B | the
gducaﬂinal‘scimdﬁc abdus salam
or oo international centre for theoretical physics

301/1352

MCIROPROCESSOR LABORATORY SEVENTH COURSE
- ON
BASIC VLSI DESIGN TECHNIQUES

29 October - 23 November 2001

EXERCISES BOOK

This exercises book is intended only for distribution to participants.

strada costiera, | | - 34014 trieste italy - tel, +39 04022401 1| fax +39 040224163 - sci_infof@ictp.trieste.it - www.ictp.rieste,it

SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 QOctober- 23 November, 2001

Trieste, Italy

Exercise 1

Exploring a Chip Layout

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 200]

Exercise Description

In this cxercise you will edit a {ull chip layout with a specific Alliance tool called Graal. This tool allows
you to cxplore the layout of a chip seeing most of the standard layers needed by the designer to implement

a CMOS chip.

In this exercise you will

« Fdit a CMOS Chip layout.

s Identily the chip core and the ring of Pads.

s TFxplore the hierarchical structure of the layout.

s Explore the electrical connectivity of different layout elements.
¢ Edit a standard cell layoul.

s Recognise simple CMOS logic gates by inspeeling its fayout.

* (et used to invoke man pages of standard cells,

s

Exercise guide

Legend

l;“'s Giive the command that appear immediately after this symbol, at the conunand linc.

Explanation of a topic

Exercise 1, Exploring a chip layout. _ Page 1

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov, 2001

A VLSI chip is supposed to process information in a wide sense. To do that a large
number of transistors are built in and interconnected in order 1o handle the binary
information. A quantum of information is represented by a bit which can assume two
values oniy. Each of these values is physically represented by an clectric signal (voltage),
which assumes two values: Low or High. The logic-electrical clementary struciures are
the gates. The physical implementation of a logic gare is a circuit that “maps” a Boolean
operation. Some of the main characteristics of these gates are:

. Small area
Eagy interconnection
. High speed
. Low power consumption

These gates are designed Lo exchange information among them inside the chip, and then
they are not prepared (0 cxchange information with the external world in an efficient way.
A Llypical parasitic capacitance of an external chip connection is aboul 2 or 3 orders of
magnitude larger than a typical internal one. Somectimes there are input signals that are
spread inside the core of the chip, and due to this, the large associated parasitic
capacitance could degrade the signal at some critical point compromising the correct
behavior of the chip. As an example of this consider potential critical signals like “ser”,
“reset” ov “clock”. A correct handling of input output signals at chip level is mandatory in
order to ensure a correct functioning chip.

Alliance has a library (padlib) of specific cells Lo inlerface the core of the chip with the
cxternal world. These cells are Pad Drivers. There are dillcrent types of them according
to 1ts function like:

Input

oulput
input-outpit
power-supplics
clock.

. & & &

A common characteristic to all pad-drivers is that they have an uncover square piece of
metal (the pad) Tor bonding. The area of this square melal is typically ~100us x ~10{us.

The output drivers must be able Lo force fast electrical transitions between logic levels
Ioading big parasitic capacitance. During these transitions a large peak of current is
required from the power supplies and consequently the voltage of these power supply
lines can vary due to a non-zero resislance connection to the voltage source. Then the
voltage of the power supply lines for the drivers become dirty and it is not advisable o
use it to feed the core where many delicate elecurical transitions take cffect, Hence for the
core there are separate power supplies.

In alliance the distribution of power is [acilitated by mean of rings around the core. The
same strategy for one privileged signal {typically ¢lock, although could be any other). For
this signal there is a pad driver (pck_sp) which fakes the external signal to drive the ring
and another pad driver {pvsseck_sp) that takes the signal {rom the ring and drives it to the
core.

Lxercise 1, Exploring a chip layoul. Page 2

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

There are five concentric metallic rings: vdde & vsse for pad-dvivers, vddi & vssi for the
core, and the clock ring. All pad-drivers contain five piece of metal in order 10 generate
these rings when they are disposed all around the core. In a structural description this
means that at least {ive porls must be specified for any Pad-driver. '

Begin by creating a design direclory, at a convenient position in your workspace;

mlkdir chip-layout
Change into this directory:
od chip-layour

Copy in this directory the [ile chip.ap (The path of this file will be indicated by ihc tutors
in the Laboratory).

cp S<path>/chip.ap .

Now we can edit the layout of the chip with Graal, the Alliance hierarchical symbaolic
layout editor. Give the following command at the command line

graal &

Click on the fife section of the menv and then click open to load chip.ap. What is shown
is the top-level view of the symbeolic layout of a four-bit microprocessor.
Now you can play with the options and some of the tools from the menu. Here is 2 menu
list with some brief description of some of the tool you will need in this excreise.
File: open: o load an “.ap” filc.
quit: (o end the graal scssion.
Tools: peek (unpeek}: to show the layers,
Flat (unflat}: To eliminate one hierarchical level.
equi (ungeui): to render evident the clectrical connections.
real flat: to eliminate the hierarchical structure.
View: fit: to fit the layout in the windows.
zoom {in, out)- mooxz: To zoom in out,
arrows: to move according 1o the arrow direction.
layers: to show/hide specified laycrs.

Windows: Identify: (o identify cells, model, instance name, layers, etc.

For more information about Graal menu type

mwan graal

Exercise 1, Exploring a chip layout. Page 3

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

By inspecting the layout identify the core and the pads. Compare the pads trying to
recognize its functionality by mean of its connections with the metallic rings.
To do this see figure 1 and use the functions: flat, zoom-in, equi, layers, cte.

bonding wire to
the package pad

Bonding pads

V5§ Ting

vdde ring
e W—

vssing 1
vddiring 5 _ _]] pvsse_sp
clock ring
pvssisp
i po_sp
Doplsp
pvdde_sp
Pad-Drivers

LExercise 1, Exploring a chip layout. Page 4

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oci-23 Nov, 2001

Now you can load standard cells from the Alliance Standard Cell Library. Copy some
physical description files {<filename>.ap) from “/alliance/share/celis/selib” in to your
working directory. For example we can copy a simple inverter gate:

cp falliances/share/cells/sclib/ni_v.ap .

Copy also from the previous location the following files:

rol_y.ap two input nov gate

raZ_y.ap {wo input nand gate

a2_y.ap two input and gate

a2_y.ap two input or gate

Xr2_y.ap exclusive-or gate

me¥_Y.ap D-flip-flop with complementary outputs.

You can have more information about the previous cells by inveking the corresponding
man pages. Just type for example

man nol_y

Once you have edited the cell with Graal, use the "layer” tool to inspect the different
layers: diffusions, polysilicon gates, metals, vias, etc. Identify the P-MOS and N-MOS
transistors and how they are connected in order to perform iis logic function. Try several
standard cells till becoming familiar with them, and don’t forget to make extensive use
of the Alliance man pages.

RE =278

Exercise 1, Exploring a chip layout. Page §

SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 2

Design of a 2 to 4 Decoder chip

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov, 2001

Introduction

This first design example 1s a two to four linc decoder. It is presented to familiarize you with the
Alliance design environment and facilities. In doing this example you will:

e Describe the decoder behavior using VHDL language.

e Check syntax errors by passing it through Asimut.

e Write the test pattern file to test the decoder.

» Simulate the behavieral description using the pattern file by using Asimut.

e Synthesize the logic and structural descriptions using Bop and Scmap.

¢ Optimize the netlist using Glop.

» Use the standard cell router called Ser to place and route the core.

« Use Graal to see or edit the core layout.

e Add the necessary pads for the chip and compile using Genlib.

» Place the pads and generate the layout file using Ring.

e Anulyze timing delays using Tas.

» Extract back the behavioral description from the layout using Lynx, Lvx and Yagle.

¢ Use Proof to compare the original behavioral description and the extracted one to complete formal
verification.

s Use 82r to generate the “cit ” file ready for the foundry from the symbalic layout.

The design example consists of two phases. The first phase is to describe the behavior of the chip as is
seen at the pins of the chip. The second phase is to describe the functions of the core of the chip, and
then connect it to the pads.

In the first phase you will:

e Describe the decoder’s behavior using VHDL {dec2tod.vbe).

» Write a test pattern file (decZtod.pat).

e Simulate the behavioral description using the pattern file by using Asimut.

In the second phase you will:

» Describe the behavior of the core in VHDL as is seen inside the chip by the pads (decOcore.vbe).

e Synthesize the logic and structural descriptions using Bop and Scmap (decOcore.vst).

e Use Glop to optimize for critical path and fanout (decOopt.vst).

e Use the standard celi router called Ser to place and route the core (decOopt.ap).

o Add the necessary pads for the chip and compile using Genlib (decOchip.vst).

e Use Asimut to simulate the ‘decOchip.vst’ file using the pattern file ‘dec2to4.pat’.

» Place the pads and generate the layout of the chip with pads using Ring (decOchip.ap).

e Use Lynx to extract the netlist from the layout file *decOchip.ap’ {(decOchip.al).

» Use Tas to obtain static timing information.

e Use Lvx to compare the extracted circuit ‘decOchip.al’ and the original ‘decOchip.vst’ file created
by Genlib.
Use Yagle (o extract the behavior, ‘decOchip.vbe’ from the ‘decOchip.al’ netlist file.
Use Proof to compare the extracted behavior file, ‘decOchip.vbe’ and the behavioral file created in
the first phase, ‘dec2tod.vbe’. _

e Use 82r to generate the “cif ” filc ready for the foundry from the symbolic layout.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 1l

Seventh Course On Basic VLSI Design Techniques

Text Editor
Sehavicural
Gegcription
Decocer Chip

lext Editor
Patrtern
file

Text Editor
Behaviocural
descrintion

oI the core ‘

Trieste-Ttaly, 29 Oct-23 Nov. 2001

Genlidb language

Text Editor

Degoyiption of

- |
Text Editor :
Degeritpion of

. decOchip.rin |
decOchip.c

\/\\/\N_,| /r\ |
= CORE-

Relative

connectivity | Position

decltod .pat between | of Pads
decZtod.vbe declcore.vhe core & Pads :

bOP | '
s genlib |
.
Y | 1
L t1 £ [declcorel.vb 4 (declchi t (
CUCL .. Qe . o 21 .vhe ecllchlp.vE _—
NN

ring

W
l
-
(==)

e el

declzhip. ap

/ll) ____'___'___'_ I P — J— ———__ _/.
v a
_¥ Y
| [declcorel . vst (e ~
\ ; 1 1
|) G (e ()
i . I
I 3 i |
| I

] | declopt . vat

\ L
i . declchip.al | -

| _/’ll_ N f '\

| -

|

/- K {ff_ H
'| - o |
E I\?a?I;\ - \5 as./
I'\, 'I.,\ —

‘lHHHEHE"
declchip.vbe | -

cutx. pat

Fig 1. Design Flow for the Decoder Chip

Exercise 2, Design of 2 to 4 Decoder Chip.

Page 2

Seventh Course On Basic VLSI Design Techniques Trieste-Tlaly, 29 Oct-23 Nov. 2001

Decoder Chip

The example is a 2 to 4 decoder. The decoder’s function is summarized by the truth table
shown in Table 1. below. '

a b enable y0 yl y2 v3
X X 0 0 0 0 0
0 0 1 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 |

Table 1. Tmth Table for the 2 to 4 decoder.

a | i Vdd
b R
enable | R
e RS
Vss | HRE
Vsse || | vdde

Fig 2. Possible pinout of the decoder chip.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 3

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Legend
Give the command thatl appear immediately after this symbol, at the command line.

Edit and save into a file, all that appears after this symbol.

Explanation of a topic

Set the environmental variables as shown immediately after this symbol.

The text or picture following this symbol appears on the maonitor,

Creating the design

=

Begin by creating a design directory, at a convenienl position in your workspace:

mkdir decZtod

Change into this directory:

cd decdtod

Before starting the design you will have to set the cnvironmental variables as shown below so
that you will not run into problems laicr.

The MBK_CATA_LIB environmental variable tells the Alliance software, the paihs through
which it has to search for the cells thal are instantiated in the design. More details are available
in the man pages (man MBK_CATA_LIB).

The MBK_IN_L.O environmental variable sets the logical input format of the mbk database.
Details of the valid formats that can be used are available in the man pages {man MBK_IN_LO).
The MBK_OUT_LQO environmental variable sets the logical cutput format of the mbk data
structure. Details of the valid [ormats that can be used are available in the man pages (man
MBE_OUT_LO).

The MBK_IN_PH environmental variable sets the physical input formal of the mbk data
structure. Details of the valid formats that can be used are available in the man pages (man
MBK_IN_PH).

The MBK_QUT_PH environmental variable sets the physical output format of the mbk data
structure. Details of the valid formats that can be use are available in the man pages (man
MBK_OUT_PH}).

Exercise 2, Design of 2 to 4 Decoder Chip. Page 4

Seventh Course On Basic VLSI Design Technigues Trieste-Ftaly, 29 Oct-23 Nov, 2001

% seteny MEK_CATA_LIE .:/alliance/archi/Linux_elf/cells/sclib:
falliance/archi/Linux_elf/cells/padlib
getaeny MEE TN _LO wat
seteny MEE_OQUT_LO vst
setenv MBK, TW_7H =p
setenvy MEBE_QUT_PH ap
seteny MBK _WORE_LIB .

Many of the envircnmental variables needed during the Alliance practical exercises are set
automaticafly when you start your computer working session, A specific “login” file does it for
you. Nevertheless we insist in sculing all necessary environmental variables each lime it is
required by the tools in order to have a better conirol on the design flow.

Describing the chip behavior

‘T'he hehavioral description is done using a VHDL subset. Only concurrent siatements are
supported. No sequential statements are allowed. More details are available in the man pages
{man vbe), We begin our design by describing the behavior of the signals at the decoder chip
pins, as is described by the truth table above in Table 1.

Create with the "pice” editor (or any other text editor you prefer) a file called dec2to4.vbe, enter
the following data, and save the [ilc.

-- Port declaration of the simple 2 Lo 4 decoder
ENTITY decZic4 1S

PORT { A, B, enable, nc, vdd, vss, vdde, vsse ; in BIT ;
Y : out bit_vector (0 to 3));

end dec2iod;
ARCHITECTURE dEc2tod_data_flow OF dec2io4 IS

signal A_bar, B_bar ; bit;
signal al, a2, a3, a4 : bit;

hegin

A _bar<=not A ;
B_bar <=not B ;

al <= A_bar and B_bar and enable ;
a2 <= A_bar and B and enable ;

a3 <= A and B_bar and enable ;

ad <= A and B and enable ;

Y(0y<=al;
Y1y <=a2;
Y(2)<=a3;
Y(3} <= ad;

end DeC2tod_data_{low,

Exercise 2, Design of 2 to 4 Decoder Chip. Page 5

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Qct-23 Nov, 2001

Asimut is a logical simulation tcol (or hardware descriptions. It compiles and loads a VHDL
description, which may bc behavioral or structural. Only the VHDIL subset discussed above is
supported. Information on Asimut’s command line paramelers, options, environmental variables
required are available in the man pages {man asimut).

Any typographical or syntax error in a behavioral description can be found when the [le 1s
passed through Asimut.

Give the following command at the command line:
gaimut -b -c declicd
-b - behavioral option

- - compile

The following is typically displayed.

[cicutiin@mlab-42]% asinmut -b -¢ deciod

3 EEER B a HAREOLAE AT
[=] =] dag # #i &
ERE ER> @ @ = ad ®
BEE HHE dad A5 £/ EHE PEAE 2@
[T HHEdE aags E@dH BR & 3 BE 2
woai BRad 2] #00 A 98 BE BE Hi é
a 23 Bag [35] w3 Fd ag BE [E] BE 3
gdz@aaz E B ek #1 ER ag B 2] 2 £
@ AR R 13 0 #EBE @l i B85 wE
o) AW pEE =) ag HE OEE WA ag BRE Ee
1222 dREE B RERE BEAEE: A80s Al Jad ERER 2@ BUFRTL

A SIMUlation Tool

Alliance CAD System 3.2b, asimut v2.01
Copyright (¢) 1991-199%, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lipé, ir

Paris, France, Burope, Earth, Solar system, Milky Way, ...
Initializing ...
Searching “decZiod” ...
BEH : Compiling “dec2tod.vbe™ (Behaviour) ...
Making GEX ...

[eicuttin@miab-421%

Creating the test pattern for simulation

pa

It the above step fanctions with out giving syntax errors then the behavioral description is ready
for simulation.

Exercise 2, Design of 2 to 4 Deceder Chip. Page 6

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

A file with the test patterns in the pat format is required for the simulation, The pat format file
has a declaration part and a description part of the signals. The declaration part consists of a list
of inputs, outputs, internal signals and registers of the design. inputs arc forced to a particular
value while the outputs are observed during a simulation.

Create a test pattern file called dec2tod pat, editing the following as is:

-- description genetated by Pal driver v104
-- date : Sep 12 12:55:24 1699
- sequence : dec2tod

-- input / output list :

in vdd B;
in vss Biugs
in aB;

in b B;;

in cnablec B;;;
out vy (3 downto 0) B;;;

begin
-- Pattern description :

-- vv abe ¥

— ds n

- ds a

- b

— i

- e
210 G0 O 0000
100 01 0 0000
10 10 O 0000
10 11 0 10000
210 10 0 0000 .
1 00 1 0001,
(10 01 1 0010 .
10 10 1 0100 .
210 11 1 71000
10 11 0 000G .

end;

In the previous file, lines starting with “--* are comments. In next exercises we will see a more powerful procedure
L senerate larger patlern files.

Exercise 2, Design of 2 to 4 Decoder Chip. Pagc 7

Seventh Course On Basic VLSI Design Techniques

Simulating the behavioral description

=

Trieste-Italy, 29 Oct-23 Nov. 2001

Give the following command at the prompl o start simulating

asimat -b decitod decZtod ocutl

b -
first dec2iod -
second dec2tod -
outl -

The tollowing screen is typically displayed.

chooses the behavioral simulation option
dec2tod . vhe

dec2to4.pat

simulation result in outl.pat

{cicuttin@mlab-421% asimut -b dec2tod dec2tod outl

@ Bdpg @ &
% i 2E 2308
BER =23 =} &
BER =leyE) BRI 8 2aE
@ Bg HEEE WaE 2R 223 2@
[L] DEHE a5 2Ed @@ &8
[aa a8 aE BE E2d w4
LG R) HE £ Bid o Ad ga
2 @ J@ Ha [ch Hid 38 £a
3 8@ FddE G % By 2E ER
AEEE @RAH B g NERFEE AREE 2Re SR

A SiMUlation Tool

Alliance CAD Systern 3.2h,

Coepyright (¢} 1991-1599,

aEe

k] we
oA Bz
Ba aa
aa ag
[=27] @g
@g AdH
adaR ag

HEEE

BERARERERE
B %

i ag =3

2E2ERE

agirmad v2.01
ASIM/LIPS/GPMC

E-muail support: alliance-supporl @asinip6. fr

Paris, France, Europe, Barth. Solar system, Milky Way, ...

Initializing ...
Scarching ‘dec2tod® ...

BEH : Compiling *decZtod.vbe® { Behaviour) ...

Making GEX ...

Searching pattern file ; ‘dec2to4” ...
Restoring ...

Linking ...

- processing pattern O ----- i
- processing pattcrn | ——-###
##H---— processing pattern 2 --—--—HH
- processing pattern 3 -
#i#H-——-- processing pattern 4 -~ #HH
#HE--—- processing pattern 5 -—---H#
##E-—-- processing patiern 6 —-—#R#
#HH - processing pattern 7 ---—-#H#
HtH- - processing pattern 8 ----- ST
H#HHE----- processing pattern 9 -~
feicutuin@mlab-42]%

Exercise 2, Design of 2 to 4 Decoder Chip.

Page §

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

You can see the simulation result in the file outl.pat. To see this file give (he following command
at the command prompl.

o=

more outl.pat

Describing the core of the chip

The hehavioral lile “dee2tod.vhe™ is the description of the decoder as is seen at the pins of the
chip. We have not thought about the pads that drive the pins. When the chip is described
physically in Alliance, it consists if two separate parts thal are brought together, the core and the
pads. In Alliance, the core and the pads are brought together in a C description file. This file
when treated with Genlib, produces the structural description of the chip with the pads, In
praciice, the core can be synthesized avtomalically from a behavioral descriplion, whereas the
pads should be placed physically, one by one in the C file. Placing the pads require the structural
knowledge of the pads. Onc of the type of pads that is used in this cxample is the po_sp output
pad,

Give the following command at the command line to see a description of this pad,

man po_sp
Behavioral Description of the Core

We can now describe the core in such a way, we get at the outputs of the chip.

Copy the file “dec2to4.vbe” (o the file “decOcore.vbe” and edit it as shown below. Read the

comments carefully,

-~ Port declaration of the simple 2 to 4 decoder

ENTITY decZiod IS
PORT (A, B, enable, vdd, vss:in BIT; —- <--nc, vdde and Vsse have been
removed

Y : out bit_vector (3 to 3)); ~— <=-=-gince the core does not need them
end decZtod;

ARCHITECTURE dEc2to4_data_{low OF dec2tod IS

signal A_bar, B_bar : bit ;
signal al, a2, a3, a4 : bit;

begin

A_bar<=notA;
B bar<=not B ;

al <= A_bar and B_bar and cnable ;
a2 <= A_bar and B and enable

a3 <= A and B_bar and ¢nable ;

a4 <= A and B and enable ;

Exercise 2, Design of 2 to 4 Decoder Chip. Page 9

Seventh Course On Basic VLS1 Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

Y{0) <= al;
Y{1) <= a2,
Y{(2) <= 2a3;
Y{3) <= a4,

end DeC2tod_data_flow;

Synthesizing the logic and the structure

"The file decOcore.vbe describes the behavior of the core in VHDL language, that is at the highest
available level. From this file it is possible to start a synthesis procedure towards lower levels of
description. 'I'he first step is to generaic an equivalent tile but in terms of Boolean expressions,
performing at the same time some optimization regarding number of Boolean operator, number
of intermediate signals, eic. To do this we use Bop, a Boolean optimizer, which takes the file
decOcore.vbe to create the new decOcorcl.vbe, that is still a behavioral description. There are
mainly two kind of available optimizations; global and local, and can be choose with an
appropriate option. Dctailed information on Bop is available in the man pages (man bop).

—

bop -2 decleore declcorel

-0 - option for global optimization
decOcore - decOcore.vbe {(input file)
decOcorel - decCcorel.vbe {output file)

The following is typically displayed:

[cicuttin@mlab-42]% bop —o decleore declcorel

ded drd
c]e) ae @@
ae ad @
@d as ae 9@ @@gg da@e
gEe @3 @e 8@ @ge ee
@@ @g @@ e @ge @a
@d gd aeg e ge @a
ed 2e @e @ ae @a
g g2 ed @e @ @a
gae &a de g@ gag ce
deg @ SHE @ age
E1C
gede

Boolean OPtimizaticn

Alhanice CAD System 3.2b, bop 4.20 [1997/10/09]
Copyright {¢) 1990-1999, ASIM/LIP&/UPMC
E-mait support: alliance-support@ashm,lip6. fr

wwmw= invironment

MBK_WORK_LIB =
MBK_CATA_LIB = :/alliance/archi/Linux_ellfeclis/sclib:/alliance/archi/Linux_elffcells/padlib
Files, Options and Parameters

YHDI. file = decOcore.vhe

Exercise 2, Desiegn of 2 to 4 Decoder Chip. Page 10

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

vuinut [ile = declcorel.vbe
Purameter file = default.lax
Mesde = (Global optimization

Opuimization mode = 50% area - 50% delay optimization
Optmmizanon level =2

Compiling decOcore’ ...

Running abl ordonnancer on ‘dec2tod”

Running AbiZBdd on ‘dec2tod’
---= Final number of nodes = 13(9)

Running Global Optimizer on ‘decZiod’

INITIAL COST
Total number of literals =12
Number of reduced literals = 18
Number of latches =0
Maximum logical depth =2
Maximom delay = 1.000

FINAL {OST

Toltal number of literals =12
Number of reduced literals = 12
Number of latches =0
Maximum logical depth =2
Maximum dclay = 1.000

BEH : Saving decOcorel’ in a vhdl file (vbe)

[cicutiin@mlab-42]3%

The second step is the synihesis of the structural view of the circuit. The structural description
consists in a set of elementary interconnected blocks. At this level must be describe which blocks
arc used and how they are connected each other {(gate network). The behavior of each block is
supposed to be known, Tn our case since the circuit is very simple, we map with the Alliance
standard cell library. This is performed by Semap which can accomplish (urther optimization.
Detailed information on Scmap is available in the man pages (man scmap). To pass from the
optimized behavioral decUcorel.vbe 1o the structural decOcore.vst, give the following command
at the command promp.

acmap declcorel declcore

Exercise 2, Design of 2 to 4 Deceder Chip. Page 11

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

The following is typically displayed:

icicuttin®@ mlab-421% scmap declcorel decOcore

232¢ 2 2222 2
@ 2% 2% ae
@@ 2 g4 @
elete) ae @ 2e@ @¢ 33 @aae ¢
2064 ag @ge & 28 Qe & @ e
@233 a4 @@ 8% @3 @@ 44 48 B2
gee ag @@ @ 22 gapga a4z 2@
2 4@ HE aE @E a4 agd aa aE BE
) aa ad @ @@ 2§ 22 e a8 Ge 1]
(1t} 2 aa B8 @@ @R 29 @@ @@d dAg% ee
2 @ass 22338 GREE GEE 243 Q@I BF @2 ReEe
ag
agaea
Mapping Standard Cells
Alliance CAD System 3.2b, scmap 4.20 [1997/10/09]
Copyright (¢) 1990-1999, ASIM/LIP6/TPMC
E-mail support: alliance-support@asim lip6.fr
Environmeni
MBK_WORK_LIB =,
MBK_CATA_LIB = .:fallizmcefarchiﬂ_inux_elﬂce]islsdib:falliancefarchi;‘Linux_eIffcei.l.slpadlib
MEBEK_TARGET LIB = /alliancefarchi/Linux_elffcetls/sciib
MBK_IN_1.O = vst
MBEK _OUT_LO = vsl
Files, Options and Parameters
YVHIDL file = decllcorel vhe
output file = declicore.vst
Parameter file = defauit.lax
Mode = Mapning standard cell

Optimization mode = 50% ured - 30% delay optimization
Optimization fevel =2

Compiling decOcorel’ ...
Running Standard Cell Mapping

INTTIAL COST ====
Total number of literals =12
Number of reduced literals = 12
Number of lalches =0
Maxinmum fogical depth =2
Maximur: delay = 1.0GO

Exercise 2, Pesign of 2 to 4 Decoder Chip. Page 12

Seventh Course On Basic VLS Design Techniques

Trieste-Taly, 29 Oct-23 Nov. 2001

Compiling library Yalliance/archi/Linux_clleelis/sclib’
Generating Expert System ..,
Cell cmx2_y" Unused

Celf ery_y’ Unused

Cell sum_y’ Unused

Cell tic_y’ Unused

162 rules generated

Number of cells used =3
Number of gates used =7
Nugsber of mverters =3

Number of grids

= 6352

Depth max. {gates} =2
(eq. neg. gates} =2

FINAL COST

MBK Driving “/decOcore.vst'...

