ee
ea

@@

@S %

a
e

eg sae e
9 888
e as

ee
38
aa
ee

3888

Netlist

ee 3383 333
a aa 3
33 3Q a
aa 838
a ia a e e
3 3 3 @@

aa a 33
339a @@fl aeaa

extractor

Alliance CAD System 3.2b, lynx 1.16
Copyright (c) 1997-1999, ASIM/LIP6/UPMC
E-mail support: alliance-support® asim.lip6.IV

—> Extracts symbolic figure decOchip

—> Flatten figure

—> Translate Mbk -> Rds
—> Build windows
<--2401

—> Rectangles : 63720
--> Figure size :(-7055, -6655;

(8135, 85^5)
-> Cm transistors

< ~ 0
- -> Build equis
<— 52
-~-> Delete windows
--> Build signals

<— 52
—> Build instances
<—0

-> Build transistors
<— 368
—> Save netlist

<—• done !
;cicuttin@mJab-42]$

Give the following command at the command line:

se-ienv MBK_IK_LO a l

This tells that the input file for Tas must be in the ".al" (Alliance) format,

tas -tec=/alliance/archi/Linux_elf/eto/proll0.elp decOchip

Exercise 2, Design of 2 to 4 Decoder Chip. Page 24

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

-tec - selects the technology file prollO.elp

'"!ciciHtm@mlab-42]$ tas -tec=/alliance/archi/Linux_df/etc/prolIO.elp decOchip

9
9 9

gggggggg @ C4f4 gg @
g-s 9 fefi ggg

#$ ©ga^^gg @@gg
gg @ gg @ @a@
gg 9 9 gg g@ sa

gggg LiiC4(4Q {4@gg g @@@99

CMOS-VLSI Timing Analyzer

Alliance CAD System. 3.2bs tas 5.21
Copyright (c) 1990-1999. ASIM/1JP6/UPMC
E-mail support: alliance-support@asim.Iip6.fr

TliCHNOLOGY FILE IS : yalliance/arehi/Linux_eiI7eLc/prol 10.eip'
TECHNOLOGY : proIlO VERSION : 2.00
REFERENCE : HSPICE, LEVEL = 2.00

LOADING FILE decOchip.al :
OOrain 00s
tas user : 0OH0.0"

system: 0000.0"

DISASSEMBLING ;
I.YAG MES] Transistor netlist checking OOmOOs u:00m00.0 s:00m00.0
[YAG MRS] Extracting CMOS duals OOmOOs u:00mO0.O s:00m00.0
[YAG MES] Extracting bleeders OOmOOs u:0OiriO0.0 s:O0mO0.O
[YAG MES] Making gates OOmOOs u:00ra00.0 s:00in00.0
[YAG MES] Latches detection OOmOOs urOOmOO.O s:00mO0.O
[YAG MES] External connector verification OOmOOs u:00mO0.O s:00m00.0
[YAG MES] Checking die yagle figure OOmOOs u:O0mO0.O s:O0mO0.O
OOmin OOs

tas user : O0T30.O"
system : OODO.O"

COMPUTING GATE DELAYS :
OOmin OOs
fas user : OOTKXO1'

system: OODO.O"

SEARCHING OF CRITICAL PATHBS :
OOmin OOs
fas user : OODO.O"

system : OODO.O"

GENERAL PERI-MODULE decOchip.ttx:
OOmin OOs
tas user : 00T)0.0"

system: 0000.0"

TIMING ANALYSES REPORT :
complexity = 86
the circuit worst case delay is 7303pS

Exercise 2, Design of 2 lo 4 Decoder Chip. Page 25

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

—> from -_ b
--> to -_ yJ3J
nb couple = 24
rib chain = 0
OOmiio OOs
tas user : 00X10.0"

system: OOt)O.(T

TOTAL RUN TIME :
00mm OOs
tas user ; 00*00.0"

system: 0000.0"
0.00% CPU—end!!!

[cicutlin@mlab-42]$

Inspect the result on the screen, in the sessions "SEARCHING OF CRITICAL PATHES" and
"TIMING ANALYSIS REPORT" to know the worst case delay.

Layout Extraction and NetUst Comparison

The "decOchip. ap" contains the layout information. However we do not know if the physical
description produced reflects the behavioral description. Therefore to cheek the layout we use
two tools, Lynx and Lvx. Lynx is a nctlist extractor. It extracts a netlist representation of the
circuit from the layout.

Give the command at the command line:

lynx -v -f decOchip docOchip

-V

-f

first deeOehip
second decOchip

verbose
asks Lynx to generate the nctlist from the Standard-

cells level.
Take the "decOchip. ap;' layout file as input.
Generate the "deeOehip.al" netlist file.

The following is typically displayed.

[cicutt:in9inlata-42]$ lynx -v -f decOchip decOchip

ggggaa

aq. @

S
Q
IS-

as

s
•ir

(id
3

•%

333
•3

•3

CA
"<B

%

If
aa

aaaa

Nellist

3- ©• ©• Q Q' C? L^

33 §

extractor

Exercise 2, Design of 2 to 4 Decoder Chip. Page 26

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Alliance CAD System 3.2b, lynx 1.16
Copyright (c) 1997-1999, ASIM/LIP6/UPMC
E-mail support: alliance-support<8>asim.Iip6.fr

—> Extracts symbolic figure decOchip

—> Flatten figure

—> Translate Mbk -> Rds
—> Build windows
<— 2401

—> Rectangles : 3146
--> Figure size : (-7055, -6655)

(8135, 8595)

—> Cut tnms is tors
<—0
•—> Build equis
<-- 25
—> Delete windows
—> Build signals
<— 25
---> Build instances
<— 25
—> Build transistors
<— 0
—> Save netlist

<— done !

[c i cu t t i n@ns lab -42] $

Lvx is a netlist comparison software that compares two netlists. Along with the comparison it re-
orders the interlace terminals to produce a consistent netlist interface.
More information on Lvx can be obtained from the man pages (man lvx).
Give the command at the command line

lvx vst al decOchip fiecOchip -f -o

-f
-O

vst
al
first decOehip
second decOchip

build the netlist to the standard cell level.
to have ordered connectors in the output netlist
take the first file in .vst format.
take the second file in .al format.
"decOchip.vst" input file.
"decOchip.al" output file.

The following is typically displayed.

[cicuttin@mlab-421$ Xvx vs t al decOchip decOchip -E

aaa g§@@

99
•33

•33 93 3
99 3

9SS
•s

999

Exercise 2, Design of 2 to 4 Decoder Chip. Page 27

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Gate Netlisi Comparator

Alliance CAD System 3.2b, Ivx 2.23
Copyright (c) 1992-1999, ASIM/LIP6/UPMC
E-mail support: alliance-support@nsim.lip6.fr

***** Loading and flattening decOchip (vst)...

***** Loading and flattening decOchip (al)...

***** Compare Terminals
***** O.K. (0 sec)

***** Compare Instances
*****O.K. (Osec)

***** Compare Connections
*****O.K. (Osec)

===== Terminals 12
___.._ instances 21
===== Connectors 131

***** Nctlists arc Idendcal. ***** (0 sec)

***** Oi-derring
***** O.K. (Osec)

***** Saving decOchip (al)...

The comparison should not produce any errors. If errors are produced by the prograin, then there
is some problem with the layout. The router has done something funny and corrective action is
to be taken at the layout level by studying the error messages.

The hvx has also re-ordered and built the netlist in the ".nl" to the standard cell format. This file
can be simulated using Asimut.

Simulating the Extracted netlist file

The netlist file "decOchip.al" can be simulated using Asimut and the test vector file
"dec2to4.pat".
The input file format for Asimut must be "a!".

Give the following command at the command line.

decOchip dec'Itoi r&

decOchip - take the "decOchip.al" as input file
dec2to4 - take the k'dec2to4.paf' test vector file
i"6 - deliver the results in fdc "rfi.pat".

Any error means that you will have to retrace your steps back to find out the source of the error.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 28

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Functional Abstraction

Yagle is a program that extracts from a transistor netlist the behavior of the circuit. Essentially a
VHDL file is created from a standard cell connectivity list! This VHDL file can he simulated in
turn to verify the function of the chip.

Give the command at the command line:

yagle -v decOchip

-v - signal vectorized
decOchip - takes the''decOchip.al" as input.

The extracted VHDL description is in the file "decOchip.vbc".

The following is typically displayed.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 29

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

[cicuttin@mlab-42]$ yagle -v decOchip

99999
aa
33
99
99
aa(.

&(•

33 3
33 3
999

999
a
3

9
9
a
i

999(*
aa (s.
aa aia

aa§ss

99 £S

33 KSa
333t- 33

•S333SS
la 3 33
£ 99
3 3
333

33
399999

33 @@@ 6
3 3
33aaa

39
33
99
99
ea
&3
S@

99333
3 9

33 99
999933333
99
99 9
33 99

? 3333

Yet Another Gate Level Extractor

Alliance CAD System 3.2b, yagle 2.02
Copyright (c) 1994- [999, ASIM/LIP6/UPMC
E-mail support: tilli.aiicc-SLLpport@asinLlip6.fr

[YAG .ME-S] .Loading the figure decOchip
[YAG MES] Flattening the figure
[YAO MES] Transistor net!ist checking
[YAG MES] Extracting CMOS duals
LYAGIMES] Extracting bleeders
[YAG MESJ Making gates
[YAG MES1 Latches detection
fYAG MBS] Making cells
LYAG MES] External connector verification
[YAG MES1 Chocking the yagle figure
[YAG MESJ Building the behavioural figure
TOTAL DISASSEMBLY TIME

OOmOOs u:0Om0Q.O s:00m00.0
OOmOOs u:00m00.0 s:00.m00.0

OOmOOs u:O0.mO0.O s:OOn*0.0
OOmOOs u:00m00.0 s:00m00.0

OOmOOs u:O0iiiO0.O s:00m00.0
OOmOOs Li:00m00.0 s:00m00.0
OOmOOs u;00m00.0 s:00m00.0

OOmOOs u:00m00.0 s:00m00.0
OOmOOs u:00mO0.O s:00m00.0

OOmOOs u:00m00.0 s:00m00,0
OOmOOs u:00ra00.0 s:00m00.0
OOmOOs u:00m00.0 s:00m00.0

[YAG MES1 Erasing the transistor netlisi
[YAG MESJ Generating the VHDL Data Flow
[YAG MES] Execution COMPLETED

[YAG WAR 04] 32 transistors are always off
[YAG WAR. 07] 32 transistors are not used
[YAG WAR 13] 1 signals do not drive anything
See file 'decOchip,rep' for more information

[cicuttin@miab-42]$.

Give the command:

asiitmt -b deeUchip dec2to4 r4

to simulate the extracted behavioral file.

Alliance has a program called Proof that compares the extracted behavioral file with the
original behavioral file to formally prove the functional congruence of the described and the
extracted circuit.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 30

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 OCL-23 Nov. 2001

Give the command:

proof -d decOchip dec2to4

-d - displays logical functions as they are processed
decOchip - extracted "decOchip.vbe" file.
dec2to4 - original "dec2to4.vbe" file.

The following is typically displayed.

[cicuttin@!iilat>-42]$ proof -d dscQchi.p dec2to4

00999
0 0

m
20

-40000
~C'B

S0
313

0 0
0 0
(>&

! ? ^ lautje

iitQ

m
Bii

Z-S

essa

(J(? 99
99
a 9
•39

99

399 3{S[s
00 ieg iaia

@ @ (S K a a

0 9 (?g » ^
00 0S yg
00 eg. ££

9@ S-3 fflS
i00 999

Formal Proof

9
90
00

@@

99

K Si g 00000
00
00
S0
!e@

0

Alliance CAD System 3.2b, proof 4.20 [1997/10/09)
Copyright (c) 1990-1999, ASIM/LIP6/UF'MC
E-mail support: alliance-support@asim.Iip6.fr

MBK_WORK_LIB
M3iK_CATA_LiB = .:/alliaiicc/arcliL'Linux_eJf/cells/sclib:/alliance/archiyLinuxmeIf/(;clls/pad]ib
= ^ = = = = = ^ = = = = = = ^ = = = Files, Options and Parameters = = = = ^ = = = = = = = = = = = = =
Firsi VHDL file = clec2lo4.vbe
Second VHDL file = decOchip.vbe
The auxiliary signals are erased
Errors are displayed

Compiling 'dec2to4'...
Compiling 'decOchip'...

Running abl (.trdonna-ncer on 'dec2lu4'

Running Abl2Bdd on 'dec2to4'
—> final number of nodes = 16(9)

Running Abl2Bdd on 'decOchip'

Formal proof with Ordered Binary Decision Diagrams between

'./dec2to4' and VdecOcliip'

= PRIMARY OUTPUT = = = =

================================ AUXILIARY SIGNAL = = = = =
======================== REGISTER SIGNAL = = = = =
= EXTERNAL BUS = = = = =

= = = = = = INTERNAL BUS

Exercise 2, Design of 2 to 4 Decoder Chip. Page 3J[

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Formal Proof: OK

p p p p p ppp pp p p p p P p p p p p p p ppmrrrrrmTci oooo o oooo oo ooooooo Of.) oo oooooofffffffffffffff

|dcuUin@mlab-42|S

This formal functional verification is much powerful than any verification done with Asimut. If
both behavioral descriptions, original and extracted, are formally equivalent, then they will give
the same response to any stimulus. On the other hand Asimut allows checking the response to the
stimulus defined in the input pattern file only.

Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires the
layout of the chip, described in terms of rectangles and layers in the gds or the cif format. This
can be done in Alliance, by using S2r.

setenv RDS_TECHb;O_NAME /allian.ce/archie/Linux_elf /etc/prollO_7 . irds
setenv RDS....OUT cif
setenv RDS_it, cif

This chooses tlie l.Ofim CMOS process, chooses the output form of the chip in cif format and,
replaces the symbolic pads with their real equivalent.

Give the command;

s2r -cv decOchip dscOcbip

-c - deletes connectors at the highest hierarchy. (Use
man to see full description)

-v - verbose mode on
first decOchip - "dceOchip.ap" file as input
second decOchip - "decOchip. cif" file as output.

The following is typically displayed.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 32

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oet-23 Nov. 2001

[cicilttill(S1mlab-42jS s2r -cv dec:0chip decOcllip

i"3 •'H •.'3 { 3 •'s (A.

33 3
999

-3-3-3 a

3339
3 399
•3 a 9 9
3 33333

9

3
9

9996
aaaai

0 W- Q- f& •'3.

<g 3 3

a 33
33

3 33
UUi 39
jap S333

999
33
33

Symbolic to Real layout converter

Alliance CAD System 3.2b, s2r 3.6
Copyright (c) 1991-1998, ASIM/LIP6/UPMC
E-mail support: alliance-sispport@asim.lip6.fr

o loading technology file : /ai]iancc/ardii/Linux_clf7i;tej'pfo]10_7.rds
o loading all level of symbolic layout: decOchip
o removing symbolic data structure
o layout post-treating without connector, with scotchs,
--> post-treating model pali_sp

rectangle merging:
. RDS_NWELL
,RDS_NIMP
. RDS_PTMP
.flDS_ACTFV
.RDS_POLY
,RDS_ALU1
.RDS_ALU2

--> post-treating model pi_sp
ring flattenning :
. RDS_NWELL
.RDS NIMP

o replacing black boxes
—> replace cell padreal
c! saving decOchip.cif
o memory allocation informations
—> required rectangles = 3112 really allocated = 7
—> required scotchs = 0 really created = 0
- > Number of allocated bytes: 183724

[cicuttin@mlab-42]S

This completes the design of the decoder chip.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 33

SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 3

Design of an Octal Tri-state Transceiver chip

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Problem Description

This design example is a transceiver chip similar to the 74HC245. In this design example
you will learn to:

• Describe and simulate the behaviour of the transceiver in VHDL.
• Simulate bi-directional signals and about 10 pads.
• Make the layout of the chip.
• Extract the circuit from the layout.
• Extract the behavioural description from the netlist and compare with the original

behaviour file you have created, to complete formal verification.

This design example consists of two phases. The first phase is to describe the behaviour
of the chip as is seen at the pins of the chip. The second phase is to describe the functions
of the core of the chip, and then connect it to the pads.

In the first phase you will:

• Describe the transceiver's behaviour using VHDL (xceiver.vbe).
• Write test pattern files.
• Simulate the behavioural description using the pattern file by using Asimut.

In the second phase you will:

• Describe the behaviour of the core in VHDL as is seen inside the chip by the pads
(xceivercore. vbe).

• Synthesise the logic and structural descriptions using Bop and Scmap
(xceivercorel.vbe and xceivercorel.vst).

• Use the standard cell router called Scr to place and route the core (xceivercorel.ap),
• Add the necessary pads for the chip and compile using Genlib (xceiverchip.vst).
• Use Asimut to simulate the 'xceiverchip.vst' file using a pattern file created by

Genpat in the first phase.
• Place the pads and generate the layout of the chip with pads using Ring

(xceiverchip.ap).
• Use Lynx to extract the netlist from the layout file 'xceiverchip.ap' (xceiverchip.al).
• Use Tas to perform the static timing analysis.
• Use Lvx to compare the extracted circuit 'xceiverchip.al' and the original

'xceiverchip.vst' file created by Genlib.

Exercise 3, Design of an Octal Tri-state Transceiver chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Ocl-23 Nov. 2001

• Use Yagle to extract the behaviour, 'xceiverchip.vbe' from the 'xceiverchip.al' netlist
file.

• Use Proof to compare the extracted behaviour file, 'xceiverchip.vbe' and the
behavioural file created in the first phase, 'xceiver.vbe'.

Exercise 3, Design of an Octal Tri-state Transceiver chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Vi or Pico Text Editor
VHDL Description of

Transceiver Chip
(xceiver.vbe)

Text Editor
VHDL Description of

Tranecivcr cure
(xceivercore.vbe)

,J

Bop J
-. _y

Vi or Pico Text Editor
Genlib Language

Description of Pads
&core (xceiverchip.c)

! ViorPicoText Editor
i Relative position

of Pads
(xceiverchip.rin)

ViorPico Text Editor
Test Vectors using
Genpat Language

(xceiver.c)

xceivercore).

\ .

f
\ Scmap

vbc

J

f I
\ 1
\ 1

I

I
I
I
I

/

I

r

/
xccivcrchip.vst |

... A V
xceiver.pal

Vi or Pico Text Editor
Modify Test Vectors

(xceiver.pal)

Lvx r*-, i Lwix

/ xceiverchip.cif / (Yagle
| (Chip ready | V._
\ forfoundry)

V _... A

Asimut

/

I
I Proof xceiverchip.vbe I -—-""""

filename, pat /
1 (to be checked j
i for collect !
\ functionality) V

Fig 1. Design flow for the Transceiver Chip

Exercise 3, Design of an Oclal Tri-state Transceiver chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Transceiver Chip General Description

The transceiver chip that is proposed in this example is similar to the 74HC245
transceiver chip. The pin diagram of the transceiver chip and the truth table of the
controls shown below explain the operation of the chip as looked from outside.