[cicuitin@miab-42]8

=

The structural description file generaled by Scmap can be cxamined by giving the Unix “more”

command:

more declcore.vat

Using Asimut to simulate the structural description

You can do the simulation with the structural description with the same pattern files that are used

tor the behavioral description.

To do the simulation on the structural description, give the following command at the command

prompt.

agimut declcore decZtod rl

ne option -
decCeore -
dec2iod -
r3 -

lakes the structural description by default
decZtodcorel,vst

dec2tod.pat

result ol simulation in r3.pat

The following screen is typically displayed

Lxercise 2, Design of 2 to 4 Decoder Chip.

Page 13

Seventh Course On Basic VLST Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

fcicuitin@mlab-421% asinng dec2todcorel dec2tod 13

@ faga 2 & BREERGHGAS

@ @ 53 R B A &

AdR " i & @ =173 2}
Elnt) ALE 223 @8 =iy BEA @daga =13
[ER.1% AR2EE BEEE 2@8 M8 ©e a3 23 BiE
[E-Y BagE £33 @e AR Ga a8 28] Bid
Wi HEG 25 g8 =R ag 2a 3] i
ARFAARE @ = HLE 2d B3 as [£%) 2] 2@
@ 23 Bl 213 2 E A8 gR g3 22 =13
@ B RAR #) PRoER RE Ba lete] A

@ﬁd@ [E520% RN Y1 @Gé%@@ 2238 BaF And BERA BE RAAZRE
A SIMUlation Tool

Alliance TAD System 3.2b, astmut v2.01
Copyright 1) 1991-1999, ASIM/LIPO/UIPMC
E-mail support: alliance-support@asim lip6 fr

Paris, France, Europe. Barth, Solar system, Mitky Way, ...
Initializing ...

Searching “decOcore” ...

Compiling ‘declicore” (Structural} ...

Flattening the root figure ...

Searching “a3_y° ...
BEH : Compiling "a3_y.vbe® (Behaviour) ...
Making GEX ...

Searching no3_y" ...
BEH : Compiling ‘nod_y.vbhe* (Behaviour) ...
Making GEX ..

Searching 'nt_y" ..
BEIH : Compiling 'nl_y.vbe® (Behaviour) ...
Making GEX ...

Searching pattern file : *decZtod” ...
Restoring ...

Linking ...

HH- - processing pattern £ -——-- HHH
#HHE---- processing pattern 1 - HHHE
##it----- processing patterny 2 - HiHt
- processing pattern 3~ H
oo processing pattern 4 ----- ik
#H-—- processing pattern 5 --—-##
#H#E---—- processing patlern & -4
e prOCessing pattern 7 -
- - processing patlern 8 -4
#h#----- processing pattern 9 --.-- HHE

[cicnttin@miabh-4215

Optimizing for Fanout and Timing

The structural description created above has been created without worrying about the standard”
cells fanout limits and critical path signals. Glop can analyze the structural description and create

Excrcise 2, Design of 2 10 4 Decoder Chip. Page 14

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

a new description by adding buffers to the appropriate nets so as to solve fanout problems and to
optimize on signal delays. Detailed information on Glop is available in the man pages (man
glop). Give the command:

=

glop -g decloore declopt -1 -t

-g invokes a iming optimization.

decOcore - decOcore.vst input file

decOopt decopt.vst output file

-1 gives fanout information about the gate netlisi.
-t gives liming information about the gate netlist.

The following is typically displayed.

[cicuttin@milab-421% glop -g decOcore dectopt -1 —t

@eee @ asda BuE
g ag ag H@
@a a aa @i
Ba @a @@ ARE ARG
aa @@ Qe 2g
2 joRedeing jekcy ag HiE
ag ae 2
g @@ as
a@ ag @@
a4 ag &g
aEaaas 2eE

Gate Level OPtimizer

Alliance CAID Svstem 3.2b, glop 4.20 [1997/10/09]
Copyright (¢) 1990-1999, ASIM/LIP&/UPMC
E-mail support: alliance-support@asim. lip6.[r

Environnement
MBK_WORK_LIB =.
MBK_CATA_LIB = . Jalliancefurchi/t.inux_elf/cells/sclib/alliance/archi/Linux_elf/cells/padlib
Files, Options and Parameters
Netlist file = declcore.vst
Output file = dechopl.vst
Parameters file = default.lax
Mode = global oplimization with timing analysis

Loading decOcore...
Flattening decOcore...
Loading models ... in /alliance/archi/Linux_elffcells/sclib
3 maodels - 7 cells - 6552 pitchs
Criticat path UP = 2486 ps
from external connector enable
Lo external connector y
[enablel->auxsc3->y_0-=[y 0]
=> 7 gates

Critical path DOWN = 2407 ps
from external connector caable

Exercise 2, Design of 2 10 4 Decoder Chip. Page 15

Seventh Course On Basic VLST Design Techniques

to exiernal connector v |
lenable]->auxse3->y_1->[y 1}
= 2 gales

Power Gale Optinnization
==> Model to use for y_3 [a3_y] : adp_v

Timning Analysis : Delay UP 2498 (y_() - Delay DW 2432 (v_1)

1 repowered gates

Critical path UP = 2498 ps
from external connector caable
to external connector y G
[enable]-=aaxsc3->y_0->fy (]
=> 2 gates

Critical path DOWN = 2432 ps
from external connector enable
ks extlernal connector y |
[enzile]-=auxscd-=y_1->[v 1]
=> 1 gates

Buffer Optirnization

0 inserted bulfers

Critical path UP =2498 ps
from external connector enable
to external connector y 0
[enable]->auxsc3->y_0->[v 0]
=> 2 gates

Critical path DOWN = 2432 ps
from external connector enable
t0 external connector y |
fenable]->auxse3-»y_T->ly 1]
== 2 gates

NO_FACTGR = 1201
3 models - 7 cells - 6552 pitchs

Saving J/declopt...

Trieste-Ttaly, 29 Qct-23 Nov. 2001

This cominand takes “decOcore.vst” structural description and generates a “decOopt.vst” file after
buffers have been added to the critical paths. We can run Glop again, this time with the option —f
to optimize the critical path and the cells interface. Give the command:

glon -f declopt declopt

-f invokes the fanout optimization option.
decOopt decOopt.vst structural file to be modified.

The following is typically displayed.

Excreise 2, Design of 2 to 4 Decoder Chip. Page 16

Seventh Course On Basic VLSI Design Techniques Trieste-1taly, 29 Oct-23 Nov. 2001

[clenttin@ miab-4218 glop -f declopt decGopt

agaa @
[ElES @E
2 a
ag
2
aa agaaag
ag 2 ag
2d 2 g
2 [1el
aa ag
agaa

AREE aga
@i g ag
AE a3 @i
Qe aa @ Q2 AR
GE Q@ @@ @@@ @g
g 2 92 @ aa
gz aa 28 @a a@
2¢ @a eE @d aa
&% a@ e aa @a
Qe @ e gea aa
AAGEEE a@a Qe @aa
ae
agaa

Gate Level OPtimizer

Alliance CAD System 3.2h, glop 4.2 | 1997/10/(9]
ASIM/LIPG/UPMC
E-mail support: alliance-support@asim, lipé. fr

Copyright (cy 1990-1999,

MBK_WORK_LIB =.

Tinvironnement ==—————————cm———mm————

MBK_CATA LIB = .Jfulliance/archi/Linux_elf/celis/sclib:/alliance/archi/Linux_el/cels/padlib
Files, Options and Parameiers

Netlist file = decOcore. vat

Output file = decCopt.vst

Parameters file = default.]ax

Mode = local optimization with max lanout

Loading decleore...
Flattening declcore...

Loading models ... in falliancefarchi/Linux_elf/cells/sclib

3 models - 7 cells - 6552 pitchs

==> BUFFER added after b : netopil6 [pl_y / arca = 736}
swz> BUFFER added afler a @ notopil7 [pl_y / areu = 736]
4 models - 9 cells - 8064 pitchs (+23.08 %)

Saving J/fdeclopt...

Generation of statistics file @ /decOopt.stat

[cicuttin@mlab-421%

Using the Standard Cell Router Scr

The Standard Cell Router Scr is used to place and route the cells of the corc. By doing this we
synthesize a physical description of the core from the structural view More information on Ser is
available in the man pages (man scr).. This (ool takes the structural file decQopt.vst and generates
the physical file decOoptap. The extension “ap” stands for the Alliance internal physical format,
this format is described in man pages (man ap). Type the following cormmand.

sor -p o-r -1 3 -1 5000

_p -
_T -
-l _
i -

decOopt -

dec(opt

invokes the automatic placement process.

invokes the automatic routing process.

allows the designer to set the number of rows,
iteration number (to improve the placement quality),
input (vst) filename, and output {ap) filename.

Exercisc 2, Design of 2 to 4 Decoder Chip.

Page 17

Seventh Course On Basic VLSI Design Technigues

The following is typically displayed.

[cicuttin@idab-42 % sor -p -r -1 3 -1 3000 decOopt

gege @ Jges @ dgdedas
@ /g Bz 28 2 @e
ey ! ae @ @@ e
giEd 2@ g ag e3c
CIECC] ed @ @ge
gege 2a degea
gEg @d ge @e
2 2@ Qe ae 2@
E1E gg @e d ae ae
gae g aad @i ae e
@ Qegd gzag geeee gEa
Standard Cell router
Alliance CAD System 3.2b, ser 5.2
Copyright {c) 1991-1999, ASIM/LIP6/UPMC

E-mail support: alliance-support@asim. lip6.1t

Loading {ogical view : decOopt

Placing logical view : decOopt

Louding SCP data basc ...

Generating initial placement ...

9 cells 14 nets in 3 rows

Placement in process of treatment ; 1009

5% saved in 13.1 5

Saving placement 100%

Checking consistency belween logical and physical views
Loading SCR data base ...

Deleting MBK data base ...

Global routing ..
Channel routing ...

I Routing Channel :
I Routing Channel .

I Routing Channel :

scr_p2

ser_pd

ser, pb

""" ser_pR
Making vertical power and ground wires
Saving layouat : declopt
[cicutin@mlah-421%

Using the symbolic layout editor
To see the core layout, “decQopt.ap” we use Graal a symbolic layout editor.
Give the command

-

graal

Trieste-Ilaly, 29 Oct-23 Nov, 2001

A new window is opened. Choose the File menu from the menu bar and choose the open option
from the menu that pops up. Another sub window inside the main window will be opened. In this
window the files with the extension .ap will be listed. Choose the decOopt.ap file and press the
ok buiton. The layout will appear on the screen, but only at the standard cell level. Now you can
choose the Tool option from the menu bar and from the pop-up menu choose the peck option.
Now with the mouse mark the window where you want to “peek” at the layout. If the whole
layout is “peek”ed typically you will see the layout as shown below:

Exercise 2, Design of 2 to 4 Deceder Chip.

Page 18

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Now the core is ready (o be connceeted (o the pads, which interface the heart of the chip to the
outside environment.

Here we require to edit two files one with extension “.¢” and the other with “rin”

Create a file with the text editor called “decOchip.c” and enter the following;

#include <genlib h>

maind)

{
DEF_LOFIG{"dccOchip™);

ILOCONCA", IN, "A" % /*input B *
LOCON("B", IN, "B");/®input A*/
LOCON("NC", 1IN, "NC" Y /™ notconnected */
LOCON("enable”, IN, "enable”); /* input enable */
LOCON("vdd", IN, "vdd" }; /* core power supply */
LOCON({"vss", IN, "vss") /* core ground *f
LOCON("vdde", IN, "vdde" } /* pads power supply */
LOCON{"vsse", IN, "wsse" }; /* pads ground #/
LOCON("Y[0:3]", OUT, "Y[(:3]") /* output =f
* power supplies:
pxxxe_sp are external power supplics, ie used only by the buffers inside the pads.

Exercise 2, Design of 2 10 4 Decoder Chip. Page 19

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 28 Qct-23 Nov. 2001

pxxxi_sp are internal power supplics, for core logic only. *f
LOINS ("pvsse_sp", "pl6", "cki”, "vdde", "vdd", "vsse", "vss”, 0);
LOINS ("pvdde_sp", "p207, "cki", "vdde", "vdd", "vsse", "vss", O,

LOINS ("pvssi_sp”. "p18", "cki", "vddc", "vdd", "vsse", "vss", 0);
LOINS ("pvddi_sp", "pl19", "cki”, "vdde", "vdd", "vsse", "vss",);

LOINS("pck_sp","NCpad","NC","Cki","\’dde","Vdd","VSSG","VSS",U);
LO]NS("Pi_Sp", "p12”, "Cl’l‘dbien, "en", "Cki", "Vddﬁn, "Vdd", "\-"SSQ,", "vss", 0),

LOINS("pi_Sp", |1p]3||, lrall, ”a.a", nckilr, "Vdde", ”Vdd”, "\-’SSE", IIVSSII', U);
LOINS(Npi__Sp", np14n, l|b|r= "bb", ”Cki", "\"dde“, "Vdd", "VSSC", NVSS", 0);

LOINS("pe_sp”, "p0", "yy[0]", "y[0]", "cki", "vdde", "vdd", "vsse", "vss", 0};
LOINS("po_sp", "pI", "yy[11". "y[17", "cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("po_sp", "p2", "yy[2]", "y[2]", "cki", "vdde", "vdd", “vsse", "vss", O);
LOINS("po_sp”, "p3", "yy[3]1", "y13]", "cki", "vddc", "vdd", "vsse", "vss", O}

LOINS("decOopt”, "core", "aa", "bb", "en", "vdd", "vss", "yy[0:3]", 0);

SAVE_LOFIG();
exit(0);

Exercise 2, Design of 2 to 4 Decoder Chip. Page 20

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

This file describes the external chip pins, and the conneclivity between the pads and the core. Tt
is written in the Genlib procedural language, which is basically a set of C macro functions. The
connection between the pads and the core is described in this language using the Netlist capture
macro functions. More details on Genlib and related macro functions can be obtained from the
man pages {man genlib).

Now give the [ollowing command at the command line;

l;\g; genlib —v decbebip

The following screen is typically generated.

[cleultin@sniab-4218 genlib -v decOchip

de@e @ gpeaee @ gaeg
e3cy @ 2 gae @ae
Qi @ aa @ @ee
@ gagrd QEER @8s 3¢ @@ agd
@ @ e gaae 2 @ aege @ag @ge
@ QEgEEe @@ e @a HE EXE] a4 ae ge
@e @ @@ QRERUEREEE &8 gg @e ae G@ ae
aeE @ g@ @8 ae ag ae ae Exed 2ae
CIE g @d @ @@ 2& 2@ @ ae @e ae
ad @ ae e @@ gg GE) @ @ ceg @e
aree @ege QEEE C2EE CEERCACREE GERREEE @RE e

Procedoral Generation Langusage

Alliance CAD System 3.2b, genlih 3.3
Copyright (¢} 1991-1999, ASIM/LIPGATPMC
E-mail support: aliiance-support@asim lip6.ir

Generazing the Makefile
Compiling, ...

Current execulion environmeni
MBK_CATA_LI5 : . Jalliancefarchi/Linux_eli/cells/sclib/alliance/archi/Linux_elffcells/padiib
MBK_WORK_LIB

MBK IN LO :wst
MBEK_CGUT_LL vst
MBK_IN_PH :ap

MBK OUT_PH :ap
MBK_CATAL NAME : CATAL
Executing ...

Removing tmp files ...

{cicuttin@mlab-421%

This generates the structural description file decOchip.vst, which has the core and the pads put
Logether.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 21

Seventh Course On Basic VLSI Design Techniques Tricste-Ttaly, 29 Oct-23 Nov, 2001

Simulating the completed chip

—

The chip with the pads can be simulated with the original pattern file. The pads need a separalc
ground and power supply, then two pins of the chip provides these specific signals. The fite
dec2iod.pat can be used 1o test the structural view of the chip but as it is does not provide the
stimulus to the signals vdde and vsse needed by the pads. Thus warning messages could appear
telling something like “power supply is missing on po_sp”.

agimut declchip decZtod rS

no option - lakes the structural deseription {.vst) by default
decOchip - decOchip.vst

decZiod - dec2tod.pat

s - r5.pal simulation result file

Now check the output file r3.pat by using the more command.

Placing and routing the pads

Now the chip’s pads and the core has to be connected together physically in a layout. The
physical placement and routing of the core to the pads is done by using Ring. The relative
positicn of the pads on the four sides of the chip is described in a “rin” file. For more
information on Ring and its capabilities, see the man pages (man ring).

Edit a file called “decOchip.rin” and enter the following as is:

width (vdd 20 vss 20)
west (p0 pl19 p23)
north (pl p2 p3)

east (pl4d pl3 pl6)

south (pl12 p13 NCpad)

Now give the command:

ring declOcaip decbchip

The lollowing is typically displayed.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 22

Seventh Course On Basic VILS1 Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

[ciautrzin@nlab-42]35 ring decfchip declchip

BEREERS @ gaga @
ae @a jelcle] ag @a
ae ag @ @a @
2@ EXe] 2@e ead E1es
ale) 2@ FEHg agd @ ge
deeed ha @g @g ae 24degd
ag Qe 1) 2a #g ae & ag
ae de 1 @Ba a8 4 g2 @a
ad e 2@ elel o el 2@
@ g @@ ae B4 ge ed

geele HEE QREERE JEEE HRE8 @EEE

PAD ring router

mlliance CAD Svyvstem 3.2b, ring 2.9
Copyright {o) 1993-1699, ASTIM/LIPE/ULLC
E-mail support: aliliance-support@asim,lipb. fr

Q

reading netliats, layout views of core and pads.

reading file of parameters, including the placements of pads.
making equipotential list.

making the first placement of Dadg.

£illing dave internal structw
rezading bhe connectors posgitions of the core.
compuiting the best placement ©f the pads.
reading Lhe conmectors positions cof the pads.
routing deportation of connectors.

routing supply tracks.

routing eguipotentials.

compressing channels.

saving in MBK data structure.

iucky, ncoc error.

[cicuttin@mlab-4213

0o

O

g

Q0000000

As before with Graal you can see the complete chip file “decOchip.ap”.

Statjc Timing analysis

The “decOchip.ap” contains the layout information. However we do not know if the physical
description produccd reflects the desired behavior. Therefore to check the layout we use two
tools, Lynx and Tas.

Lynx is a netlist extractor. Il extracts a netlist representation of the circuit from the layout. The
file created by Lynx will be the input file for Tas.

Tas is a switch level timing analyzer for CMOS circuits.

Give the following command at the command line:

seteny MBE_CUT_0 al

This tells that the outpul file should be in the “.al” (Alliance) format.

m lyrx -v -L declchip decbchip

v - verbose
-t - build the netlist 1o the transistor level.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 23

Seventh Course On Basic VLSI Design Technigues Trieste-Ttaly, 29 Oct-23 Nov. 2001

first decOchip - take the “decCchip.ap” layout file as input.
second decOchip - generate the “decOchip.al” netlist file.

The following is typically displayed.

¥ [cicuitin@mlab-4213$ tynx -v -t dec(chip declchip

aa
ele!
el @ree Qee
! @ el @
@a ag @a a
ae oe elele!
@ ag lele]
el a ae @ aa
el a e @ el
deeeeared Q@ @ 423@ QRUQ Qee QrEd
g &
gee
Netlist extractor
Alliance CAD System 3.2b, Iynx 116

Copyright {c) 1997-1999, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim. lip6.1x

== Extracts symbolic figure decOchip
--->> Flatten figure

---> Translate Mbk -> Rds
- Build windows
<unm 2401

- Rectangles ;63720

-—-> Figure sive :(-7035, -6635 ;
(8135, 8595)

---> Cul {ransisiors

<o)
- Build equis
«<--- 52

- Delete windows
---> Build signals
<--- 52

---> Build instances
e ()

---> Build transistors
<--- 368

~--> Save netlist

<--- dlone !
[vicnttin@ mlab-421$

Give the following command at the command line:

gevany MEK_IN_ Lo al

This tells that the input file for Tas must be in the “.al” (Alliance) format.

tas -tec=falliancefarchi/Linux_elf/etc/prol 1C.elp decOchip

Exercise 2, Design of 2 to 4 Decoder Chip. Page 24

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

-tec - selects the technology file proll0.elp

cicuitin®@ mlab-42]% tas -tec=/alliance/archi/Linux_elffetc/proll(Lelp decOchip

AEEEE
e a
g a feaq
ad aa agaa
a@ @ aaa
g8 @ @ aa
GEEE @O d0QE @ eeeee

CHIOS-VLSI Timing Analyzer

Alliance CAD System 3.2h, tas 5.21
Copyright {c) 1990-1999. ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

TECHNOLOGY FILE IS : Yalliance/archi/Linux_elZetc/prol 10.eip’

TECHNOLGGY : prell0 VERSION : 2.00
REFERENCE : HSPICE, LEVEL = 2 00

LOADING FILE dec{ichip.al :
00min 00s
tas user : 0000.07

system : 0000.07

DISASSEMBLING :

Y AG MES] Transistor netlist checking COmO0s w:00m00.¢ s:00m00.0
FYAG MES) Extracting CMOS duals 00m(ls w00mO0.8 s:H0md0.0
Y AG MES) Extracting bleeders COmMO0s w:00m00.0 s:00m00.0
[YAG MES] Making gates 00mO0s w00mMO0.0 s:00m0a.0

[Y AG MES] Latches detection O0mA0s w:00m00.0 $:00m00.0
[YAG MES] External connector verification O0m0s wOim00.0 s:00m00.0
[YACG MES] Checking the yagle ligure O0m00s w00m00.0 s:00m00.0

00mmin 0%
tas user OUGOT
system : 00°04.07

COMPUTING GATE DELAYS :
0Cmin (05
tas user : 0000.07

systern ¢ 000007

SEARCHING OF CRITICAL PATHES -
{}3min 005
tas user - 000007

system @ 000,07
GENERAL PERI'MODULE dec(chip.tix :
O0min 003
tas user {300.07

system : G000.6°

TIMING ANALYSIS REPORT :
complexity = 86
the circuit worst case delay is 7303pS

Exercise 2, Design of 2 to 4 Decoder Chip. Page 25

Seventh Course On Basic VILSI Design Techniques

= lrom-A_b

- to -\ y[3]

nb couple =24

nb chain=0

O0min O0s

tas user : 00GH.07
system : 0000.07

TOTAIL RUN TIME :

{0min G0s

tas user ; 0000.07
system : 0000.07

0.00% CPU---end1!!

[cleuttin@mlab-421$

Trieste-Italy. 29 Oct-23 Nov. 2001

Inspect the result on the screen, in the sessions “SEARCHING OF CRITICAL PATHES" and
*TIMING ANALYSIS REPORT™ to know the worst case delay.

Layout Extraction and Netlist Comparison

The “decOchip.ap™ contains the layout informaiion. However we do not know if the physical
description produced reflects the behavioral description. Therefore to check the layout we use
two tools, Lynx and Lvx. Lynx is a netlist extractor. It exiracts a netlist representation of the

circuit from the layout.

Give the command at the commmand line;

lynx -v -f declCchip declchip

=y
-f

first decOchip
second decOchip -

verhose

asks Lynx to generate the nctlist from the Standard-
cells level.

Take the “decOchip.ap” layout file as input.

Generate the “decOchip.al” netlist file.

The following is typically displayed.

fotcutbingmlab-4215% lynx v -f declchip declckip

AEaaad
et
tel
aa BEERE 484 39 fae 1@
ag 3 a agd 2 :
ag gg @ elel 3] g g
2a 22 a aa 24 2z
A w3 4 2E &ad 2e8
ag @ wed [eXe) 2a [CI.)
ag 2] 24 ag 2l @ @@
ddgddedddnd &g 2 geaded EEE8 &4 BEEZ
ag &
jecies

Netlist extractor

Exercise 2, Design of 2 to 4 Decoder Chip.

Page 26

Seventh Course On Basic VLSI Design Techniques : Trieste-Italy, 29 Oct-23 Nov. 2001

Allunce CAD Syseem 3,25, Iynx 1.16
Copyright (¢) 1997-1999, ASIM/LIPO/UPMC
E-mail supporl. aliance-sepport@asim lip6. f

---= Bxiracts symbolic fipure decOchip
-—-> Flatten figure
---> Translate Mbk ->» Rds
---> Build windows
<--- 2401
---> Rectangles : 3146
- Figure size : (-7055, 6655
{ 8135, §393)

-—» Cut transistors

<---0
---> Build eqguis
<-— 25

---> Delete windows
---> Build signals
Lo 25

---> Build instances
Cuoum 25

-3 Build transistors
<o {}

---> Save netlist

<--- done !
[cicuttinBmlab—42]%

Lvx is a netlist comparison software that compares two netlists. Along with the comparison it re-
orders the interface terminals to produce a consistent netlist interface.

More information on Lvx can be obtained from the man pages (man Ivx).

Give the command at the command line

m lwvx wat al declOchip édecdchip -f -0

-f - build the netlist to the standard cel! level,

-0 - to have ordered connectors in the output netlist
vil - take the first file in .vst format.

al - take the second file in .al format.

first decOchip - “declichip.vst” input file.

second decOchip - “decQchip.al” output file.

The following is typically displayed.

[cicuttin@mlab-421% 1vx vst al decOchip decichip & -o

Agaaaa

ag

[E1ES

aa

ag

AR

ad

ag

2 &

ad &
elctelete alene e te]

Exercise 2, Design of 2 1o 4 Decoder Chip. Page 27

Seventh Course On Basic VLSI Design Techniques

Gate Netlist Comparator
Alliance CAD System 3.2b, Ivx 2.23
Copyright {¢) 1992-1999, ASIM/LIPG/UPMC
E-mail support: alliance-support@astm. lip6.fr
waik | oading and flattening decOchip {vst)...
widEk Loading and flattening decOchip (al}...
*kzk Compare Terminals ...

waEk () K (0 sec)

*HEEE Compare Inslances ...
s () | {0 sec)

#Hk+% Compare Connections
A% K. (0 sec)

Trieste-Italy, 29 Oct-23 Nov, 2001

FFErx Notlists are Identical, **#%F {0 sec)

HEFEF OrdOITINg e
sk 0y K (0 sec)

*EFF Saving declichip (al)...

[cicuilin @ mlab-421%

The comparison should not produce any errors, ¥ errors are produced by the program, then there
is some problem with the layout. The router has donc something funny and correclive action is
to be taken at the layout level by studying the error messages.

The Lvx has also re-ordered and buill the netlist in the “.al” to the standard cell format. This file
can be simulated using Asimut,

Simulating the Extracted netlist file

The netlist file “decfchip.al” can be simulated using Asimut and the lest vector file
“dec2tod.pat”.
The input file format for Asimut musi be “al®,

Give the following command at the command line.

azimolt decleohlp decltod =&

decOchip - take the “decchip.al” as input filc
dec2tod - Lake the “decZto4.pat” test vector file
ro - deliver the results in filc “ré.pat”.

Any error means that you will have to retrace your steps back to find out the source of the error,

Exercise 2, Design of 2 to 4 Decoder Chip. Page 28

Seventh Course On Basic VL.SI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

Functional Abstraction

Yagle is a program that extracls from a transistor netlist the behavior of the circuit. Essentially a
VHDL file is created from a standard ccll connectivity list! This VHDL file can be simulated in
turn Lo verify the function of the chip.

Give the command at the command line;

—

vagle -v decCchip

-v - signal veclorized
decOchip - takes the “decOchip.al” as input,

The extracted VHDL description is in the file “decOchip.vbe”.

The following is typically displayed.

Exercise 2. Design of 2 to 4 Decoder Chip. Page 29

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 28 Oct-23 Nov. 2001

[cicuttin@mlab-421% vagle -v decOchiyp

elelele]
aa
ae
QEEEA HEE QAR ¢ageee e elelelelc]
@@ @ @e @ @Y @@ el @ @
@a @ @@ EE @ @4 @a a@g e
@@ @ : a @ BE Q@e2eeee
e @ ag aga ga e
@ee o aa ga ae a
ea ae GlclclclcIE N Y S I- |
ee @ QEeg €8 @8 @eE GEERRR GRER
@@ @ @ @
ara paesae
Yet Another Gate Level Extractor
Alliance CADD System 3.2h, yagle 2.02

Copyright {¢) 1994-1099, ASIM/LIP6/UPMC
E-mail support: allance-support@asim lip6.fr

{YAG MES] Loading the figure decUchip 00m00s w:00m00.0 s5:00m00.0
[YAG MES] Flatteninyg the figure GOmO0s w:00mO0LD «:00m00.0
[YAG MES] Transistor netlist chacking 00m00s w00mO0.0 s:00m00.0
[YACG MES] Exiracting CMOS duals 00m00s w:00mdD.0 s:00mb0.0
[YAG MES] Extracting bleeders 00m(0s w:00m00.0 s:00m00.0
[YAG MES] Making gates 00m00s wm00.0 5:00m00.0
[YAG MES] Lalches detection (0mdds w:00m00.0 5:00m00.0
[YAG MES] Making celis G0mN0s w:00m00.0 :00m0.0
{YAG MES] External connector verification 00m00s wO0mO0.0 5:00m00.0
[YAG MES] Checking the vagle figurce 00m00s w:00m00.0 5:00m00.0
IYAG MES] Building the behavioural figure GOmO0s w:00m00.¢ s:00m00.0
TOTAL DISASSEMBLY TIME 00m00s w:00m00.0 s:00m00.0

{YAG MES] Erasing the transistor netlist
Y AG MES] Generating the VHDL Data Flow
{YAG MES] Exccution COMPLETED

iYAG WAR (4] 32 wransislors are always Off
IYAG WAR 07] 32 wransistors are not ussd
[YAG WAR 13] T signals do not drive anything
See file decOchip.rep’ for more information

feicuttin@mtab-421%

Give the command:

=

asimut -b declchip decitod rd

to simulate the extracted behavioral {ile.

Alliance has a program called Proof that compares the extracted behavioral file with the
original behavioral file to formally prove the functional congruence of the described and the
extracted circuit.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 30

Seventh Course On Basic VLS] Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Give the command:

=

proof -d declchip decZtof

-d - displays logical [unctions as they are processed
decOchip - extracted “decOchip.vhe” file.
dec2to4 - original “dec2tod.vhe™ file.

The following is typically displayed.

[cicuttin@mlab-42]$ proof -4 decichip decltod

ZeaEERe
FE

R ®w
FRr OGRY GEY D IEY SR

Foomal Proof

Alliance CAD System 3.2b, proof 4.20 [1997/16/0¢]
Copyright (c} 1990-1999, ASIM/LIP&/UPMC
E-mail support: alliance-support@asim.lips ¢

Environment =—
MBX_WORK_LIB =
MBK_CATA_LIB = !a].lldmc!arcluiju& eff/cells/sclib:/alliance/archi/Einux ciﬂccllsfpadhb
Files, Options and Parameters ====— =

First VHDL. (ke = dec2iod,vbe
Second VHDL file = dechchip.vhe

The auxilisry signals are erased

Errors are displayed

Compiling dec2iod' .
Cosapiling decOchip’ ..

Rusning abl ordonnancer on “dec2tod”
Running Abl2Bdd on dec2tod®
- final number of nodes = 16(9)

Rumming AbI2ZBdd on *declichip®

Formal prool with Ordered Binary Deciston Diagrams between

“fdecliod’ and fdecOehip’

PRIMARY OUTPUT ==
AUXILIARY SICNAL ====
REGISTER SIGNAL

EXTERNAL BUS
=== INTERNAL BUS

Exercise 2, Design of 2 to 4 Decoder Chip. Page 31

Seventh Course On Basic VLSI Design Technigues Trieste-ftaly, 29 Oct-23 Nov. 2001

Formal Proot : OK

PP RPRR PR PERP RO PP PP P PRI I T 000000000000 0000000 03 00000000 T T

|eicultin@mlab-42 18

This formal {unctional verification.is much powerful than any verification done with Asimut. If
both behavioral descriptions, original and extracted, are formally equivalent, then they will give
the same response to any stimulus. On the other hand Asimut allows checking the responsc 10 the
stimnulus defined in the input pattern file only.

Real Technology Conversion
Up till now all the files describe the circuit only as symbolic cells. The foundry requires the

layout of the chip, described in terms of rectangles and layers in the gds or the cif format. This
can be done in Alliance, by using S2r.

setenv RDS_TECHKO_NAME /falliance/archie/Linux _elf/etc/prolll_7.rds
seteny RDE_OUT oif
seteny RDS_IN cif

This chooses the 1.0pum CMOS process, chooses the output form of the chip in ¢il (ormal and,
replaces the symbolic pads with their real equivalent.

Giive the command:

s2r -ov declchip declchip

-C - deletes connectors at the highest hierarchy. (Use
man to see full description)

-y - verbose mode on

first decOchip - “decOchip.ap™ file as input

second declchip - “decOchip.cif” {ile as output.

The following is typically displayed.

Exercise 2, Design of 2 to 4 Decoder Chip. Page 32

Seventh Course On Basic VLSI Design Techniques

[cicuttin@mlab-42]5 s2r -ov declchip declchip

R
a
=)

499894 QEE 244 @aq
aa @ @ @& age ea
aga @ g ag
Agaa @ aa
agae @ aa
@ e @ & aa
ad 2d GAERREE ket
4 GEEEE QEEEERE gedd

Symbolic to Real layout converter

Alliance CAD System 3.2b, s2r3.0
Copvright {c) 1991-1998, ASIM/LIP6/UPMC
E-mail support: alliance-support @asim.lip6.fr

o loading technology file : falliance/archi/Linux_ elffete/prolld 7.rds
o loading all level of symbolic layout : decOchip
o removing symbolic data stoucture
o lavout post-treating without connccetor, with scotchs,
--» post-treating model pali_sp
rectangle merging :
CRDS_NWELL ..o
. RDS_NIMP
. RDS_PIMP
CRDS_ACTIV e
.RDS_POLY
.RDS_AICL
LRDS_ALU2
--> post-treating model pi_sp
ring flattenning :
RDS_NWELL ..o
RDS_NIMP .

o replacing black boxes

- rephsce cell padreal

o saving decOchip.cif

¢ mernory allocation informations

--3 reguired rectangies = 3112 really allocated = 7
--2> required scotchs = U really created = 0

--> Number of allocated bytes: 183724

[cicuttin@mlab-421$

This completes the design of the decoder chip.

Trieste-Italy, 28 Qet-23 Nov, 2001

Exercise 2, Design of 2 to 4 Decoder Chip.

Page 33

SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 3

Design of an Octal Tri-state Transceiver chip

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov, 2001

Problem Description

This design example is a transceiver chip similar to the 74HC245. In this design example
you will learn to:

Describe and simulate the behaviour of the transceiver in VHDL.

Simulate bi-directional signals and about 10 pads.

Make the layout of the chip.

Extract the circuit from the fayout,

Extract the behavioural description from the netlist and compare with the original
behaviour file you have created, to complete formal verification.

This design example consists of two phases. The first phase is to describe the behaviour
of the chip as is seen at the pins of the chip. The second phase is to describe the functions
of the core of the chip, and then connect it to the pads.

In the first phase you will:

* Describe the transceiver’s behaviour using VHDL (xceiver.vbe).
e Write test pattern files.
» Simulate the behavioural description using the pattern file by using Asimut.

In the second phase you will:

* Describe the behaviour of the core in VHDL as is seen inside the chip by the pads
(xceivercore.vbe).

¢ Synthesise the logic and structural descriptions using Bop and Scmap
(xcetvercorel.vbe and xceivercorel.vst),

¢ Use the standard cell router called Ser to place and route the core (xceivercorel.ap).

* Add the necessary pads for the chip and compile using Genlib (xceiverchip.vst).

» Use Asimut to simulate the ‘xceiverchip.vst’ file using a pattern file created by
Genpat in the first phase.

¢ Place the pads and generate the layout of the chip with pads using Ring
(xceiverchip.ap).

* Use Lynx to extract the netlist from the layout file ‘xceiverchip.ap’ (xceiverchip.al).

e Use Tas to perform the static iming analysis.

e Use Lvx to compare the extracted circuit ‘xceiverchip.al’ and the original
‘xceiverchip.vst’ file created by Genlib.

Exercise 3, Design of an Octal Tri-state Transceiver chip. i

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

¢ Use Yagle to extract the behaviour, ‘xceiverchip.vbe’ from the “xceiverchip.al’ netlist
tile.

* Use Proof to compare the extracted behaviour file, ‘xceiverchip.vbe’ and the
behavioural file created in the first phase, ‘xceiver.vbe’.

Exercise 3, Design of an Octal Tri-state Transcciver chip. 2

Seventh Course On Basic VLSI Dcsign Techniques

Trieste-Italy, 29 Oct-23 Nov. 2001

‘ ViorPico Text Editor ‘

! Vior Pico Text Editor 'V or Pico Text Editor !
5 Test Vectors using

Vi or Pico Text Editor Text Editor i
VHDL Description ol VHDL Description of Genlib Language : Relative position
Transceiver Chip Tranceiver core i Deseription of Pads of Pads ~ i Genpat Language
{(xceivercore vbe) ‘& core (xceiverchip.c) {xceiverchiprin} - (xceiver.e)
B
v

(scelver.vbe)

T \ TN L

el N
N - Q/ - .)
» | |
y —
. e | ¢
'. v v B R
N " J / || N
\ T 7 ‘H,‘ Genlil ! / { Genpat [
B ¢ / \5_ o / . o /
;o /
xceivercorel.vbe L |
y R |II |I
.\\ + | .-'/ .'/ | — “._.__ﬁ
v P - | | xeciverchipyst | ———— | /
o N ' : ™~ /""(xceiverpal | -—
WL Semap G ™ — ' AN \
W e ' / I| Ill -
D R S e
T | R Ring |
o . N
' - " ,.‘ll ||I ‘ |] “
I .- / . | /._ . § ‘. .
| xceivercorel.vst | - Tl ,/ . Y seeiverchip.ap \ Vior Pico Text Editar
| N AR \ Modify Test Vectors
/. (xcelver.pal)
QR By P
'.f Ser b ~ /
R
! .
Y ’ .
,,/ .
| | xecivercorclap l —) .
s N P T e "
| - / |
| —_— '
e / N A
,-".:,-'/ If.f —/ \\.‘..
!I,-' I,"' H
i l'l |I \I
| ! '1
|
{/_J__\ /,__*_ﬁ\ . . ; 7 1|
; Graal j k S2r / |\ xceiverchip.al |I \: xeeiverchip.al :l o 1
., _/ e .II. PR ., \ _ ., f \ ‘
— !
s N | _L
e ! / \.,
Y [— ' Asimut]
I xeeiverchip.cif | / Yagle) ,____,/
| (Chip ready | _
i for foundry) / Y
R SR { filename.pat ,’f
. /—Y— / " {to be checked |'
™ / ¢ P y lorcomect |
\ Proof |e—— X xceiverchip.vbe l\— fUl'lEE]FJ.l.lallty) \

Fig 1. Design flow for the Transceiver Chip

Exercise 3, Design of an Octal Tri-state Transceiver chip.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Transceiver Chip General Description

The transceiver chip that is proposed in this example is similar to the 74HC245
transceiver chip. The pin diagram of the transceiver chip and the truth table of the
controls shown below explain the operation of the chip as looked from outside.

DR L® VDD
AD T ENABLE
E H

Al .) BO

a2 O E J Bl
RS-

As] E ma

A6 O J B5

A7 B6

vss - B7

Fig. 2. Pinout of 74HC245 transceiver chip.

ENABLE DIR Operation
L L Data Transmitted from Bus
BtoBus A
L H Data Transmitted from Bus
AtoBus B
H X Busses Isolated (High-
Impedance State)

Table 1. Truth Table for the controls of the transceiver chip

e T OO T~

Exercise 3, Design of an Octal Tri-state Transceiver chip. 4

Seventh Course On Basic VLSI Design Techniques Trieste-taly, 29 Qct-23 Nov. 2001

Solution

Give the command thal appear immediately after this symbol, at the comumand line,

Edit and save into a file, all that appears after this symbal,

Explanation of a topic

Sel the environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design dircctory, at a convenient position in your work space:
mkdir xceiver
Change into this directory:

cd xcelver

Before starting the design you will have to set the environmental variables as shown
below so that you will not run into problems later.

setenv MBK_(ATA_LIE .:/alliance/archi/Linux_elf/cells/=clib:
fallience/archi/Linex_elf/cells/padlib

sateny KEK_TIN TO vst
setenv MBF_OUT_LO wst
soetenv M3K_IN_PH ap

setenv MBE_CUT_PH ap

seteny MEK _WORK LIE |

Create with the “pico” (or “vi”) editor a file called “xceiver.vbe”. Enter the following and
save the file.

Exercise 3, Design of an Octal Tri-state Transceiver chip.

Ln

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

-- Octal Tristare Neao-inverting Bus transceiver ---
= BTh Course orn VLSI Design - Trieste

EMTITY xceiver IS

PORT (vdd, V==, Vdde, Vsse: IN BIT;
A, B: inpout MUX _VECTCR (7 downtao 0) BUS;
dir, enable : IN BIT);

END xcelwver;

ARCHITECTURE xcelver_b OF xceiver IS
negin

hl: BLOCK (dir =0 and enable = 0}
BEGIN

4 <2 guarded B;
END RLOCE bl:
bZ: BLOCK {(dix = '1’ and enable = 707}
BEGIN

B <+ guarded A;
END BLOCK L3;

end Xcelver_b;

Typographical or syntax errors can be found when the file is passed through Asimut in
the compilation mode. Before using Asimut you will have to set the environmental
variables as shown previously.

Give the Tollowing command at the command line

asimit -b -¢ xceiver

Creating the test pattern for simulation

If the above step functions without giving syntax errors, then the behavioural descriplion
1s ready for simulation,

A file with the test pattcrns in the pat format is required for the simulation. The pat
format file has a declaration part and a description part of the signals. The declaration part
consists of a list of inputs, outputs, internal signals and registers of the design. Inputs are
forced to a particular value while the outputs are observed during the simulation.

Edit this file and make changes to the file like the one shown below. Save the modified
pattern file.

Exercisc 3, Design of an Octal Tri-stale Transceiver chip. 6

Seventh Course On Basic VLSI Design Techniques Trieste-llaly, 29 Oct-23 Nov. 200]

-- degcription generxated by Pat driver v10é£

-- date : Sep 14 21:00:18 19G%

__ sequence : xcelver

-- dnput / oouztput list
it vadd 3;

in vss B;

in vdde Z;

in vsse Bi:ii:

inauk a (7 downto 01 X;;
inout b (7 downto 0] X;;;
in dir B;;;

in enakle B;;;

begin

-- Pattern description

-- Riataraty a is] d e
- dzds i n
- dads r o a
- 2a I
-- 1
-- e

~-- Beware : unprocessed patterns

1010 00 00 © ©
101¢ 755 33 0 0
1610 00 00 G 0
1610 a0 *00 1 0
1610 55 5 1 0 H
10610 00 00 1 0
1610 00 00 0 0
i01n *AR BA 0 D
1019 200 o0 0D 0 ;
1010 00 00 1090
igin Bh FAR LD H
R | oo 200 100
1010 58 8% 000 ;
1010 S5 5% 00
1010 P55 &% 0 0 ;
1010 5% ?85 L 0O
09 55 %55 1 0
1024 55 5% %0
i0:0 AR BB 0 QO
10190 PRA ORR 0D 0
1010 ran oBRO0 0
1010 AR TRAR 1O
1010 Ax FRR 1 0
1010 Ar *RAR 01 O H
1010 55 L0 0
1010 ?H5 8BS 000 ;
1010 ?55 B: 000
1010 mn PAA01 0
1010 ax AR 01 O ;
1019 AL FRR LI O ;
1019 AR AR D D
i01d AR ORR OO O
igld AR AR 0 0
1020 5% 35 1L 0 ;
100 5% 755 1 0 ;
1010 8% ¥55 1 O ;
0z FrEOZEE 1 ;
—04d 5 53 0 1 ;
1010 FRE oEx 01
200 FHRE gEw 11
InLa ARoAR 1 1
1019 R A T T

Exercise 3, Design of an Octal Tri-state Transceiver chip. 7

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

o g Rk SRk Bk ook ook Sokiok ok do Rt i el e m R R e i i kel sk el s ook okt e e el R R R R sk e ek e
ok e e ek okt ks e ok ek el e e ek ek e ik OPtlonal ek sk ook ok e Aok o e e et el e R R e s ol ol
We suggest you lo skip this part (thiat isn't essential fo the exercise) the first time. You can come back to
this part later or in a second time. Go ahead to the next paragraph: Simulating the Behavioural
Description (page 10).

Genpat is a set of C functions that allows a procedural description of input patterns file
Jor the logic stimulator Asimut. The genpat command accepts a C file as input and
produces a patiern description file as output. Information on the functions that are
allowed in genpat is given in the man pages (man genpat).

A file with test patterns is required for the simulation. You will have to write o C file that
when treated with Genpat will generate the pattern file for you,

Create a file called “xceiver.c” and enter the following:

/**}fr**r&'**********************ﬂ'**'\

Trieste, microprocessor laboratory

File : xgeiver
Date : 10 21 1593
Version : 3

\"*)i’}l-'**************************t**********:E‘7{-;i'*1&—*******************#****‘/

#include <mut3i2l.h>
#include <stdic.h>
#include <genpat.h>

#define maxcycle 5

char *inttogtr({integer, len)
int integer;
int len;

{

char *str;

gtr = {char *) mbkalloc (len * sizecf (char) + 1);
sprintf (str, *%.32d4d*, integer);
return{&striiz-len]);

)
/e \
R e */

void dir()

Exercige 3, Design of an Octal Tri-state Transceiver chip. 8

Seventh Course On Basic VLS Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

{

int 1i;

for (1=0;1 < {(maxcycle*&) ;i=1+8)

{

AFFECT{(inttostr({i,32), "dir*, "0b0O")};
AFFECT(inttostr(i+1,32),*dir", "0B0") ;
AFFECT (inttostr(i+2,32), *dixr", "0b0") ;
AFFECT{inttostr{i+3,32), *dir", "0b1 ") ;
AFFECT(inttostr{i+4,32), *dir", "0b1");
AFFECT{inttostr{i+5,32), "dir", "0bl1");

}
}
F e it T T T \
power
| it it r
volid power ()
{

AFFECT (Inttostr (0,32}, "vdd", "0bl ") ;
AFFECT{inttostr{fd,32), "ves", "0b0") ;
AFFECT{inttostr{0,32), "vdde", "0bl"};
AFFECT{inttostr{0,32), "vese", "0b0") ;

J

F T i T T TR §
enable

e e e T */

void enable()

{

AFFECT{inttostr(0,32),"B", "0B0*") ;
AFFECT(inttostr{0,32), "enable", "0BO") ;

}

e §
main

o e~ */

int mainf)

-

{
At int i,3;%/

/% Declaring name of pattern file */
DEF _GENPAT("wxceiver");

DECLAR("vdd”, ":0","B",IN, "");
DECLAR("vssg*®, ":5",*B*,IN,""};

DECLAR ("vdde”, ": 0", "B",IN, ""};

DECLAR(“vsse®, ":5", "B", IN, "");
DECLAR(*A", ":1", "x", INOUT, "7 downto 0*);
DECLAR(“B", *:2*, "x", INOUT, "7 downto 0");
DECLAR({"dir”, ":2%, "B" IN, ") ;

DECLAR{ "enable", " :2%, "B", IN, " "} ;

S* initilisation of the enable, vdd, vss, and it */
dir();
power() ;

Exercise 3, Design of an Octal Tri-state Transceiver chip. 0

Seventh Course On Basic VLSI Design Techniques Tricste-Italy, 29 Oct-23 Nov, 2001

enabliel};

/% the end */
SAV _GENPATY{() ;

Give the following command at the command prompt:
genpat xceliver

This command typically penerates the following display.

feicuttin@miab-42]$ gerpat xcelver

4nee @ 2Eeeeda
ae ag @a @ @
@g @ d@ g g
@@ deege 2de zed el ee) d@ga 2
d@ e} g aae g ae @a ag 2} EERREREQ
ae deege ed g8 aa aa gaeas ag 2@ @i
B 2 @8 @QeREeseR:E 24 ad @ degde @@
[@ @2 ee ag aa @a gete) qa@ @e
2d @a @ a a2 aa @a ae e @ge
@4 4@ 24 ga Qe Ba @& de cicle) @e g
geed aaesE FREE (EEQ HEEEER 2EEE @@ eielelel

Progedural GENeration of test PATterns

Alliance CAD System 3.2b, genpat 3.1
Copvright (¢} 19%1-1999, ASTM/LIPG /UM
E-mall support: alliance-support@asim.lips.fr

icicuttnin@mlal-421%

A pattern file “xceiver.pat” is created by Genpat. You can easily learn how the C file works by changing
some of the parameters in the C code and inspecting the correspondent changes in the generated pattern
Ffile “xceiver.pat”.

ke 5o ok 230 o o ok ook o ol s ok ok s ok o e b ol ook ok ol e o ke 50 of S SR B oK b sk o ok o ol s ol ol o e o0 e o o e e o R SRk o o o o e e o o 300 o e ol ol ol sk v e
sk ot s o 33 s s e e o o b o o o403 o RO oK e R ook ok e 0o o 6 o ke o o oo o o o ol ol o e s ol ke o o ok o ok 2 o 3K o S8 s o 50 e s o o s o e o o8 ok ok o e o

sk o ke ok o e ok e o ok st e o o o ool oo o 0ok 5 o oK 8o oKk ol ool o o 8 oo o ol A ke S R oK S R e o e o S o o ook e f e o Sk oo sk

Exercise 3, Design of an Octal Tri-state Transceiver chip. 10

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

Simulating the Behavioural Description
Now the behavicural file “xceiver.vbe” can be simulated with this paticrn file.

Give the folowing command at the command prompt to siart simulating.

agimelk -b xeeiver xceiver rl

-b - chooses the behavioural simulation option
first xceiver - takes the xceiver.vbe as input

second xceiver - takes the xceiver.pat vector file for simulation
Tl - resull ol simulation is put in rl.pat

The simulation should proceed without any errors. If errors appear, check the xceiver.vbe
or the xceiver.pat file.

Describing the core of the chip

The above description thal we have made in the “xceiver.vbe™ file simulatcs the
transceiver as is seen from the pins of the chip. We did not care about the pads that drive
the pins. However when a chip is described physically in Alliance, it consists of 1wo
separate parts that arc brought together, the core or heart of the chip and the pads. In
Alliance, the core and the pads are brought together in a C description file. This file when
treated with Genlib, produces the structural description of the chip with the pads. In
practice the core can be synthesiscd automatically form a behavioural description,
whereas the pads should be placed physically, anc by oune in the C file. Placing the pads
require the structural knowledge of the pads. One of the type of pads that is used in this
example is the piot_sp 10 pad, a cell of “padlib”, a library of pads provided with Alliance,

Give the following command at the command line to see a description of this pad,

man pict_sp

As will be seen from the behavioural description, this pad has towards the outside a tri-
state, while towards the core, a data input, a data output and a control line that controls
the direction of the data.

Exercise 3, Design of an Octal Tri-statc Transceiver chip. 11

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Fig. 3. Schematic of the IO pad piot_sp

b PAD t

1 i PAD

0 High Z when locked PAD
from i

Table 2. Truth Table for conirols of the 10 pad piot_sp
Thus for an IO pad, the core will have
- a data output that is connected to the data input of the pad,

- a data input that will be connected to the data output of the pad and,
- a control line output that will be connected to the control line input of the pad.

Behavioural Description of the Core

With the above knowledge of the IO pads, we are now ready to describe the functions of
the core.

Edil a new file called “xceivercore,vbe' and give the description as shown below:

- Octal Tristate Non-inverting Bus transceiver -—
-- 6th Course on VLSI design TRIESTE —

ENTITY xccivercore IS

PORT (Vdd, Vss: IN BIT;
AIN, BIN: in BIT_VECTOR {7 downto 0%
AOUT, BOUT: out BIT_VECTOR (7 downto 0);
ACONT, BCONT: QUT BIT;
dir, enable : IN BIT);

END xceivercore;

ARCHITECTURE xceiver_b QF xceivercore IS
signal enab: BIT_VECTOR (7 downto 0);
begin

ASSERT (vdd = '1" and vss ='0")
REPORT "Wrong power supplies”

Exercise 3, Design of an Octal 'ITi-state Transceiver chip. 12

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

SEVERITY WARNING:

enab{(}) <= enable;

enab{1) <= enable;

enab{2) <= enable;

enab{3) <= enable;

cnab{4) <= enable;

enab{3) <= enable;

enab{6) <= enable;

cnab{7) <= enable;

AOUT <= BIN;

BOUT <= AIN;

ACONT <= {not dir} and {not enable);
BCONT <= dir and (not enable);

end xceiver_b;

Synthesising the Logic and the Structure of the Core

We usc Bop 1o synthcsise the logic and Semap to synthesise the structural description of
the transceiver core.