DIR
AO
Al
A2
A3
A4
A5
A6
A7

L
r
c
c
c
r
r

I
•IT1

i

=1 VDD
=1 ENABLE
"1 BO
J Bl
-J B2
~ B3
- B4
J B5
=1 B6
^ B7

Fig. 2. Pinout of 74HC245 transceiver chip.

ENABLE
L

L

H

DIR
L

H

X

Operation
Data Transmitted from Bus

B to Bus A
Data Transmitted from Bus

A to Bus B
Busses Isolated (High-

Impedance State)

Table 1. Truth Table for the controls of the transceiver chip

Exercise 3, Design of an Octal Tri-slalc Transceiver chip.

Seventh COUTSC On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Solution

Legend

Give the command that appear immediately after this symbol, at the command line.

*" Edit and save into a file, all that appears after this symbol.

Explanation of a topic

Set tfie environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design directory, at a convenient position in your work space:

mkdir xceiver

Change into this directory:

cd xceiver

Before starting the design you will have to set the environmental variables as shown
below so that you will not run into problems later.

setenv MBK_CATA_LIB . : /a l l iance/archi /Linux_elf /ce l l s / sc l ib :
/alliance/archi/LliHix_elf/cells/padlib

iietenv KBK_Hf....LO vst

setenv MBK_ODT_LO vst

setenv M3K_IW_PH ap

setenv MBK_0UT_?H ap

setetif MBK_WOJiK_LIE .

Create with the "pico" (or "vi") editor a file called "xceiver.vbe". Enter the following and
save the file.

Exercise 3, Design of an Octal Tri-state Transceiver chip.

Seventh Course On Basic VLSI Design Tcehniques Trieste-Italy, 29 Oct-23 Nov. 2001

m
-- Octal Trisiatie Non-Inverting Bus transceiver
••- 6th Course on VLSI Design - Trieste

ENTITY xceiver IS
PORT (Vdd, Vss, Vdde, Vsse: IK BIT;

A, B: inout MUX_VECTOR (7 downto 0) BUS;
dir, enable : IN BIT);

END xceiver;

ARCHITECTURE xceiver_b OF xceiver IS

begin

bl: BLOCK (dir -'0' and enable = '0'}
BEGIN

A <•= guarded B;
END BLOCK bl;
b2: BLOCK (dir = '1' and enable = '0')
BEGIN

B <— guarded A;
HMD BLOCK b2;

end xceiver_b;

Typographical or syntax errors can be found when the file is passed through Asimut in
the compilation mode. Before using Asimut you will have to set the environmental
variables as shown previously.

Give the following command at the command line

asimnt -b -c xceiver

Creating the test pattern for simulation

If the above step functions without giving syntax errors, then the behavioural description
is ready for simulation.
A file with the test patterns in the pat format is required for the simulation. The pat
fonnat file has a declaration part and a description part of the signals. The declaration part
consists of a list of inputs, outputs, internal signals and registers of the design. Inputs are
forced to a particular value while the outputs are observed during the simulation.

Edit this file and make changes to the file like the one shown below. Save the modified
pattern file.

Exercise 3, Design of an Octal Tri-statc Transceiver chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 200J

-- description generated by Pat driver vlO4

-- date : Sep Id 21:00:18 1333

sequence

•-- input / output list
in
in
in

m
inouL
inout
in
in

begin

vdd 3;
vss 3;
vdde 3;

a (7 downto 0)
b (7 downto 0)
ddr B; ; ;
enable B; ; ;

-- Pattern description

--
--
--
--

ww a
dsds
dsds

ee

: xceiver

X; ;

b d
i
r

e
n
a
b
1
e

--- Beware : unprocessed patterns

1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
io in
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010

1010
1010
1010
1010
1010
1010

?00
?55
?00
00
55
00
?00
?AA
?00
00
AA
00
755
?55
?55

55
55
?AA
?AA
?AA
AA
AA
AA
?55
?55
?55
AA
AA
AA
?AA
?AA
?AA
55
55
55

55
•}* *

?•* •*

AA
y * *

00
55
00
?00
?55
700
00
AA
00
700
?AA
?00
55
55
55

?55
?55
?55
AA
AA
AA
?AA
?AA
•?AA
55
55
55

?AA
?AA
?AA
AA
AA
AA
?55
?55
?55

5 5
'•j * *

AA
o * *

0
0
0
1
1
1
0
0
0
1

1
1
0
0
0

0
0
0
2
1
1
0
0
0
1
1

0
0
0
J_

1
1

0
0
0
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1

end;

Exercise 3, Design of an Octal Tri-state Transceiver chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

We suggest you to skip this part (thtat isn't essential to the exercise) the first time. You can come back to
this part later or in a second time. Co ahead to the next paragraph: Simulating the Behavioural
Description (page 10).

Genpat is a set of C functions that allows a procedural description of input patterns file
for the logic simulator Asimut. The genpat command accepts a Cfile as input and
produces a pattern description file as output. Information on the functions that are
allowed in genpat is given in the man pages {nxan genpat).
A file with test patterns is required for the simulation. You will have to write a Cfile that
when treated with Genpat wilt generate the pattern file for you.

Create a file called "xceiver.c" and enter the following:

Trieste, microprocessor laboratory

File : xceiver
Date : 10 21 1999
Version .- 3

* j

Includes

#include <mut321.h>
#include <stdio.h>
^include <genpat,h>

defines
\ v

#de£ine maxcycle 5

inttostr
\- */
char *inttostr{integer, len)

int integer;
int len;

{
char *str;

str = (char *) mbkalloc (len * sizeof (char) + 1);
sprintf (str, "%.32d", integer);
return(&str[32-len]);
}

/* \
\ */
void dir()

Exercise 3, Design of an Octal Tri-state Transceiver chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

int i ;

for (i = O;i < (maxcycle*6) ;i=i + 6)

AFFECT(inttostr(i,32), "dir", "ObO");
AFFECT(inttostr(i+1,32),"dir", "ObO");
AFFECT(inttostr(i+2,32)
AFFECT(inttostr(i+3, 32) ,
AFFECT(inttostr(i+4, 32) ,
AFFECT(inttostr(i+5,32) .

"dir", "ObO") ;
"dir", "Obi");
"dir", "Obi") ;
"dir","Obi");

power

void power ()

AFFECT(inttostr (0,32), "vdd", "Obi");
AFFECT(inttostr(0,32) .
AFFECT(inttostr(0, 32) .
AFFECT(inttostr(0, 32) .

-vss", "ObO");
Wdde", "Obi ") ;
"vsse", "ObO ") ;

enable
\
void enable()
{
AFFECT (inttostr (0,32) , "B", "OBO");
AFFECT(inttostr (0,32), "enable", "OBO")

-\

V
mam

\
int main()
{
/*• int i, j; */

/* Declaring name of pattern file */
DEF_GENPAT("xceiver") ;

DECLARC'vdd", ":0", "B",IN, "");
DECLAR("vss", ":5", "B",IN, " ") ;
DECLAR("vdde", ":0", "B ",IN, "") ;
DECLAR("vsse ", " :5 ", "B ",IN, "");
DECLAR("A", " :1", "x",INOUT, "7 downto 0");
DECLAR("B", ":2", "x", INOUT, "7 downto 0") ;
DECLAR ("dir", ": 2 ", "B",IN, "");
DECLAR ("enable", ":2", "B",IN, "");

/* initilisation of the enable, vdd, vss, and it */
dir() ;
power{) ;

Exercise 3, Design of an Octal Tri-stair; Transceiver chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

enable();

/* the end */
SAV_GENPAT() ;

Give the following command at the command prompt:

xrceiveir

This command typically generates the following display.

ficuttin@m!ab-42]$

•aggg 9

@9 9

- xceiver

99

99

@9@99
99
9@
(ig
Qg
9993

99 96
@@996

@@ 96
9@ 96
9@ 996
9(399 E

i 99
i 99
i @9
1 @9

i@ 99@9

Procedural GENeration of t e s t PATterns

Alliance CAD System 3.2b, genpat 3.1
Copyright (c) 1991-1999, ASIM/LIP6/UPMC
S-mail support;; alliance-supportSasiin. I ip6 . f r

[cicuttin9mlab-42]$

A pattern file "xceiver.pat" is created by Genpat. You can easily learn how the C file works by changing
some of the parameters in the C code and inspecting the correspondent changes in the generated pattern
file "xceiver.pat".

Exercise 3, Design of an Octal Tri-state Transceiver chip. 10

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Simulating the Behavioural Description

Now the behavioural file "xceiver.vbe" can be simulaicd with this pattern file.

Give the following command at the command prompt to start simulating.

asimut -b xceiver xceiver rl

-b
first xceiver
second xceivcr
rl

chooses the behavioural simulation option
takes the xceiver.vbe as input
takes the xceivcr.pat vector file for simulation
result of simulation is put in rl.pat

The simulation should proceed without any errors. If errors appear, check the xceiver.vbe
or the xceiver.pat file.

Describing the core of the chip

The above description that we have made in the "xceiver.vbe" file simulates the
transceiver as is seen from the pins of the chip. We did not care about the pads that drive
the pins. However when a chip is described physically in Alliance, it consists of two
separate parts that arc brought together, the core or heart of the chip and the pads, fn
Alliance, the core and the pads are brought together in a C description file. This file when
treated with Genlib, produces the structural description of the chip with the pads. In
practice the core can be synthesiscd automatically form a behavioural description,
whereas the pads should be placed physically, one by one in the C file. Placing the pads
require the structural knowledge of the pads. One of the type of pads that is used in this
example is the piot_sp 10 pad, a cell of "padlib", a library of pads provided with Alliance.

Give the following command at the command line to see a description of this pad.

As will be seen from the behavioural description, this pad has towards the outside a tri-
state, while towards the core, a data input, a data output and a control line that controls
the direction of the data.

Exercise 3, Design of an Octal Tri-statc Transceiver chip. 11

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

PAD

Fig. 3. Schematic of the IO pad piot_sp

b
1
0

PAD
i

High Z when looked
from i

t
PAD
PAD

Table 2. Truth Table for controls of the IO pad piot_sp

Thus for an IO pad, the core will have
a data output that is connected to the data input of the pad.
a data input that will be connected to the data output of the pad and,
a control line output that will be connected to the control line input of the pad.

Behavioural Description of the Core

I

With the above knowledge of the IO pads, we are now ready to describe the functions of
the core.

Edit a new file called "xccivercore.vbe'' and give the description as shown below:

- Octal Trifjtate Non-inverting Bus transceiver —
- 6th Course on VLSI design TRIESTE —

ENTITY xceivcrcorc IS
PORT (Vdd, Vss; IN BIT;

AIN, BIN: in BIT_VECTOR (7 downto 0);
AOUT, BOUT: out BIT_VECTOR (7 downto 0);
ACONT, BCONT: OUT BIT;
dir, enable : IN BIT);

END xceivercore;

ARCHITECTURE xceiver_b OF xceivercore IS
signal enab: BIT_VECTOR (7 downto 0);
begin

ASSERT (vdd = 1' and vss = '0')
REPORT "Wrong power supplies"

Exercise 3, Design of an Octal Tri-state Transceiver chip. 12

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oet-23 Nov. 2001

SEVERITY WARNING;

enab(G) <= enable;
enab(l) <= enable;
enab(2) <= enable;
enab(3) <= enable;
enab{4) <= enable;
enab(5) <= enable;
enab(6) <= enable;
cnab(7) <= enable;
AOUT<= BIN;
BOUT<= AIN;
ACONT < - (not dir) and (not enable);
BCONT <= dir and (not enable);

end xceivcr^b;

Synthesising the Logic and the Structure of the Core

We use Bop to synthesise the logic and Semap to synthesise the structural description of
the transceiver core.

Give the following command at the command line:

bop -o xceive^core xceivercorel

-O

xceivereore
xceivercorel

option for global optimization
xceivercore.vbe (input file)
xceivercorel.vbe (output file)

The logic description of the core is created in the file "xceivercorel.vbe". From this file
we proceed to synthesise the structural view of the core. To do this give the following
command at the command line:

SCmap xceivercorel xceivercorel

The structural description of the core is created in the file "xeeivercorel.vst".

Placement and Routing of the core

The core cells can now be placed and routed using Scr. Give the following command at
the command line:

Exercise 3, Design of an Octal Tri-state Transceiver chip. 13

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

scr -p -r -- 5 -i 1000 xceivercorel

-p - placement option
-r - routing option
-I - number of rows
-1 - iteration number
A "xceivercorel.ap" file is created which can be viewed with Graal

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C functions that allows you to
describe circuit objects like pads and the core and their connectivity (structural view).

Edit and save into the file "xceivcrchip.c" the following:

/* Transceiver chip */
/* Date: 07-17-99*/

#include <genlib.h>
mainQ
{
DEF_LOFIG("xceiverehip");

LOCON("VDD", T, "VDD");
LOCON("VSS", T, "VSS");
LOCONf VDDE", T, "VDDE");
LOCON("VSSE", T, "VSSE");
LOCONC'A[0:7]", rX\ "A[0:7]");
LOCON("B[0:7]", 'X1, nB[0:7]");
LOCON("DIR", T, "DIR");
LOCON("ENABLE", T, "ENABLE");
LOCON("NC", IN, "NC"); /* */

LOINS("pvsse_sp", "vss","cki", "vdde", "vdd", "vsse","vss", 0);
LOINS("pvdde_sp", "vdd","cki", "vdde", "vdd", "vsse","vss", 0);
LOINS("pvddi_sp", "ivdd","cki","vdde", "vdd", "vssc", "vss", 0);
LOINS("pvssi_sp", "ivss","cki","vdde", "vdd", "vsse", "vss", 0);

LOINS("pck_sp","NCpad","NC","cki","vdde"," vdd"," vsse","vss",0);

LOINS("piot_sp", "A0", "AOUT[0]M, "ACONT", "AINr0]","A10]","cki", "vdde", "vdd"
"vssc", "vss", 0);
LOINS("piot_sp", "Al", "AOUT[1]M, "ACONT", "AIN[l]",MA[l]","cki", "vdde", "vdd"

"vsse", "vss", 0);
LOINS("piot_sp", "A2", "AOUT[21", "ACONT", "AINr2]","A[2]","cki", "vdde", "vdd"

"vsse", "vss", 0);

Exercise 3, Design of an Octal Tri-state Transceiver chip. 14

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

LOlNS("ptot_sp\ "A311, "AOUT[3]"; "ACONT", "AIN[3]","A[3]";"cki", "vdde", "vdd",
llvssc","vssir,O);

LOJNS("piot_sp", "A4|p, "A0UTL4]", "ACONT", MAIN[4jir,"A[4]","eki", "vdde", "vdd",
"vsse", "vss", 0);
LOINS("piol_sp'\ "A5", "AOUT[5]", "ACONT", MAIN[5]","A[5J","cki", "vdde", "vdd",

"vsse", "vss", 0);
LOINS("pioLsp", "A6", nAOUT[6]", "ACONT", nAIN[6]","A[6]","ckin, "vdde", "vdd",

"vsse", "vss", 0);
LOINS("piot_sp", "A7", P1A0UTL7j", "ACONT", "AIN[7]"1"A[7]","cki", "vdde", "vdd",

"vsse", "vss", 0);

LOINS("piot_sp", "BO", "BOUT[OJ", "BCONT", nBIN[0]","B[O]","cki", "vdde", "vdd".
"vsse", "vss", 0);
LOINS("piol_sp", "Bl", "BOUT[l]ri, "BCONT", "BIN[lT';"B[1]",1Pcki", "vdde", "vdd".

"vsse", "vss", 0);
LOINS("piot_sp", "B2", "BOUT[21", "BCONT", "BIN[2]","B[2T',"cki", "vdde", "vdd".

"vsse", "vss", 0);
LOINS("piot_spn, "B3", "BOUT[3"|", "BCONT", "BIN[3]";"B[3]","ckin, "vdde", "vdd",

"vsse", "vss", 0);
LOINS("piot_sp", "B4", "BOUT[4]M, "BCONT", "BIN[4l","B[4]",1Pckin, "vdde", "vdd",

"vsse", "vss", 0);
LOINS("pioLsp", "B5", "BOUT[5]M, "BCONT", "BIN[5]","B[5]","ckiM, "vdde", "vdd".

"vsse", "vss", 0);
LOINS("piot_sp", "B6", "BOUT[6]M, "BCONT", "BiN[6]","B[6]","cki", "vdde", "vdd".

"vsse", "vss", 0);
LOINS("piot_sp", "B7", plB0UTL7Jn, "BCONT", "BIN[71","B[7]lp,"cla", "vdde", "vdd".

"vsse", "vss", 0);

LOINS("pi_sp", "dii", "dn", "pdir", "eki","vdde\ 1Pvdd", "vsse", "vss", 0);
LOINS("pLsp", "enable", "enable", "penable", "cki","vdde1P, "vdd", "vsse", "vss", 0);

LOINS("xceivercorel1P,"xceiver",IPvdd","vss","ainr7:0]","bin[7:0]","aout[7:0]'1,'1bout[7:0]
","acont", "bcont", "pdir", "penable", 0);

SAVE_LOFTG();

exit(O);

Give the command at the command line:

genlib -v xceiverchip

This creates a "xceiverchip.vst" structural description file with pads. Use "more" to browse through the
structural description.

Exercise 3, Design of an Octal Tri-state Transceiver chip. 15

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Simulating the Structural Description

You can now simulate this structural description with the test vector file that we
developed for "xcciver.vbc".

Give the command at the command line:

asinvut xceiverchip xceiver r2

xceiverchip - The structural description "xceiverchip.vst" with pads
xceiver - The "xceiver.pat" test vector file.
r2 - Result to be place in "r2.pat" file.

There should be no errors, which means that the structural description is functionally
equivalent to the behavioural description.

Placing and routing the pads

Now the chip's pads and the core has to be connected together physically in a layout. This
is done by using King.

Edit and save the following in the file "xceiverchip.riii";

#File used by ring tool to define the relative position of pads
north (aO dir vdd enable bO bl)
west (a4 a3 ivss a2 alj
south (a5 a6 NCpad vss a7 b7 b6)
east (b5 b4 ivdd b3 b2)

This file describes the relative position of the pads on the four sides of the chip.

Give the command at the command at the command line:

ring xceiverchip xceiverchip

The physical tile ''xceiverchip. ap': is created that can be examined by using Graal.

Examine the layout using Graal.

Static Timing Analysis

The "xceiverchip.ap" contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the layout
we use two tools, Lynx and Tas.

Exercise 3, Design of an Octal Tri-state Transceiver chip. 16

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Lynx is a netlist exti'actor. It extracts a netlist representation of the circuit from the layout.
The file created by Lynx will be the input file for Tas.
Tas is a switch level timing analyser for CMOS circuits.