Give the following command at the command line:

bop -0 xcelvercore xcelvercorel

-0 - option for global optimization
Xceivercore - xceivercore.vbe (inpul file)
xceivercorel - xceivercorcl.vbe {output tile)

The logic description of the core is crealed in the file “xceivercorel.vbe”. From this file
we proceed Lo synthesise the structural view of the core. To do this give the following
commarnd at the command line:

SCmap xceivercorel xceivercorel

The structural description of the core is created in the file “xceivercorel.vst”,

Placement and Routing of the core

The core cells can now be placed and routed using Ser. Give the following command at
the command line:

Exercise 3, Design of an Octal Tri-state Transceiver chip. 13

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

=
scr -» -r -> 5 -1 1000 x=ceivercorel
-p - placement option
-r - routing option
-1 - number of rows
-i - iteration number

A “xceivercorel.ap” file is created which can be viewed with Graal.

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C functions that allows you to
describe circuit objects like pads and the core and their connectivity (structural view).

Edit and save into the file “xceiverchip.c™ the following:

£* Transceiver chip */
/* Date: 07-17-99 ¥/

#include <genlib.h>
main(}

{
DEF_LOFIG("xceiverchip”);

LOCON("VDD", T, "VDD");
LOCON("VSS", T, "VS§8");
LOCON("VDDE", T, "VDDE");
LOCON("VSSE", T, "VSSE"):;
LOCON("A[0:7]", X', "A[0:7]");
LOCON('B[0:7]", "X, "B[0:7)"):
LOCON("DIR", T, "DIR"):
LOCON("ENABLE", T, "ENABLE");
LOCON("NC", IN, "NC");/* #

LOINS("pvsse_sp", "vss","cki", "vdde", "vdd", "vsse","vss", 0);
LOINS("pvdde_sp", "vdd","cki", "vdde", "vdd", "vsse","vss", O);
LOINS("pvddi_sp”, "ivdd","cki","vdde", "vdd", "vssc”, "vss", 0);

LOINS{"pvssi_sp", "ivss”,"cki","vdde", "vdd", "vsse", "vss", 0);
LOINS{"pck_sp","NCpad","NC","cki","vdde"," vdd"," vsse","vss", 0}

LOINS("piot_sp", "AG", "AGUTIO]", "TACONT", "AIN[0]","A10]","cki", "vdde", "vdd",
"vsse”, "veg”, 0);

LOINS("piot_sp", "Al", "AQUTI[1]", "TACONT", "AINT1]","A[1]","cki", "vdde", "vdd",
"vsse", "vas”, Q)

LOINS("piot_sp", "A2", "AOUTI[2]", "ACONT", "AIN[2]","A[2]","cki", "vdde", "vdd",

"ysse", "vss", O

Exercise 3, Design of an Octal Tri-state Transceiver chip. 14

Seventh Course On Bagic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

LOINS("piot_sp", "A3", "AOUT[3]", "ACONT", "AIN[3]","A[3]","cki", "vdde", "vdd"
"ygse", "vss", O)

LOINS("piot_sp", "A4", "AOQUT|4]", "ACONT", "AIN[4]","A[4]","cki", "vdde", "vdd",
"vgse", "vss", O}

LOINS("piot_sp", "A5", "AOUT[5]", "TACONT", "AIN[3]","A[5]","cki", "vdde", "vdd".
“ysse", "vss", O);

LOINS("piol_sp", "A6", "AQUT[G]", "TACONT", "AIN[6]","A[6]","cki", "vdde", "vdd",
"ysse", "vss", O);

LOINS("piot_sp", "A7", "AOUT|7]", "TACONT", "AIN[7]","A[7]","cki", "vdde", "vdd".
"ysse", "vsg", O

s

LOINS("piot_sp", "B0", "BOUT[0]", "BCONT", "BIN[0]","B[{]","cki", "vdde", "vdd",
"ysse", "veg", O):

LOINS("piot_sp", "B1", "BOUT[1]", "BCONT", "BIN[1]"."B[1]","cki", "vdde", "vdd",
“vsse”, "vss", 0);

LOINS("piot_sp", "B2", "BOUT[2]", "BCONT", "BIN{2]","B[2]","cki", "vdde", "vdd",
"vsse”, "vss", O);

LOINS("piot_sp", "B3", "BOUT[31", "BCONT", "BIN[3]"."B[3]","cki", "vdde", "vdd",
"vsse”, "vss", 0);

LOINS{"piot_sp", "B4", "BOUT[4}", "BCONT", "BIN[4]","B[4]","cki", "vdde", "vdd",
"vsse”, "vss”, O);

LOINS("piot_sp", "B5", "BOUT[S]", "BCONT", "BIN[5]","B[5]","cki", "vdde", "vdd",
"ysse", "vsas", O

LOINS("piot_sp", "B6", "BOUT[6]", "BCONT", "BIN[6]","B[6]"."cki", "vdde", "vdd",
"ygse"”, "vsz", O);

LOINS("piot_sp", "B7", "BOUT|7]", "BCONT", "BIN[71","B[7]","ck1", "vddec", "vdd",
"ysse”, "vss", 0);

LOINS(Npi_Spll’ de-rll, NdiI", I'lpdirﬂ, ”Cki",n\"dde"’ I'Vddll’ "VSSC", IIVSS", O);
LOINS{"pi_sp", "enable”, "enable", "penable", "cki","vdde", "vdd", "vsse", "vss", 0);

LOINS("xceivercorel”,"xceiver","vdd","vss","ain[7:0]","bin[7:0]","aout[7:0]","bout| 7:0]

,taconl”, "beont”, "pdir”, "penable”, 0);
SAVE_LOFIG(};

exit(Q);
'

Give the command at the command line:
==
genlib —wv xcelverchip

This creates a “xceiverchip.vst” structural description file with pads. Use “more” to browse through the
structural description.

Exercise 3, Design of an Octal Tri-state Transceiver chip. 15

Seventh Course On Basic VLSI Design Techniques Trieste-Itaty, 29 Oct-23 Nov. 2001

Simulating the Structural Description

You can now simulate this structural description with the test vector file that we
developed for “xceiver.vbe”.

Give the command at the command line:

asimut xeeiverchip xceiver 2

xcetverchip - The structural description “xceiverchip.vst™ with pads
xcelver - The “xcelver.pat™ test vector file,
r2 - Resull to be place in “r2.pat” file.

There should be no crrors, which means that the structural description is functionally
equivalent to the behavioural description.

Placing and routing the pads

Now the chip’s pads and the corc has to be connected together physically in a layoul. This
is done by using Ring.

Edit and save the following in the file “xceiverchip.rin®™;

File used by ring tool to define the relative posilion of pads
norih (a0 dir vdd cnable b0 b1)

west { ad a3 ivss a2 al)

south { a5 a6 NCpad vss a7 b7 b)

east (b5 b4 ivdd b3 b2)

This file describes the relative position of the pads on the four sides of the chip,

Give the command at the command at the command line:

.D;iir

ring xceiverchip xceiverchip

The physical tile “xceiverchip.ap” is created that can be examined by using Graal.

Examine the layout using Graal.

Static Timing Analysis

The “xceiverchip.ap” contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the layout
we use two wols, Lynx and Tas.

Exercise 3, Design of an Octal Tri-state Transceiver chip. 16

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Lynx is a netlist extractor. It exiracts & netlist representation of the circuit [rom the layout.
The file created by Lynx will be the input file for Tas.
Tas is a switch level timing anatyser for CMOS circuits,

Give the following command at the command line;

setenv MEEK_QUT_LO al

This tells that the output file should be in the “ al™ (Alliance) [ormat,

lynx —v -t xeeiverchip xeeiverchip

-v - verbose

-t - build the netlist to the transistor [evel.

first xceiverchip - take the “xceiverchip.ap” layout file as input.
second xceiverchip - generate the “Xceiverchip.al™ netlist file.

Give the [ollowing command at the command line:

setenv MBK_TN_LO al
This tells that the input file for Tas must be in the *.al” (Alliance} format.
tas -tec=/alliance/archi/Linux_elf/etc/prol10.¢lp xceiverchip

-tec - selects the technology file prol10.elp.

Layout Extraction and Netlist Comparison

g

The “xceiverchip.ap” contains the layoul information. However we do not know if the
physical deseription produced reflect the behavioural description. Thereiore lo check the
layout we use two tools, Lynx and Lvx.

Giive the commiand at the command line:

tynx -v —-f xceiverchip xceiverchip

-v - verbose

-f - asks Lynx to generate the netlist from the Standard-
cells level,

first xceiverchip - Takes the “xceiverchip.ap™ layoul file as input.

second xceiverchip - Generate the “xceiverchip.al™ netlist file.

Lvx is a netlist comparison sofliware that compares lwo netlists. Along with the
comparison it re-orders the interface terminals (o produce a consistent netlist interface.

Give the command at the command line

Exercise 3, Design of an Octal Tri-state Transceiver chip. 17

Seventh Course On Basic VLSI Design Technigues Trieste-Italy, 29 Oct-23 Nov. 2001

lwvx var al xeeiverchip xceiverchip -f -o

vst - takes the [irst file in .vst formal.

al - takes the second file in .al format.

first xceiverchip - *xceiverchip.vst” file.

second xceiverchip - “xceiverchip.al” file.

-f - build the neist to the standard cell level.

-0 - (o have ordered connectors in the output netlist

The comparison should not produce any crrors. If ervors are produced by the program,
then there is some problem with the layout. The router has done something funny and
corrective action is to be taken at the layout level by studying the error messages.

The Lvx has also re-ordercd and built the netlist in the “.al” to the standard cell format.
This file can be simulated using Asimnt.

Simulating the Extracted netlist file

The netlist [ile “xceiverchip.al” can be simulaled using Asimut and the test vector file
“xceiver.pat”.

Give the following command at the command line;

setenv MBE_IN_LO al
This scts the input file format for Asimut for the “.al” format.

Give the following command al the command line,

asimut xceiverchip xceiver 13

xceiverchip - take the “xceiverchip.al” as input file
xeeiver - take the “xceiver.pat” test vector file
3 - dcliver the results in file “r3.pat™.

Any error means that you will have Lo retrace your steps back to find out the source of the
error.

Functional Abstraction

yagle is a program that cxtracls from a transistor netlist the behaviour of the circuit.
Essentially a VHDL file is created from a standard cell connectivity list! This VHDL file
can be simulated in turn to verify the function of the chip.

Give the command at the command line:

Exercise 3, Design of an Octal Tri-state Transceiver chip. _ 18

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

—

vagle -v xcelvarchip

-V - vectorize
xceiverchip - Takes the “xceiverchip.al” as input.

The extracted VHDL description is put in the [ile “xceiverchip.vbe”. Give thc command;

asimut - xceiverchip xceiver rd

to simulate the extracled behavioural file.

Alliance has a program (hal comparcs the extracted behavioural file with the original
behavioural file to formally prove the functional congruence of the described and the

extracted circuil.

Give the command:

proof -d xceiverchip xcelver

-d - displays logical functions as they are processed
xceiverchip - extracted “xceiverchip.vbe” file.
xcetver - original “xceiver.vbe” file,

Real Technology Conversion

i

| [

Up til! now all the files describe the circuit only as symbolic cells. The [oundry requires
the layout of the chip, described in terms of rectangles and lavers in the gds or the cif
format. This can be done in Alliance, by using S2r.

geteny RDS_TECHNG NAME szlliance/archi/Linux_elf/etc/pralll_7.rds
setenv RDS_QUT cif
zatenv RDS_TN cif

This chooses the 1.0um CMOS process. chooses the output form of the chip in cif format

and, replaces the symbolic pads with their real equivalent.
Give the command:

s2r -cv xocelverchip xceiverchip

-C - deletes connectors al the highest hierarchy. (Use
man to see full description)

-v - verbose mode on

lirst xceiverchip - “xceiverchip.ap” file as input

second xceiverchip - “xceiverchip.cif” file as culpul.

This completes the design of the transceiver chip.

S

Exercise 3, Design of an Octal Tri-state Transceiver chip, 19

SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 4

 Design of a 4 bit Presettable Synchronous Binary Counter
using VHDL dataflow

Seventh Course On Basic VLSI Design Techniques Trieste-lialy, 29 Oct-23 Nov. 2001

Problem Description

In this example you will design a 4-bit presettable synchronous binary counter using
VHDL dataflow. In this design example you will learn to:

¢ Specify the behaviour of the counter using VHDL and simulate it.

Generate the structural description of the counter and simulate it.

Place the necessary pads and re-simulate the structural description of the counter.
Make the layout of the chip.

Extract the circuit from the layout.

Extract the behavioural description from the netlist and compare with the original
behaviour file we created, to complete formal verification.

This design example consists of two phases. The first phase is to describe the behaviour
of the chip as is seen at the pins of the chip. The second phase is to describe the functions
of the core of the chip, and then connect it to the pads.

In the first phase you will:

e Describe the counter’s behaviour using VHDL (counter.vbe).
e Write test patterns files.
e Simulate the behavioural description using the pattern file by using Asimut.

In the second phase you wili:

e Describe the behaviour of the core in VHDL as is seen inside the chip by the pads
{countcore.vbe).

e Synthesise the logic and structural descriptions using Bop and Semap (countcorel.vst).

» Use Glop to optimise for critical path and fanout (countopt.vst).

Use the standard cell router called Ser to place and route the core (countopt.ap).

Add the necessary pads for the chip and compile using Genlib (countchip.vst).

Use Asimut to simulate the ‘countchip.vst’ file using the pattern file ‘counter.pat’.

Place the pads and generate the layout of the chip with pads using Ring

(countchip.ap).

Use Tas to perform the static timing analysis.

* Use Lynx to extract the netlist from the layout file ‘countchip.ap’ (countchip.al).

e Use Lvx to compare the extracted circuit ‘countchip.al’ and the original
‘countchip.vst’ file created by Genlib.

¢ Usc Yagle to extract the behaviour, ‘countchip.vbe’ from the ‘countchip.al’ netlist
file.

e Use Proof to compare the extracted behaviour file, ‘countchip.vbe’ and the
behavioural file created in the first phase, ‘counter.vbe’.

Lxercise 4, Design of an 4-Bit Preseitable Binary Counter. 1

Seventh Course On Basic VLSI Design Techniques

Trieste-Tialy, 29 Oct-23 Nov. 2001

Vi or Pico Text Editor
VHDL Description of

Counter Chip
{counter.vhe)

Text Bditor
VHDL Descrption of
Counter core
(connteore.vbe)

Text Editor
Genhb Language
Descriprion of Pads
& core (countchip.c)

—

[countehi

TN

Vior Pico Text Bdilor ‘

Vior Pico Text Editor
Relative position | Test Vectors using
of Pads Cenpat Language

{countchip rn) {courntar.c)

T \\ /R B '/ . \

//;
| i
(e)

| J —

counterpat | —

N

i

Text Editor
: Modity Tesl Vectors
(counter.pat)

_%

LS

-\5 countehip.cif / “ i
v Graal | (Chip ready i countchip.al | \{ countchip.al [
S 4 for foundry} . \ o
\‘“H-_%____ H o
Tex Editor - -~
caunlehipinf /
- AT . /
T II\“-\-\. 4—_ l/
e——— ! !
_F\\h Yﬂgl? _,/J /f
/ processed pallems
¥ —L 1o be checked
.// - s I i for cotrect
i Proof - -— countchip.vbe L - funclionality
S s \ N

Fig L. Design Flow for the counter chip.

Excreise 4, Design of an 4-Bit Prescttable Binary Counier.

Seventh Course On Basic VLSI Design Techniques

Trieste-Italy, 29 Oct-23 Nov, 2001

A 4-Bit Presettable Synchronous Binary Counter

The present exercise is a 4-bit presettable synchronous binary counter. The counter has an-
“enable” which when at logic ‘1’ allows the counter to count. The counter is presettable
to the value given on the input bus when “preset=1". The counter counts forward starting
from this value. There is a synchronous reset, which puts the counter to zero when it is

‘0.

A possible pin diagram of the counter is shown in Fig. 2.

CK T
PRESET [
ENABLE 7

PIN(3)
PIN(2}
PIN(1)
PIN(0}
VsS

COUNTER

oM n

VDD
RESET
NC

RP
COUTS)
COUT(2)
COUT(D)
COUT(O)

LT TOLILTT:

Fig. 3 Counter chip (a possible pinout diagram).

CK RESET | PRESET | ENABLE COoUT@3:0)
Rising Edge 0 X X (000
Rising Edge 1] X PIN(3:0)
Rising Edge 1 0 1 COUT(3:0) +1
Rising Edge 1 0 0 COUT(3:0)

No Rising Edge X X X COUT(3:0)

Table 1. Truth Table for the 4-bit prescttable counter

T OO T —

Exercise 4, Design of an 4-Bit Pressttable Binary Counter.

Scventh Course On Basic VLSI Design Techniques Tricste-Ttaly, 29 Oct-23 Nov. 2001

Solution

Legend

Give the command that appears immediately after this symbol, at the command line,

Edit and save into a file, all that appears atter this symbol.

Explanation of a lopic

Sct the environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design directory, al « convenient position in your work space:

=

mkdir counter

Change into this directory:

—

cd counter

Before starting the design you will have to set the environmental variables as shown
below so that you will not run into problems later.

setenv MBE_CATA_LTE .:/alliance/archi/Linux elf/cells/sclib:
falliancesarchi/Linux_elf/cells/padlib

setany MBR_IN_LO wst

setenv MBE_OUT_LC wvst

setenv MBK_IN_PH zp

sebtany MBE_OUT_PH ap

geteny MBE_WORE_LIE .

Create with the text editor a file called “counter.vbe”. Enter the following and save the
file.

Exercise 4, Design of an 4-Bit Presettable Binary Counter. 4

Seventh Course On Basic VLS Design Techniques

-- Benavipural description using VHDL
-- &i:11 Workshop oo VLSTI Design - Trieste

ENTITY counter IS

PORTY

Vad, Vss, Vdde, Vsse: in BIT;
Pin: in BIT_VECTOR (3 downto 0);
Cout: out BIT_VECTOR (3 downto 0);

ck: in BIT;

reset; in BIT;
enable: in BIT;
preset: in B,

rp: out BIT

}

END counter;

ARCHITECTURE dataflow QF counter IS

SIGNAL count: REG_VECTOR (3 downto () REGISTER;

BEGIN

icount : BLOCK(ck="1"and not ck’STABLE)

BEGIN

count <= GUARDED B"0000" when (reset =0 clse
Pin WHEN (presct="1") else

B"0001"
B 0O10"
B"oGL1"
B 010"
B"0101"
Br0110"
B"0111"
B"1000"
B"1001"
B"10107
B"1011"
B"1100"
B"1101"
BU1110"
B"1111"
B"0000"

count,

WHEN ({enable="1" and (count = B"0000")) else
WHEN ((enable="1" and (count = B"0001")) else
WHEN ((enable="1" and (count = B"001.0")) else
WHEN ((enable="1" and (count = B"0011")) else
WHEN ((enable="1" and (count = B"0100")) elsc
WHEN ({enable="1" and {(count = B"0101"Y) else
WHEN {{enable="1" and {count=B"0110"}) else
WHEN {{enable="1" and {count =B"0111"}) clse
WHEN ({(enable="1") and {count = B"1000"}} else
WHEN {(enable="1") and {count = B"1001"}} else
WHEN ((enable="1" and (count = B"1010")) else
WHEN ({enable="1") and (count =B"1011™)) else
WHEN ({enable="1" and (count = B"1100")) else
WHEN ((cnable="1" and (count = B"1101™)) clse
WHEN ((enable="1" and (count=B"1110")) else
WHEN ({cnable="1" and {(count = B"1111")) clse

END BLOCK lcount;

Cout <= counl;

rp <= count{() and count(1} and count{2} and count(3};

end dataflow;

Exercise 4, Design of an 4-Bit Presettable Binary Counter.

Trieste-Ttaly, 29 Oct-23 Nov. 200]

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

Test Pattern File and Simulation of the Behavioural Description

Write a pattern file for simulation.

(You can write a C file that when trealcd with Genpat will generate the pattern file for
you. See exercise 3). Modity the pattern file if it is necessary by editing it and simulate
using Asimut with the -b option and check that the counter performs satisfactorily.

Describing the core of the chip

7_

="

The behavioural file “counter.vbe” 1s the description of the counter as is seen at the pins
of the chip. We have not thought about the pads that drive the pins. When the chip is
described physically in Alliance, it consists if two separate parts that are brought together,
the core and the pads. In Alliance, the core and the pads are brought together in a C
description file. This file when treated with Genlib, produces the structural description of
the chip with the pads. In practice the core can be synthesised auntomatically form a
behavioural description, whercas the pads should be placed physically, one by one in the
C file. Placing the pads require the structural knowledge of the pads. One of the type of
pads that is used in this example is the pck_sp clock pad, a cell of “padlib™, a library of
pads provided with Alliance,

Give the [ellowing command at the command line to see a description of this pad.

man pck_sp

Behavioural Description of the Core

Copy the file “counter.vbe” to the file “countcore.vbe”, edit it and deletc the Vdde and
Vsse input signals since they arc used only for the Pads.

Logic and Structural Synthesis of the Core

s

Now Bop and Scmap can be used to optimise and synthesisc the core of the chip from the
above behavioural description.

Give the command:

bop -o countcore countcorel

This takes as input the “countcorc.vbe” description and creates an optimised behavioural
description file “countcorcl.vbe”. Now to synthesise the structural description give the
command:

Exercisc 4, Design of an 4-Bit Presettable Binary Counter. 6

Scventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

—

semap countcorel countcorel
This takes as input the optimised behavioural description “counicorel.vbe” and creates a

structural description file “countcorel.vst” using the elementary components from (he
standard cell library,

Optimising for Fanout and Timing
The structural description created above has been created without worrying about the
standard cells fanout limits and critical path signals. Alliance Glop can analyse the
structural description and create a new description by adding buffers to the appropriate

nets.

Give the command:

glep -g countcorel countopt -i -t

-g - invokes timing optimization.

countcorel - countcorel.vst input file

countopt - countopt.vst oulput file

-1 - gives fanoul information about the gate netlist.
-1l - gives timing information about the gate netlist,

This command tlakes “countcorel.vst” struclural description and generates a
“countopt.vst” file atter buffers have been added to the critical paths.

Give the command:

—

glop -f countopt countopt

-f - invokes fanout optimization.
countopl - countopt.vst modified structural file

This command should add buflers to the appropriate nets o resolve fanout problems and
write over the “countopt.vst” file created above.
Placement and Routing of the core

The core can now be routed using Ser. Give the following command at the command line:

socr -p -r -1 4 -1 100 countopt

-p - placement option

-t - routing option

14 - asks to place and route the core in 4 rows

-i 100 - use 100 ilerations to improve placement quality

A “countoplap” layout file is created which can be viewed with Graal. Inspect it using
Graal.

Exercise 4, Design of an 4-Bit Presettable Binary Counter. 7

Seventh Course On Bagic VLSI Design Techniques Tricste-Ttaly, 29 Oct-23 Nov. 2001

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C functions that allows you to
describe circuit objects like pads and the core and their connectivity.
Edil and save into the file “countchip.c™ the following:

#include <genlib.h>

main{)
{

mLi;
DEF_LOFIG{"countchip”;

LOCON("ck", IN, "ek")

LOCON("reset", IN, ‘'rescl");

LOCON("preset", IN, “preset"Y;

LOCON("¢nable", IN, "cnable”)

LOCON("vdd", IN, "vdd") /¥ core power supply ¥/
LOCON("vss", IN, "vss" ¥} /* core ground *f
LOCON("vdde", IN, "vdde"); /* pads power supply */
LOCON("vssc", IN, "vsse"), £* pads ground */
LOCON("PIN{3:0[", IN, "PIN[3:0]"); /* presetinput %/
LOCON("COUT[3:0]", OUT, "COUT[3:0]"); /* output *f
LOCON("rp", QUT, "rp" %

‘h?-
power supplies:
pxxxc_sp are external power supplics, i.e. used only by the buffers
inside the pads.
pxxxi_sp are internal power supplics, [or core logic only,
*/

LOINS ("pvsse_sp", "p30", "cki", "vdde", "vdd", "vssc", "vss", O
LOINS ("pvsse_sp", "p31", "cki", "vdde", "vdd", "vsse"”, "vss", 0):
LOINS ("pvdde_sp", "p32", "cki”, "vdde", "vdd", "vsse", "vss", 0);
LOINS ("pvdde_sp", "p33", "cki", "vdde", "vdd", "vssc", "vss", 0);
LOINS ("pvssi_sp", "p34", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS ("pvddi_sp", "p35", "cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS(”ka__Sp", np0n= I!Ckll, "Cki", “Vdde", "Vdd", "VSSC", "\-"SS“., 0),
LOINS("pvssick_sp”, "pI","clock”, "cki","vdde", "vdd", "vsse", "vss", O);
Loms(npinspn, ”pz“,”rese[”, 1rrcsl|,nckin, nvddelr, "Vdd", "VSSC", "VSS", 0),
LOINS{"pi_sp", "p3","preset”, "pres”,"cki", "vdde", "vdd", "vsse", "vss", 0},
LOIN’S(”pi_Sp“, l|p4|!,”enablell, "en",”cki", ll‘\"ddcil, Hvddﬂj 'Ivssell’ I.VSSN, 0);

non LI

LOINS("po_sp", "pS"."rprp", "rp","cki", "vdde", "vdd", "vsse", "vss", 0);

Exercise 4, Design of an 4-Bit Presettable Binary Counter. 8

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov, 2001

LOINS("po_sp", "p10"."usc|0]", "cout[0]","cki", "vdde", "vdd", "vssc”, "vss", 0);
LOINS("po_sp", "pI1","usc[1]", "cowt[1]","cki", "vdde", "vdd", "vsse", "vss", 0);
LOINS("po_sp", "p12","usc[2]", "cout[2]","cki", "vdde", "vdd", "vsse”, "vss", 0);
LOINS("po_sp", "pI3"."usc[3]1", "cout[3]","cki", "vdde", "vdd", "vsse", "vss", 0);

LOINS(I'pi‘Spii, sz{)","pin[o].l, .Iingrl_(]]","cki", "\."ddc“, "‘!dd"’ rlvsscll, rleSn’ 0);
LOINS("pi_Sp", "p21","pin[]]", "i]'lgl'[]]","cki", "Vddﬁn, "Vdd", "\-"SSE"”, "VSS", 0},
LOINS("pi_sp", "p22","pinf2]", “ingr[2]","cki", "vdde", "vdd", "vsse", "vss", O);
[«OINS("pi_Sp", "p23","pin[3j", "ingr[3]","cki", "\-"dde", "Vdd", "VSSGH, "\«"SS", O),

LOINS{"countopt", "core","vdd", "vss", "ingr{3:0]", "use{3:0]", "clock", "res",

en","pres”, "rprp”, O

SAVE_LOFIG();
exit(0); /* necessary for the proper run of the Makefile */

}

Give the command at the command line:

genlibh -v gountebip

This creates the “countchip.vst” structural description file with pads.