Give the following command at the command line:

setenv MBK_OUT_LO al

This tells that the output file should be in the ",al" (Alliance) format.

lynx -v -L xceiverchip xceiverchip

-v - verbose
-t - build the netlist to the transistor level.
first xceiverchip - take the "xceiverehip.ap" layout file as input.
second xceiverchip - generate the "xceivcrchip.al" netlist file.
Give the following command at the command line:

setanv MBK_IN_LO a l

This tells that the input file for Tas must be in the ".al" (Alliance) format.

tas -tec=/al!ianee/archi/Linux_eu7etc/proll0.elp xceiverehip

-tec - selects the technology file prollO.elp.

Layout Extraction and Netlist Comparison

The "xceiverehip.ap" contains the layout information. However we do not know if the
physical description produced reflect the behavioural description. Therefore to eheck the
layout we use two tools, Lynx and Lvx.

Give the command at the command line:

lynx -v -f xceiverchip xceiverchip

-v - verbose
-f - asks Lynx to generate the netlist from the Standard-

cells level.
first xceiverchip - Takes the "xceiverchip.ap" layout file as input,
second xceiverchip - Generate the "xceiverchip.al" netlist file.

Lvx is a netlist comparison software that compares two netlists. Along with the
comparison it re-orders the interface terminals to produce a consistent netlist interface.

Give the command at the command line

Exercise 3, Design of an Octal Tri-state Transceiver chip. 17

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

•KSr
lvx vsn al xceiverchip xceiverchip -f -o

vst - takes the first file in .vst format.
al - takes the second file in .al format.
first xceiverchip - "xceiverchip.vst" file.
second xceiverchip - "xceiverchip. al" file.
-f - build the netlist to the standard cell level.
-o - to have ordered connectors in the output netlisl

The comparison should not produce any errors. If errors are produced by the program,
then there is some problem with the layout. The router has done something funny and
corrective action is to be taken at the layout level by studying the cnor messages.

The Lvx has also re-ordered and built the netlist in the ".al" to the standard cell format.
This file can be simulated using Asimut.

Simulating the Extracted netlist file

The netlist file "xceiverchip.al" can be simulated using Asimut and the test vector file
"xceiver.pat".

Give the following command at the command line:

se tenv MBK_IK_LO CL!

This sets the input file format for Asimut for the ".al" format.

Give the following command at the command line.

asimut xceiverchip xceiver r3

xceiverchip - take the "xceiverchip.al" as input file
xeciver - take the "xceiver.pat" test vector file
r3 - deliver the results in file "r3.pat".

Any error means that you will have to retrace your steps back to find out the source of the
error.

Functional Abstraction

yagle is a program that extracts from a transistor netlist the behaviour of the circuit.
Essentially a VHDL file is created from a standard cell connectivity list! This VHDL file
can be simulated in turn to verify the function of the ehip.

Give the command at the command line:

Exercise 3, Design of an Octal Tri-state Transceiver chip, 18

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oet-23 Nov. 2001

yagle -v xcelverchip

-v - vectorize
xceiverchip - Takes the "xceiverchip.al" as input.

The extracted VHDL description is put in the file "xceiverchip.vbe". Give the command;

asiinuL -h xceiverchip xceiver r4

to simulate the extracted behavioural file.

Alliance has a program that compares the extracted behavioural file with the original
behavioural tile to formally prove the functional congruence of the described and the
extracted circuit.

Give the command:

prcof -d xceiverctiip xceiver

-d - displays logical functions as they are processed
xceiverchip - extracted "xceiverchip.vbe" file,
xceiver - original ''xceiver.vbe" file.

Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires
the layout of the chip, described in terms of rectangles and layers in the gds or the cif
format. This can be done in Alliance, by using S2r.

setenv RDS_TECHWO_NAME /a l l iance /arclii/LitTUX_elf / e tc /prollO_7 . jrds
setenv RDS_ODT cif
setenv RDS_IN cif

This chooses the 1 .Ou.m CMOS process, chooses the output form of die chip in cif format
and, replaces the symbolic pads with their real equivalent.
Give the command:

s2r -cv xceiverchip xceiverchip

-c - deletes connectors at the highest hierarchy. (Use
man to see full description)

-v - verbose mode on
first xceiverchip - "xceiverchip.ap" file as input
second xceiverchip - "xceiverchip.cif file as output.

This completes the design of the transceiver chip.

Exercise 3, Design of an Octal Tri-state Transceiver chip, 19

SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 4

Design of a 4 bit Presettable Synchronous Binary Counter
using VHDL dataflow

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Problem Description

In this example you will design a 4-bit presettable synchronous binary counter using
VHDL dataflow. In this design example you will learn to:

• Specify the behaviour of the counter using VHDL and simulate it.
• Generate the structural description of the counter and simulate it.
• Place the necessary pads and re-simulate the structural description of the counter.
• Make the layout of the chip.
• Extract the circuit from the layout.
• Extract the behavioural description from the netlist and compare with the original

behaviour file we created, to complete formal verification.

This design example consists of two phases. The first phase is to describe the behaviour
of the chip as is seen at the pins of the chip. The second phase is to describe the functions
of the core of the chip, and then connect it to the pads.

In the first phase you will:

• Describe the counter's behaviour using VHDL (counter.vbe).
• Write test patterns files.
• Simulate the behavioural description using the pattern file by using Asimut.

In the second phase you will:

• Describe the behaviour of the core in VHDL as is seen inside the chip by the pads
(countcore.vbe).

• Syntbesise the logic and structural descriptions using Bop and Scmap (countcorel.vst).
• Use GIop to optimise for critical path and fanout (countopt.vst).
• Use the standard cell router called Scr to place and route the core (countopt.ap).
• Add the necessary pads for the chip and compile using Genlib (countchip.vst).
• Use Asimut to simulate the 'countchip.vst' file using the pattern file 'counter.pat'.
• Place the pads and generate the layout of the chip with pads using Ring

(countchip.ap).
• Use Tas to perform the static timing analysis.
• Use Lynx to extract the netlist from the layout file 'countchip.ap' (countchip.al),
• Use Lvx to compare the extracted circuit 'countchip.al' and the original

'countchip.vst' file created by Genlib.
• Use Yagle to extract the behaviour, 'countchip.vbe' from the 'countchip.al' netlist

file.
• Use Proof to compare the extracted behaviour file, 'countchip.vbe' and the

behavioural file created in the first phase, 'counter.vbe'.

Exercise 4, Design of an 4-Bil Presettable Binary Counter.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Vi or Pico Text Editor Vl or Pico Text EditorVi or Pico Text Editor Text Editor
Gcnlib Language

Description of Pads
& core (count chip, c)

VHDL Description of Relative position
of Pads

(countchip.rin)

Test Vectors using
Genpat Language

(counter.c)

VHDLDescriptionof
Counter Chip
(counter, vbc)

Counter cove
(con nt core, v be)

'] countcoiel.vbc <

counlchip.vst

_... .A
I counter.pat I —•

V. V i

j countopt.vst !
\ - \ \ countchip.ap

Text Editor
Modify TestVectors

(countcr.pat)

countchip.cif
(Chip ready
for foundry)

Text Editor
coijnichip.inf

processed patterns
to be checked

for correct
functionalitycountehip.vbe —~

V.

Fig 1. Design Flow for the counter chip.

Exercise 4, Design of an 4-Bit Presentable Binary Counter.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oci-23 Nov. 2001

A 4-Bit Presettabie Synchronous Binary Counter

The present exercise is a 4-bit presettabie synchronous binary counter. The counter has an
"enable" which when at logic ' 1 ' allows the counter to count. The counter is presettabie
to the value given on the input bus when "preset=l". The counter counts forward starting
from this value. There is a synchronous reset, which puts the counter to zero when it is
'0'.

A possible pin diagram of the counter is shown in Fig. 2.

CK rj
PRESET rj
ENABLE

PIN(3)
PIN(2)
PIN(l)
PIN(O)

VSS

3
O
u

VDD
RESET
NC
RP
COUT(3)
COUT(2)
COUT(l)
COUT(0)

Fig. 3 Counter chip (a possible pinout diagram).

CK
Rising Edge
Rising Edge
Rising Edge
Rising Edge

No Rising Edge

RESET
0
1
1
1
X

PRESET
X
1
0
0
X

ENABLE
X
X
1
0
X

COUT(3:0)
0000

PIN(3:0)
COUT(3:0)+1

COUT(3:0)
COUT(3:0)

Table 1, Truth Table for the 4-bit presettabie counter

Exercise 4. Design of an 4-Bit Presettabie Binary Counter.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Solution

Legend

Give the command that appears immediately after this symbol, at the command line.

B Edit and save into a file, all that appears alter this symbol.

Explanation of a topic

Set the environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design directory, at a convenient position in your work space:

•Car
mkdir counter

Change into this directory:

cd counter

Before starting the design you will have to set the environmental variables as shown
below so that you will not run into problems later.

setenv MBK_CATA_LIB . : /alliarice/archi/Linux_elf/cells/sclib:
/alliance/archi/Linux_elf/cells/padlib

setenv MBK_IH_L0 vst
setenv MBK_0UT_L0 vst
setenv MBK_IN_PH ep
setenv MBK_0UT_?H ap
setenv MBK_VJORK_LIB .

Create with the text editor a file called "counter, vbe". Enter die following and save the
file.

Exercise 4, Design of an 4-Bit Presetlablc Binary Counter.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

-- Behavioural description using VHDL
-- 6th Workshop on VLSI Design - Trieste

ENTITY counter IS
PORT(

Vdd; Vss, Vdde, Vsse: in BIT;
Pin: in BIT_VECTOR (3 downto 0);
Cout: out BITJVECTOR (3 downto 0);
ck: in BIT;
reset; in BIT;
enable: in BIT;
preset: in BIT;
rp: out BIT

);
END counter;

ARCHITECTURE dataflow OF counter IS

SIGNAL count: REG^VECTOR (3 downto 0) RHG1STER;

BEGIN

'count: BLOCK(ck=Tand notckSTABLE)
BEGIN

count <= GUARDED B"0000" when (reset =0*) else
Pin WHEN (preset= !nelse
B"0001" WHEN ((enablc=T) and (count = BM0000")) else
B-'OOIO11 WHEN ((enable='n and (count = B"0001")) else
BM0011" WHEN ((enable^1) and (count = B"00!0")) else
B"0100" WHEN CCenable=l'J and (count. = B"0011")) else
B"0101" WHEN ((enablc='1*) and (count = B"0100")) else
B"0110" WHEN ((enable^!1) and (count = B"0101")) else
B"01U" WHEN ((enabled1) and(count = B"0110")) else
B"1000" WHEN ((enable='l') and (count = B"0111")) else
B"1001" WHEN ((enabled1) and (count = B" 1000")) else
B"101011 WHEN ((enabled1) and (count = B" 1001")) else
B"1011" WHEN ((enable='n and (count = B" 1010")) else
B"HO0" WHEN ((enable^'nand(count = B"10HM)) else
B"1101" WHEN ((enable='lT)and(count = B"1100M)) else
B"1110" WHEN ((cnable='Oand(count=:BP1ll0ln)) else
B" l lH n WHEN ((enable='nand(count = B"1110")) else
B"0000" WHEN ((cnable='nand(count = B n l l l l ")) else
count;

END BLOCK Icount;

Cout<= count;

rp < - count(O) and count(l) and count(2) and count(3);

end dataflow;

Exercise 4, Design of an 4-Bit Presettable Binaty Counter.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Test Pattern File and Simulation of the Behavioural Description

Write a pattern file for simulation.
(You can write a C file that when treated with Genpat will generate the pattern file for
you. See exercise 3). Modify the pattern file if it is necessary by editing it and simulate
using Asimut with the -b option and check that the counter performs satisfactorily.

Describing the core of the chip

The behavioural file "counter,vbe" is the description of the counter as is seen at the pins
of the chip. We have not thought about the pads that drive the pins. When the chip is
described physically in Alliance, it consists if two separate parts that are brought together,
the core and the pads. In Alliance, the core and the pads are brought together in a C
description file. This file when treated with Geniib, produces the structural description of
the chip with the pads. In practice the core can be synthesised automatically form a
behavioural description, whereas the pads should be placed physically, one by one in the
C file. Placing the pads require the structural knowledge of the pads. One of the type of
pads that is used in this example is the pck_sp clock pad, a cell of "padlib", a library of
pads provided with Alliance.

Give the following command at the command line to see a description of this pad.

man pck_sp

Behavioural Description of the Core

Copy the file "counter.vbe" to the file "countcore.vbe". edit it and delete the Vdde and
Vsse input signals since they arc used only for the Pads.

Logic and Structural Synthesis of the Core

Now Bop and Scmap can be used to optimise and synthesize the core of the chip from the
above behavioural description.

Give the command:

bop -o countcore countcorel

This takes as input the "countcore. vbe" description and creates an optimised behavioural
description file "countcorcl.vbe". Now to synthesise the structural description give the
command:

Exercise 4, Design of an 4-Bit Presettable Binary Counter.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

scrnap countcorel countcorel

This takes as input the optimised behavioural description "countcorel.vbe" and creates a
structural description file ''countcorel. vst" using the elementary components from the
standard cell library.

Optimising for Fanout and Timing

The structural description created above has been created without worrying about the
standard cells fanout limits and critical path signals. Alliance Glop can analyse the
structural description and create a new description by adding buffers to the appropriate
nets.

Give the command:

glop -g countcorel countopt -i -t

-g - invokes timing optimization.
countcorel - counlcorel.vst input file
countopt - countopt. vst output file
-i - gives fanout information about the gate netlist.
-t - gives timing information about the gate netlist.

This command takes ''countcorel. vst" structural description and generates a
"countopt.vst" file after buffers have been added to the critical paths.

Give the command:

glop -f countopt countopt

-f - invokes fanout optimization,
countopt - countopt.vst modified structural file

This command should add buffers to the appropriate nets to resolve fanout problems and
write over the ''countopt.vst" file created above.

Placement and Routing of the core

The core can now be routed using Scr. Give the following command at the command line:

scr -p -r -1 4 -i 100 countopt

-p - placement option
-r - routing option
-14 - asks to place and route the core in 4 rows
-i 100 - use 100 iterations to improve placement quality

A "countopt.ap" layout file is created which can be viewed with Graal. Inspect it using
Graal.

Exercise 4, Design of an 4-Bit Presettable Binary Counter. 7

Seventh Course On Basic VLSI Design Techniques Tricste-Ttaly, 29 Oct-23 Nov. 2001

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C functions that allows you to
describe circuit objects like pads and the core and their connectivity.
Edit and save into the file "counlchip.c" the following:

#include <genlib,h>

main()
i
int i;

DEF_LOFlG("countchip");

LOCONfck", IN, "ck");
LOCONC'reset11, IN, "reset");
LOCON("preset", IN, "preset");
LOCON("enable", IN, "enable");
LOCON("vdd", IN, "vdd"); /* core power supply */
LOCON("vss", IN, "vss");/* core ground */
LOCON("vdde", IN, "vdde");/* pads power supply */
LOCON("vssc", IN, "vsse"); /* pads ground */
LOCON("PIN[3:0J\ IN, "PIN[3:0]"); /* preset input */
LOCON("COUT[3:01", OUT, "COUT[3:0]">; /* output */
LOCONC'rp", OUT, "rp");

/*
power supplies;
pxxxe_sp are external power supplies, i.e. used only by the buffers

inside the pads.
pxxxi_sp are internal power supplies, for core logic only.

LOINS ("pvsse_sp", "p30", "cki", "vdde", "vdd", "vssc", "vss", 0);
LOINS ("pvsse_sp", "p31", "cki", "vdde", "vdd", "vsse", "vss",0);
LOINS ("pvdde_sp", "p32", "cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS ("pvdde_sp", "p33", "cki", "vdde", "vdd", "vssc", "vss", 0);
LOINS ("pvssi_sp", "p34", "cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS ("pvddLsp", "p35", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOlNS("pck_sp", "pO", "ck", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOiNSC'pvssiek^sp", "pi "."clock", "cki","vdde", "vdd", "vsse", "vss", 0);

LOINS("pi_sp", "p2","reset", "res","cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("pi_sp", "p3","preset", "pres'V'cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("pi_sp", "p4","enable", "en","cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS("po_sp", "p5'\"rprp", "rp","cki", "vdde", "vdd", "vsse", "vss'',0);

Exercise 4, Design of an 4-Bit Presettable Binary Counter.

Seventh Course On Basic "VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

LOINS("po_sp", "plO'7'usc|OJ", ncout[0]","cki", "vdde", "vdd", "vssc", "vss", 0);
LOINS("po_sp", "pH","usc[l]n, "cout[1]","cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("po_sp", "pl2","usc[2]", "cout[2]","cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("po_sp", "pl3","usc[3]", ncouir3]","cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS("pi_sp", Mp20","pin[0]", "ingr|0]","ckr, "vdde", "vdd", "vsse", "vss", 0);
LOINS("pi_sp", "p21","pin[l]", "ingrflT',"cki"? "vdde", "vdd", "vsse", "vss", 0);
LOINS("pi_sp", "p22","pin[2T', "ingr[2J","cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("pi_sp", "p23'\"pin[3J", "ingr[3]","cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS("countopt", "core'V'vdd", "vss", "ingr[3:0]", "usc[3:0]", "clock", "res",
"en","pres", "rprp",O);

SAVE_LOFIG();
exit(0);/* necessary for the proper ran of the Makefile */

Give the command at the command line:

genlib -v countchip

This creates the "countchip.vst" structural description file with pads.

Simulating the Structural Description

You can now simulate this structural description with the test vector file that you used for
"counter, vbe". Simulate the structural description and confirm the functioning of the
structural description.

Placing and routing the pads

Now the chip's pads and the core has to be connected together physically in a layout. This
is done by using Ring.

Edit and save the following in the file "countchip.rin":

width (vdd 20 vss 20)

west (pO p32 p35 p33 p23)

south (p3 p2 p 1 p4 p5)

north(p!0p30p34p3l p21)

east (p 11 pl2P13p2Op22)

Exercise 4, Design of an 4-Bit Presettable Binary Counter.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

This Tile describes the relative position of the pads on the four sides of the chip.

Give the command at the command line:

ring countchip countchip

The "countchip.ap" layout file is created that can be examined by using Graal.
Examine the layout using Graal.

Static Timing Analysis

The "countchrp.ap" contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the layout
we use the tools Lynx and Tas.
Lynx is a nctlist extractor. It extracts a netlist representation of the circuit from the layout.
The file created by Lynx will be the input file for Tas.
Tas is a switch level timing analyser for CMOS circuits.
Give the following command at the command line:

sctenv M3X_OUT_L0 al

This tells that the output file should be in the ".al" (Alliance) format.

lynx -v -t countchip countchip

-v - verbose
-t - build the netlist to the transistor level,
first eountchip - take the "countchip.ap" layout file as input,
second countchip - generate the "countchip.al" netlist file.
Give the following command at the command line:

setenv MBK_IU_LO al

This tells that the input file for Tas must be in the ".al" (Alliance) format.

tas -lec=/alliance/archi/Linux_clf/etc/prol10.elp countchip

-tec - selects the technology file proIlO.elp.

Layout Extraction and Netlist Comparison

The "countchip.ap" contains the layout information. However we do not know if the
physical description produced reflect the initial behavioural description. Therefore to
check the layout we use two tools, Lynx and Lvx.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.

Exercise 4, Design of an 4-Bit Presettable Binary Counter. 10

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

For this you have to set some environmental variables. You have to specify the format in
which the extracted netlist is generated.

Give the following command at the command Hne:

se tenv MBK_OUT_LO a l

This tells that the output file should be in the ".al" (Alliance) format.

Give the command at the command line:

lynx -v -t countchip countcftlp

-v - verbose
-f - asks Lynx to generate the netlist at the Standard-

cells level.
first countchip - Take the "countchip. ap" layout file as input,
second countchip - Generate the "countchip.al" netlist file.

Lvx is a netlist comparison software that compares two netlists. Along wiih the
comparison it re-orders the interface terminals to produce a consistent nctlist interface.

Give the command at the command line

lvx vst al countchip countchip -f -o

vst - take the first file in .vst format.
al - take the second file in .al format.
first countchip - "countchip.vst" input file.
second countchip - "countchip. a I" output file.
-f - build the netlist to the standard cell level.
-o - to have ordered connectors in the output netlist

The comparison should not produce any errors. If errors are produced by the program,
then there is something wrong with the layout. The router has done something funny and
corrective action is to be taken at the layout level by studying the error messages.

The Lvx has also re-ordered and built the netlist in the ".al" to the standard cell format.
This file can be simulated using Asimut.

Simulating the Extracted netlist file

The netlist file "countchip.al" can be simulated using Asimut and the test vector file that
has been created to test the behavioural file "counter.vbe".

Exercise 4, Design of an 4-Bit Presettable Binary Counter. \ \

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Give the following command at the command line:

se tenv MBK_IN_LO aI

to set the input file format for Asimut for the ".al" format, before doing the simulation.
Any error during simulation means that you will have to retrace your steps back to find
out the source of the error.

Functional Abstraction

Yagle is a program that extracts from several structural descriptions (man yagle), the
behaviour of the circuit. Essentially a VHDL file is created from a standard cell
connectivity description or from a SPICE transistor netlist! This VHDL file can be
simulated in turn to verily the function of the chip

Give the command at the command line:

yagl.e -v co-jnr.cn i.p

-V

countchip
vectorize
Takes the ''countchip.al" as input.

The extracted VHDL description is put in the Hie "countchip. vbe".
Simulate the extracted behavioural description to verify the extracted behavioural
description.
Alliance has a program that compares the extracted behavioural file with the original
behavioural file to formally prove the functional congruence of the described and the
extracted circuit. However this step requires that the registers in the two behavioural
descriptions have the same names. This can be done automatically by Yagle by giving it a
list of registers to be renamed, in an information fde "countchip.inf. If we do a "more" of
the "countchip.vbe" file we see that the registers have a different name from the one that
we have given in "counter.vbe".

Edit and save a file "countchip.inf" with the following:

rename
core.count
core.count
core.count
core.count
end

1
0
2
3

.dff s

.dff s

.dff s

.dff s

: count 1 ;
: count 0 ;
: count 2 ;
: count 3 ;

Give (he command:

yagle -i -v countchip

asks Yagle to read the "countchip.inf file and rename the registers
in the "countchip. vbe" file as given in the list.
vectorize

Exercise 4, Design of an 4-Bit Presettable Binary Counter. 12

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Now a formal verification compares the extracted and the original behavioural
descriptions. Give the command:

proof -p -d counter countchip

"P

-d

If no errors are reported, then the two behavioural descriptions concur.

negates the input and output signal expressions of
the registers.
display errors to screen.

Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires
the layout of the chip, described in terms of rectangles and layers in the gds or the cif
format. This can be done in Alliance, by using S2r.

sctenv RDS_TTCCHNO_NAME /all.iance/archi/LirLux_elf/etc/prollQ_7 . rds
setenv RDS_OUT cif
setenv RDS_IN cif

This chooses the l.Ojxm CMOS process, chooses the output form of the chip in eif format
and, replaces the symbolic pads with their real equivalent.

Give the command:

s?,r • cv countchip count:chip

-C

-V

first counlchip
second countchip

deletes connectors at the highest hierarchy. (Use
man to see full description)
verbose mode on
"countchip.ap" file as input
"countchip.cif' file as output.

This completes the design of the counter chip.

Exercise 4. Design of an 4-Bit Presettable Binary Counter. 13

SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 5

Design of a 4 bit Adder Accumulator
using VHDL Dataflow

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Problem Description

In this example you will design a 4-bit binary adder accumulator using VHDL dataflow.
In this design example you will learn to:

• Specify the behaviour of the adder using VHDL and simulate it.
• Generate the structural description of the adder and simulate it.
• Place the necessary pads and re-simulate the structural description of the adder.
• Synthesise the layout of the chip.
• Extract the circuit from the layout.
• Extract the behavioural description from the netlist and compare with the original

behaviour file we created, to complete formal verification.

This design example consists of two phases. The first phase is to describe the behaviour
of the chip as is seen at the pins of the chip. The second phase is to describe the functions
of the core of the chip, and then connect it to the pads.

In the first phase you will:

• Describe the adder's behaviour using VHDL (adder.vbe).
• Write test pattern files.
• Simulate the behavioural description using the pattern file by using Asimut.

In the second phase you will:

• Describe the behaviour of the core in VHDL as is seen inside the chip by the pads
(addercore.vbe).

• Synthesise the logic and structural descriptions using Bop and Scmap (addercorel.vbe
& addercorel.vst).

• Use Glop to optimise for critical path and fanout (addopt.vst).
• Use the standard cell router called Scr to place and route the core (addopt.ap).
• Add the necessary pads for the chip and compile using Genlib (addchip.vst).
• Use Asimut to simulate the 'addchip.vst' file using the pattern file 'adder.pat'.
• Place the pads and generate the layout of the chip with pads using Ring (addchip.ap).
• Use Tas to perform the static timing analysis.
• Use Lynx to extract the netlist from the layout file 'addchip.ap' (addchip.al).
• Use Lvx to compare the extracted circuit 'addchip.al' and the original 'addchip.vst'

file created by Genlib.
• Use Yagle to extract the behaviour, 'addchip.vbe' from the 'addchip.al' netlist file.
• Use Proof to compare the extracted behaviour file, 'addchip.vbe' and the behavioural

file created in the first phase, 'adder.vbe'.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow,

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

| Vi or Pico Text Editor
j VHDL Des crip lion of
; Adder Accumulator

Chip (adder.vbe)

Vi or Pico Text Editor
VHDL Description of

Adder Accumulator
coi"e (addcore.vbe)

Vi or Pica Tent Editor
Genlib Language
Description of

connectivity between
fads & core (wMehip.e)

Vi or Pico Text Editor
Relative position

of Pads
(addchip.rin)

ViorPico Text Editor
Test Vectors using
Genpat Language

(adder.c)

[addcore.vst , | | addchip.vst [

adder, pat i —•

V .__ \ j

ViorPico Text Editor
Modify Test Vectors

(adder.pal)

Vi or Pico TexE Editor
(addchip.irif)

,' addchip.cif
(Chip ready

\ for foundry) ''v

filename .pat
(to be checked

Tor correct
functionality)

Fig 1. Design flow of the adder accumulator chip

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

A 4-Bit Binary adder accumulator

The present exercise is a 4-bit binary adder accumulator. The adder has a "select" which
when at logic '0' allows the adder to sum the two inputs 4-bit buses: A and B, and when
at logic T the input 4-bit bus A is added to the result stored in a 4-bit register which we
call the accumulator. The accumulator is updated at the rising edge of the clock. The
result of the sum is presented at the 4-bit output bus Y.

A possible pin diagram of the counter is shown in Fig. 2.

VDD

B(3)
B(2)

CK r
SELECT C

A{3) r
A(2) i
A / 1 \ —

* * • \ * • /

A(0) =
VSS c

Y(0) C

•

PIco

J
_,

n
n
n
_]

p
II

B(0)

Y(3)
Y(2)

Fig 2. Adder chip (a possible pinout diagram).

CK
Rising Edge
Rising Edge

No Rising Edge

SELECT
0
1
X

Y(3:0)
A+B
A+Y

Y(3:0)

Table 1. Truth Table for the 4-bit binary adder

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Solution

Legend

Give the command that appears immediately after this symbol, at the command line.

1
* Edit and save into a file, all that appears after this symbol.

Explanation of a topic

Set the environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design directory, at a convenient position in your work space:

mkdir adder

Change into this directory:

•S3T
cd adder

Before starting the design you will have to set (he environmental variables as shown
below so that you will not run into problems later.

setenv MBK_CATA_LIB . : /al 1 i an.ee/archi/Lirujx_.elf / c e l l s / s c l i b :
/ a l l ionce/archi/Linux_elf / ce l l s /pod-lib

setenv MBK_IN_L0 vst
setenv MBK_OUT...I.'O vst
setenv MAK_IK_PH ap
setenv KBK_OUT_PH ap
setenv KBK_WORK_LIB .

Create with the text editor a file called "adder.vbe". Enter the following and save the file.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

ENTITY adder IS

PORT(
vdd, vss, vdde, vsse ; in BIT ;
ck : in BIT ;
sel : in BIT ;

a
b
y

in BIT_VECTOR (3 DOWNTO 0) ;
in BIT.VECTOR (3 DOWNTO 0} ;
out BITJVECTOR (3 DOWNTO 0)

END adder;

ARCHITECTURE data_flow OF adder IS

SIGNAL regstr : REGJVECTOR (3 DOWNTO 0) REGISTER;
SIGNAL mux : BIT_VECTOR (3 DOWNTO 0) ;
SIGNAL sum : BITJVECTOR (3 DOWNTO 0) ;
SIGNAL carry : BIT_VECTOR (2 DOWNTO 0) ;

BEGIN

WITH scl SELECT

mux <= b WHEN D\ regstr WHEN ' 1 ' ;

sum(0) <= a(0) xor mux(0);
earry(O) <= a(0) and mux(0) ;

sum(l) <~ a(l) xor mux(I) xor carry(0) ;
carry{1) <= (a(1) and mux(l)) or

(mux(l) and caiTy(O)) or
(a(l)andcarry(O));

surn(2) <~ a(2) xor mux(2) xor earry(I) :
carry(2) <= (a(2) and inux(2)) or

(mux(2) and carry(l)) or
(a(2) and carry(l)) ;

sum(3) <= a(3) xor mu>;(3) xor carry(2) ;

store : BLOCK ((ck = 'O and not ck'STABLE)

BEGIN
regslr <= GUARDED sum ;

END BLOCK ;

y <= regstr;

END;

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Test Pattern File and Simulation of the Behavioural Description

Write a pattern file for simulation. (You can write a C file that when treated with Genpat
will generate the pattern file for you. Sec exercise 3). Modify the pattern file if it is
necessary by editing it and simulate using Asimut with the -b option and check that the
counter performs satisfactorily.

Describing the core of the chip

The behavioural file "adder, vbe" is the description of the adder as is seen at the pins of
the chip. We have not thought about the pads that drive the pins. When the chip is
described physically in Alliance, it consists of two separate parts that arc brought
together, the core and the pads. In Alliance, the core and the pads are brought together in
a C description file. This file when treated with Genlib, produces the structural
description of the chip with the pads. In practice the core can be synthesised automatically
from a behavioural description, whereas the pads should be placed physically, one by one
in the C file. Placing the pads require the structural knowledge of the pads. One of the
types of pads that is used in this example is the pi_sp input pad, a cell of PAD-Lib, a
library of pads provided with Alliance.

Give the following command at the command line to see a description of this pad.

man pi_sp

Behavioural Description of the Core

Copy the file "adder.vbe" to the file "addercore.vbe", edit it and delete the Vdde and Vsse
input signals since they are not necessary for the core.

Logic and Structural Synthesis of the Core

Now Bop can be used to optimise and synthesise the core of the chip from the above
behavioural description.

Give the command:

bap -o sddercore addercorel

This takes as input the ''addercore.vbe" description and creates an optimised behavioural
description file "addercorel.vbc".

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow,

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

To synthesise the structural description give the command:

scmap addercorel addercorel

This takes as input the optimise behavioural description "addercorel.vbe" and creates a
structural description file "addercorcl.vsf" using the components from the standard cell
library.

Optimising for Fanout and Timing

The structural description created above has been created without worrying about the
standard cells fanout limits and critical path signals. Alliance Glop can analyse the
structural description and create a new description by adding buffers to the appropriate
nets.

Give the command:

glop -g addercorel addopt -i -t

-g - invokes timing optimization.
-i - gives fanout information about the gate netlist.
-t - gives timing information about the gate netlist.

This command takes "addercorel.vst" structural description and generates a "addopt.vst"
file after buffers have been added to the critical paths.

Give the command:

glop -f addopt addopt

This command should add buffers to the appropriate nets to resolve fanout problems and
write over the "addoptvst" file created above.

Placement and Routing of the core

The core can now be routed using Scr. Give the following command at the command line;

scr -p -r -1 4 -i 1000 addopt

-p - placement option
-r - routing option
-14 - asks to place and route the core in 4 rows
-i 1000 - use 1000 iterations to improve placement quality

A "addopt.ap" file is created which can be viewed with Graal.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow,

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C functions that allows you to
describe circuit objects like pads and the core and their connectivity.
Create and edit and save into the Tile "addchip.c" the following:

#include <genlib.h>
main()
{
DEF_LOFIG("addchip");
LOCON("a[3:0]n,T,"a[3:0]");
LOCON("b[3:0]",T,"b["3:0"]");
LOCON('1y[3:0r/O7PyL3:0]");
LOCONC'selM'/'sel");
LOCON(nckpl,T,"ckIP);
LOCON(" vdde" ,T," vddc");
LOCON(" vsse" ,'IV vsse11);
LOCON("vdd",T,"vddn);
LOCON("vss",T,"vssn);

LOINS ("pvssc_spM, "Vss", "cki", "vdde". "vdd", "vsse", "vss", 0);
LOINS ("pvdde_sp", "Vdd", "cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS ("pvssLsp", "Vssi", "cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS ("pvddLsp", "Vddi", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS(npLsp","sri,"sel","sl","cki","vdde1',1'vdd","vsse","vss",0);

LOINS("pck_sp", "elk", "ck", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS("pvsseck_sp", "elkcore", "clkcore", "cki",
"vdde", "vdd", "vsse", "vss", 0);

LOINS("pi_sp" ,"aO"," a[0]"," ina[0]"," cki"," vdde"," vdd", "vsse"," vss" ,0);
LOINS(lppi_sp";ral","aLiJ","ina[l]","cki","vdde","vdd","vssc","vssi\0);
LOINS("pi_sp","a2","a[2]","ma[2JM,"cki","vdden,"vddpl,"vsse","vss"10);
LOINS("pi_sp","a3","a[3]","ma[3]","cki\"vdde","vdd","vsse","vss",0);

LOINS("pi_sp","bO","b[0]","inbrO]","cki", "vdde", "vdd", "vssePI,"vss",0);
LOINS("pi_sp","bri,"b[I]","inbL]J"("cki","vddc","vdd","vsse","vss",0);
LOlNS("pi_sp";rb2","b[2J"!"mb[2]","cki","vdde1P,"vddIP,"vsse",pivss",0);
LOINS("pi_sp","b3","b[31","inb[3]","cki","vdde","vdd","vsse","vss",0);

LOINS("po_sp","yO","out[0]","y[0]","cki","vdde"," vdd"," vsse","vss",0);
LOrNS("po_sp","yl","out[IJ"("y[l]","cki","vdde"l"vdd","vsse","vss1',0);
LOINS("po_sp","y2","out[2]","y[2Ti,"cki","vdde","vdd","vsse","vss",0);
LOINS("po_sppl,"y3P1,p'outt3J","y[3]","cki","vdde";Vdd";rvssc","vss1P,0);

LOINS("addoptn;ladderllp,"vdd","vss","elkcore11,"si" ("ina[3:01","inb[3:0]","outr3:0]",0);

SAVE_LOFIG();

Exercise 5, Design of a 4-Eit Adder Accumulator using VHDL Dataflow.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Give the command at the command line:

genlib -v addchip

This creates a "addchip.vst" structural description file with pads.

Simulating the Structural Description

You can now simulate this structural description with the test vector file that you
developed for "adder.vbe". Simulate the structural description and confirm the
functioning of the structural description.

Placing and routing the pads

Now the chip's pads and the core has to be connected together physically in a layout. This
is done by using Ring.

Edit and save the following in the file "addchip.rin":

north (elk si bObl b2 b3)
west (aO al vssi a2 a3)
south (yO yl elkcore y2 y3)
east (vdd vddi vss)

This file describes the relative position of the pads on the four sides of the chip.

Give the command at the command line:

ring a.ddchip addchip

A "addchip.ap" file is created that can be examined by using Graal.

Static Timing Analysis

The "addchip.ap" contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the layout
we use two tools, Lynx and Tas.
Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.
The file created by Lynx will be the input file for Tas.
Tas is a switch level timing analyzer for CMOS circuits.
Give the following command at the command line:

seLsnv MBK_0UT_L0 al

This tells that the output file should be in the ".al" (Alliance) format.

Hxercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Pel-23 Nov. 2001

lynx -v -t addchip addchip

-v - verbose
-1 - build the netlist to the transistor level,
first addchip - take the "addehip.ap" layout file as input,
second addchip - generate the "addchip.al" netlist file.
Give the following command at the command line:

setenv MEK_IN_LO a l

This tells that the input file for Tas must be in the ".al" (Alliance) format.

tas -tec=/alliance/archi/Linux_elf/etc/prolIO.eIp addchip

-tec - selects the technology file prollO.elp.

Layout Extraction and Netlist Comparison

The ''addehip.ap" contains the layout information. However we do not know if the
physical description produced reflect the behavioural description. Therefore to check the
layout we use two tools, Lynx and Lvx.

Lynx is a netlist extractor. It extracts a netli.st representation of the circuit from the layout.

For this you have to set some environmental variables. You have to specify the format in
which the extracted netlist is generated.

Give the following command at the command line:

setenv MBK_OUT_LO ;il

This tells that the output file should be in the ".al" (Alliance) format.

Give the command at the command line:

lynx -v -£ addchip addchip

-v - verbose
-f - asks Lynx to generate the netlist from the Standard-

cells level.
first addchip - Take the "addehip.ap" layout file as input,
second addchip - Generate the "addchip,al" netlist file.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 10

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Lvx is a nctlisl comparison software that compares two netlists. Along with the
comparison it re-orders the interface terminals to produce a consistent netlist interface.

Give the command at the command line

•Car
lvx vst al addcliip addchip -f -o

vst - lake the first file in .vst format.
al - take the second file in .al format.
first addchip - "addchip.vst" file.
second addehip - "addehip.al" file.
-f - build the netlist to the standard cell level.
-o - to have ordered connectors in the output netlist

The comparison should not produce any errors. If errors are produced by the program,
then there is some problem with the layout. The router has done something funny and
con'ective action is to be taken at the layout level by studying the error messages.