Simulating the Structural Description
You can now simulate this structural description with the test vector file that vou used for

“counter.vbe”. Simulate the struciural description and confirm the functioning of the
structural description.

Placing and routing the pads

Now the chip’s pads and the core has to be connected logether physically in a layout. This
is done by using Ring.

Edit and save the following in the file “countchip.rin™:

width (vdd 20 vss 20)

west (p0 p32 p35 p33 p23)
south (p3 p2 p! p4 pS)

north (p10 p30 p34 p31 p21)

east (p!1 pl2 p13 p20 p22)

N EniE T
T

Exercise 4, Design of an 4-Bit Presettable Binary Counter.)

Seventh Course On Basic VILSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

This file describes the relative position of the pads on the [our sides of the chip.

Give the command at the command line:

ring countchip countechip

The “countchip.ap” layout file is created that can be examined by using Graal.
Examine the layout using Graal.

Static Timing Analysis
/7'

The “countchip.ap”™ contains the layout information. However we do not know il the
physical description produced reflect the desired behaviour. Therefore 1o check the layout
we use the tools Lynx and Tas.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.
The file created by Lynx will be the input file for Tas.

Tas is a switch level timing analyser [or CMOS circuits.

Give the following command at the command line:

gctenv M2X_CUT_LO a:z

This tells that the output file should be in the “.al” (Alliance) format.

=

lynx -v -t countchip countchip

-V - verhose

-t - build the netlist Lo the transistor level.

first countchip - take the “countchip.ap” layout file as input.
second countchip - generate the “countchip.al” netlist file.

Give the following command at the cornmand line;

setenv MAX IN L0 al
This tells that the input file for Tas must be in the “.al” {Alhance) format.
tas -tee=falliance/archi/Linux_cll/eic/prol10.elp countchip

-tec - sclects the technology file proilf.elp.

Layout Extraction and Netlist Comparison
The “countchip.ap” contains the fayout information. However we do not know if the
physical description produced reflect the initial bechavioural description. Therefore to

check the layout we use Lwo tools, Lynx and Lvx.

Lynx is a netlist extractor. It extracts a netlist representation of the cirenit [rom the layout.

Exercise 4, Design of an 4-Bit Presettable Binary Counter. 10

Seventh Course On Basic VLSI Design Techniques Trieste-Ilaly, 29 Oct-23 Nov. 2001

i

—

For this you have to set some environmental variables. You have to specify the format in
which the extracted netlist is generated.

Give the tollowing command at the comnand Hne;

seteny MBE_OUT_ Lo al
This tells that the output file should be in the “.al” (Alliance) format.

Give the command at the command line:

lynx -v -f countchip countchip

-v - verbose

-f - asks Lynx to generate the netlist at the Standard-
cells level.

tirst countchip - Take the “countchip.ap” layout file as input.

second countchip - Generate the “countchip.al” netlist file.

Lvx is a netlist comparison soflware that compares two netlists. Along with the
comparison it re-orders the interface terminals Lo produce a consistent netlist interface.

Give the command at the command line

1wx vet al covntehip countchip -£ -0

vst - take the {first file in .vst format.

al - iake the second file in .al format,

first countchip - *countchip.vst” input file,

second countchip - “connichip.al” cutput file.

-f - build the netlist to the standard celi level.

-0 - to have ordered connectors in the output netlist

The comparisen should not produce any errors. If errors are produced by the program,
then there is something wrong with the layout. The router has done something funny and
corrective action is to be taken at the layout level by studying the ertor messages.

The Lvx has also re-ordercd and bailt the netlist in the *.al” o the standard ccll format.
This file can be simulated using Asimut.

Simulating the Extracted netlist file

The netlist file “countchip.al” can be simulated using Asimut and the test vector file (that
Las been created 1o test the behavioural file “counter.vbe™.

Exercise 4, Design of an 4-Bit Presettable Binary Counter. 11

Scventh Course On Basic VLSI Design Techniques Trieste-Ilaly, 29 Oct-23 Nov. 2001

Give the following command al the command line:
setenv MBE_IN_LO al
tor set the input file format for Asimut for the “.al” format, before doing the simulation.

Any error during simulation means that you will have (o retrace your sieps back to find
out the source ol the crror.

Functional Abstraction

Yagle is a program that extracts from several structural descriptions (man yagle), the
behaviour of the circuit. Essentially a VHDL file is created from a standard cell
connectivity description or from a SPICE transistor netlist! This VHDL file can be
sitnulated in turn to verily the lunction of the chip

Give the command at the command line:

=

vagle -v countchip

-v - vectorize
countchip - Takes Lhe “countchip.al” as input.

The extracted VHDL description is put in the lile “countchip.vbe™.

Simulate the extracted behavioural deseription to verily the extracted bcehavioural
description,

Alliance has a program that compares the extracted behavioural file with the original
behavioural file to formally prove the functional congruence of the described and the
extracted circuit. However this sicp requires that the regisiers in the two bchavioural
descriptions have the same names. This can be done automatically by Yagle by giving it a
list of registers to b2 renamed, in an information file “countchip.inf”. 1If we do a “more” of
the “countchip.vbe” file we see that the registers have a different name from the one that
we have given in “counter.vbe”.

Edit and save a file “countchip.inl” with the following:

rename

core.count 1.dff_=s : count_1
core.count_0.d4ff s : count_0
core.count_2.4ff s ¢ count_2
core.count_3.dff_s : count_3
end

Give the command:

=

vagle -i -v countchip

-i - asks Yagle to read the “countchip.inf” file and rename the registers
in the “countchip.vbe” file as given in the list.
-y - veclorze

Exercise 4, Design of an 4-Bit Presetiable Binary Counter. 12

Seventh Course On Bagic VLSI Design Techniques Trieste-Ttaly, 29 Qct-23 Nov. 2001

Now a formal verification comparcs the extracted and the origing!l behavioural
descriptions. Give the command:

proct -v -d counter countchip

- - negates the input and output signal expressions of
the registers.
-d - display errors o screen.

If no errors are reported, then the two behavicural descriptions concur.

Real Technology Conversion
Up ill now all the files describe the circuit only as symbolic cells. The foundry requires

the layout of the chip, described in terms of rectangles and layers in the gds or the cif
format. This can be done in Alliance, by using 82r.

sctenv RDS_TECHNO_NAME /alliance/archi/Linux elf/fete/prollC_7.rds
seteny RDS_OUT cif
seteny RDS_IN cif

This chooses the 1.0um CMOS process, chooses the ouiput form of the chip in cil format
and, replaces the symbaolic pads with their real equivalent.

Give the command:

gzr - ov oountchip countchip

-¢ - deletes connectors at the highest hierarchy. (Use
man to see full description}

-y - verbose mode on

first countchip - “countchip.ap” file as input

second countchip - “countchip.cif” file as output.

This completes the design of the counter chip.

R A

Exercise 4, Design ol an 4-Bit Presettable Binary Counter. 13

SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, [taly

Exercise 5

Design of a 4 bit Adder Accumulator
using VHDL Dataflow

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov, 2001

Problem Description

In this example you will design a 4-bit binary adder accumulator using VHDL dataflow.-
In this design example you will learn to:

Specify the behaviour of the adder using VHDL and simulate it.

Generate the structural description of the adder and simulate it.

Place the necessary pads and re-simulate the structural description of the adder.
Synthesise the layout of the chip.

Extract the circuit from the layout.

Extract the behavioural description from the netlist and compare with the original
behaviour file we created, to complete formal verification.

This design example consists of two phases. The first phase is to describe the behaviour
of the chip as is seen at the pins of the chip. The second phase ts to describe the functions
of the core of the chip, and then connect it to the pads.

In the first phase you will:

¢ Describe the adder’s behaviour using VHDL (adder.vbe).
e Write test pattern files.
¢ Simulate the behavioural description using the pattern file by using Asimut.

In the second phase you will:

» Describe the behaviour of the core in VHDL as is seen inside the chip by the pads
(addercore.vbe).

» Synthesise the logic and structural descriptions using Bop and Semap (addercorel.vbe

& addercorel.vst).

Use Glop to optimise for critical path and fanout (addopt.vst).

Use the standard cell router called Ser to place and route the core (addopt.ap).

Add the necessary pads for the chip and compile using Genlib (addchip.vst).

Use Asimut to simulate the ‘addchip.vst® file using the pattern file ‘adder.pat’.

Place the pads and generate the layout of the chip with pads using Ring (addchip.ap).

Use Tas to perform the static timing analysis.

Use Lynx to extract the netlist from the layout file ‘addchip.ap’ (addchip.al).

Use Lvx to compare the extracted circuit ‘addchip.al” and the original ‘addchip.vst’

tile created by Genlib.

o Use Yagle to extract the behaviour, ‘addchip.vbe’ from the ‘addchip.al’ netlist file.

e Use Proof to compare the extracted behaviour file, ‘addchip.vbe’ and the behavioural
file created in the first phase, ‘adder.vbe’.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow, 1

Seventh Course On Basic VLSI Design Techniques

Trieste-Ttaly, 29 Oct-23 Nov, 2001

| Wi or Pico Text Editor

| VHDL Description of

Adder Accumulator
Chip (adder.vbe)

-~ L/

Wi ot Pico Teal Editor :
VHDL Description ol
Adder Accumwlator

core {addcore vbe)

i

S

[addcore.vst

| addchip.cit
. (Chip ready |
\ for foundrv}y

Vior Pico Text Editor

Wi or Pico Text Editor
Genlib Language B e
Description of Relative position
| connestivity between) of P?}ds_
I Pads & core {(addehip.c) (addchip.rin)

o~

|'\ addchip vst
Y.

i Y /

Vi or Pico Text Editor
(addchip.inf)

S T

. addchip.vhe

NN

Fig 1. Design flow of the adder accumulator chip

Vior Pico Text Editar
Test Vectors using

Genpat Language |
{adder.c) :

— -

W¥ior Pico Text Editor

Modify Test Voctors
L

{adder.pat}

e

/ filename. pat ,/
(to be checked |'
lor comect |

5, functionality) I_

(S Y

Exercise 3, Design of a 4-Bit Adder Accumulator using VHDL Dataflow.

Scventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

A 4-Bit Binary adder accamulator

The present excrcise is a 4-bit binary adder accumulator. The adder has a “select” which
when at logic ‘0’ allows the adder to sum the two inputs 4-bit buses: A and B, and when
at logic '1" the input 4-bit bus A is added to the result stored in a 4-bit register which we
call the accumulator. The accumulator is updated at the rising edge of the clock. The
result of the sum is presented at the 4-bit cutput bus Y.

A possible pin diagram of the counter is shown in Fig. 2.

CK r|® 1 VDD
SELECT O :_I B(3)
A(3) O | B(2)
A2} 7 gj j B(1)
AL 3 5 3 B
YD I =
Y0) O j Y@

Fig 2. Adder chip (a possible pinout diagram).

CK SELECT Y(3:0)
Rising Edge 0 A+B
Rising Edge l A+Y

No Rising Edge X Y(3:0)

Table 1. Truth Table for the 4-bit binary adder

T T~

LExercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 3

Seventh Course On Basic VLSI Design Techniques Triesle-Ttaly, 29 Ocl-23 Nov. 2001

Solution

Gtive the command that appears immediately after this symbol, at the command line.

Edit and save into z (ile, all that appears alter this symbol.

Explanation of a topic

Set the environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design directory, at a convenient position in your work space:

mkdir adder

Change into this directory:

cd adder

Before starting the design you will have to set the environmental variables as shown
below so that you will not run into problems later,

salenwv MBK_CATA _LIB _:/alllance/archi/Linuw_elf/cells/sclib:
/alliance/archi/Linux_elf/cellz/padlib

setenv MBE_IN_LO wvst

setenv MBE_OUT 1O vst

getenyv MEE_TIN_PH ap

setenv MBK_OUT PH ap

setenv WBE_WORK_LIB .

Create with the text editor a file called “adder.vbe”. Enler the following and save the iile.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHEDL Dataflow. 4

Seventh Course On Basic VLSI Design Techniques

Trieste-Italy, 29 Oct-23 Nov. 2001

ENTITY adder IS

PORT(
vild, vss, vdde, vsse ; in BIT ;
ck :in BIT ;
sel :in BIT;
a ;in BIT_VECTOR (3 DOWNTO 0) ;
b :m BIT_VECTOR (3 DOWNTO 03 ;
y :out BIT_VECTOR (3 DOWNTO)
jH

END adder;

ARCHITECTURE data_[low OF adder 1§

SIGNAL regstr : REG_VECTOR (3 DOWNTO 0) REGISTER;
STGNAL mux : BIT_VECTOR (3 DOWNTO 0) ;
SIGNAL sum :BIT VECTOR {3 DOWNTO () ;
SIGNAL carry : BIT_VECTOR (2 DOWNTO () ;
BEGIN
WITH se¢l SELECT

mux <= b WHEN 0’ regsir WHEN °T°;

sum{0y <= a(O) xor mux{0} ;
carry()) <= a(() and mux(0) ;

sum(1} <= a(l) xor mux(1} xor carry(() ;
carry{1) <= (af1) and mux{1)) or
{mux(1) and carry(®)) or
{a(1) and carry(()) ;
sum(2y <= a(2) xor mux(2) xor carry(1) :
carry(2) <= (a(2) and mux(2}y or
{mux(2) and carry{1)) or
(a(2) and carry(1)) ;

sum(3) <= a(3) xor mux(3) xor carry(2) ;

store : BLOCK ({ck =17 and not ck'STABLE)

BEGIN
regstr <= GUARDED sum ;

END BLOCK ;

y <= regsir;

END;

Exercisc 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 5

Seventh Course On Basic VLST Design Techniques Trieste-lialy, 29 Qct-23 Nov. 2001

Test Pattern File and Simulation of the Behavioural Description

Write a pattern file for simulation. (You can write a C file that when treated with Genpat
will generaie the pattern file for you. Sec exercise 3). Modify the pattern file if il is
necessary by editing it and simulate using Asimut with the -b option and check that the
counter performs satisfactorily.

Describing the core of the chip

The behavioural file “adder.vbe” is the descripiion of the adder as is seen al the pins of
the chip. We have not thought aboul the pads that drive the pins. When the chip is
described physically in Alliance, it consists of two separate parts that arc brought
together, the corc and the pads. In Alliance, the core and the pads are brought together in
a C description file. This file when rcated with Genlib, produces the structural
description of the chip with the pads. In practice the core can be synthesised auicmatically
from a behavioural description, whereas the pads should be placed physically, one by one
in the C file. Placing the pads rcquire the structural knowledge of the pads. One of the
types of pads that is used in this example is the pi_sp input pad, a cell of PAD-Lib, &
library of pads provided with Alliance.

Give the foliowing command at the command line (o see a description of this pad.

—

=

man pi_=p
Behavioural Description of the Core

Copy the file “adder.vbe” to the file “addercore.vbe”, edit it and delete the Vdde and Vsse
input signals since they are not necessary for the core.

Logic and Structural Synthesis of the Core

Now Bop can be usced to optimise and synthesise the core of the chip from the above
behavioural description.

Give the command:

bop -0 addercore addercorel

This takes as input the “addercore . vbe™” description and creates an optimised behavioural
description file *addercorcl vhe”.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow, 6

Seventh Course On Basic VLST Design Techniques Trieste-Ttaly, 29 Oct-23 Nov, 2001

To synthesise the structural description give the command;

scmap addercorel addercorel

This takes as inpul the oplimise behavioural description “addercorel.vbe™ and creates a
structural description file “addercorcl.vst” using the components from the standard cell
library.

Optimising for Fanout and Timing

The structural description created above has been created without worrying about the
standard cells fanout limits and critical path signals. Alliance Glop can analysc the
structural description and create a ncw description by adding buffers to the appropriate
nets.

Give the command:

—

glop -g addercorel addopt -1 -t

-g - invokes timing optimization.
-1 - gives fanout information about the gate netlist.
-t - gives timing information about the gate netlist.

This command takes “addercorel.vst” structural description and generates a “addopt.vst”
file after buffers have been added to the critical paths.

Give the command:
glop -f addopt addopt

This command should add buffers to the appropriate nets to resolve fanout problems and
write over the “addopt.vst” file created above.

Placement and Routing of the core
The core can now be routed using Scr, Give the following corumand at the command line:

ger -p -r -1 4 -1 1000 addopt

P - placement option

-r - routing option

14 - asks to place and route the core in 4 rows

-1 1000 - use 1000 iterations to improve placement quality

A “addopt.ap” file is created which can be viewed with Graal.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow, 7

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C functions that allows you 1o
deseribe circuit objects like pads and the core and their conneclivity.
Create and edit and save into the file “addchip.c” the following:

#include <genlib.h>

main()

{

DEF LOFIG("addchip");
LOCON{a[3:01",T,"a[3:0]");
LOCON("b[3:071",T","b{3:01");
LOCONY[3:0]",0 y[3:0]™);
LOCON({"sel",'T","scl");
LOCON{"ck",T,"ck");
LOCON("vdde",T,"vdde");
LOCON{"vgge",T,"vsse");
LOCON("vdd", T, vdd");
LOCON{"vss", T, "vss");

LOINS ("pvsse_sp", "Vss", "cki", "vdde", "vdd", "vsse"”, "vss", 0);
L.OINS ("pvdde_sp", "Vdd", "cki", "vdde”, "vdd", "vsse”, "vss", 0);
LOINS ("pvssi_sp", "Vssi", "ckl"_ "vdde", "vdd", "vsse", "vss” 0),
LOINS ("pvddi_sp", "Vddi", "cki", "vdde", "vdd", "vsse", "vss", ();

LOINS("pi_sp"."sl","sel","sl","cki","vdde","vdd","vsse"," vss",0);
LOINS(Npck_Sp", IlClk"} Irckil, I'Cki", I"!ddell’ "Vdd“‘ lrvssen, "VSS”, 0);

LOINS("pvsseck_sp". "clkcore”, "clkeore”, "cki”,
"vdde", "vdd", "vsse", "vss", 0);
n,nlnd[o} ‘,"Lkll ’I vdden llvddll itvsse|r "VSS" 0)

LOINS("pi_ sp" "a0","al0]
" Minal 11", "cki","vdde","vdd","vssc", " vss".0);
]
]

[
LOINS("pi_sp”,"al","a[
LOINS(IIPI qp" n n"H n i[

[

i
2 n,nlna[H‘Hcklll "Vdde","\’dd I,”VSSC“ "\‘PSE’)" 0)
LOINS(“DI Sp" r "Il,lla 3

" rllnd[]n-,"(akl" "Vdde" r‘\-"dd“ "\”’;56" "VSS" 0)

LOINS("pi_sp"."b0","b[0]","inb[0]","cki","vdde","vdd","vsse"," vss",0);
LOINS("pi_Sp“ 1rb1n "b[l]" uinb[]]u weki® “\"ddc“,“\"dd“,"\"sse“,“ \"SS“,O);
LOINS("pi_sp","b2","b[2]","inb[2]","cki","vdde","vdd" " vsse","vss", (),
LOIN’S("pi_SplIellb3|’|,llb[3'|ll,Iilnb[B]II,‘ICklll,llvdde","\.l,ddil,"vsse!l’Flvssrl 0);

LOINS("po_sp","y0","out[0]","y[0]","cki","vdde","vdd"," vsse","vss",0);
LOINS("pO "pn Hy " Pout[]J r Iy[l]ﬂ Hcklrl Nvdde P, Ivddll' lrvsserl rl\‘{bb 0)
LOINS("pO Sp” Hy2H r‘out[z]lr,ll 2]""‘ckl"’"Vdde”,”Vdd”,”vsse"’"VSS" 0),
LOINS{"po_sp","y3","out[3]","y[3]","cki","vdde","vdd","vssc", " vss" ,0);

LOINS("addopt","adder1"”,"vdd","vss","clkcore","s1","ina[3:01","inb{3:01"," cul[3:01",0);

SAVE_LOFIG(},
}

Excrcise 3, Design of a 4-Bit Adder Accumulator using VHDL Dataflow.]

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

Give the command at the command line:

genlik —-v addchip
This creates a “addchip.vst” structural description file with pads.

Simulating the Structural Description

You can now simulate this structural description with the test vector Rle that you
developed for “adder.vbe”. Simulaie the structural description and confirm the
functioning of the structural description.

Placing and routing the pads

Now the chip’s pads and the core has to be connected together physically in a layout. This
is done by using Ring.

Edit and save the [ollowing in the file “addchip.rin™

north (¢lk s1b0O b1 b2 b3)
wesl (a0 al vssi a2 a3)
south { y0O y1 clkcore y2 y3)
east { vdd vddi vss)

This file describes the relative position of the pads on the {our sides of the chip.

Give the command at the command line:

o

ring addchip addehip

A “addchip.ap™ file is created that can be examined by using Graal.

Static Timing Analysis

o

The “addchip.ap™ contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the layout
we use lwo tools, Lynx and Tas.
Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.
The fite created by Lynx will be the input file for Tas.
Tas is a swilch level timing analyzer for CMOS circuits.
Give the following command at the command line:

¥

sebenv MBE_OJT_LO al

This tells that the output lile should be in the “.al” (Alliance) format.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 9

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

i

pos

lynx -v -t addchip addchip

-V - verbose

-1 - build the netlist to the transistor level.
first addchip - take the “addchip.ap™ layout file as input.
second addchip - senerate the “addchip.al” netlist file,

Give the following command at the command line:

setenv MBE_IN_LO al
This tells that the input file for Tas must be in the *.al” (Alliancc) format.

tas -tec=/alliance/archi/Linux_elffcie/prol1G.elp addchip

-tec - selects the technology file proll0.elp.

Layout Extraction and Netlist Comparison

The “addchip.ap™ contains the layout information. Howcver we do not know if the
physical description produced rellect the behavioural description. Therefore to check (he
layout we use two tools, Lynx and Lvx.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.

For this you have to set some environmental variables, You have to specify the format in
which the extracted netlist is generated.

Give the following command at the command line:

seteny MBK_OUT_LO al
This tells that the output file should be in the “.al” (Alliance) format.

(Give the command at the command line:

1lynx -v -f addchip sddehip

-V - verbose

-f - asks Lynx to gencrate the netlist from the Standard-
cells level.

first addchip - Take the “addchip.ap” layout file as input.

second addchip - Generalte the “addchip.al” netlist [ile.

Exercise 3, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 10

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

Lvx is a netlist comparison software that compares two netlists, Along with the
comparison it re-orders the interface terminals Lo produce a consistent netlist interface,

Give the command at the command line

lvx vst al addchin addechip -f -o

vsl - take the first file in .vst format.

al - take the second file in .al format.

first addchip - “addchip.vst” file.

second addchip - “addchip.al” file.

-f - build the netlist to the standard cell level.

-0 - 1o have ordered connectors in the output netlist

The comparison should net produce any crrors, If errors are produced by the program,
then there is some problem with the layout. The router has done something funny and
corrective action 1s to be taken at the layout level by studying the error messages.

Lvx has also re-ordered and built the netlist in the “.al” to the standard cell format. This
lile can be simulated using Asimut.

Simulating the Extracted netlist file

i

The netlist file “addchip.al” can be simulated using Asimut and the test vector file that
has been created to test the behavioural file “adder.vbe™.

Give the following command at the command linge:

seteny MB¥_IN LO al

to set the input file format for Asitmut for the “.al” formal, before doing the simulation.
Any crror during simulation means that you will have to retrace your steps back to find
out the source of the crror.

Functional Abstraction

Yagle is a program that extracts from a standard cell level, the behaviour of the circuit.
Essentially a VHDL file is created from a standard cell connectlivity description! This
VHDL file can be simulated in turn to verify the function of the chip

Give the command at the command line:

vagle -v addchip

-y - vectorize
addchip - Takes the “addchip.al™ as input.

Lxercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 11

Seventh Course On Basic VLSI Design Technigues Trieste-Italy, 29 Oct-23 Nov. 2001

The extracted VHDL description is put in the file “addchip.vbe”.
Simulate the extracted behavioural description 1o verify the extracted behavioural
deseription.

Alliance has a program that comparces the extracted behavioural file with the original
behavioural file to formally prove the functional congruence of the described and the
extracted circuil. However this step requires that the registers in the two behavioural
descriptions have the same names. This can be done automatically by Yagle by giving it a
list of registers 1o be renamed, in an information file “addchip.inf”. If we do a “more” of
the “addchip.vbe” file we see that the registers have a different name from the one that we
have given in “adder.vbe”.

Edil and save a file *addchip.inl™ with the following:

renamac

adder!.regstr O.dff s :regstr 0;
adderl.regstr_1.dl1_s : regstr_1 ;
adderl.regstr 2.dff s :regstr 2 ;
adderregsir_3.d[01_s : regstr_3 ;
end

Give the command:

yagie -1 -wv addchip

-i - asks Yagle to read the “addchip.inf” filc and rename the registers
in the “addchip.vbe™ file as given in the list.

Give the command:

procl -p -g adder addchip

D - negates the input and output signal expressions of
the registers.
-d - display crrors to screen,

If no errors arce reported, then the two behavioural deseriptions concur.

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 12

Seventh Course On Basic VI.SI Design Technigues Trieste-Italy, 29 Oct-23 Nov. 2001

Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry requires.
the layout of the chip, described in terms of rectangles and layers in the gds or the cif
format. This can be done in Alliance, by using S2r.

Give the command:

i

setenv RDS_TECENO_MNAME /alliance/archi/Linux_elf/ete/prollC_7.rds
setenv RDS_OUT cif
gebany RDS_IN cif

This chooses the 1.0pm CMOS process, chooses the output form of the chip in cif format and,
replaces the symbolic pads with their real equivalent.

Give the command:

s

z2r -¢v addehip addehip

-C - deletes connectors at the highest hierarchy. {Use
man to see full description)

-v - verbose mode on

first addchip - “addchip.ap” file as input

second addchip - “addchip.cif” file as output.

This completes the design of the counter chip.

R IR

Exercise 5, Design of a 4-Bit Adder Accumulator using VHDL Dataflow. 13

SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 6

Design of a Serial Hex Combination Lock Chip

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Problem Descriptidn

In this exercise a serial combination electronic lock chip is designed starting from the
specifications. This design exercise was inspired by the example of a simple combination.
lock given in the book, The Art of Digital Design, “An Introduction to Top Down
Design”, by, Franklin P. Prosser & David E. Winkel, Prentice Hall Inc., Chapter 5. In this
design example you will learn to:

Specify the characteristics of the lock starting from scraich as an Algorithmic State
Machine (ASM).

Describe the behaviour of the lock’s ASM in Alliance fsm langnage and generate the
behavioural description of the ASM.

Add the architectural blocks to the generated behavioural description and simulate the
design.

Generate the structural description of the chip.

Place the necessary pads and re-simulate the structural description.