Lvx has also Te-ordered and built the netlist in the ".al" to the standard cell format. This
file can be simulated using Asimut.

Simulating the Extracted netlist file

The netlist file "addchip.al" can be simulated using Asimut and the test vector file that
has been created to test the behavioural file "adder, vbe".

Give the following command at the command line:

s e t e n v MBK_IW_LO a l

to set the input file format for Asimut for the ".al" format, before doing the simulation.
Any eiror during simulation means that you will have to retrace your steps back to find
out the source of the error.

Functional Abstraction

Yagle is a program that extracts from a standard cell level, the behaviour of the circuit.
Essentially a VHDL file is created from a standard cell connectivity description! This
VHDL file can be simulated in turn to verify the function of the chip

Give the command at the command line:

yagle -v addchip

-v - vectorize
addchip - Takes the "addchip.al" as input.

Exercise 5, Design of a 4-Bii Adder Accumulator using VHDL Dataflow. \ \

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

The extracted VHDL description is put in the file "addchip.vbc".
Simulate the extracted behavioural description to verify the extracted behavioural
description.

Alliance has a program that compares the extracted behavioural file with the original
behavioural file to formally prove the functional congruence of the described and the
extracted circuit. However this step requires that the registers in the two behavioural
descriptions have the same names. This can be done automatically by Yagle by giving it a
list of registers to be renamed, in an information file L'addchip.inf'. If we do a "more" of
the "addchip.vbe" file we see that the registers have a different name from the one that we
have given in "adder, vbe".

Edit and save a file "addchip.inf with the following:

rename
adderl.regstr_O.dff_s: regstr_O;
adderl.regstr_l.dn_s : rcgstr_l ;
adderl.regstr_2.dff_s: regstr_2 ;
addcrl.rcgstr_3.dff_s : regstr_3 ;
end

Give the command:

yagLe -i -v addchip

asks Yagle to read the "addchip.inf file and rename the registers
in the "addchip.vbc" File as given in the list.

Give the command:

proof -p -d adder addcbip

-p - negates the input and output signal expressions of
the registers,

-d - display errors to screen.

If no errors arc reported, then the two behavioural descriptions concur.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 12

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires,
the layout of the chip, described in terms of rectangles and layers in the gds or the cif
format. This can be done in Alliance, by using S2r.

Give the command:

setenv RDS_TECKN0_NAME
setenv RDS_OUT cif
seLenv RDS IN cif

,'archi/Linux_elf /etc;proll0_7.rds

This chooses the 1.0|U.m CMOS process, chooses the output form of the chip in cif format and.
replaces tbe symbolic pads with their real equivalent.

Give the command:

sZr -cv addchip addcliip

first addchip
second addchip

deletes connectors at the highest hierarchy. (Use
man to see full description)
verbose mode on

"addchip.ap" file as input
"addchip.cif; file as output.

This completes the design of the counter chip.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 13

SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 6

Design of a Serial Hex Combination Lock Chip

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Problem Description

In this exercise a serial combination electronic lock chip is designed starting from the
specifications. This design exercise was inspired by the example of a simple combination
lock given in the book, The Art of Digital Design, "An Introduction to Top Down
Design", by, Franklin P. Prosser & David E. Winkel, Prentice Hall Inc., Chapter 5. In this
design example you will learn to:
• Specify the characteristics of the lock starting from scratch as an Algorithmic State

Machine (ASM).
• Describe the behaviour of the lock's ASM in Alliance fsm language and generate the

behavioural description of the ASM.
• Add the architectural blocks to the generated behavioural description and simulate the

design.
• Generate the structural description of the chip.
• Place the necessary pads and re-simulate the structural description.
• Synthesise the layout of the chip.
• Extract the circuit from the layout.
• Extract the behavioural description from the netlist and compare with the original

behaviour file we created, to complete formal verification.

In this design example you will:
• Describe the ASM using Alliance fsm language putting an output for each state so as

to debug the machine (elock.fsm).
• Generate the behavioural file using Syf (elocks.vbe).
• Write test pattern files for simulation and validation.
• Simulate the behavioural description of the ASM with the pattern file by using

Asimut.
• Copy the elock.fsm file to the locLfsm file and remove the outputs for the states.
• Generate the behavioural file using Syf (locks.vbe).
• Copy locks.vbe to lock.vbe and add the architectural blocks to the behavioural

description (lock.vbe).
• Re-simulate the behavioural description with the architectural blocks using Asimut.
• Synthesise the logic and structural descriptions using Bop and Scmap (lockl.vst).
• Use Glop to add buffers to adjust critical paths and fanouts (lockopt.vst).
• Use the Standard Cell Router, Scr to place and route the core (lockopt.ap).
• Add the necessary pads for the chip and compile using Genlib (lockchip.vst).
• Use Asimut to simulate the 'lockchip.vst' file with the pattern file developed earlier.
• Place the pads and generate the layout of the chip with pads using Ring (lockchip.ap).
• Use Tas to perform the static timing analysis.
• Use Lynx to extract the netlist from the layout file 'lockchip.ap' (lockchip.al).
• Use Lvx to compare the extracted circuit 'lockchip.al' and the original 'lockchip.vst'

file created by Genlib,
• Use Yagle to extract the behaviour, 'lockchip.vbe' from the 'lockchip.al' netlist file.
• Use Proof to compare the extracted behaviour file, 'lockchip.vbe' and the behavioural

file created in the first phase, iock.vbe'.

Exercise 6, Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Text Editor
Fsm Description
of Controller of

lock chip
with state outputs

for each stare
(elock.fsm)

Text Editor
Test Vectors lor fsm

using Gen pal
Language
(eloeks.c)

r Text Hditor
AddarchitecLuraf
Blocksn 10 (he fsm

behavioural
file locks, vbe tore

description
(lock, vbe)

Text Editor
Gen lib Language
Description of
connectivity

between
Pads & core
flockchip.c)

Text Editor
Relative
position
of Pads

(lockchiri.riu)

Text Editor
Test Vectors usin^
Gcnpal Language

(filename.c)

Bop & Scmap

| cloekr.vbe I -\

v ai)p j

Text Editor
Hsm Description of

Con I roller oflock chit
without state outputs

for each stale
(lock, fsm)

Text Editor
Modify Test

Vectors
(loekchip.pat)

Text Editor
(lockchip.inf)

lockchip.cif
(Chip ready

I for fouiidi'y)

tile name, pat
(to he checked

for correct
functionality) '\

lockdiip.vbe I -

Fig 1. Design flow for the Hex Combination Lock

Exercise 6. Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

A Serial Combination Lock

Background:
We build in this exercise an electronic version of a mechanical combination lock

that is available in the market.

Mechanical locks come in two flavours, parallel and serial. A parallel
combination lock is a suitcase type of lock, where there are 3 to 4 disks that can be
rotated independently to the correct combination. A serial lock is dial type of lock that
comes on safety lockers in banks: a single dial is rotated through a sequence of numbers
in the correct order. Any wrong number requires that, the procedure of entering the
numbers is started all over again.

In this design example we design an electronic version of the serial combination
lock. The lock's combination is entered in hexadecimal notation, one digit at a time. Any
wrong digit sends the lock to an error state, which requires a reset signal to start all over.

Target System:
A "N" digit serial combination lock that lights a light when the combination is

correct. The number of digits "N" for the combination is chosen by the user. The
combination is programmed by the user.

Designing the lock's Algorithm:
The following important design decisions are taken before the design of the

algorithm.

1. Data is entered through a hexadecimal keypad. The keypad output is a 4 bit bus that is
called "keynum[3:0]" which indicates the number that has been punched. The keypad
has a strobe signal that is called "keypress" that lasts for one cycle of the system clock
that indicates that one of the keys of the key pad has been punched. The keypad is
debounced and sends only one "keypress" signal even if any of the keypad buttons is
held down. To send another "keypress" signal, the keypad key has to be released and
pressed down again.

2. Combination is entered from left to right. A maximum of 8-digit combination is
allowed.

3. A "reset" button is provided to start over if a combination error is made. The "reset"
button is debounced.

4. A "set" button is provided to allow the user to program the combination. The "set"
button is debounced.

5. The user presses a "try" button to indicate the end of sequence entry and the machine
should check the sequence and if it matches, to command the lock to open. The "try"

Exercise 6, Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

signal lasts for only a clock cycle like the "keypress" signal. The "try" button is
debounced.

6. A light lights up if the sequence is correct, but does not give any information if the
sequence is wrong.

The ASM for the combination lock is shown below.

hi each state the ASM checks for the "reset" or the "set" button press. A reset puts the
machine in the INIT state. The machine enters the READ_COMB state in the following
clock cycle.

In the READ_COMB, a "try" signal sends the ASM to the ERR state, whereas a
"keypress" signal compares the number punched in with that stored in the reference. This
compared signal is called the "cmpdig" signal. A successful digit comparison allows the
comparison of the next number in the sequence, but otherwise puts the machine in the
ERR state. How many numbers in the sequence should we check? We have a counter to
keep track of the number of digits entered in a sequence. In our lock design we use a 3 bit
counter so that we can have a maximum of 8 digit sequence combinations. As each digit
is compared successfully we increment the counter, until it reaches the count of "N". The
reference digit is function of the counter's output, and as each digit is compared
successfully, the reference digit is updated to the next digit in the sequence to be
compared. The number of digits to be compared "N" is tested and given out as a
"empnum" signal. This is comparison of the counter's output and a register that stores the
number "N". When the counter reaches a terminal count equal to "N" after all successful
digit comparison operation, the machine goes to the TEST state.

In the TEST state, a "keypress signal" send the machine to the ERR state. The test for the
"keypress" signal is included in this state, so that even if someone arrives to the correct
combination in the sequence by luck, he does not know the number of digits to be
punched in! A "try" signal puts the machine in the state OK.

In the OK state, the "openlock" signal is validated and the lock opens. The lock closes if
the "reset" button is pressed and the machine goes back to the state INIT.

The combination sequence is stored in registers. These registers are accessed for a
read or write operation by the ASM. The ASM uses the 3 bit counter to present the
address to these registers. The reference numbers stored in these registers can be changed
by pressing the "set" button that puts the ASM in the SETJNIT state. The number "N" is
programmable and is automatically set when the user enters the combination sequence of
the lock in the SET_COMB state and then presses a "reset" to indicate the end of the
combination setting procedure.

Exercise 6, Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

CMPDIG = T
if

N UM=REF>fUM(CNT)

CMPNUM = T
if

CNT=N

Fig.2 ASM chart of the Serial Combination Lock

Exercise 6, Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Fig. 2 (cont'd) ASM of the Serial Combination Lock

CK
KEYPRESS

TRY
NC

SET
OP1ZNLOCK

vss

r
r

I
I

z

r
i

r
c

•

8

-1 VDD
3 RESET

• KEYNUM(3)
= KEYNUM(2)

p NC
-i KEYNUM(l)
3 KEYNUM(O)

Fig. 3 Lock chip (a possible pinout diagram).

Exercise 6, Design of a Serial Hex Combination Lock Chip,

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Legend

Solution

Give the command that appears immediately after this symbol, at the command line.

Edit and save into a file, all that appears after this symbol.

Explanation of a topic

Set the environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design directory, at a convenient position in your work space:

mkdir lock

Change into this directory:

cd lock

Create with the text editor a file called "elock. Tsui". Enter the following and save the file.

Entity elock is

port!
ck : in bit ;
reset: in bit;
try : in bit;
keypress : in bit;
set : in bit;
empnum : in bit;
empdig : in bit;
openlock : out bit;

inccnt : out bit;
resent : out bit;
Idkey : out bit;
Idnum : out bit;
testflag, initiflag, okflag, errflag, readflag, inclflag,
inc2flag, setinitflag, setcombflag : out bit

End elock;

architecture auto of elock is
type STATE_TYPE is
(IMIT,RilAD_COMB, INC1, ERR, SET_.INIT, SET_COMB, INC2 , TEST, OK) ;

-- pragma CLOCK ck
— pragma CUK.^STATE CURRKMT^STATE
— pragma WEX_STATE NEXT_STATE

Sigr_al CURHEKT_STATE, NEXT_STATE : S'1'ATE_TYPE;

begin

PROCESS(CUHHENT_5?ATE,reset,try,keypress,set,empnura,empdig}

Exercise 6, Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

begin
case CURRSNT_STATE is

WHEN IWTT => inihflag <= '1';
if (set='1') then

NEXT_STATE <= SET_INITr
resent <= '1';

else if (reset='O'} then
SEXT.^STATE <= 1NIT;
resent <= '1';

else
MEXT_STATE <- READ_C0MB;

end i f;
end i f;

WHEN READ_COMB => readflag <= '1';
if <set='l') then

HEXT_STAQ'E <= SET_INIT;
resent <= '1';

else if (reset='C) then
NEX':'_STATE <= INIT;
resent <='1';

else .if
(try='1') then
NEXT_STATE <= ERE;

else if
{keypress='0') then
NEXT_STATE <= READ_C0MB;

else if
(c:mpdig= ' 0 ') then
NEXT_STATE <= ERR;

else if
(cmpntnc= ' 1') then
NEXT_STATE <= TEST;

else
HEXT_STATE<= IHC1;
inccnt <= '1';

end i f;
end i f;
end i f;
end i f;
end i f;
end if;

WHEN ERR => errflag <- ' 1' ,•
if (=e-='l') then

NEXT_3TATE <= SET_IMIT;
resent <= '1';

else if (reset=;0') then
NEXT__STA?E <- IHIT;
rescnt <= '1';

JSIEXT_STATE <= SRR;
end i. f;
end i f;
I'JHEN" IHC1 => inclflag <= ' X';
if (set-'1') then

NHXT_STATE <:= SET_INIT;
else if [reset='0M then

NEXT_STATE <= INIT;
resent <- '1';

else
NEXT_.STATE <= READ_C0MB;

end i f;
end if;

WHEN TEST => testflag <= '1';
if (set = '1') then

NEXT_STATE <= SET_IMIT;
resent •<= ' 1' ;

else if (reset='0') then
KEXT_STATE <= INIT;
resent <= '1';

else if

Exercise 6, Design of a Serial Hex Combination Lock Chip,

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

(keypress='l') then
HEXT_STATE <= ERR;

else if
(try = 'C') then
NEXT_STATK <- TEST;

else
NEXT_5TATE <= OK;

end if;
end if;
end if;
end if;

WHEN OK -> okflag <= '1';
openlock <= '1';
if {set = '1') then

NEXT_STATE <= SET_±NIT r
resent <- '1';

else if (reset = '0') then
NEXT_£TATE <= INIT,-
rescnt <- '1';

else
NEXT_STATE <= OK;

end if;
end if;

WHEN SET_INIT => setinitflag <= '1';
if {set - '1') then

NEXT_STATE <= SET_IK1T;
resent <= ' 1 ' ;

else
HEX':'_STA?3 <= SET_COHB;

ei ld i f ;

I'JHEW SET_COMB => seLGOi!±>flag <= ' 1 ' ;
i f (s e t = ' I ') t h e n

NEXT_STATE <= S E T _ I N I T ;
resent <- ' 1' -,

else if
(reset = '0') then
NEXT,..STATE <= IKITr
resent <= '1';

else if
(keypress = '0') then
NEXT_STATE <= 3ET_COMB;

else
HEX^STATE <= IWC2;
ldnum <= '1';
ldkey <= 'I';
inccnt <= '1';

end if;
end if;
end if;

VJKEN ING2 => inc2flag <= '1';
if {set = '1') then

NEXT...STATE <= SET_INTT;
resent <= '1';

else
NEXT_STATE <= SET_COMB;

end if;

VIHEN others =>
assert ('1')

report "illegal state11 ;

end case;
end process;

process(ck)
begin

if(ck = '1' and not ck' stable) then
CURRENT... STATE <= NEXT...STATE;

end i f ;
end process;

end auto;

Exercise 6, Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Compare the state assignments and the conditions under which the state, changes with that
shown in the ASM chart. Notice the similarity between the ASM chart and the description
given in the fsm. We want to debug the state machine before we do anything else with it.
Therefore we have assigned a output flag to each of the state, which become ' 1 ' if the
machine is in that state. Thus we can follow the transition of states during a simulation.

Give the following command at the command line

syf -rV elock

r
V

Random encoding
verbose nods

This command produces a file ''elockr.vbe", which is the behavioural description of the
fsm description. This behavioural description can be simulated using asimut.

Test pattern file and simulation of the state machine

Write a pattern file for simulation. (You can write a C file that when treated with Genpat
will generate the pattern file for you. See exercise 3).
Modify the pattern file hy editing it and simulate using Asimut with the -b option and
check if the state machine performs satisfactorily.

Adding Architectural Blocks

The behavioural file "elockr.vbe" contains only the description of the ASM. Now we will
have to add the architectural blocks, like the register that stores the combination, the
register that stores the number of digits to be compared, the counter and, implement the
various comparison operations. The ASM controls the architectural blocks and some of
the signals that appear in the "Entity" declaration become internal signals that control
these blocks.

Once we are sure that the state machine changes state as it should under the specified
conditions, the various flag signals that we put in the "elock.fsm" file to debug the state
machine, can be removed.
We start by copying the "elock.fsm" file to "loek.fsm" and editing this file to remove the
state flag signals from the description.

cp elock.Esin lock, fsm

Edit the file "lock.fsm" to remove the state Hag signals to produce a description as shown
below.