Synthesise the layout of the chip.

Extracl the circuit from the layout.

Extract the behavioural description from the netlist and compare with the original
behaviour file we created, to complete formal verification.

In this design example you will:

Describe the ASM using Alliance fsm language putting an output for each state so as
to debug the machine (elock.fsm).

Generate the behavioural file using Syf (elocks.vbe).

Write test pattern files for simulation and validation.

Simulate the behavioural description of the ASM with the pattern file by using
Asimut.

Copy the elock.fsm file to the lock.fsm file and remove the outputs for the states.
Generate the behavioural file using Syf (locks.vbe).

Copy locks.vbe to lock.vbe and add the architectural blocks to the behavioural
description {lock.vbe).

Re-simulate the behavioural description with the architectural blocks using Asimut.
Synthesise the logic and structural descriptions using Bop and Scmap (lockl.vst).

Use Glop to add buffers to adjust critical paths and fanouts (lockopt.vst).

Use the Standard Cell Router, Scr to place and route the core (lockopt.ap).

Add the necessary pads for the chip and compile using Genlib (lockchip.vst).

Use Asimut to simulate the ‘lockchip.vst’ file with the pattern file developed earlier.
Placc the pads and generate the layout of the chip with pads using Ring (lockchip.ap).
Use Tas to perform the static timing analysis.

Use Lynx to extract the netlist from the layout file ‘lockchip.ap’ (lockchip.al).

Use Lvx to compare the extracted circuit ‘lockchip.al’ and the original ‘lockchip.vst’
file created by Genlib.

Use Yagle to extract the behaviour, ‘lockchip.vbe’ from the ‘lockchip.al’ netlist file,
Use Proof to compare the extracted behaviour file, ‘lockchip.vbe’ and the behavioural
file created in the first phase, ‘lock.vbe’.

Exercise 6, Design of a Serial Hex Combination Lock Chip. 1

Seventh Course On Basic VLSI Design Techniques

Tricste-[taly, 29 Oct-23 Nov. 20601

i .
Text Editar Text Editor ! Text Editor . Text Editor TRZ);;HES:O"—‘ Text Editer
Fyn Description | ' Test Vectors for fsm Add architeclural | Genlib Language osition | Test Vectors using
of Coneraller of using Genpul Blocksn (o the fsm |1 Description of Ei’IPads .| Genpat Langnage
lock chip Language : behaviowral CONnECtivity (lockchip.tin | (filename.c)
with state ourputs | telocks.c) i Tilelocks.vbe core between P
for each state Vi deseription Padls & care /—
felock fsm) : / o (lack, vhe) flockchip.c) | o \
i :
~ \ ! RN
AR : |L// /N
e /——'- | L/ , -.
n\(:enpat ¢ ! i . Y Genpat
(sy ' '\ (Bop&Scmap) [Genlib -
| | ! i | Bop & Scmap i th | ‘
NI Yy ! A Wy A\ Gealh)
[elucks.pat | !] | S
Y] Y |I ,f/ 7
I I I I | locklwst [k luckchip.vs | ———-
cloekr.vbe ! ! '\
\ \ \. :
| I
| .'/ \ | / ™, Ring | lockehip. pat :
"\\ - Asimin | ; '\ Glop J L / _ '\
"ﬁl \ ,/ ’ l
...... y ‘. /
| | lockopt.vs ' I.'“'ul
Text Editor ' N Q .'J '

Fsm Description of | : . EI\ 4 ’ Text B
Cantrodler of ock chip | ' ! Y ext Bditor
without state oulputs | ,' : . ! l ‘.\ Modify Test

‘ for each stute : | 4 \ S Vechl'n's
{lock fsm) ' : |: Ser | \ (fockchip.pat}
. 1 —_— 1 —
S 1 .."l
™, | N
L _// . | i /_z’ l
. 1 1 X .
| ! Vo 7 _,/ ‘
W X X f lockopt.ap | — I
; PN | =
| ;
v ! 1 |
J i ! L
. __\ | ,.--f"}}__ Pt
| syt .' 4 :
g ! 1
i _lf“'-
| t / {/—R\
,—_"_) . : / |'l | Tax Foat——
/ R I ~
I: lockr.vhe (’ f !
4 -
(S ; i N | !
v . Sar | — X |

Text Editor ; ‘

I. e | (lockehip.infy |
\ ;
\h iy ~, N . TN ‘ ‘
i | ' .
N B | |
ff (\ ."II |
[Tockehip.cif | o e ™
| (Chip ready | . S T ————m| Asimut o
; |\ for foundry} '|\ ll,r Sogl \I ~ / S T__/
e Y agle ra—
_ '
/ [
|Illl J
[A
/ / fiename pat I,I'
! Y / | (tq he checked |
1 tor correct
,-/ \.I] / » functionality) '
| Proof ;= lockehip.vbe | -— I
_) _/’ e —— N
Fig 1. Design flow for the Hex Combination Lock
Exercise 6, Design of a Serial Hex Combination Lock Chip. 2

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

A Serial Combination Lock

Background:
We build in this exercise an electronic version of a mechanical combination lock
that is available in the market.

Mechanical locks come in two flavours, parallel and serial. A parallel
combination lock is a suitcase type of lock, where there are 3 to 4 disks that can be
rotated independently to the correct combination. A serial lock is dial type of lock that
comes on safety lockers in banks: a single dial is rotated through a sequence of numbers
in the correct order. Any wrong number requires that, the procedure of entering the
numbers is started all over again.

In this design example we design an electronic version of the serial combination
lock. The lock’s combination is entered in hexadecimal notation, one digit at a time. Any
wrong digit sends the lock to an error state, which requires a reset signal to start all over.

Target System:

A “N” digit serial combination lock that lights a light when the combination is
correct. The number of digits “N” for the combination is chosen by the user. The
combination is programmed by the user.

Designing the lock’s Algorithm:
The following important design decisions are taken before the design of the
algorithm.

I. Data is entered through a hexadecimal keypad. The keypad output is a 4 bit bus that is
called “keynum{3:0]” which indicates the number that has been punched. The keypad
has a strobe signal that is called “keypress” that lasts for one cycle of the system clock
that indicates that one of the keys of the key pad has been punched. The keypad is
debounced and sends only one “keypress” signal even if any of the keypad buttons is
held down. To send another “keypress” signal, the keypad key has to be released and
pressed down again.

2. Combination is entered from left to right. A maximum of 8-digit combination is
allowed.

3. A “reset” button is provided to start over if a combination etror is made. The “reset”
button is debounced.

4. A “set” button is provided to allow the user to program the combination. The “set”
button is debounced.

5. The user presses a “try” button to indicate the end of sequence entry and the machine
should check the sequence and if it matches, to command the lock to open. The “try”

ECxercise 6, Design of a Serial Hex Combination Lock Chip. 3

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

signal lasts for only a clock cycle like the “keypress” signal. The “try” button is
debounced.

6. A light lights up if the sequence is correct, but does not give any information if the
sequence is wrong.

The ASM for the combination lock is shown below.

In each state the ASM checks for the “reset” or the “set” button press. A reset puts the
machine in the INIT state. The machine enters the READ_COMB state in the following
clock cycle.

In the READ_COMB, a “try” signal sends the ASM to the ERR state, whereas a
“keypress” signal compares the number punched in with that stored in the reference. This
compared signal is called the “cmpdig” signal. A successful digit comparison allows the
comparison of the next number in the sequence, but otherwise puts the machine in the
ERR state. How many numbers in the sequence should we check? We have a counter to
keep track of the number of digits entered in a sequence. In our lock design we use a 3 bit
counter so that we can have a maximum of 8 digit sequence combinations. As each digit
is compared successfully we increment the counter, until it reaches the count of “N”. The
reference digit is function of the counter’s output, and as each digit is compared
successfully, the reference digit is updated to the next digit in the sequence to be
compared. The number of digits to be compared “N” is tested and given out as a
“cmpnum” signal. This is comparison of the counter’s output and a register that stores the
number “N”, When the counter reaches a terminal count equal to “N” after all successful
digit comparison operation, the machine goes to the TEST state.

In the TEST state, a “keypress signal” send the machine to the ERR state. The test for the
“keypress” signal is included in this state, so that even if someone arrives to the correct
combination in the sequence by luck, he does not know the number of digits to be
punched in! A “try” signal puts the machine in the state OK.

In the OK state, the “openlock” signal is validated and the lock opens, The lock closes if
the “reset” button is pressed and the machine goes back to the state INIT.

The combination sequence is stored in registers. These registers are accessed for a
read or write operation by thc ASM. The ASM uses the 3 bit counter to present the
address to these registers. The reference numbers stored in these registers can be changed
by pressing the “set” button that puts the ASM in the SET_INIT state. The number “N” is
programmable and is automatically set when the user enters the combination sequence of
the lock in the SET_COMB state and then presses a “reset” to indicate the end of the
combination setting procedure.

Excrcise 6, Design of a Serial Hex Combination Lock Chip. 4

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

CNT <0

CMPDIG =T
i+
NUM=REFNUM(CNT}
CMPNUM =T

if
CNT=N

J

RESET

CNT <-
CNT+1

Fig.2 ASM chart of the Serial Combination Lock

Exercise 6, Design of a Serial Hex Combination Lock Chip. 5

Seventh Course On Basic VLSI Design Techniques Tricste-ltaly, 29 Oct-23 Nov. 2001

N

T
\LN_I_I/_.

RESFT

/

A’RESS
DPENLOCK LN
.
/ ™. v/ | oM< 1\\
< SFT .

S s DKEY «- T
<N / N

| mexe | !
o

Fig. 2 (cont’d) ASM of the Serial Combination Lock

cx @ 1 vDD
KEYPRESS T O RESET
TRY [KEYNUM(3)
NC T KEYNUM(2)
SET = NC
OPENLOCK T Ll KEYNUM(1}
V8§ 0 KEYNUM(O)

Fig. 3 Lock chip (a possible pinout diagram).

Exercise 6, Design of 2 Serial Hex Combination Lock Chip. 6

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 2% Oct-23 Nov, 2001

Solution

Give the commmand that appears immediately after this symbol, at the command line,

Edil and save into a file, all that appears after this symbol.

Explanation of a topic

Set the environmental variables as shown immediately after this symbol,

Creating the Design

Begin by creating a design directory, at a convenient position in your work space:

mkdir lock

Change into this dircetory:

od lock

Create with the tex1 cdilor a file called “elock.lsm”. Enter the following and save the file.

Entity elock is

jelekan |
ck : in bit ;
reset: in bitg;
try : in bit:
keypress @ in hit;
set : in bitg;
cmprum : in bit;
crpdig : im bit;
openlock : cutb bit;
incent : out bit;
regcnt ; out bit;
idkey : out bit;
tdaum @ out big;
testflag, initflag, okflag, errflag, readflag, inclflag,
ine2flag, getinitflag, setcombflag : out bit
)
End elack;

architecture auto of elock is

type STATE_TYPE is

(INIT,READ COMB, INC1, ERR, SET_INIT, SET_COME, ITNC2, TEST, OK) ;
-~ pragma CLOCKE ck

-—- pragma CUR_STATE CUREZNT_STATE

-— pragma NEX_STATE NEXT_STATE

sigral CURRENT STATLE, MEXT_STATE : STATE_TYPE;

begin

PEOCESS {CUURRENT_STATE, reset, try, keypress, set, cnpnun, cropdigl

Exercise 6, Design of a Scrial Hex Combination Lock Chip. 7

Seventh Course On Basic VLSI Design Techniques

Trieste-kaly, 29 Oct-23 Nov. 2001

begin
case CURRENT_STATE is

WHEN INIT => initflag <= *17;
if {zet='1'} then
NEXT_STATE <= SET_INMIT:
rascnt <= *1°;
else i1f lreset="0") then
NZXT, _STATE <= 1MIT;

ragcnt <= "] °;
alse

MEXT_STATE == READ COMB;
end 1f:
and if;

WHEM READ OME =» readflag <= "1-°;
if {get="1") then
NEXT_STATE <= SET IMIT;
rezcrt <= ‘17 ;
elae if (veset='0') then
NEXT STATZ <= INIT;
rescnt «='1";
else if
{try="1"1 then
MEXT_STATE <= ERE;
elsa if
ikeypress="'0‘] then
NEXT_STATE <= READ COME;
else if
{cmpdig=-0") then
NEXT_STATE <= ERR;

else if
fcmpnum='1) then
MEXT_STATE <= TEST:

alae
NEXT_STATE== INC1;
incernt <= 1+ ;

end 1f;

end if;

end if;

end if;

end if;

end if:

WHEN BEER => errflag <= ‘1°;

if {=zez='1") then
WEXT_ STATE <= SET_INIT;
reacnt <= '1*;

elasa if (reget="0'} then
NEXT _S7TATE <= INIT;

rasonth <= ‘1
eise

NEXT_STATE <= ERR;
end if;
end 1F;

WHEN INC1 =» inciflag <= ‘1°';
1f {(set='1l‘} then
NEXT STATE <= SET INIT;
clse 1f (reset='0'} then
NZXT_STATE <= INIT;
rescnt <= ‘1°;
2laa
NEXT_STATE == READ_COMB;
end if;
end if;

WHEN TEST =» tegtflag <= "17;

1f f=at = "1} then
NEXT_STATE <= SET_INIT;
regcnt <= ‘1¢;

else iZ {(reget='0') then
KEXT_STATE <= INIT;
rescnt <= *1°;

elas if

Exercise 6, Design of a Serial Hex Combination Lock Chip. R

Seventh Course On Basic VI.ST Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001
{keypress="1’) then
NEXT_STATE == ERR;
clse if
(try = '0'} then
NEXT_ _ETATE <= TEST;
else
NEXT_STATE <= QE;
end if;
end if;
end if;
end if;
WHEN QK =» okflag <= *1°;
openlock <= 71°;
if {set = '1') then
WEXT_STATE <= SET_INIT;
rggonb == ‘1¢;
else if (reset = '0') then
HNEAT_STATE <= IHNIT;
rescnt == '1°;
else
NEXT_STATE <= OK;
end if;
end if;
WHEN SET_INIT =» setinitflag <= '1';
if {set = *'1'}) then
NEXT_STATE <= SET_INIT;
rescnt <= 17
zlse
NEX™Y_STATE <= SET_COME;
end if;
WHEN SET_COMB =@ seccombflag <= *'1°;
if {set = *1‘) then
MEXT_STATE <= SET_INIT;
resgnt <= 17
else if
{reset = '0’) then
NEXT_ STATE <= INIT:
rescnt <= ‘17 ;
alse if
{keypress = '0') then
WNEXT_STATE <= ZET_COMB;
else
NEXT_ETATE <= INC2;
ldrnum <= '17;
1ldkey <= ‘17 ;
incent <= *14;
end if;
end if;
end if;
WHEN INCZ =» inc2flag <= "1°7;
if {sett = "1’} then
NEXT_ STATE <= SET_INIT;
resent <= 1
elze
NEXT_STATE <= ZSET_COME;
end if;
WHEN others ==
azzsert (717)
report "illegal stabke";
end case;
end process;
proceas (ok)
begin
ifick = 1’ and ot ck’ etable) then
CURAENT, STATE <= NEXT_STATE;:
end if;
end process;
end auto;
Excrcise 6, Design of a Serial Hex Combination Lock Chip. g

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Compare the stale assignments and the conditions under which the state, changes with that
shown in the ASM chart. Notice the similarity between the ASM chart and (he description
given in the fsm. We want to debug the state machine before we do anything clsc with it.
Therefore we have assigned a output flag to ecach of the state, which become ‘17 if the
maching 1s in that state. Thus we can follow the iransition of states during a simulation.

Give the following command at the command fine

ayf -rv elock

T - Randon encoding
kY - verhose node

This command produces a file “clockr.vbe”, which is the behavioural description of the
fsm description. This hehavioural descriplion can be simulated using asimut,

Test pattern file and simulation of the state machine

Write a pattern tile for simulation. (You can write a C file that when treated with Genpat
will generale the pattern file for you. See exercise 3).

Modify the pattern file by editing it and simulate using Asimuot with the -b option and
check if the state machine performs satisfactorily.

Adding Architectural Blocks

The behavioural file “elockr.vbe™ contains only the description of the ASM. Now we will
have to add the architectural blocks, like the register (hat stores the combination, the
register that stores the number of digits to be compared, the counter and, implement the
various comparison operations. The ASM controls the architectural blocks and some of
the signals thal appear in the “Entity” declaraticn become internal signals that control
these blocks.

Once we are sure that the staie machine changes state as it should under the specified
conditions, the varicus flag signals that we put in the “elock.fsm” file to debug the statc
machine, can be removed.

We start by copying the “clock.fsm” file to “lock.fsm” and cditing this (il¢ to remove the
state flag signals from the description.

cp eleock, £sm lock. fsm

Edit the file “lock.fsm” 10 remove the state flag signals to produce a description as shown
below,

Exercise 6, Design of a Serial Hex Combination Lock Chip. 10

Seventh Course On Basic VLSI Design Techniques Triesle-Ttaly, 29 Octl-23 Nov, 2001

Entity leck is

port(

ck @ in bit ;

regeb: in bit;

try : in bit;

keyvpress : in bit;

set : in bit;

cmpriam 3 in kit;

copdig @ ic big;

openlocx : out bit;
incent o ocul bit;
rescnt @ out bit;
1dkey : out bit;
1dnum : out bit

3

End lock;

architecture zuto of lock is

type STATE_TYPE is
{INIT,READ_COME, INC1,EER, SET_IKIT, SET_(COME, INCZ, TEST, 0K ;

-- pragms TLOCE ok
-- pragma CUR_STATE CURRENT STATE
-- pragma WNEX STATE NEXT_STATE

sigmal CURRENT_STLTE, NEX1 STATE : STATE_TYPE;

begin

PRCCESS (CUREENT_STATE, reset, try, kaypress, set, cmpnum, enpdig)
begin
case CURRENT STATE is
WHEN INIT ==
if f(zet='1') then
MEXT_STATE <= SET_INIT;
elge 1f {reset='0"') then
NEXT_STATE <= IHNIT;
regont <= ‘17

NEXT_STATE <= READ COME;

WHEN READ_COMB =>
if {gelL="1'} then
WEXT_STATT == SET_INIT;
elsze if (reset='0'} then
NEXT_STATE <= INIT;
ragont <='1";
eige if
(try='1'} then
NEXT_STATE <= ERE;
else if
(keypress="0'} then
NEXT_STATE <= READ COMB;
else if
{cmpdig="0") then
NEXT_STATE <= ERR;
elesa if
{crprnum="1") then
MNEXT_STATE <= TEZT;
alsa
NEXT_STATE<= INKC1;
incent <= *1°;
end if;
end if;
end
end
engd
and 1f;

WHEN E2E ==
if {get="1'} then
NEXT_STATE <= SEY INIT;
eigse if (reset="0"} then
HEXT_STATE <= INIT;

Exercise 6, Design of a Serial Hex Combination Lock Chip. 11

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

rescnt <= ‘1°;
elsze

NEXT_ STATE <= ERR;
end it;
end if;

WIIEN INC1 =»
1E {set="1") then
NEXT STATE <= SET_INIT;
elae if (reset='0'} then
NEXT_STATE <= INIT;
resent <= '1°;
else
NEXT_STATE <= READ COME;
end if;
end if;

WHEN TEST ==
1f {zet = "1} then
KEXT_STATE <= SET_INIT;
else if (reset='0’) Lhen
NEXT STATE <= INIT;
repsonk = 1
alae if
[keypress="1'} then
NZXT_STATE <= ERRE;

elae if
{try = '0'} ther
NEXT_ESTATE == TEST;
else
MEXT_STATE <= 0K;
end if;
end if;
end if;
end if;

WHZN 0K ==
openicck <= *1¢;

if {zet = *'1'} then
NEXT_STATE <= SET_ INIT:
eisze Iif (reset = '0') then

NEXT_STATE <= INIT;
resent <= 1
else
NEXT _STATE <= OK;
end if;
end if;

WHEN SET_INIT ==

if {zez = "1’} then
NEXT_STATE <= SET _INIT;
resont <= ‘1Y ;
al=se
NEXT_ _STATE <= SET_COME;
end 1f;

WHEK 5ET_COME ==

if (get = '1'} then
WZXT_STATE <= SET_INIT;
raescnt <v ‘1°;

else if
[reger = “0') then

NEXT_STATE <= INIT;
rescent <= ‘1°;

else if
{keypresa = ‘0°) then
MNEXT_STATE <= ESET_COME;
else
WEXT_STATE == INC2;:
ldnum <= *1°;
ldkay <= *1°;
incent <= *1*;
and if;
end if;
end 1if;

WHEM 1NCZ ==

if {met = *1'} then
WEXT_STATE <= SET_INIT;
rescnt <= 1’

else

Exercise 6, Design of a Serial Hex Combination Lock Chip. 12

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

WZXT_STATE <= SET_COMB:
end 1if;

WHEN others =»
assert {1}
report "illegal state";

end case;
end pYocess;

orocess {ck)

begin
if{ck = *1* and not ck’ stable} then
CURRENT STATE <= NEXT_ STATE;
end if;

end process;

end anto;

Give the command to synthesise the “.vhe™ file,

syL -rV lock

This produces a “lockr.vbe” file as output. This file contains only the controller, The

“Entity” statement here contains the output signals thal control the architectural blocks

and the input signals that decide the next slate of the state machine. The architectural

blocky are:

1. the 3-bit counicr that counts the number of digits punched in,

2. the comparator that gives the “cmpdig” signal to the state machine,

3. the comparator that compares the reference number with the one that is punched in
through the key board. and gives the “cmpnum” signal,

4. the decoder that brings in the correct reference number from the memory and,

5. the memory that holds the reference numbers,

To add the architeciural blocks, to this file we edit the statc machine behavioural
description. We convert the signals that control the architecturat blocks, the signals that
are input to the state machine, (and are not required outside) as internal “Signals”. Then
the block’s behaviour are described while keeping the inlerface signals between the
blocks and the state machine the same.

Copy the file “lockr.vbe™ to the file named “lock.vbe”. Edit this file and add the
architectural block description to the behavioural description as shown below.

Read the comments that have been given under the special comment line marked by --**,
to undersiand the changes that have been made Lo the file.

-— VHDL data flow descripticon generated from ‘locks®

-- Bntity Declaration

ENTITY .ock I8

PORT

wdd, wes: in BIT;

ck : in BIT; -- ck

reset : in BIT; -~ resect
try : in BIT: -— Iry

Exercise 6, Design of a Serjal Hex Combination Lock Chip. 13

Seventh Course On Basic VLS1 Design Techniques Triestc-Italy, 29 Oct-23 Nov. 2001

keypress : in BIT; -- keypress
set : in BIT: -— get
coenlock : out RBIT; -- openlaock

keynum: i BY_VECTOR (3 downbta 0}
1
END lock;

-- Architecture Declaration

ZECHITECTURE behaviour_data flow OF lock IS
—-—** A1l the signals that control the architectural blocks and that
--** zre riot required outside the chip beceome internal signals.
SIGKAL cmpdig, omprnun, incent, rescnt, ldkey, ldoum @ BIT;
——%¥ The memory that storesg the combination iz declared
SIGHAL memd, meml, memZ, nemd, mnemd, memS, memb, mem?: REG VECTOR {3
downto O) REGISTER:
--** The counter ard the register that stores the number of digits to
-—** gompare in a seguence isg declared
SIGHAL counter, num : REEG_VECTCR (2 downto O) RECISTER;
--** These are signals declared by =yf

SIGHAL current_state_0 : REG_BIT REGISTER; -- gurrent_state
SICMAL current_state,]l : REG_BIT REGISTER; -- current_state_ 1
SIGMAL currert_state_2 : REGC_BIT REGISTER; -- current _state 2
STEWAL current_state 3 : RRG_BIT REGTSTER; -- current state 3
SZeNAL jnit_s= @ BIT; . init_s
SrEmal init_m @ BIT: -- init_m
SICHNAL read_comb_g : BIT; -~ read_comb_=
SIGMAL read comb_m ; 2IT; -— read_conb_m
SIswAlL lnci_s o BIT; -- incl_ =
SIcHAL inci_m : RIT: -— incl m
SIGHNAL err_z= : BIT; -— Berr_g
STGNAL err_m : BIT; -— arr m
SIGNAL set_init_s : BIT; -— met_init_s
SIGNAL set_init_m : BIT; -- ggb_init_m
SIGHNAL zekb_comb s @ BIT; -~ seb_comb s
STGNAL set_comrb m o BIT; -- set_comb_m
SIGNAL inc2_s : BIT; -- inc2_s
SIGNAL incd_m : BIT; -- incZ2_m
SIGHNAL test_s @ BIT; ~-- test_=
SIGHAL test_m : BIT; -- test_m
SIGMAL ok_= : BIT; -- ok_=
SIGMAL ox m : BIT; ~-- ok _m
BEGTIH
-—** gounter dezcription
count: BLOCK {ck = "1’ and not c¢k’STAELE}
BIEGIN
colnter <= SUARDED B"000" when {(rescnt="1‘} alsze
B'"001" when {{incent=‘1"} and {countex = B"Q30"}}
alse
3'010" when ((incent="1") and {counter = B"Q01l"}}
elac
B"G11l" when ({inccnt='1’) and {counter = B"010"))
alae
B"100" when ({incent='1’) and {counter = B*0Q11"))
else
B'"102" when (({incent='1') and {(counkber = B"100"))
elss
B"110" when (({incent="1') and {(counter = B"161*))
elos
E"111" when ({incent='1'} and (counbar = B"110"%1)
clae
B"000" when {{incent='1*} and (counter = B"iil1"}}
elsa

countear;
end BLOCX count;

--%* Generation of the cmpdig signal

cnpdig <= ([(countersB'000") and {memd = keynum)} or
{{counter=B"001"} and {(meml = keynum)) or
[{counter=B"010") and {mem2 keymnum)) or
[({oounter=B"011"} and {memnl keynum)] or
[{counter=B"100"}) anc {memd keyvauml) or
{{counter=B"101"} and {(mem$ keymum)] or
{{ecounter=E"110") and {(memd keyrium)) or
{{counter=R"111") and {mem? keymam]] ;

o neon

-—** Ceneration of the cmpnum signal
crpnium <= {CcounLer=num) ;

Excrcise 6, Design of a Serial Hex Combination Lock Chip. 14

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

--** condition under which the mum register is loaded
Tgadnum: BLOCE {ck='1" and nal ckx'STAELE)
BE{TH
num <= SUARDED counter WHEN {ldnum='1l'} else
num;
end BLOCK ioadram;

-—** gondition under wnich the sequence is leoaded into the registers.
loadkey: BLOCK {ck="1" and not c¢k'3STABLE}