Exercise 6, Design of a Serial Hex Combination Lock Chip. 10

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Ocl-23 Nov. 2001

Entity lock is

port (
ok : in bit ;
reset: in bit;
try : in bit;
keypress : in bit;
set : .in bit;
empnurn : ir. bit;
empdig : in bi<;;
openlock : out hit;

inccnt : out bit;
resent : out bit;
Idkey : out bit;
Idnum ; out bit

};
End lock;

architecture auto of lock is

type ETATEJTYPE is
UNIT, READ_COMB,IHC1, ERR, SET_II7IT,SET_COMB, INC2 , TEST, OK)

-- pragma CLOCK ck
— pragma CUR_STATE CURREKT_STATE
-- pragma NEX_STATE NEXT_STATE

signal CURRENT_STATE, NEXT_STATS : STATEJTYPE;

begin

PROCESS(CURRENT_STATE,reset,try,keypress,set,empnum,empdig}
begin
case CURRENT_STATE is

WHEN INIT =>
if (set='l') then

NEXT_STATE <= £ET_INIT;
olse if {reset='O') then

NEXT_STATE <;= INIT;
resent <•- '1' ;

olse
KEXT_STATE <= READ_COM6;

end :. i;
end i f;

WHEN READ_C0MB ̂ >
if (set=J1') then

HEXT_STATE <= SET_IHIT;
else if (reset='0') then

WEXT_STATE <= INIT;
resent <='1';

else if
Ctry='l'} then
HEXT_STATE <= ERR;

else if
[keypress='0'} then
NSXT_STATE <= READ_COMB;

else if
(cmodig=r0') then
NSXT_STATE <= ERR;

else if
(cmpnum='1') then
NEXT_STATE <= TEST;

else
NEXT_STATE<= IKG1;
inccnt <= '1';

end if;
end if
end i f
end if
end ; t
end if

WHEN ERR ->
if (set='l;} then

JMEXT_STATE <- SST_IWIT;
e l s e if (r e se t= r 0 ') then

.WEXT̂ .STATE <= INIT;

Exercise 6, Design of a Serial Hex Combination Lock Chip. \ 1

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

resent <= ' 1';
else

NEXT_STATE <;= EKR;
end if;
end i t;

WHEN IETC1 =>
::.f (set=' 1') then

HEXT_STATE <= SET_INIT;
else if [reset='O') then

NEXT_STATE <= INIT;
resent <= '1';

else
NEXT_STATE <= READ_C0MB;

end if;
end if;

WKKM TEST =>
if (set = '1') then

KEXT_STATE <= SET_INIT;
else it (reset='O') then

NEXT_ST.ATE <= IHIT;
roscnt <= '1';

else if
(keypress-'1'} then
NEXT_STATE <= ERR;

else if
(try = '0'J then
NEXT_STATE <- TEST;

else
NEXT_STATE <= OK;

end i f;
end if;
end if;
end if;

VJKEN OK =>
openlock <- '1';
if {set = '1') then

HEXT_STATE <= SET_INITr
else if (reset = '0') then

WEX?_STATE <= INIT;
resent <= '1';

else
5IHXT._STATE <= OK;

end i f;
end if;

WHEN SET_IKIT =>
if Isez = '1') then

KEXT_STATE <= SET_INIT;
resent <= '1';

else
NEXT_STATE <= SET_COMB;

end i £;

I'JHEK SET_COMB =•>
if (set = '1'} then

NEXT_STATE <= SET_INIT;
resent <— '1' •

else .if
(reset = '0') then
WEXT_STATE <= IMIT;
resent <= '1';

else if
(keypress = '0') then
NEXT_STATE <- SET_COMB;

else
NEXT_STATE <= IKC2;
ldnuio <= '1' ;
ldkey <= '1';
inccnt <= '1';

end i f;
end i f;
end if;

WHEN 1NC2 =>
if (set = '1'} then

NEXT_STATE <= SET_INIT;
resent <= '1';

else

Exercise 6, Design of a Serial Hex Combination Lock Chip. 12

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

MSXT_STATE <= SET_COMB;
end if;

WHEN others =>
assert ('l'l

report "illegal state";

snd case;
end process;

process(ck)
begin

if(ck = '1' and not ck' stable! then
CURRENT...STATE <= NEXT_STATE;

end i f;
end process;

end auto;

Give the command to synthesise the ".vbc" file.

syr -rV lock

This produces a "lockr.vbe" file as output. This file contains only the controller. The
"Entity" statement here contains the output signals that control the architectural blocks
and the input signals that decide the next state of the state machine. The architectural
blocks are:
1. the 3-bit counter that counts the number of digits punched in,
2. the comparator that gives the "empdig" signal to the state machine,
3. the comparator that compares the reference number with the one that is punched in

through the key board, and gives the "empnum" signal,
4. the decoder that brings in the correct reference number from the memory and,
5. the memory that holds the reference numbers.

To add the architectural blocks, to this file we edit the state machine behavioural
description. We convert the signals that control the architectural blocks, the signals that
are input to the state machine, (and are not required outside) as internal ''Signals1'. Then
the block's behaviour are described while keeping the interface signals between the
blocks and the state machine the same.

Copy the file "lockr.vbe" to the file named "lock.vbe". Edit this file and add the
architectural block description to the behavioural description as shown below.

Read the comments that have been given under the special eomment line marked by -**,
to understand the changes that have been made to the file.

- - V1IDL data flow description generated from 'locks'

-- Entity Declaration

ENTITY lock IS
PORT (
vdd, vss: in BIT;
ck : in BIT; — ck
reset : in BIT; -- reset
try : in BIT; -- try

Exercise 6, Design of a Serial Hex Combination Lock Chip. 13

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

current_state_O
current_state_l
current._state_2
current state_3

keypress : in BIT; -- keypress
set : in BIT; -- set
Openlock : out BIT; -- openlock
keynmn: in S T L VECTOR {3 down to 0}
) ;

END lock;

-- Architecture Beclaration

ARCHITECTURE behaviour_data_flow OF lock IS
--** All the signals that control the architectural blocks and that
--** are not required outside the chip become internal signals.
SIGNAL cmpdig, cinpnum, inccnt, resent, ldkey, ldnum : BIT;
--** The memory that stores the combination is declared
SIGNAL memO, meml, mem2, nem3, meiti4, mem5, memE, mem?: REG_VECTOR (3

downto 0) REGISTER;
---** The counter and the register that stores the number of digits to
--** compare in a sequence is declared
SIGNAL counter, nun : EEG_VECTOR (2 downto 0) REGISTER;
--** These are signals declared by sy£
SIGNAL cuir-ent._Etate_O : REG_BIT REGISTERS-
SIGNAL current_state.. 1 : REG_BI? REGISTER;
SIGNAL current_state_2 ; P.EG_BIT REGISTER;
SIGNAL current_state_3 : REG_BIT REGISTER;
SIGNAL init_s : BIT; - - init_s
SIGNAL init__m : BIT;
SIGNAL read_comb_s : BIT;
SIGNAL read_comb_m ; BIT;
SIGNAL inci_s : BIT;
SIGNAL incl_m ; BIT;
SIGNAL err_s : BIT;
SIGNAL err_m : BIT;
SIGNAL set_init_s
SIGNAL set_in.tt._TT.
SIGNAL set_comb_s
SIGNAL set_comb_m :
SIGNAL inc2_s : BIT;
SIGNAL inc2_m : BIT;
SIGNAL test_s : BIT;
SIGNAL test_m : BIT;
SIGNAL ok_s : BIT;
SIGNAL ok_m : BIT;

BEGIN
--*• counter description
count: BLOCK (ck = '1' and not ck'STABLE)

B3GIN
counter <= GUAHDED B"000" when (rescnt='lM else

B"001" when ((inccnt='1') and (counter = B"000"
else

3"010" when ((inccnt='l') and (counter = B"001"
else

B"011" when ((inccnt='1') and (counter = B"010"
else

B"100" whan ((inccnt='1') and (counter = B"011"
else

B"101" when [[inccnt^'1') and (counter = B"100"
else

B'^IO" when ((inccnt=' 1') and (counter = B"1C1"
else

B"lll" when ((inccnt='1') and [counter = B"110"
ciso

B"000" when ((inccnt='1'} and (counter = B"I11"

BIT;
BIT;

BIT;
BIT;
BIT;
BIT;

-- incl_
-- incl_

— err_i

-- i nc 2
-- inc2_
•-- test.
-- test.
-- ok_s
--- ok m

--
_s
_m

--

--
_E
_m
o

_m

read_comb_E
readmeomb_m

set_init_s
set_init_m
set_comb_s
set comb m

counter;
end BLOCK count;

--** Generation of the cmpdig signal
cmpdig <= ((cour.ter=B" 000") and (memO = keynum) } or

((counter=B"001") and (meml = keynum)) or
((counter=B"010") and {rnem2 = keynum)) or
((counr.er=B" 011") and (mem3 = keynum)) or
((counter=B"100") and (mem4 = keynum)) or
((couuter-B" 101") and (mernS - keynum)) or
((counter=B"110") and (mem6 = keynum)) or

11!!!11) and (mem7 = keynum)) ;

--** Generation of the crapnum signal
empnum <= (countGr=num);

Exercise 6, Design of a Serial Hex Combination Lock Chip. 14

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 OCL-23 Nov. 2001

--*•* condition under which the nun register is loaded
loadnum: BLOCK {ck='l' and not ck'STABLE)

BEGIN
num <- GUARDED counter VJHEN {ldnum= ' 1') else

num;
end BLOCK loadnum;

--** condition under which the sequence is loaded into the registers.
loadkey: BLOCK (ck='l' and not ck'STABLE}
B2GIK
memo <= G U A R D E D keynuin WHEN ({ c o u n t e r = B " 0 0 0 ") a n d (l d k e y = ' l ')) e l s e

memO ;
meml < - GUARDED k e y n u m WHEN ({ c o u n t e r = B " 0 0 1 ") a n d (l d k e y = ' 1 ')) e l s e

meml ;
nem2 <= GUARDED keynuTii WHEN { { c o u n t e r = B " 0 1 0 ") a n d (l d k e y = ' l ')) e l s e

mem 2 ;
mem3 < - GUARDED keynuir, WHEN { (c o u n t e r = B " 0 1 1 '•) a n d < l d k e y = ' l ')) e l s e

memj;
nem4 <= GUARDED keynuTK VJHEN { (coun te r=B"100 ") a n d (ldkey= ' 1 ' >) e l s e

meie4;
mem5 <= GUARDED keyni^r, WHEN { (coun te r=B"101") and { l d k e y = ' 1 ' }) e l s e

inem5;
meni6 <= GUARDED keynuio WHEN { (counte r=B"110 ") and {ldkey= • I')) e l s e

raeffiV <= GUARDED keynuir, WHESI { (counter=B"lll") and (Idk.ey='l')) else
meff.7;

end BLOCK loadkey;

--•** This is the .vbe description synthesised by syf ror the state
--** machine description made in lock, f sin

ok_in <= ((try and not (keypress) and reset and not {set) and test_s)
or (reset and not (set } and ok_s));

ok_s <= (not (current_£tate_0) and current_state_l and not
(currenL_sbate_2) and curreut_state_3) ,-

tost_m <= ((not (try) and not [keypress) and reset and not (set) and
test._s) or (cir.pnuin and crnpdig and keypress and not (try) and
reset and not (set } and read_comb_s));

test_s <= (not (current_state_Q) and not [<rurrent_state_l) and
curront_stato_2 and not {current_state_3)) ;

inc2...,m •;= [keypress and reset and not (set) and set_co7r,b_s) ;
ino2_B <= (not (current_state_0) and current_state_l and

current_state_2ai:d not (current._state_3)) ;
set_comb_m- <= ((nor (set) and inc2...s) or (not [keypress) and reset and

notlset) and set.^comb_s) or (not (set } ar.d set_init_s)) ;
set_comb_s <= (not (current_state_O) and current_state_l and

current_state_2 and current_state_3);
set_init.,m <= ((set and test_s) or {set and inc2_s) or (set and err_s} or

(set and set_comb_s) or (set and ok_s) or (set and set_init_s) or
(set and incl_s) or (set and recjd_corab_s) or (set and init_s)) ;
set_init_s <= (current_state_C and not {current_state_l } and not

(current_state_2) and not [current_state_3)) ;
err_m <= ((keypress and reset and not {set } and test_s} or (reset and

not (set) and err_s) or (not (cmpdig) and keypress and not
(try > and reset and not (set) and read_comb_s) or [try and
reset and not (set) and read_comb_s));

err_s <- (not (current_state_O) and not (current_state_l } and not
(current_state_2) and current_state_3) ,•

incl_m <= [not (cmpnuin) and cmpdig and keypress and not (try) and reset
and not [set } and read_corab_s};

iricl_s <= (not (current_state_0) and ourrent_state_l and not
(current_state_2) and not (current_state_3]);

read_comb_m <= ((reset and not (set) and incl__s) or (not (keypress) and
not{try) and reset and not {set) and read_comb_s) or (reset and
not {set) and init_s));

read_comb_s <= (not (current_state_0) and not (current_state_l) and not
(current_state_2) and not (current_state_3)) ;

init_m <= {(not (reset } and not (set) and test_s) or (not (reset) and
not (set) and err_s) or (not (reset) and not (set) and set_comb_s) or
[not (reset) and not {set) and ok_s) or (not (reset) and not {set) and
incl_s) or (not (reset } and not (set } and read_comb_s) or (not (reset)
and not {sot) and init_s));

init.,,5 <= (not (current_statG_0) and not (cnrrent_state_l) and
current_state_2 and current_state_3);

labelO : BLOCK ((ck and not (ck'STABLS }) = '1')
BEG IK

current_state_3 <= GUARDED [init_m or err_m or set_comb_m or ok_m);
END BLOCK labelO;
labell : BLOCK ((ck and not (ck'STABLE }) = '1')
BEG IK

current_state_2 <= GUARDED (iriitjn or set_comb_m or inc2_m or tcst_m} ;

Exercise 6, Design of a Serial Hex Combination Lock Chip. 15

Seventh Course On Basic VLSi Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

END BLOCK labell;
Iabel2 : BLOCK ((ck and not (ck'STABLE)) = '1')
BEGIN

current_state_l <= GUARDED (incl_m or set_comb.,j"n or inc2_m or ok_:n) ;
END BLOCK Iabel2;
Iabel3 : BLOCK { {ck and not (ck'STABLE)} = '1')
BEGIN

current_scate_O <= GUARDED set,_init_m;
END BLOCK iabel3;

openlock <- not ok_s;

ir.ccnt <= ((not (crnpnum) and cinpdig and keypress and not (try) and reset,
and not (set) and read_comb_s) or [keypress and reset and not
{set) s.nd set....co:rnb__s) } ;

rsscnt <= ((not (reset } and not (set) and init._s) or (not (reset) and
not (set) and rcad_comb_s) or (not [reset) and not (set)
and incl_s) or (not. (reset) and net [set) and err_s) or (set
and set_init_s) or (not {reset) and not [set) and set_coinb_s)
or (set and seL_conib_=} or (set and ir_c2_s) ox [not (reset)
and not [set) and test_a) or (not (roset) and not (set) a.nd
ok_s));

ldkey <= (keypress and reset and not (set) and set._comb_s) ;

ldjidm <= (keypress and reset and not (set) and set_comb_s) ;
END;

Test Pattern Generation and Simulation of the Complete Behavioural Description

Write a pattern file to test the "lock.vbe" file.
Modify the pattern file by editing it and simulate using Asimut with the -h option and
check if the behavioural description performs satisfactorily.

Logic and Structural Synthesis of the Core

Now Logic can be used to optimise and synthesise the core of the chip from the above
behavioural description.

Give the command:

i>op -o lock lockl

This takes as input the "lock.vbe" description and creates an optimised Boolean
behavioural description file "lockl.vbc".

To synthesise the structural description give the command:

scmap lockl

This takes as input the optimised behavioural description "lockl.vbe" and creates
the structural description file 'lockl.vst" using the components from the standard cell
library.

The structural description created above has been created without worrying about the
standard cells fanout limits and critical path signals. Alliance Glop can analyse the

Exercise 6, Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

structural description and create a new description by adding buffers to the appropriate
nets.

Give the command:

glop -g lockl lockopt -i -t

This command takes "lockl,vst" structural description and generates a "lockopt.vst" file
after buffers have been added to the critical paths.

Give the command:

glop -f lockopt lockopt

-f - fanout optimization.

This command should add buffers to the appropriate nets to resolve fanout problems and
write over the "lockopt.vst" file created above.

Placement and Routing of the core

The core can now be routed using Scr. Give the following command at the command line:

s c r

-p
-r

-p -r

_

-

lockopt

placement option
routing option

A "lockopt.ap" file is created which can be viewed with Graal.

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C functions that allows you to
describe circuit objects like pads and the core and their connectivity.

Create and edit and save into the file "lockchip.c" the following:

include<genl1b.h>
main(}
{
DEF_LOFIG("lockcllip") ;

L0CQH["VDD",
LOCOHC'VSS",
LOCONC'VSSE",
LOCOWI"VDDE",
LOCOHC'CK", '!' ,

, "VDD");
,"VSS");
,"VSSE");
,"VDDE");
CK") ;

LOGON("RESET",'I',"RESET"

Hxercise 6, Design of a Serial Hex Combination Lock Chip. 17

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

LOCONC'TRY", 'I' , "TRY") ;
LOGON("KEYPRESS",'I',"KEYPRESS");
LOC0N("SET",'I' ,"SET");
LOCONC'OPENLOCK", '0' , "OPENLOCK"} ;
LOCON {" keynum [0:3] " , ' I' , " keymnn [0:3]"};

/* Instance of pads of the chip. The instance_name of the pads is the one
that is to be *7
/* given to the Ring tool for it to understand the names for pad placement
on the chip •/
/* On passing this file through Genlib, a .vst file is generated. This file
has the output*/
/* input and 10 pins as specified in the above list- Asimut understands
only these as the */
/* pins for simulation */

LOINS {"pvsse^sp", "vss " , "cki", "vdde", "vdd", "vsse", "vss", C) ;
LOINS{"pvdde_sp","vdd","cki","vdde","vdd","vsse","vss",0);
LOINS {"pvddi_sp", "ivdd" , "cki", "vdde11, "vdd", "vsse", "vss11, 0) ;
LOINS{"pvssi_sp","ivss","cki","vdde","vdd","vsse","vss",0};

LOINS("pck_sp","RINGCLK","CK","CKI","VDDE","VDD","VSSE","VSS",0);
LOINS("pvsseck_sp","CLOCK","PCK","CKI","VDDE","VDD","VSSE","VSS",Q};

LOINS ("pi_sp" , "RESET11 , "RESET" , "PRESET" , "cki" , "VDDE" , "VDD" , "VSSE" , "VSS" , 0 } ;
LOIKS ("pi_sp" , "TRY11 , "TRY" , "PTRY" , "cki" , "VDDE" , "VDD" , "VSSE" ,"VSS",0);

LOINS("pi_sp","KEYPRESS","KEYPHESS","PKEYPKESS","cki","VDDE","VDD","VSSE","
VSS",0);

L.O1NS ("pi_sp" , "SET11 , "SET" , "PSET" , "cki" , "VDDE" , "VDD" , "VSSE" , "VSS" , 0) ;

LOTUS("pi_sp","KEYNUMQ","KEYNUM[0]","PKEYHUM[0]","cki","VDDE","VDD","VSSE",
"VSS",0);

cki","VDDE","VDD","VSSE",LOINS ("pi_sp", "KEYWUM1", "KEYKUM_[1]
"VSS",0);

LOINS("pi_sp", "KEYNUM2", "KEYKUM[2]
"VSS",0);

LOINS("pi_sp"
"VSS",0);

11XEYHUM3 " , " KEYNUM [3]

11 PKEYHUM [1]

11PKEYNUH [2] •

"PKEYNUM[3]

"cki","VDDE","VDD","VSSE",

"cki","VDDE","VDD","VSSE",

LOINS("po_sp", "OPEHLOCK","POPENLOCK" , "OPENLOCK","cki", "VDDE", "VDD","VSSE", "
VSS",0) ;

Z71 The first name is the name of the .vst file that is to be used for
reference */
/* The second name is the instance_n.ame and can be anything */
/* the names that follow csii be anything except that they should be in the
s ame */
/" order as in the .vst file. Bus signals should have the same dimensions.
Names given */
/* should be the inputs or outputs of other instances which means that the
block is */
/* physically connected to other blocks in the description and is not left
hang i rig * /

LOINS("lockopt","lock","vdd","vss","pek","preset",

"ptry","pkeypress","pset","popenlock","pkeynum[3:0]",0);

SAVE_LOFIG();

exit(0);

Exercise 6, Design of a Serial Hex Combination Lock Chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oet-23 Nov. 2001

Give the command at the command line:

genlib lockchip

This creates a "loekehip.vst" structural description file with pads.

Simulating the Structural Description

i i rf x. ^ .̂

You can now simulate this structural description with the test vector file that you
developed for "lock.vbe". Simulate the structural description and confirm the functioning
of the structural description.

Placing and routing the pads

Now the chip's pads and the core has to be connected together physically in a layout. This
is done by using Ring.

Edit and save the following in the file "lockchip.rin":

File ysed by RING tool
Placement of pads for the lock chip
north (clock vdd reset)
east (set ivdd try keypress)
soiitii (openlock vss keyrvumO)
west (keynuml ivss keyr_um2 ri.ngclk

This file describes the relative position of the pads on the four sides of (he ehip.

Give the command at the command at the command line:

•Car
ring lockchip lockchip

A "lockchip.ap" file is created that can be examined by using Graal.

Examine the layout using Graal.

Exercise 6, Design of a Serial Hex Combination Lock Chip. 19

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Static Timing Analysis

The "lockchip.ap" contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the layout
we use two tools, Lynx and Tas.
Lynx is a nctlist extractor. It extracts a netlist representation of the circuit from the layout.
The file created by Lynx will be the input file for Tas.
Xas is a switch level timing analyser for CMOS circuits.
Give the following command at the command line:

setenv MBK_0UT_L0 al

This tells that the output file should be in the ".al" (Alliance) format.

lynx -v -t lockchip lockchip

-V

-t

first lockchip
second loekchip

verbose
build the netlist to the transistor level,
take the "lockchip.ap" layout file as input,
generate the "loekehip.al" netlist file.

Give the following command at the command line:

s e t e n v MBK_1N_LO a l

This tells that the input file for Tas must be in the 'L.al" (Alliance) format

tas -tec=/alliance/archi/Linux_clf/etc/proll0.eip lockehip

-tec - selects the technology file prollO.elp.

Layout Extraction and Netlist Comparison

The "lockchip.ap" contains the layout information. However we do not know if the
physical description produced reflect the behavioural description. Therefore to check the
layout we use two tools, Lynx and Lvx,

Lynx is a netlist extractor. It extracts a nctlist representation of the circuit from the layout.

For this you have to set some environmental variables. You have to specify the format in
which the extracted netlist is generated.

Give the following command at the command line:

s e t e n v M3KJDUT....L0 a l

This tells that the output file should be in the '\al" (Alliance) format.

Exercise 6, Design of a Serial Hex Combination Lock Chip. 20

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Give the command at the command line:

lynx ~v -f lockchip lockchip

-v - verbose
-f - asks Lynx to generate the netlist from the Standard-

cells level.
first loekchip - Take the "lockchip.ap" layout file as input,
second lockchip - Generate the "lockchip.al" netlist file.

Lvx is a netlist comparison software that compares two netlists. Along with the
comparison it re-orders the interface terminals to produce a consistent netlist interface.

Give the command at the command line

lvx vsc al lockchip lockchip -f -o

-f - build the netlist to the standard cell level,
vst - take the first file in ,vst format,
al - take the second file in .al format,
first lockchip - "lockchip.vst" file,
second lockchip - "lockehip.al" file.

The comparison should not produce any errors. If errors are produced by the program,
then there is some problem with the layout. The router has done something funny and
corrective action is to be taken at the layout level by studying the error messages.

The Lvx tool has also re-ordered and built the netlist in the ".al" to the standard cell
format. This file can be simulated using Asiinut.

Simulating the Extracted netlist file

The netlist file "lockchip.al" can be simulated using Asimtit and the test vector file that
has been created to test "lock.vbe".

Give the following command at the command line:

se tenv MBK_IK_L0 a l

to set the input file format for Asimut for the ".al" format, before doing the simulation.
Any error during simulation means that you will have to retrace your steps back to find
out the source of the error.

Exercise 6 ; Design of a Serial Hex Combination Lock Chip. 21

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Functional Abstraction

Yagle is a program that extracts from a standard cell level, the behaviour of the circuit.
Essentially a VHDL file is created from a standard cell connectivity description! This
VHDL file can be simulated in turn to verify the function of the chip.

Give the command at the command line;

yagle -v lockchip

-v
Iockchip

vectorized
Takes ilic "lockchip.al" as input.

The extracted VHDL description is put in the file "Iockchip.vbe".
Simulate the extracted behavioural description to verify the extracted behavioural
description.

Alliance has a program that compares the extracted behavioural file with the original
behavioural file to formally prove the functional congruence of the described and the
extracted circuit. However this step requires that the registers in the two behavioural
descriptions have the same names. This can be done automatically by Yagle by giving it a
list of registers to be renamed in an information file "lockchip.ini".

Edit and save a file "lockchip.inf" with the following:

rename
lock.meir.6_3 -df f_s
Iock.mein5_0.df f_s
Iock.inein5_3 .dff_s

lock
lock
Iock
lock

Iock
Iock
lock
1 ock
lock
lock
lock

lock
lock

Iock
l.ock

num_l.dff_s :
current_state.
mem0_2.dff_s
aieml_l.df f_s
inein5_2 .df f_.s
mem2_l.df£_s
mem7_3.dff_s
counter_l .dff
nu:rn,.0 .df f ..s -
current_s tate.
mea\6_0.d£f_s
meir,6_l. df f_s

M2 - df f__s
_l .d££_s

coimter_2 .df f.
merr,6_2 .df f_s
mesn5_l -df f_s
meir.7_0. d£f_s
noas_2 .d£f_s :
rcem3_2 .df f_s
current_st.ate.

.d££_=

lock
lock.
lock

current
rr;em.4_0.
meml_0.

lock
1ock
lock
Iock
Iock
Iock
iock
Iock

df f._s
s tate.

df f_s
dff_s
df f_s
d££_s

0.dff
df f_s
dff_s
d££_s

2 .df f..s
mem4_3.dff_s
mem2_3.dff_s

ineina_0.
counter
iriemO_0.
mem3_0.
meml_3.

mem5_0

num_l ;

men'J_2
meml_l

raen7_3 ;
.s : counter_l ;

_2.df£_s : current
msm6_0 ;
meni6_l
mein7_2
mem3_1

.s : counter_2
mem6_2
mein5_l
mem7_0

jium_2 ;
meiri3_2

_sta"cs_2

meml_2
mem4_l

msm4_0
meml_0
mem3 _3
mem2_0

counter_0
mem0_0
mem3_0
neml_3

_
mem4_3
mem2_3

current_stats_O

current_state_3

Exercise 6, Design of a Serial Hex Combination Lock Chip. 22

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oet-23 Nov. 200:1

Iock.msinO_l. df i_a : rnernO_l ;
iock.memO_3.dfc_s O
er.d

Give the command:

yagle -i -v lockchip

Give the command:

asks yagle to read the "lockchip.inf' file and rename the
registers in the "loekchip.vbe" file as given in the list.

proof -p -d lockchip locjc

-p -

-d -

negates the input and output signal expressions of
the registers.
display errors to screen.

If no errors are reported, then the two behavioural descriptions concur. It is possible to
have errors due to the missing signals vdde and vsse in the lock.vbe file; If this is the case
just add these signal in the port declaration of loek.vbe and run again proof.

Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires
the layout of the chip, described in terms of rectangles and layers in the gds or the cii1

format. This can be done in Alliance, by using S2r.

seter.v RDS_TECKNO_NAME /a.lliar;ce/arch.i/Lirmx_elf /etc/prollO_7.rds
setenv RDS_OU? cif
setenv RDS_IH cif

This chooses the LO.u.ra CMOS process, chooses the output form of the chip in cii1 format
and, replaces the symbolic pads with their real equivalent.
Give the command:

S'2T -CV lockchip lockchip

-c

-v

first lockchip
second lockchip

deletes connectors at the highest hierarchy. (Use
man to see full description)
verbose mode on

'lockchip. ap" file as input
'lockchip,cif file as output.

This completes the design of the lock chip.

Exercise 6, Design of a Serial Hex Combination Lock Chip, 23

SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 7

Adder Accumulator using Datapath Entities

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Problem Description

Re-design the 4-bit adder accumulator that you designed in Exercise 4 using datapath
entities. In this design example you will learn to:

• Describe the circuit in the Fpgen language.
• Compile and generate the structural description using Fpgen.
• Place and route the chip and generate the layout file using Dpr.
• Place the pads using Genlib language and generate the structural description with

pads.
• Simulate the structural using Asimut.
• Place and route the pads using Ring.
• Extract back the circuit from the layout using Lynx.
• Use Tas to perform the static timing analysis.
• Make a layout verification by comparing the extracted netlist with the structural

description using Lvx.

mnbiiYT

Vk\-PL»

Fgijtun I.intj;i3iij;s
rks;;ri]!Li'.M-i ul'

;j ViuL-PiiaiTtO i i i l inj j
<icnJLb Lai i fbH^

. L>C:KfJ|.itiOlL nf P^l l

^ PhJO Tu^l BJLIIII
HdniivcpaJtioiL

of Pads
CiictijrrichLf .lin t

/L QI Pi^>T^tIii3iiiT

T«a V«roK using

Pmpat Lautui i^
^ccinnc-tsr.t i

~-x
Kpgen

Fpsen

Penpal " ^

HlilB \ I I Vi or Pico TCKI Edimr

y | | MiKlit'y Test Vecluis

Fig 1. Design Flow for the Adder Accumulator

Exercise 7, Adder Accumulator using Datapath Entities.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

A 4-Bit Adder Accumulator Using Data Path Entities

This design example differs from other examples in the sense that you will not make the
behavioural description of the circuit. Instead the circuit will be described as a netlist of
components from the data-path elements library. Fig 1 below shows the block diagram of
the circuit with the components from the data-path library with names of the intermediate
nodes. This circuit will be translated into the Fpgen language. Fig 3 shows a possible pin
out for the chip. Table 1 summarises the function of the chip.

4 Bit Slices

VDD I o vss

CTRL

A [3:0]

SEL

B [3:01 4 J p

CLK

VI

f i l l
I DP_MUX2

•^>
Ki

CSUM [3:0]

DP_MUX2CS DP_ADSB2F MEMORY US

SUM [3:0]P.C

1-bit
>; inverier

ndrv_dp

Fig 2. Block Diagram of the Adder Accumulator using Data Path Components.

CK
SEL
A(3)
A(2)
A(l)
A(0)
NC
NC
NC

vss

c
L

I
_
_
_

c
c

*

3

J VDD
71 B{3)
_ B(2)

- B(O)
,- SUM(3)
: SUM(2)
: SUM(1)
" SUM(0)
- CTRL

Fig. 3 The Adder Accumulator chip (a possible pinout diagram).

Exercise 7, Adder Accumulator using Datapath Entities,

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

CLK
Rising Edge
Rising Edge

No Rising Edge

SEL
0
I
X

CTRL
0
0
X

SUM
A + B

A + SUM
SUM

Table 1. Truth Table for the 4-bit presetable counter

When the SEL is '0' two 4-Bit numbers A and B are added, latched and presented,
at the 4-Bit SUM output at the rising edge of the CLK. When SEL is ' 1 ' the SUM: output
is fed back to the adder and is added with A. The value is latched and presented at the
SUM output at the rising edge of the CLK.

Legend

t-1) I._LI._I_IJ -L!_ | |

Solution

commands are to be given at the command line.

Edit and save into a file

Explanation of a topic

Environmental variables arc to be set

Creating the Design

Begin by creating a design directory, at a convenient position in your workspace:

rakdir accuin

Change into this directory:

rd accuin

Exercise 7, Adder Aceumuktor using Datapath Entities.

Seventh Course On Basic VLSt Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Create with the text editor a Hie called "accum.c". Enter the following and save the file.

#include <genlib.h>
#include <fpgen.h>

main{)

DP_DEFLOFIG{"ACCOM", 4, LSB_INDEX_ZERO);

/* Interface declaration */

printft "Interfaced") ;

DP_LOCON("vdd",IN,"vdd");
DP_LOCON("vss",IN,"VSS");
DP_LOCON("A[3:0]",IN,"A[3:0]");
DP_LOCON(°B[3:0]",IN,"B[3:0]");
DP_LOCOW("SUM[3:0]",OUT,"SUM[3:0]");
DP..LOCON("SEL",IN,"SEL");
DPmLOCON["CLK",IN,"CLK");
DP_LOCON{"CTRL",IN,"CTRL");

DP_MJX2CS ("MUXINST" ,

4 ,
0,
"SEL",
" S U M [3 : 0] " ,
" B [3 : 0] " ,
11MUXOUT [3 : 0] " ,
EOL) ;

DP_ADSB2F ["ADDER" ,

" A [3 : 0] " ,
"MUXOUT[3:0]" ,
"CARRY",
"OVF",

"CSUM[3:0]",
"CTRL",
EOL) ;

/* heterogeneous operator */

LOINS ("ndrv_dp","CLKINV","CLK","NCLK","vdd","vss",0);

DP_IMPORT["memory_us","MEMINS","CSUM[3:0]","SUM[3:0]","WCLK",EOL)

DP_SAVLOFIG();

exit(0);

Exercise 7, Adder Accumulator using Datapath Entities.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Fpgen is a set of C functions dedicated to data path synthesis. Fpgen creates a
hierarchical netlist that can be given to the data path route tool Dpr.

To compile with Fpgen, two include files, "genlib.h" and "fpgen.h" are required which
have to be declared through the C include statement at the top of the file. Then the circuit
is described inside a procedure like any normal main procedure in C.

main()

Here is your circuit description.

cxit(O);

inside the main procedure , the circuit is described as macro-functions. The man pages
of fpgen or fplib (man fpgen or man fplib) contains a list of macro-functions that are
allowed inside the main procedure. The macro-functions consists of gate level logical
functions like inverter, and, or, xor, etc. It also consists of generator functions like
adder and barrel shifter. Register function like Dflip-flop is also provided. With these
functions most data paths can be constructed.

Each of the macro-functions has its man pages and it is recommended that they be
consulted before the circuit is constructed !.

Coming to our circuit, the adder accumulator has been described in the above file. In this
file the DP_IMPORT function has been use to instantiate a part called "memory_us"
that has been constructed out of heterogeneous functions. We have to generate this file
too, if our circuit has to work. The man pages of dplib (man dplib) gives a list of
heterogeneous operators that are allowed. The man pages of a particular heterogeneous
operator gives in detail the order and type of the arguments for that operator (e.g. man
ms_dp).

Create with the text editor a file called "memory_us.c". Enter the following and save the
file. This file describes the 4-bit edge triggered register that has been built from a
heterogeneous block "ms_dp". The instance name of the heterogeneous operator m s j p
end with a "_#" so that the data path router, Dpr knows that "#" is the slice number (the
level) at which the block is to be placed.

#include <genlib.h>
#include <fpgen.h>

main (}
{
/* creating a new data-path, figure for accumulator-adder */
DEF_LJOFIG ("memory^us") ;

/ * l o g i c a l c o n n e c t o r s * /
L O C O N (" i [3 : 0] " , IN , " i [3 : 0] ") ;
LOCOKTt " o [3 :0J " , OUT , " o [3 : 0] ") ;

Exercise 7, Adder Accumulator using Datapath Entities.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

LOCON(
LOCOW(
LOCOH{

"elk",
"vdd",
"vss",

IH
IN
IN

,"elk"
,"vdd"
,"vss"

>;
) ;

) ;

/* data path netlist description */
LOINS("ms__dp","mem_0","i[0]","elk","o[0]","vdd","vss", EOL);
LOINS ("ms_dp" , "mem_l11 , "i [1] " , "elk" , "o [1] " , "vdd" , "vss" , EOL) ;
LOINS("ms_dp","mem_2","i[2]","elk","o[2]","vdd","vss", EOL);
LOINS("ms_dp", "mem_3","i[3]" , "elk","o[3}", "vdd","vss", EOL);

/* save the model on disk */
SAVE_LOFIG(};

Set the environmental variables as shown below.

setenv MBK_CATA_LIB .;/alliacce/arch.i/r.iiniix_elf/cells/fplib:
/alliance/archi/Linujc^elf /cells /dplib:
/ al 1 ian.ee/arch.i/Liiiux_e If /cells /rsa:
/alliance/archi/Linux_elf/cells/sclib:
/alliance/archi/Linux_elf/cells/padlib

setenv KBK_IN_LO vst
setenv MBK_ODT_LO vst
setenv M3K_IH_PH ap
setenv MBK_OUT_PH ap
setenv MBK_WORK_LIB .

-v memory_us

Give the following command at the command line.

fpgen -v accuin

These commands generate the structural of the respective parts of the hierarchy.

Placement and Routing of the core

The core consisting of datapath elements, is routed using the data path router Dpr.
This tool can use some information from a <filename>.dpr file in order Lo customise the
resulting layout. By mean of this file it is possible to define the abutment-box, the width
of the power supplies tracks, the exact position of the connectors, etc. Type man dpr for a
detailed information on.

Create this small file called "accum.dpr". Enter the following and save the file.

DP_DEFAB -20 +20
DP POWER 0 10

Exercise 7, Adder Accumulator using Datapath Entities.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 200!

Now give the following command at the command line:

dpr -p -r accuir, acciim

"P
-r

placement option
routing option

The "accmn.ap" file is created which can be viewed with Graal.

Describing the Pads and Core using the Procedural Design Language

When the chip is described physically in Alliance, it consists of two separate parts that arc
brought together, the core and the pads. In Alliance, the core and the pads are brought
together in a C description file. This file when treated with Genlib, produces the
structural description of the chip with the pads. The pads are placed physically, one by
one in the C file. Placing the pads require the structural and functional knowledge of the
pads. One of the types of pads that is used in this example is the pvsseck_sp, a cell of
PAD-Lib, a library of pads provided with Alliance.

Give the following command at the command line to see a description of this pad.

man pvsseck_sp

The procedural description language is actually a set of C (unctions that allows you to
deseribc circuit objects like pads and the core and their connectivity.

Create, edit and save into the file "accumehip.c" the following:

itinciude <genlib
main{}
r

.n>

1

DEF_L0FIG ("accjinchip") ;
LOCON{
LOG OKI (
LOCON(
LOCON(
LOCON{
LOCON(
LOCON{
LOCON{
LOCON(
LOCON(

"a[3:0j",
"b[3:0]",
"y[3:Q]\
"eel", 'I'
" O k " , • ! • ,

"Ctrl", 'I
"vdde",'I
"vsse", ' I
"vdd",'I'
"vss",'I'

'I',"a[3:0]"}
rI',"b[3:0]">
'0',"y[3:0]">
, "sel");
"ck");
' , "Ctrl11) ;
',"vdde");
',"vsse">;
, "vdd11) ;
, "vs s") ;

Exercise 7, Adder Accumulator using Datapath Entities.