ﬁ;§%N<= GUARLCED keynum WHEN [{counter=E"000") and {ldkey=1'}] else
meml <= CUALRDED keygiﬂcéHEN [{counter=E"001") and {ldkey='1'}) else
mem? <= GUARDED keygiﬂléHEN {{counter=E"010") and {ldkey='1'}) eize
mem3 <= CUARDED keyEEif&HEN {{counter=B"011") and {idkey='1"}) else
memi <= GUARDED keyﬁiiJ%HEN floounter=B*100") and {ldkey='1')} elze
mems <z GUARDED keygiﬁiﬁHEN ficounter=E"101") and {idkey='1'}) else
mems <= GUARDED keyﬂiﬂuﬁHEN {{counter=B"110") and {idkey="i"}) elae
e’ <= SGUARDED keygizj%HEN {{counter=R*111") and {idkey=‘1‘'}}) else
men7 ;

end BLOCK leoadkey;

--** Thig iz the .vbe description synthesisged by syf for the state
—--** mzchine deseription made in lock. fzm

ok_m <= ({try and not [keypress)} and resget and not {(set) and test_s)
or (reset and not (set } and ck_s));

ok_s <= (not (current_state_ 0) and current_state_ 1 and net
{current_skate 2) and current_state_3);

test_mn <= {{not (Lry } and not (keypregs)} and reset and not (set) and
test_s) or (crpnum and copdig and keypress and not (try) and
reset and not {(set } and read conb s}

tagk_= <= (not (current_state_0 } and not (current_statre_1) and
current_state 2 and not {current_state_3 });

inc2, m == (kevpress and reset ard not (set } and set_comb_s);

ingZ_s <= (not [current_state_0 } and current_state 1 and
current_state 2acd not {(current_state_3 }};

set_comb_m <= (inot {set) and inc2 _s) or (not i(keypress) and reset and
netiset) and set _comb_s) or (not {set } and set_init_s)};

set_comb s <= (not {current_state_0]| and current_state_1 and
current_state_ 2 and current_state_3};

set_init. m <= {{zet and test_s} or {(set and incZ_ s} or {set and err_s} or
fset and set_comb_=) or (set and ok _2) or {szet and set_init_z) or
{ger and incl_ =g} or {(zZet and read_corly 8} or {zet and init_s=});

get_init_s <= {current_state 0 and net {current_state 1 } and net
{curraent_state_2} and not (ourrent state 3 1)

err_m == | ([xeypress zand reset and not {get } and test_s} or (reset and
not. {set } and err_s) or (not {cmpdig) and Keypress and not
(try } and reset and not {(get } and read comb_s} or {try and
rezet and not {sei | and read_comb_=));

arr_s <= {not {curreat_state 0 | and not {current _state 1 } and ooz
(current_state_Z2} and curranbk state 3] ;

incl m <= f(not {cmpnum)} and crpdig and kevpress and not {(try) and reset
and not {set } and read comb s};

incl_ s <= {not {current_state 0] and current_state_l and not
fourrent_state_ 21 and not (current_state 3 11;

read_comb_m <= {{reset and not {(get) and incl_s) or {(not {(keypress) and
not {try)} and reset and not {set) and read comb =) or {(reset and
not {set | and init_s)};

reat_comb_s5 <= (not [(current_state_0) and neot {(current_state_1 ; and not
[current_state_2) and not {current_state_3)7;

inib_m <= {{not (reset } and not (set } and test_=) or (not {reset) and
rot {set) and err_s} or {not {reset ; and not (set) and set_comb_s) o
{not {(reset | and not {zet | and ok_s} or (not [(reset) and not {=set) and
incl_s) or (not (reset } and act (set ; and read comb_s) or (not {reset)
and not {set) and irit_s});

imit s <= {(not (curreni_state 0) and not (current_state_ 1) and
current_state 2 and current_state 3);

lapeld : BLOCK (ick and not (ok’STABLE }) = *'1°)

BEGIN

current_state_3 == SUARDED {(init_m or err_m or set_comb m or ok _m};

END BLOCK labell;

labell : BLOCX (ick and not (ck'STABLE }) = "1}

BEGIN

current_state 2 <= CSUARDED (init_m gor set_comb m or inc2_m or teat_m};

Exercise 6, Design of a Serizl Hex Combination Lock Chip. 15

Seventh Course On Basic VL.S1 Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

END BLOCE labell;
labal2 : BLOCK {ick and not [(ck'STABLE ;i = *1')
EEGIN
current_state_1 «= GUARDED (inci_m or set_comb m or incZ_m or ok _m);
END ELOCE label?;
labeld . BLOCK {{ck and not {ckK'STABLE 1} = 17}
BEGTIN
current_scate_{ <= GUARDEID set _init_m;
END BLOUK Igbell;

openlock <= not ok _s;

incent <= {{net {cmpnuom } and cmpdig and keypress and not {(try) and reset
ard not (set) and read_conlb_2) or (kevpress and reset and not
toet) and set comb_s))

rescnt <= ({not (reset } and nct (set) and init_s) or {not {reset) and
not (set) and read _comb_g2) cor (not (reset) and nct {(set)

and incl_s) or (not (reset) and not (set) and err_s) or {(set

and get_init_g) or (not {reset) and not (set) and set_combo_ s

or (=et and zel _oomb_ =) or (set and ire2_s) or (not (reset)

and not (set) and test_a) ocr (hot {roset } and not (asel) and

ok_=));

ldkey <= (keypress and reset and not iset } and set_comb_s);

ldrum <= (keypress and reset and not {set } and set_comb 5);
END;

Test Pattern Generation and Simulation of the Complete Behavioural Description

i

Write a pattern file to test the “lock.vbe” file.
Modify the pattern file by editing it and simulate using Asimut with the -b option and
check if the behavioural description performs satisfactorily,

Logic and Structural Synthesis of the Core

=

——

=

Now Logic can be used to optimisc and synthesise the core of the chip [rom the above
behavioural description.

Give the command:

nop —o lock lockl

This takes as input the “lock.vbe” descripion and creates an optimised Boolean
behavioural description file “lockl.vhe™.

To synthesise the structural description give the command:

scmap lockl lockl

This takes as input the optimised bechavioural description “lockl.vbe™ and creales
the structural description file “lockl.vst” using the components from the standard cell
library.

The structural description created above has been created without worrying about the
standard cells fanout limits and critical path signals. Alliance Glop can analyse the

Exercise 6, Design of a Serial Hex Combination Lock Chip. 16

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov, 2001

—

structural description and create a new description by adding buffers to the appropriate
nets.

Give the command:
glop -g lockl lockopt -i -t
This command takes “lockl.vst” structural description and generates a *lockopt.vst” file

after buffers have been added to the critical paths.

Give the command:

glop -£ lockeopt lockopt
-f - fanout optimization.

This command should add buffers to the appropriate nets to resolve fanout problems and
write over the “lockopt.vst” file created above.

Placement and Routing of the core

The core can now be routed using Ser. Give the following command at the command line:

scry -p -r lockopt

-p - placement oplion
o - routing option

A *lockopt.ap” file is created which can be viewed with Graal,

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C [unctions that allows you to
describe circuil objects like pads and the core and their connectivity.

Create and edit and save into the file “lockchip.c” the (ollowing:

#include<genlib.h>
main ()
{

DEF_LOFIG("lockchip");

LOCON["VDD"; rII" "WD");
LOCON ("VSS*, ‘I‘,"VSS");
LOCON {"VSSE", ‘I’ “VSSE');
LOCON { "VDDE", *I’, "VDDE"};
LOCON ["CK", 'I',"“CK");

LOCON (“RESET", 'I’, "RESET"};

Exercise 6, Design of a Serial Hex Combinatien Lock Chip. 17

Scventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

LOCOM{"TRY", *I°,"TRY"];

LOCON{ "KEYPREESS, "I, "KEYPRESZ"};
LOCON{"SET", "I, "5ET");

LOCON{ "OPENLOCK", *C°, "OFPENLOCK"} ;
LOCON{ "keynum[Q:3]", "T*, "keynum[0:3}"};

/* Ingtance of pads of the chip. The inetance name of the pads is the ane
that ig to be =/

/* given to the Ring tool for it teo understand the namezs for pad placement
on the chin */

/* 0Om passing this f£ile through Genlib, a .vst file is gensrated. This file
hag the output*/s

/* input and IO pins asg gpecified in the abkove list. Asimut understands
only these as the */

J* ping for gimalation */

LOINS {"pvsse_gp", "vss", "cki", "vdde", "vdd", "vsse", "vsas" [} ;
J_IOINS { upvdde_spll . I'Vd n . “Cki“ . IIVddell . "Vdd" . HVSSEH R “VSS“ , 0) ;
LOINS {"pvddi_sp", "ivdd", "cki", "vdde", "vdad", "vazge", “ves" , 0} ;
LOINS S "pvssi_gp", "ivss", "oxi", "vdde", "wvdd", "vaze", "wsg", 0} ;

LoOIMS{ "pock_sp", "RINGCLE", "CKv, "CKI", "VORE", "VDD", "WZ3E", "V38", 0] ;
LOINE {"pvsseck_sp", "CLOCK", "PCK", "CKI", "VDDE", "VDD", "WVS3E", "VSs8",0};

LOLNS {"pi_s=p", "RESET", "RESET", "PRESET", "cki", "¥YDDE", "VDD", "VSSE", "VE2", 0} ;
LOINS (“pi_sp", "TRY","TRY","PTRY", “cki", "VDDE", "¥DD", "VSSE", "WVs5",0]);

LOINS("pl_sp", "KEYPRESS", "KE¥PRESS", "PKEYPRESS", "cki", "VDDE", "VDD*, "VSgE", "
VE3Y,0)
LOLNS ("pi_sp", "SETY, "SET", "PSET", “cki*, "VDDE", "yDD", "VSSE", "VS3*, 0] ;

LOINS("pi_sp", "KEYNUMC", "KEYIUM[O] *, "PKEYNUM[Q] ", "cki®, "VODE", "yDD", "VSSE",
swEst, 0y

LOINS("pl_sp", "EEYNUML1", "KEYINUM[1] ", "BKEYNUM[L]", "cki", "W¥DDE", "VDD", "V55E",
1q

g5, 0

LOINS("pi_s=p",
"w3st, 00

'ZEYNUM2", "KEYIUM[2] ", "PEEYNUM[2] ", "cki®, "VDDE", "VDD", "WSSE",

LOINS("pi_sp", "XEYNUMA", "KE¥YNUM[3]", "PEEYMUM[3]", “cki", "VDDE", "VDD", "VS$SE",
"VEst,0);:

LOTNS { "po_gp", "OPENLOCK®, "POPENLOCE", "OPENLOCK", "¢kl", "VDDE", "VDD", "V3SE", "
Vsst,0)

/™ The first name is the name of the .vst file that is to be used for
reference */

/* The second name is the instance_name and can be anything */

/% the names that follow can be arything except that they should ke in the
same */

/* order as in the .vst file. Bus signals should have the same dimersions.
Names given */

/* should be the inputs or cutputs of other irstances which means that the
block ig */

/* physically connected to other biocks in the description and is not left
hanging */

LOINS (" lockopt", "lock", "wvdd", "vss", "pck", "preset”,
"ptry", "okeypress', “pset", "popenlock”, "pkeynumf3: 01,0} ;

SAVE_LOTIG(; ;

exit (0} ;
1

Excrcise 6, Design of a Scrial Hex Combination Lock Chip. 18

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Give the command at the command line:

="

genlib leckcohip

This creates a “lockchip.vst” structural description file with pads.

Simulating the Structural Description

You can now simulate this siructural description with the test vector file that you
developed for “lock.vhe”. Simulate the struciural description and confirm the functioning
of the structural description.

Placing and routing the pads

Now the chip’s pads and the core has to be connected together physically in a layout. This
is done by using Ring.

Edit and save the following in the file “lockchip.rin™

File used by RING tool

Placement of pads for the lcock chip
norts {clock vid reset)

east (set ivdd try keypress)

soutn {openlock wss keynuml)

west (keynuml ivss keyrumzZ ringclk keynee3)

This file describes the relative position of the pads on the four sides of the chip.

Give the command at the command at the command line:

ring lockchip lockchip
A “lockchip.ap™ file is created thal can be examined by using Graal.

Examine the layout using Graal.

Excrcise 6, Design of a Serial Hex Combination Lock Chip. 19

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Octl-23 Nov, 2001

StaE/_ic Timing Analysis

A

L

The “lockehip.ap™ contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore (o check the layoul
we use two tools, Lynx and Tas.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.
The file created by Lynx will be the input file for Tas.

Fas is a switch level timing analyser for CMOS circuits.

Give the following command at the command line:

setenv MBE_QUT LO al

This tells that the output file should be in the “.al” (Alliance) formal.

lynx -v -t lockchin lockchip

-V - verbose

-t - build the nclist to the transistor level,
first lockchip - take the “lockchip.ap™ layout file as input.
second lockchip - generaie the “lockehip.al” netlist file.

Give the following command at the command line:

setenv MBE_IN_LO =zl
This tells that the input file for Tas must be in the “.al” (Alliance) format.
tas -tec=/alliance/archi/Einux_clFete/prol10.elp lockchip

-tec - selects the technology file prollQ.cip.

Layout Extraction and Netlist Comparison

The “lockchip.ap”™ contains the layout information. However we do not know il the
physical description produced reflect the behavioural description, Therefore to check the
layout we use two tools, Lynx and Lvx.

Lynx is a netlist extractor. It extracts a nedist representation of the circuit from the layout,

For this you have to set some environmental variables. You have to specify the format in
which the extracted netlist is gencraled.

Give the following command at the command line:

setenvy MZX_QUT IO al

This tells that the output file should be in the “.al” {(Alliance) format.

Exercise 6, Design of a Serial Hex Combination Lock Chip. 20

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

|

Give the command at the command line:

lynx -v ~f leckchip lockchip

-¥ - verbose

-f - asks Lynx to generate the netlist from the Standard-
cells level

first lockchip - Take the “lockchip.ap” layout file as input.

second lockchip - Generate the “lockchip.al™ netlist file.

Lvx is a netlist comparison soitwarc that compares two netlists. Along with the
comparison it re-orders the interface terminals o produce a consistent netlist interface.

Give the command at the command line

lvx wvar al lockchip lockekip -f -0

-f - build the netlist to the standard cell level.
vst - take the first (ile in ,vst format.

al - take the second file in .al format.

first lockchip - “lockchip.vst” file.

second lockchip - “lockehip.al” file.

The comparison should not produce any errors, If errors are produced by the program,
then there is some problem with the layout. The rouler has done something furmy and
corrective action is to be taken at the layoul level by studying the error messages.

The Lvx tool has also re-ordered and built the netlist in the *.al” to the standard cell
format. This file can be simulated using Asimnt.

Simulating the Extracted netlist file

i

The netlist file “lockchip.al” can be simulated using Asimut and the test vector {ile that
has been created to test “lock.vbe™.

Give the following command at the command line:

seteny MEBE_IN _LO al

1o set the input file formal for Asimut for the “.al” format, before doing the simulation,
Any error during simufation means that you will have to retrace your steps back to find
out the source of the error.

Exercise 0, Design of a Serial Hex Combination Lock Chip. 21

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Fuanctional Abstraction

Yagle is a program that extracts from a standard cell level, the behaviour of the circuit.
Essentially a VHDL file is created from a standard cell connectivity description! This-
VHDL file can be simulated in turn to verify the function of the chip.

Give the command at the command line;

vagle -v ockchip

¥ - vectorized
lockchip - Takes the “lockehip.al” as input.

The extracted VHDL description is put in the file “lockchip.vbe”.
Simulate the extracted behavicural description to verify the extracted behavioural
deseription.

Alliance has a program that compares the extracted behavioural file with the original
behavioural file to formally prove the functional congruence of the described and the
extracted circuit. However this step requircs that the registers in the two behavioural
descriptions have the same names. This can be done aulomatically by Yagle by giving it a
list of registers to be renamed in an information file “lockchip.inf”.

Edit and save a file “lockehip.inf” with the lollowing:

rename

lock.memé 35.d4ff s : mem6_3

lock.memS_0.dff = @ mem&5_0

lock.memS_3.dEf s : mem5_3 ;
lock.mem7_1.d4ff = © mem7_1

lock.num 1.dff =& : num_ 1 ;
lock.current_state 1.4dff_ s : current_state_ 1 ;
lock.mem0_2.dff = : mamd_2 ;

lock.meml 1.4ff = : meml_1

lock.mems_2.4ff. s @« mem5_2
lock.mem2_1.dff = : mamZ_1 ;
lock.mam?_3.4ff = : nem7_3
lock.counter_1.4dff s : counter 1 ;

lock.num 0.dff s : num J
lock.current_state 2.d4£f_s : qurrent_state_ 2
lock.maréd_0.4AFF s @ memb_0O

lock.mend_1.dff = @ memé_1 ;
leck. mem? _2.dff = @ mem7_2 ;

locs. mem3_1.4ff = : mem3_1 ;
lpck.connter 2 .d4ff_&8 « counter_ 2 ;
lock.memé_2.dff = @ mems_2 ;
leow.memz_1_.dff_ = @ mem3_1 ;

lock . mem7_0.dff_ g : mem7_0 ;
lock.nue 2.4 2 @ num 2 ;

lock.mewd_2.dff s @ mem3_2 ;
lock.current_state_ D . dff_s : current_state 0 ;
lock.mexl 2.48f ¢ @ meml 2

locx.merd 1.dff = @ memd 1 ;

lock.memd 2. dEf_ s : memd_ 2 ;
lock.current_state 3. A4Aff s : current_state_ 3 ;
lock.memd 0.dff = @ memd O ;

lock.meml 0.dff s @ meml O

lock.mewmd_3.4dEff_ s : mem3_3 ;

lock.mem? 0.A4AFff s @ memZ_0 ;

lock.counter 0.4dff_&s : counter 0 ;
lock.memd_0.dff_ s : mem0d_0

lock.mem3_0.4ff 5 : mem3_0 ;

tock.meml 3.dff_ s @ neml_ 3 ;

:

Tock.memz_2.4dff_ s : memZ_2
iogk.memsé_3.dff_ = : memd_3
iock.mem? 3.d4dff = @ memz_3

Exercise 6, Design of a Serial Hex Combination Lock Chip. 22

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

a8 @ memd_1 ;
5 : memd_3 ;
ernd

Give the command:

vagle -i -v lockchip

-1 - asks yagle to read the “lockchip.inf” file and rename the
registers in the “lockchip.vbe™ file as given in the list,

Give the command:

proof -p -4 lockchip locx

-p - ncgates the input and output signal expressions of
the registers.
-d - display errors to screen.

If no errors are reported, then the two behavioural descriptions concur. It is possible to
have crrors due (o the missing signals vdde and vsse in the lock.vbe [ile; H this is the case
just add these signal in the port declaration ol lock.vbe and run again proof.

Real Technology Conversion

i

—

Up till now all the fles desceribe the eircuit only as symbolic cells. The {oundry requires
the layout of the chip, described in terms of rectangles and layers in the gds or the cif
format, This can be done in Alliance, by using S2r.

getenv RDS_TECENO_NAME /alliancefarchi/Linux elf/ete/prolll _7.rds
setenv EDS_OUT coif
seteny RDS_IN cif

This chooses the 1.0pm CMOS process, chooses the output form of the chip in eif format

and, replaces the symbolic pads with their real cquivalent.
Give the command:

s2r -ov lockenip lockchip

-C - deletes connectors al the highest hierarchy. (Use
man to see full description)

-¥ - verbose mode on

first lockchip - “lockchip.ap” file as input

second lockehip - “lockehip.cif” file as output.

This completes the design of the lock chip.

R DA

Exercise 6, Design of a Serial Hex Combination Lock Chip, 23

SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, Italy

Exercise 7

Adder Accumulator using Datapath Entities

Seventh Coursc On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Problem Description

Re-design the 4-bit adder accumulator that you designed in Exercise 4 using datapath
entities. In this design example you will learn to:

» Describe the circuit in the Fpgen language.

» Compile and generate the structural description using Fpgen.

e Place and route the chip and generate the layout file using Dpr.

» Place the pads using Genlib language and generate the structural description with
pads.

e Simulate the structural using Asimut.

s Place and route the pads using Ring.

e Extract back the circuit from the layout using Lynx.

o Use Tas to perform the static timing analysis.

o Make a layout verification by comparing the extracted netlist with the structural

description using Lvx.

i EP;‘:’IE“"U::”;‘“ Vi Fioa Vi ot Pi: Tead Eilivor s ior Biso Text Bt | | Vil o i Tosae Tafin
E‘i;‘_ﬁplf;“ ‘5{ Teal Erlitor Genlils Lanstage . Relative position T=6 Veohoss using
el Acnmuhaer Fikun Loz Descption of P of Pads Genpat Looguage.
Sl " RerigLinin vl PRI A
taveent __h\. Repaser fr::l.nuly) dhemwe ¢ “’“Ll‘ el :
- |
. _d_’/ /——\I ,--/ / o

i R! |)
™, -
;

| (Fpgen)
. [
i,) enpal
'
— | weeumicst,pas [—
i i _——
¥ I — 1
I I ' \ ST .
| mocwm vt T = Gealik ! —& Ring { Wi or Piog Texl Editor
'____ N A AN A . ____/ Mty Tesl Veolurs
v B {accumtest path
u N
! ¥ —
R - r -
4 e \I | Accumchip. val A[- {r/_m:umnhip.np [
AN AN
Co \ e
\‘HH ///rjr
T - == .
| accumap _———"_'___::—_!-_' 1}llx J
T e
/ o
/ | ¥ m.cumclup al Aximut
| | e —
| f
PR S S e /—mkp—x’
| Geat | L S 1 Tas ' (u be chocked ;
R Ml N for eommeeL

T “\ t’uncnom]:ly) E

P ._.._]'__/,)
I aceemehip.cit i ,—*— -

(i rewly l. aceurochip, ¥ i
Lo Lur Feoiey) “\

Fig 1. Design Flow for the Adder Accumulator

Exercisc 7, Adder Accumulator using Datapath Entities, 1

Seventh Course On Basic VLSI Design Techniques Trieste-ltaly, 29 Oct-23 Nov. 2001

A 4-Bit Adder Accumulator Using Data Path Entities

This design example differs from other examples in the sense that you will not make the
behavioural description of the circuit. Instead the circuit will be described as a netlist of
components from the data-path elements library. Fig 1 below shows the block diagram of
the circuit with the components from the data-path library with names of the intermediate
nodes. This circuit will be translated into the Fpgen language. Fig 3 shows a possible pin
out for the chip. Table I summarises the function of the chip.

4 Bit Slices
VDD f[‘ O WSS
CTRL !
A f3:0]1, 4
SEL '
S "N N e
B [3:01 4 o
: o3 = =
= ® 4 g
ge | N 2
= = CHUM [30] '—'
PR - iﬁ
. jan] * al
: -+ AMUOUTTRA
DP_MUX2CS DP_ADSB2F MEMORY _
| 4 '
CLK | " 1.bit : E
: } inverler[—— :
i ndrv_dp i

Fig 2. Block Diagram of the Adder Accumulator using Data Path Components.

cK C® "1 VDD
SEL i : B(3}
A3) O T B
A d o £ B
A 3 g _ B{)
Ay 4§ [SuMd)
NC O < [T SUM@)
NC] C SUM(1)
NC O "~ SUM(0)
Vas [C CTRL

Fig. 3 The Adder Accumulator chip (a possible pinout diagram).

Exercisc 7, Adder Accumulator using Datapath Entities, 2

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

CLK SEL CTRL SUM
Rising BEdge 0 0 A+B
Rising Edge i 0 A+ SUM

No Rising Edge X X SUM

Table 1. Truth Table for the 4-bit presetable counter

When the SEL is *0’ two 4-Bit numbers A and B are added, latched and presented,
at the 4-Bit SUM output at the rising edge of the CLK. When SEL is ‘1’ the SUM output
is fed back to the adder and is added with A. The value is latched and presented at the
SUM output at the rising edge of the CLK.

— T AT

Solution

commands are to be given at the command line,

Edit and save into a filc

Explanaticon of a topic

k Environmental variables are to be set

Creating the Design

Begin by creating a design directory, at a convenient position 1n your workspace:
=

mkdir accumn

Chaﬁge into this directory:

o Aagoum

Excercise 7, Adder Accumulator using Datapath Entities. 3

Seventh Course On Basic VLS8! Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Create with the text editor a lile called “accum.c”, Enter the following and save the file.

#include <genlib, h=>
#include <fpgen.h>

maini)

{
DP_DEFLCFIG{YACCUM", 4, LSB_TNDEX_ZEROD);

/* Interface declaration */
printf("Interfacein");

DP_LOCON({"vdad", IN, "wdd"};
DP_LOCCN({"vea",IN, "vss"];
DP_LOCON{"A[3:0]1" , IN,"A[3:0]");
DP_LOCON({"B[3:0]1",IN,"B[3:0]");
DP_LOCOM("SUM[3:0]",QUT, "SUM[3:0]1");
DP_LOCON("SEL", IN, "SEL") :
DP_LOCON{"CLEK", IN, "CL¥"}):
DP_LOCCON{"CTRL", IN, "CTRL") ;

DP_MUX2CS ("MUXINST ",
4,
a,
"SEL",
"SUM[3:0]",
"BI3:0]",
"MUXOUT[3:0}",
EOL);

DP_ADSB2F (“ZDDER",
“E[3:01",
"MUXOUT [3:0] ",
"CARRY",
"OVF",
"CSUM[3:01",
"CTRL®,

EOL };

/* heterogeneous operator */
LOINS {"ndrv_dp", "CLEKINV", "CLK", "NCLK", "wvdd", "vzs",0);

DP_TMPORT ("wemory_us', "MEMINS", "CSUM[3:0]", "SUM[3:0]", "NCLK" , EOL) ;
DP_SAVLOFIG!) ;

exit{ 0 });

Exercise 7, Adder Accumulator using Datapath Entities, 4

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

Fpgen is a set of C funciions dedicated to data path synthesis. Fpgen creates a
hierarchical netlist that can be given Lo the data path route tool Dipr.

To compile with Fpgen, two include files, *genlib.h” and “fpgen.h” are required which
have to be declared through the C include statement at the top of the file. Then the circuit
is described inside a procedure like any normal main procedure in C.

main{}

{

Here is your circuit description.
exit(dy;
b

Inside the main procedure , the circuit is described as macro-functions. The man pages
of fpgen or fplib (man fpgen or man [plib) contains a list of macro-functions that are
allowed inside the main procedure. The macro-functions consists of gate level logical
functions like inverter, and, or, xor, etc. It also consists of generator funciions like
adder and barrel shifter. Regisier function like Dflip-flop is also provided. With thesc
functions most data paths can be constructed.

Each of the macro-functions has its man pages and it is recommended that they be
consulted before the circuit is constructed I

Coming to our circuit, the adder accumulator has been described in the above file. In this
file the DP_IMPORT function has been use to instanciate a part called “memory_us”
that has been constructed out of helerogeneous functions. We have to generate this file
too, if our circuif has to work. The man pages of dplib (man dplib) gives a list of
heterogeneous operators that arc allowed. The man pages of a particular heterogeneous
operator gives in detail the order and type of the arguments for that operator (e.g. man
ms_dp).

Create with the text editor a file called “memory_us.c”. Enter the following and save the
file. This file describes the 4-bit edge triggered register that has beenn built from a
heterogeneous block “ms_dp™. The instance name of the heterogeneous operator ms_dp
cnd with a “_#" so that the data path router, Dpr knows that “#” is (he slice number {the
level} at which the block is to be placed.

=EEE

#include <genlib.h>
#include <fpgen.h>

main {}

{
/% creating a new data-path figure for accumulator-adder */
DEF_LOFIG(*memory us"):

/* logical conmectors */
LOCON("1[3:03", IN ,"i[3:0]");
LOCCN("o{3:0]", QUT ,"o[3:0]1"};

Exercise 7, Adder Accumulator using Datapath Entities. 5

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

LOCON{"clk", IN ,"clk"};
LOCON("vdd", IN ,"wvdd");
LOCON{"vas", IN ,"vss");

/* data path netlist description */

LOINS ("I‘nS_,_dp ", "mem_(} ", LY [O] ", el . "OIO] " naddar , "vss", EOL) ;
LOINS ("mS_dp n , "mem_l n , ui [l] I+ , "Clk" , "O[l] o . "Vdd" , "VSS " , EOL) :
LOINS ("ms_dp" . "mem_Z " , ui [2] " s "Clk" , "O [2] " P "Vdd" , “VSS " , EOL} ;

LOINS("mS___dp" , ||mem_3u . "l[3] " s uclkn . uo[31 M , "Vdd" , "VSS" . EOL} ;

/* save the model on dizgk */
SAVE_LOFIG(};

3

Set the environmental variables as shown below.

setenyv MBK _CATA_LIB _:/alliarnce/archi/Linux elf/cells/fplib:
falliance/archi/Linux_elf/cells/dplib:
falliance/archi/Linux elf/cells/rsa:
/falliance/archi/Linux_elf/cells/esclib:
falliance/archi/Linux_el1f/cells/padlib

sctenvy MBE_ TN _LO vst
setfenv MBE_OUT LI wvst
setfenv M3X_TIN_PH ap
seteny MBEK_OUT_PE ap
geteny MBE WORK_LIEB |

[pger -v memory us
Giive the following command at the command line.
fogen -v acoum

These commands generate the structural of the respective parts of the hierarchy.

Placement and Routing of the core

The core consisting of datapath clements, is routed using the data path router Dpr.

This tool can usc some information from a <filename>.dpr file in order Lo customise the
resulting layout. By mean of this file it is possible to define the abutment-box, the width
of the power supplies tracks, the exact position of the connectors, ete. Type man dpr for a
detailed information on.

Create thig small file called "accum.dpr”. Enter the following and save the file.

DP_DEFAB —20 +20
TP_POWER 0 1D

Exercise 7, Adder Accumulator using Datapath Entities. 6

Seventh Course On Basic VLSI Design Techniques Trieste-Ttaly, 29 Oct-23 Nov. 2001

Now give the following command at the command line:

o~

dpr -p -I acfull accum

-p - placement option
T - rouling opticn

The “accum.ap” file is created which can be viewed with Graal.

Describing the Pads and Core using the Procedural Design Language

i

When the chip is described physically in Alliance, it consists of two scparate parts that arc
brought together, the core and the pads. In Alliance, the core and the pads are brought
together in a C description file. This file when treated with Genlib, produces the
structural description of the chip with the pads. The pads are placed physically, one by
one in the C file. Placing the pads require the structural and functional knowledge of the
pads. One of the types of pads that is used in this example is the pvsseck_sp, a cell of
PAD-Lib, a library of pads provided with Alliance.

Give the following command at the command line to see a description of this pad.

man pvsseck_sp

The procedural description language is actually a set of C functions that allows you to
describe circuit objects like pads and the core and their connectivity.

Create, edit and save into the file “accumchip.c” the following:

#inciude <genlib.h>

maini}

!

DEF_LOFIC{"accunchip") ;
LOCON{"al2:0]", "I’ ,"a[3:C]1"};
LOCON{"b[3:0]", "I’,"b[3:01"};
LOCOM{"y{3:0]", 07, "yv[3:0]1"};
LOCON{"gel", "I, "5el"};
LoCoM{ gk, "I, "ck"};

LOCON{ "ctrl", "I, "otrl");
LOCON{ "vdde", "7, "vdde" } ;
LOCON{ "vsse", "I, "vsse"};
LoCoN{ "wddg", "I, "vdd");
LOCOM{ "vsg", "L’ , "vEs");

Exercise 7, Adder Accumulator using Datapath Entities. 7

Seventh Course On Basic VL5]1 Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

/* Ingtance of pads of the ¢hip. The instance_name of the pads is the one
that 15 to be given to the Ring toel for it to understand the names for pad
placement on the chip. ¢n passing this £ile through Genlib, a .wst file is
generzted. This file has the output input and I0 pinsg as specified in the
above list. Asimut understands only these as the pins for simulation */

LOINS ('"pwsse sp', “Vsz', "cki', "vdde", *vdd", "vgse", "wss", 0};
LOINS ('pwdde_sp"', "vdd", "cki", "vdde", "vdd", "wvsse", "wss*, 0};
TLOTNS ("pvssi_sp", “Vesi“, "cki', *vdde", "wvdd", “wvsse", 'wvss", 0};
LOINS ('pwvddi_spt, "vddi®, “cki', "wvdder, “wvdd", "wsse", "wass"*, 0);
LOINS (“pi_sp*,"sl", "sel","sl", "ckl", "vdde", "vdd", "vsze", "ves",0);

LOINS{“pd_sp*, "ct", "czrl”, "ct", "ckxi", “vdde", "vdd", "vaze", "vas",0);

LOINS[”ka_Sp”, gk, "Ck", Hckiu, “vdde“, "Vdd", "vage", "vss', 0y s
LOING ("pvsseck _sp", "clkcore®,

"elkeore", “ckin,

"wade", "wdd", “wvsse", "wss", 0};

LOINS{"pi_gp","ald", "a[Q]", "inal0l", "cki", "vdde", "vdd", "vssa", "vss",0);
LOINS { ||pi_sp|| s ual " . |ka [l] a R n ina [1} " , I!ckin R “Vdde" R Ilvddll R "\?SSE" . “VSS" R O) ;
LOINS{"pi_sp“,“a2“,"a[2]","ina[2]“,“cki“,“vdde”,"vdd“,"vsse“,"vss",O);
TAOINs(“pi_Sp“; "33 Ilr IIa[3]lI’x|ina[31ul‘ "Cki","‘J’dde”,"Vdd","VSSE","VSSH,G}

i

LOENS{“pi_sp“,“bO","b[O]",“inb[O]","cki",“vdde“,“vdd","vsse",“vss“,G};
LOINS{”pi_Sp“,“bl“,"b[l]“,“inb[l]","cki","vdde",”vdd",“vsse".“vss“,O};
LOINS{"pimsp“,"b2","b{2]“,“inb[2]","cki“,“vdde“,“vdd",”vsse“,"vss“,U};
LOINS("pi_sp"."b3“,“b[3]“,“inb[3]","cki“,“vdde“,"vdd“,”vsse“,"vss",ﬂ};

LOINS {(“po_gp", "yO", "out (I ", "w[C]", "cki", "vdde", "vdd", "vase", "vsa",0);
LoIWS ("po_sp" . "y1", "ot [11", "vI1]", "ckir, "vdde", "vdd", "vaze", "vss", 0] ;
LOINS ("po_sp", "y2", "out[Z2]", "y[2]", "cki", "vdde", "vdd", "vsse", "vsg" ,0);
LOINS ("po_sp", "y3", "our (3], "y[3]", "cki", *vdde", "vdd", "vese", "vss",0);

/* The first name is the name of the .vst file that ig to be used for
reference. The second name is the instance name and can be anyvthing. The
names that Ffollow can be amything except that they should be in the same
aorder as in the .wvat file. 3us signals should have the same dimensions.
Hames giver shkould be the inpuls or cutpuis of other instances which means
that the block is physically connecced to other blocks in the description
and is not left hanging */

LOINS{"accun", "core", "vdd", "vss", "ina [3:0}1", "inb[3:0]", "out[3:0]", "aiv, "clk
core", "ct",0};

SAVE_LOFIG{}:

==
genlib —v accumchip

This creates a “accumchip.vst” structural description file with pads.

Exercisc 7, Adder Accumulator using Datapath Entitics. 8

Seventh Course On Basic VLSI Design Techniques Trieste-llaly, 29 Oct-23 Nov. 200]

Test Pattern Generation and Simulation of the Structural Description

R I Write a pattern file for simulation and validation with Asimut.
Check that the adder accumulator performs satisfactorily.

Placing and routing the pads

Now the chip’s pads and the core has to be connected together physically in a layout. This
is done by using Ring.

Edit and save the following in the file “accumchip.rin™:

east [clk sl bd bl bZ b3 1}
goulh { ald al wv=si a2 al)
west (w0 vl clkcaore y2 y3)
nerth { wdd vddi ot wss)

This file describes the relative position of the pads on the four sides of the chip,

Give the command at the command line:

ring accumchip accumchip
The “accumchip.ap” file is crealed that can be examined by using Graal.

Examine the layout using Graal.

Static Timing analysis

The “accumchip.ap” contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the layout
we use two tools, Lynx and Tas.
Lynx is a netlist extractor. It extracts a netlist representation of the cireuit from the layout.
The f{ile created by Lynx will be the input file for Tas.
Tas is a switch level timing analyser for CMOS circuits.

) Give the following command at the command line:

zetenv MEE_OUT L& al

Exercise 7, Adder Accumulator nsing Datapath Entitics. 9

Scventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Qct-23 Nov. 2001

N This tells that the output file should be in the “.al” (Alliance) format.
=

lynx -v -t acoumchip accumchip

-V - verbose

-t - build the netlist to the transistor level.

first accumchip - lake the “accumchip.ap” layout file as inpult.
second accumchip generate the “accumchip.al” netlist file.

' Give the following command at the command line:

=

setenv MBX_IN_LZ al
This tells that the input file for Tas must be in the “.al” {Alliance) {ormat.
tas -tec=falliance/archi/Linux_eiffetc/prol 10.elp accumchip

-tec - selects the technology file proll0.elp.

Layout Extraction and Netlist Comparison

The “accumchip.ap” contains the layout information. However we do not know if the
physical description produced reflect the initial description. Therefore o check the layout
we use two tools, Lynx and Lvx,

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the layout.

For this you have to set some environmental variables. You have to specity the format in
which the extracted netlist is generaled.

Set the environmental variable MBK_OUT _LO as shown below:

#eTonv MBE_QUT_LO al
This tells that the output file should be in the “.al” (Alliance) format.
Give the command at the command line:

[[y

lynx -v -f accuwnchip accumchip

¥ - verbose

-f - asks Lynx to generate the nctlist from the Standard-
cells level.

first accumchip - Take the “accumchip.ap” layout filc as input.

second accumchip - Generate the “accumchip.al” netlist file.

Lvx is a notlisl comparison software that compares two netlists. Along with the
comparison it re-orders the interface terminals to produce a consistent netlist interface.

Exercise 7, Adder Accumulator using Datapath Entities, 10

Seventh Course On Basic VLSI Design Technigues Trieste-Italy, 29 Oct-23 Nov. 2001

=

Give the command at the command line

lvx vst al accumchip accumchip -I

-f - build the netlist to the standard cell level.
vst - take the [irsi file in .vst format.

al - take the second file in .al format.

first accumehip - “accumchip.vst” file.

second accumchip - “aceumchip.al” file.

The comparison should not produce any errors. If errors arc produced by the program,
then there is some problem with the layout. The router has done something funny and
corrective action is to be taken at the layout level by studying the error messages.

The Lvx has also re-ordered and built the netlist in the “.al” to the standard cell format.
This ile can be simulated using Asimnt.

Simulating the Extracted netlist file

¥

The netlist file “accumchip.al™ can be simulated using Asimmt and the test vector file that
has been created (o test the structural file “accumchip. vst”,

Give the following command at the command line:

sotenv MBX_IN_LO al

to set the input file to the “.al” format, before deing the simulation using Asimut. Any
error during simulation means that you will have 1o retrace your steps back to find out the
source of the error.

Real Technology Conversion

¥

Up till now all the files describe the circuit only as symbolic cells. The foundry requires
the layout of the chip, described in terms of rectangles and layers in the gds or the cif
format. This can be done in Alliance, by using 82r.

Set the environmental variables, as shown below:

gebany EDS_TECHNO _WNAME /alliance/farchi/Linux elf/etc/oprolll_7.rds
setenv RDS_OUT cif

sereny RDS_IN cif

This chooses the 1.0pum generic CMOS process whose technology file is the proll0.rds.
The output format of the chip is in cif format. The symbolic pads are replaced with their
real equivalent. The pads due to their technology dependence are maintained as a cif file
in ihe library.

Exercise 7. Adder Accumulator using Datapath Entities. 11

Seventh Course On Basic VLSI Design Techniques Trieste-kaly, 29 Oct-23 Nov. 2001

Give the command:

2Zr —ov accumchip accumchin

-C - deletes connectors at the highest hierarchy. (Use
man to see full description)

oy - verbose mode on

first accumnchip - “accumchip.ap” file as input

second accumehip - “accumchip.cit” file as output,

This completes the design of the adder accurnulator chip,

R AR

Excrcisc 7, Adder Accumulator using Datapath Entities. 12

SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES

MICROPROCESSOR LABORATORY
ICTP-UNESCO

29 October- 23 November, 2001

Trieste, [taly

Project

Design of a Programmable Traffic Signal
Controller

Scventh Course On Basic VLSI Design Techniques Trieste-Ilaly, 29 Oct-23 Nov, 2001

PROGRAMMABLE TRAFFIC SIGNAL CONTROLLER

INTRODUCTION

In any city, the streets constitute a complex urban network and there are many
“traffic signal” nodes in this network, in such a way that they put some order to the tratfic
increasing the safety and the “efficiency”. The concept of “efficiency” is not very well
defined, but everybody has an intuitive idea about what “traffic efficiency” means. To
define accurately what “Vehicular Traffic efficiency” is, it is important to establish what
the objective parameters are that permit to us to cvaluate the quality of the vehicular
traffic. These are parameters that we should be able to measure. The problem doesn't
(inish here because every individual interested in *efficiency” and “optimality” of the
network expects a different thing. For example if we take as parameter of quality of the
traffic like the average velocity of the cars in the urban network, the drivers would like it
to be high, but the pedestrians will like it to be low for security reasons. This example
shows that the problem is not only technical but also political, in the sense that a city
administration may decide the definition of optimum.

However, once a criterion is fixed to evaluate the quality of the vehicular traffic, it
is important to have the means to bring the traffic towards an optimal condition. Among
the means (o reach that situation, we have the “traffic signal” (TS), the experiences of
which indicate its extreme importance. Then the quality of the vehicular traffic is
sensitive to how the “traffic signals” are configured. We will assume that configuration of
the “traffic signal lights”, as the set of parameters that characterises completely the state
of the traffic signals of the network.

There are normally two modes in which the light traffic works. They are the
intermittent yellow and the cyclic mode that alternates between yellow, red and green. In
the last case, the colour is a periodic function of the time. We need four parameters to
characterise this function: the duration of each colour (3 parameters), and the phase of the
signal, e.g. the instant in which the yellow, for a determined street, starts.

We assume a simple traffic light (in the sense that it regulates only two crossing
streets) and of equal duration for yellow on the two streets. With this assumption, we
propose a "programmable light traffic controller”. This device is capable of receiving
information containing the working mode and the colour's duration, which is updated
when a synchronisation signal arrives. This controller is capable of avoiding dangerous
and traumatic situations of discontinuity in the traffic. The instant at which syncro
(synchronisation signal) arrives, fixes the phase of the ftraffic light. With the signal
synero, also arrive the working mode (mede) and the colour's duration: tyel, tred and
tgre (duration of yellow, red and green respectively).

Project, Design of a Programmable Traffic Signal Controller. -1

Scventh Course On Basic VLSI Design Techniques

Trieste-Italy, 29 Oct-23 Nov, 2001

We are looking for a device with the external ports as shown in Fig. 1. Table 1.
shows how the internal registers can be set-up for operation. Table 2. essentially gives the
output associated with each of the states of the state machine. The state machine flow
diagrams are described in the following pages.

Fig. 1. Possible pinout of the Programmable Traffic Controller Chip

timein __.

syncro — U
ck — il
fck —

.-
C
C
L
O
L.
O

L 1

[— e
I —
J—
:l._
j._
-

e

o)

ayel
ared

- agre

byel
bred
bgre
inty
write
vdd
vsS

addres

FCK write addross tyel(7-0) tred(7-0) tare{7-0) mode{1-0)
LwH L X b4 X X X
LioH H o’ timein(7-0) X x X
LwH H [0 X tmein{7-0) X X
LwH H 1 X X timein(7-0) X
LicH H 11 X X X timein(1-03)

Table 1. Setting up of the internal registers.
CK MODE | STATE | duration | ayel | ared | agre | byel | bred | bgre | inty
Cherodset
k)

LtoH 01’ INTYEL | permancnt L L L L L L H
LtoH 00’ YELLOW tyel H L L L H L L
LtocH 0O RED tred L H L L L H L
LtoH oy REDINT tyel L H L L L H L
LtoH VY REDYEL tyel L H L H L L L
LtoH| 0O GREEN tgre L L | H L H L L
LtoH 107 RED permanent 1, H L L L H L
LtoH 11’ GREEN | permanent | L H L H L L

Table 2. The outputs that are associated with each state

We will divide the complete architecture in three parts: (1) a synchronous variable
mod counter, (2) the registers of the data (times plus mode) controlled by an address

Praject, Design of a Programmable Trallic Signal Controller.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2004

(address) and an external fast clock (fck), and (3) the logic part to control the state of the
lamps.
The Algorithmic Finite State Machine

We start with some definitions:

o The device has clock (ck) as input, its period will be taken as the unit of time in
which the duration will be expressed, and a [ast clock (fck) used to introduce the data
into the internal registers.

» The state of the TS is defined by the state of each colour (ayel, ared, byel, bgre, etc.)
and its duration (timef).

¢ mode:(1 downto 0), indicates the working mode.

mode <= 00" normal cyclic mode

mode <= 01" intermittent yeliow

mode <="10" permanent red (in a determined direction)

mode <="11" permanent green (in the same determined direction)

s timef : { 7 downto 0) , indicates the normal duration of the state. In some cases that
the FSM (finite state machine) goes into a new state, the counter is reset to zero
putting the signal cntreset = "1’ . When the counter reaches the value of timef the
flag cntflag is raised (cntflag = °1”) and this fact will be used to decide about the
change of the state. The values that timef can assume are: tyel, tred or tgre.

¢ For the street A
ayel <=’1"means "on", 0"means "off"
ared <="l"means "on" , 0’ means "off"
agre <=1’ means "on" , 0’ means "off"

The same for the street B with byel, bred and bgre
and for both streets
inty <="I"means "on" , 0" means "off"

e For us the lights ayel , ared and agre are mutually exclusive (in Trieste the style is
ayel and agre at the same time slightly before the end of agre, and remains tll the
end when the signal changes to red). The same for the other street. The signal intyel is
incompatible with the other lights.

The situation : agre <="1" & bgre <="1"is absolutely forbidden.

» The change from green to red must be done by means of an intermediate yellow

Project, Design of a Programmable Traffic Signal Controller. -3

Scventh Course On Basic VLS] Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

* FEach time that the configuration is updated, the new parameters must be
simultaneously provided to the chip along with a syncro signal with duration of one
clock period (ck single pulse).

e There are six States of the Finite State Machine (SESM) called: INTYEL, YELLOW,
RED, REDYELL, GREEN and REDINT. In each SFSM the colours have a specified
constant state (on’ or ‘off’), then they change only if the state changes.

In the Fig. 2. below we represent the colours on each street, as a function of time,
with the different cases in which the synchronisation signal can arrive.

current wave

] T e

T ———

Ol street A

Time

1 I
B 1 ‘
____________)
C
state of the fraffic signal
1 I
| |
CEEN RED |
YELLOW REDYEL

Fig. 2. Timing Relation between the Traffic signals

In the following flow diagrams we represent with circles the name of each state
and within the lower rectangle the inherent constant values associated with each SFSM,
with diamond the conditionals and with T the actual direction when the condition is truth,
the same for F when the condition is false. The symbol:

| cntreset |
N o o/

Project, Design of a Programmable Traflic Signal Controller. -4

Seventh Course On Bagic VLSI Design Techniques Trieste-Ttaly, 28 Oct-23 Nov. 2001

means that the internal signal cntreset takes instantaneously the value "1’ when the
condition is reached, resetting the synchronous counter when the state changes. The
following flow diagrams show the transition conditions from each state:

State INTYEL.:

/
/ INTYEL
<

N

inty <= 1
others <= 0

PN

4

/// T
< gyncro
\\\ ’ 7 v
. -
.
T F

- -

7 modé\\\\ F N m;;;\\“ F B mode
“\\\ .'ll.t - JOD.' 1103
\\\ - -
N o] .
| /‘_P_- T
| (cntrese?/)

Y

GREEN @Lwh RED

P

timef <= tgre - timef <= tyel ! timef <= tred
agre <= 1 : ayel <=1 i ared <= 1
bred <= 1 bred <= 1 bgre <=1

octhers <= 0 others <= 0 others <= 0

The state INTYEL corresponds to the intermittent yellow for both directions and
will remain in such state until the signal syncro arrives together with the new working
mode. If the new mode is permanent green or permanent red then the state of the counter
is irrelevant. If the new mode is the normal cyclic mode then the new state will be yellow
and immediately before this change the counter must be reset to zero in order to control
the exact duration of the yellow state.

Project, Design of a Programmable Traflic Signal Controller. -5

Seventh Course On Basic VLSI Design Techniques

Trieste-Italy, 29 Oct-23 Nov, 2001

State YELLOW :
timef <= tyel
ayel <=1 :
A e B bred <=1 ‘
others <= 0 |

! R

// \
///; cro > T - mod;\\\. F Pt mode mode mode
=5 /_< 00 TN *10* '01' >_'\ ‘11
e \\(/’/
Fj T T :T T
e \\\ I
- ey T
— <7 ecntflag cntreset)
E "_\ g —
e .
C ’—cntreset) < YELLOW > INTYEL
| . i
! timef <= tvel inty <= 1 timef <= tgre
RED }iyeé <= | others <= (ggrz == jj:
red <= red <=
others <= others <= 0
timef <= tred| ...

| ared <= 1
bgre <= 1
octhers <= 0

If the machine is in the yellow state and the syncro signal arrives, with the normal
cyclic mode of operation, then the counter is reset to zero and the machine waits until the
entflag arrives, so as to change to the red state. If the new mode is permanent red then, as
before, we put the counter to zero so as to be sure that at least the prescribed yellow
duration be granted.

Project, Design of a Programmable Traffic Signal Controller.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

State RED:

timef <= tred
ared <= 1

bgre <=1
others <= 0
e moé;\\ -
<'\.\ £ & ,/—
F
/,/lx\ /\
///s cr;\‘ T 7 mode “\\ moéxxk\\ mode ‘x
Q‘x\\ yn- /_»\\ :llr rO r lolt
~_
X
/ \ T - .___

. <f’cntflig;>>—-{f cntreset) (f cntreset‘/
F oo T T

T _
< REDINT > INTYEL

REDYEL

timef <= tyel
ared <=1

timef <= tyel
ared <= 1
byvel <= 1 :! bgre <= 1

others <= 0 | ' others <= 0

inty <= 1
others <= 0

In this state, if the first conditional is true, the machine cycles permanently in this
state. If the mode is different from “10” and the synchronisation signal {syncro) is not
present, then the machine waits for the cntflag so as to change to the state REDYEL,
while resetting the counter. If with the syncro, the normal cyclic mode arrives, then the
next state will be REDINT, i.e. a red state but with a duration of the yellow, in order to fit
the new "colour wave" without discontinuity, prolonging the actual state of the colours
(see Fig. 2. a).

Project, Design of a Programmable Traffic Signal Centroller. -1

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov. 2001

State REDYEL:

timef <= tyel
ared <= 1
byel <=1
others <= 0

tila
—;:< cn g//

i . -

- N ™ T
4 eset cntreset Ere
{_ cntr P k&_“ ,,) \ch set,/

S
& GREEN RED REDYEL
; timef <= tgre timef <= tyel inty <= 1 | timef <= tred@é timef <= tyel
i agre <= ared <= 1 others <= ¢ || ared <=1 ' ared <=1
bred <= 1 bgre <= 1 i bgre <=1 .| Tyel <=1 !
others <= 0 others <= 0 | others <= 0 ! others <= 0 |

In this state if the synero signal is not present, then the machine waits for the
entflag, changing to the green state after the prescribed period. If with the syncro, the
mode is 00’ (cyclic) then the next state will be REDINT (fitting the new wave) (See Fig.
2. b). If the new mode is permanent green then the state will be again REDYEL but with
the counter starting from zero {to grant the duration prescribed for the state REDYEL)
before the change to permanent green.

Project, Design of a Programmable Tralfic Signal Controller.

Seventh Course On Basic VLSI Design Techniques Trieste-Italy, 29 Oct-23 Nov, 2001

State GREEN:

GREEN

timef <= tgre

|
green <= 1 |

bred <= 1 [7]
others <= 0 i
|
- mode . ;
\'11' -
T
: r F
P . N
<///é nero T // mode > F mode F mode
! . i - \\\\\OO' ‘107 ’Oi;///
\\Y// ~
Fy ; T T
_ N _y_ _
//// \\\ T T T §
————<\ cntflag _'K\ cntrese;//

F \\// I .

INTYEL
< YELLOW))
Nl -

timef <= tyel
ayel <= 1 inty <= 1
bred <=1 - others <= 0
others <= 0

Project, Design of a Programmable Traffic Signal Centroller. -9

Seventh Course On Basic VLSI Design Techniques

Trieste-Italy, 29 Oct-23 Nov, 2001

State REDINT:

N
REDINT

timef <= tyel
ared <= 1

bgre <= 1
otherg <= 0

/ ﬁ>}%ﬁ{:// mOde \\
&\ SYNCro ,10,

7
F T

- BN '
9 cntreset P, ;

— e

REDYEL

INTYEL \\5
P

R

ared <= 1
bgre <= 1
others <= 0

timef <= tred |

timef <= tyel
ared <= 1
byel <=1
others <= ¢ |M— ——o——

inty <=1
others <= 0

R LA

Project, Design of a Programmable Traftic Signal Controller.

A0