Seventh Course Oti Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

/* Instance of pads of the chip. The instance_name of the pads is the one
that is to be given to the Ring tool for it to understand the names for pad
placement on the chip. On passing this file through Genlib, a .vst file is
generated. This file has the output input and 10 pins as specified in the
above list. Asimut understands only these as the pins for simulation */

LOINS ("pvsse_sp", "Vss", "cki", "vdde", "vdd", "vsse", "vss", 0};
LOINS ("pvdde_sp", "Vdd", "cki", "vdde", "vdd", "vsse", "vss", 0};
LOINS ["pvssi_sp", "Vssi", "cki." , "vdde", "vdd", "vsse", "vss", 0} ;
LOINS ("pvddi_sp", "Vddi", "cki", "vdde", "vdd11, "vsse", "vss", 0) ;

LOINS("pi_sp","si","sel", "si" , "cki","vdde", "vdd", "vsse", "vss",0) ;
LOINS ! "pi_sp", "ct", "Ctrl", "ct", "cki", "vdde", "vdd", "vsse11, "vss" ,0) ;

LOINS("pck_sp", "elk", "ck", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS ("pvsseck sp", "elkcore",
"elkcore", "cki",
"vdde", "vdd", "vsse", "vss", 0) ;

","aO","a[O]","ina[0j","cki","vdde","vdd","vsse","vss",
" ,"al" ,"a[l]" ," ina[l j" ,"cki" ,"vdde","vdd","vsse" ,"vss" ,
", l:a2", "a [2] ", "ina[21 ", "cki", "vdde", "vdd", "vsse", "vss",
","a3","a[3]","ina[3]","cki","vdae","vdd","vsse","vss",

LOINSf"pi_sp","aO",
LOINSC'pi_sp -

LOINS ("pi_sp", "a3 ", "a [3] " , Elina[3] ", "cki", "vdde", "vdd", "vsse", "vss", 0)

0)
0)

sse", "vss", 0)

LOINS("pi_sp","bO","b[0]","inb[0]","cki","vdde","vdd","vsse","vss",C)
LOINS {"pi_sp", "bl", "b[l] ", "inb[l] ", "cki11, "vdde", "vdd", "vsse", "vss", 0}
LOINS {"pi__sp", "b2 ", "b[2] ", "inb[2] " , "cki", "vdde", "vdd", "vsse" , "vss", 0}
LOINS (llpi_sp", "b3", "b[3] ", °inb[3] " , "cki", "vdde", "vdd", "vsse", "vss'\0}

LOINS("po_sp","yO","out[0]","y[0]","cki","vdde","vdd","vase","vss",0)
LOINS ("po_sp" , "yl", rlout[l] ", "y [1] ", "cki", "vdde" , "vdd", "vsse", "vss ", 0)
LOINS("po_sp","y2","out[2]","y[2]","cki","vdde","vdd","vsse","vss",0)
LOINS("po_sp","y3","our[3]","y[3]","cki","vdde","vdd","vsse","vss",0)

/* The first name is the name of the .vst file that is to be used for
reference. The second name is the instance_name and can be anything. The
names that follow can be anything except that they should be in the same
order as in the .vst file. Bus signals should have the same dimensions.
Names given should be the inputs or outputs of other instances which means
tha'_ the block is physically connected to other blocks in the description
and is not left hanging •/

LOINS{"accum","core","vdd"
core","ct",0);

SAVE_LOFIGO ;

" v s s " , " i n a [3 : 0] ", " 1 ,"out[3:0] ", "si", "elk

genlib -v accumchip

This creates a "accumchip. vst" structural description file with pads.

Exercise 7, Adder Accumulator using Datapath Entities.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 200)

Test Pattern Generation and Simulation of the Structural Description

Write a pattern file for simulation and validation with Asimut.
Check that the adder accumulator performs satisfactorily.

Placing and routing the pads

Now the chip's pads and the core has to be connected together physically in a layout. This
is done by using Ring.

Edit and save the following in the file "accumchip.rin":

east (elk si bO bl b2 b3 }
souLh (aO al vssi a2 a3)
west (yO yl elkcore y2 y3)
north (vdd vddi ct vss)

This file describes the relative position of the pads on the four sides of the chip.

Give the command at the command line:

ring accuir.ohip accumchip

The "accumchip.ap" file is created that can be examined by using Graal.

Examine the layout using Graal.

Static Timing analysis

The "accumchip.ap" contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the layout
we use two tools, Lynx and Tas.
Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.
The file created by Lynx will be the input file for Tas.
Tas is a switch level timing analyser for CMOS circuits.
Give the following command at the command line:

setenv MBK_OUT_LO al

Exercise 7, Adder Accumulator using Datapath Entities.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

This tells that the output file should be in the ".al" (Alliance) format.

lynx -v -t accumchip accumchip

-v - verbose
-t - build the netlist to the transistor level.
first accumchip - take the "accumchip.ap" layout file as input.
second aecumchip generate the "accumchip.al" netlist file.
Give the following command at the command line:

g e t e n v MBK_IH_LO a l

This tells that the input file for Tas must be in the ".al" (Alliance) format,

tas -tec=/alliance/archi/Linux_eif/etc/pi"oll0.elp accumchip

-tec - selects the technology fiie prollO.elp.

Layout Extraction and Netlist Comparison

The "accumchip.ap" contains the layout information. However we do not know if the
physical description produced reflect the initial description. Therefore to check the layout
we use two tools. Lynx and Lvx.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.

For this you have to set some environmental variables. You have to specify the format in
which the extracted netlist is generated.

Set the environmental variable MBK_OUT_LO as shown below:

"M3K_0UT_LO a l

This tells that the output file should be in the ".al" (Alliance) format.

Give the command at the command line:

lynx -v -£ accumchip accumchip

-v - verbose
-f - asks Lynx to generate the netlist from the Standard-

cells level.
first aceumchip - Take the "accumchip.ap" layout file as input,
second accumchip - Generate the "accumchip.al" netlist file.
Lvx is a netlist comparison software that compares two netlists. Along with the
comparison it re-orders the interface terminals to produce a consistent netlist interface.

Exercise 7, Adder Accumulator using Datapath Entities. 10

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Give the command at the command line

lvx vst al accumchip a.ccumchip -i

-f - build the netlist to the standard cell level,
vst - take the first file in .vst format,
a) - take the second file in .al format,
first accumchip - "accumchip. vst" file,
second accumchip - "accumchip.al" file.

The comparison should not produce any errors. If errors arc produced by the program,
then there is some problem with the layout. The router has done something funny and
corrective action is to be taken at the layout level by studying the error messages.
The Lvx has also re-ordered and built the netlist in the ".al" to the standard cell format.
This file can be simulated using Asimut

Simulating the Extracted netlist file

The netlist file "accumchip.al" can be simulated using Asimut and the test vector file that
has been created to test the structural file "aceumchip.vst".

Give the following command at the command line:

setenv HBK_IH_LO al

to set the input file to the ".al" format, before doing the simulation using Asimut. Any
error during simulation means that you vvill have to retrace your steps back to find {jut the
source of the error.

Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires
the layout of the chip, described in terms of rectangles and layers in the gds or the cif
format. This can be done in Alliance, by using S2r.

Set the environmental variables, as shown below:

seLenv EDS_TECHNO_NAME /alliance/archi/Linux_elf/etc/prollO_7.rds

setenv RDS_0UT cif

secer.v RDS_IN cif

This chooses the l.Oum generic CMOS process whose technology file is the proUO.rds.
The output format of the chip is in cif format. The symbolic pads are replaced with their
real equivalent. The pads due to their technology dependence are maintained as a a/fi le
in the library.

Exercise 7, Adder Accumulator using Datapath Entities. 11

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Give the command:

s2r -cv accuinchip accuincliip

first accumchip
second accumchip

deletes connectors at the highest hierarchy. (Use
man to see Ml description)
verbose mode on

"accumchip.ap" file as input
"accumchip.cif file as output.

This completes the design of the adder accumulator chip.

Exercise 7, Adder Accumulator using Datapath Entities. 12

SEVENTH COURSE
ON

BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Project

Design of a Programmable Traffic Signal
Controller

Seventh Course On Basic VLSI Desigii Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

PROGRAMMABLE TRAFFIC SIGNAL CONTROLLER

INTRODUCTION

In any city, the streets constitute a complex urban network and there are many
"traffic signal" nodes in this network, in such a way that they put some order to the traffic
increasing the safety and the "efficiency". The concept of "efficiency" is not very well
defined, but everybody has an intuitive idea about what "traffic efficiency" means. To
define accurately what "Vehicular Traffic efficiency" is, it is important to establish what
the objective parameters are that permit to us to evaluate the quality of the vehicular
traffic. These are parameters that we should be able to measure. The problem doesn't
finish here because every individual interested in "efficiency" and "optimally" of the
network expects a different thing. For example if we take as parameter of quality of the
traffic like the average velocity of the cars in the urban network, the drivers would like it
to be high, but the pedestrians will like it to be low for security reasons. This example
shows that the problem is not only technical but also political, in the sense that a city
administration may decide the definition of optimum.

However, once a criterion is fixed to evaluate the quality of the vehicular traffic, it
is important to have the means to bring the traffic towards an optimal condition. Among
the means to reach that situation, we have the "traffic signal" (TS), the experiences of
which indicate its extreme importance. Then the quality of the vehicular traffic is
sensitive to how the "traffic signals" are configured. We will assume that configuration of
the "traffic signal lights", as the set of parameters that characterises completely the state
of the traffic signals of the network.

There are normally two modes in which the light traffic works. They are the
intermittent yellow and the cyclic mode that alternates between yellow, red and green. In
the last case, the colour is a periodic function of the time. We need four parameters to
characterise this function: the duration of each colour (3 parameters), and the phase of the
signal, e.g. the instant in which the yellow, for a determined street, starts.

We assume a simple traffic light (in the sense that it regulates only two crossing
streets) and of equal duration for yellow on the two streets. With this assumption, we
propose a "programmable light traffic controller". This device is capable of receiving
information containing the working mode and the colour's duration, which is updated
when a synchronisation signal arrives. This controller is capable of avoiding dangerous
and traumatic situations of discontinuity in the traffic. The instant at which syncro
(synchronisation signal) arrives, fixes the phase of the traffic light. With the signal
syncro, also arrive the working mode (mode) and the colour's duration: tyel, tred and
tgre (duration of yellow, red and green respectively).

Project. Design of a Programmable Traffic Signal Controller.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

We are looking for a device with the external ports as shown in Fig, 1. Table 1.
shows how the internal registers can be set-up for operation. Table 2. essentially gives the
output associated with each of the states of the state machine. The state machine flow
diagrams are described in the following pages.

syncro
ck
fck

timein

"D-

3

J-

ayel
ared
agre
bye!
bred
bgre
inty
write
vdd
vss

add res

Fig. 1. Possible pinout of the Programmable Traffic Controller Chip

FCK
L to H
L to H
LtoH
LtoH
LtoH

write
L
H
H
H
H

address
X
TO'
Dl'
'10'
'11'

tyel(7-0)
X

timein(7-0)
X
X
X

tred(7-0)
X
X

limcin(7-0)
X
X

tgre(7-O)
X
X
X

timein (7-0)
X

mode(l-O)
X
X
X
X

timcin(i-O)

Table 1. Setting up of the internal registers.

CK

LtoH
LtoH
LtoH
LtoH
LtoH
LtoH
LtoH
LtoH

MODE

TOT
t)0 '
GO'
T)0'
XX)'

Txr
'10'
'IT

STATE

fNTYEL

YELLOW

RED

REDJNT

REDYEL

GREEN

RED

GREEN

duration
(In number of

periods of
•do

permanent

tyel
tred
tyel
tyel
tgre

permanent

permanent

ayel

L
H
L
L
L
L
L
1

ared

L
L
H
H
H
L
H
L

agre

L
L
L
L
L
H
L
H

byel

L
L
L
L
H
L
L
L

bred

L
H
L
L
L
H
L
H

bgre

L
L
H
H
L
L
H
L

inty

H
L
L
L
L
L
L
L

Table 2. The outputs that are associated with each state

We will divide the complete architecture in three parts: (1) a synchronous variable
mod counter, (2) the registers of the data (times plus mode) controlled by an address

Project, Design of a Programmable Traffic Signal Controller. . 2

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 200 i

(address) and an external fast clock (fck), and (3) the logic part to control the state of the
lamps.
The Algorithmic Finite State Machine

We start with some definitions:

• The device has clock (ck) as input, its period will be taken as the unit of time in
which the duration will be expressed, and a fast clock (fck) used to introduce the data
into the internal registers.

• The state of the TS is defined by the state of each colour (ayel, ared, byel, bgre, etc.)
and its duration (timef).

• mode:(l downto 0), indicates the working mode.

mode <= W normal cyclic mode
mode <= X) 1' intermittent yellow
mode <= '10' permanent red (in a determined direction)
mode <= ' ! ! ' permanent green (in the same determined direction)

timef : (7 downto 0) , indicates the normal duration of the state. In some cases that
the FSM (finite state machine) goes into a new state, the counter is reset to zero
putting the signal cntreset = 'V . When the counter reaches the value of timef the
flag cntflag is raised (cntflag = '1') and this fact will be used to decide about the
change of the state. The values that timef can assume are: tyel, tred or tgre.

For the street A
ayel <= '1 ' means "on" , D'means "off
ared <= '1'means "on", '0'means "off
agre <= '1' means "on", t)J means "off"

The same for the street B with byel, bred and bgre
and for both streets
inty <= V means "on" , T)' means "off

For us the lights ayel , ared and agre are mutually exclusive (in Trieste the style is
ayel and agre at the same time slightly before the end of agre, and remains till the
end when the signal changes to red). The same for the other street. The signal intyel is
incompatible with the other lights.

The situation : agre <='V &. bgre <= 1'is absolutely forbidden.

The change from green to red must be done by means of an intermediate yellow

Project, Design of a Programmable Traffic Signal Controller. - 3

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

* Each time that the configuration is updated, the new parameters must be
simultaneously provided to the chip along with a syncro signal with duration of one
clock period (ck single pulse).

• There are six States of the Finite State Machine (SFSM) called: INTYEL, YELLOW,
RED, REDYELL, GREEN and REDINT. Tn each SFSM the colours have a specified
constant state ('on'or 'off), then they change only if the state changes.

fn the Fig. 2. below we represent the colours on each street, as a function of time,
with the different cases in which the synchronisation signal can arrive.

[Hired I green
\
\

! I

I yellow
current wave

d

b

street A Time

i i

" "7 -^ possible next wave

: GEEN

state of the traffic

i _j

YELLO\A

signal

" " I]

RED

r5EDYEL

Fig. 2. Timing Relation between the Traffic signals

In the following flow diagrams we represent with circles the name of each state
and within the lower rectangle the inherent constant values associated with each SFSM,
with diamond the conditionals and with T the actual direction when the condition is truth,
the same for F when the condition is false. The symbol:

c n t r e s e t i

Project, Design of a Programmable Traffic Signal Controller. _4

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

means that the internal signal cntreset takes instantaneously the value '1' when the
condition is reached, resetting the synchronous counter when the state changes. The
following flow diagrams show the transition conditions from each state:

State INTYEL:

INTYEL

inty <- 1
others <- 0

timef <=
agre <
bred <
others

tgre
= 1
= 1
<= 0

timef <- tyel
ayel <= 1

I bred <= 1
i others <- 0

timef <- tred
ared <= 1
bgre <- 1

others <= 0

The state INTYEL corresponds to the intermittent yellow for both directions and
will remain in such state until the signal syncro arrives together with the new working
mode. If the new mode is permanent green or permanent red then the state of the counter
is irrelevant. If the new mode is the normal cyclic mode then the new state will be yellow
and immediately before this change the counter must be reset to zero in order to control
the exact duration of the yellow state.

Project. Design of a Programmable Traffic Signal Controller.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

State YELLOW :

yellow

timef <= tyel
ayel <= 1
bred <= 1
others <= 0

t ime f < =
ared <
bgre <

others

tred
= 1
= 1
<= 0

timef <= tyel
ayel <= 1
bred <= 1
others <= 0

inty <= 1
others <= 0

timef <=
agre <=
bred <=
others <

tgre
1
1
= 0

If the machine is in the yellow state and the syncro signal arrives, with the normal
cyclic mode of operation, then the counter is reset to zero and the machine waits until the
cntflag arrives, so as to change to the red state. If the new mode is permanent red then, as
before, we put the counter to zero so as to be sure that at least the prescribed yellow
duration be granted.

Project, Design of a Programmable Traffic Signal Controller.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

State RED:

RED \

timef <- tred
ared <= 1
bgre <= 1
others <- 0

timef <- tyel
ared <= 1 ared <- 1
tayel <= 1 . j bgre <- 1
others <- 0 M others <= 0

i n t y <- 1
o t h e r s <= 0

In this state, if the first conditional is true, the machine cycles permanently in this
state. If the mode is different from "10" and the synchronisation signal (syncro) is not
present, then the machine waits for the cntflag so as to change to the state REDYEL,
while resetting the counter. If with the syncro, the normal cyclic mode arrives, then the
next state will be REDENT, i.e. a red state but with a duration of the yellow, in order to fit
the new "colour wave" without discontinuity, prolonging the actual state of the colours
(see Fig. 2. a).

Project, Design ol'a Programmable Traftic Signal Controller.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

State REDYEL:

REDYEL

timef <= tyel
ared <= 1
byel <= 1
others <= 0

timef <= tgre
agre <- 1
bred <= 1

others <= 0

timef <= tyel
ared <= 1
bgre <= 1

others <= 0

inty <= 1
others <= 0

timef <= tred
ared <= 1
bgre <= 1

others <= 0

timef <- tyel
ared <= 1
byel <= 1

others <- 0

In this state if the syncro signal is not present, then the machine waits for the
cntflag, changing to the green state after the prescribed period. If with the syncro, the
mode is TX)' (cyclic) then the next state will be REDINT (fitting the new wave) (See Fig.
2. b). If the new mode is permanent green then the state will be again REDYEL but with
the counter starting from zero (to grant the duration prescribed for the state REDYEL)
before the change to permanent green.

Project, Design of a Programmable Traffic Signal Controller.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

State GREEN:

GREEN

timef <= tgre |
green <= 1 j
bred <= 1
others <- 0

/ •

timef <-
ayel
bred
others

<=
<=

tyel
1
1

<= 0

inty <- 1
others <~ 0

Pioject. Design of a PrograrjoinabJe Traffic Signal Controller.

Seventh Course On Basic VLSI Design Teehniques Trieste-Italy, 29 Oct-23 Nov. 2001

State REDINT:

timef <= tyel
ared <- 1
bgre <= 1
others <= 0

timef <-
ared <
bgre <
others

tred
= 1
= 1
<= 0

timef <= tyel
ared <= 1
byel <= 1
others <= 0

inty <= 1
others <= 0

Project, Design of a Programmable Traffic Signal Controller.

