united nations ducational, scientific and cultural organization

the

international atomic energy agency **abdus salam** international centre for theoretical physics

SMR.1307 - 2

Advanced Course: CLIMATE CHANGE IN THE MEDITERRANEAN REGION PART II: SOCIO-ECONOMIC ASPECTS AND IMPACTS (12 - 16 November 2001)

"Vulnerability and Economic Impacts of Climate Change on Mediterranean Water Resources: Lessons from U.S. Studies"

> Brian H. HURD Department of Agricultural Economics & Agricultural Business New Mexico State University Las Cruces, New Mexico U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

Vulnerability and Economic Impacts of Climate Change on Mediterranean Water Resources: Lessons from U.S. Studies

- Water supply to meet growing demands
 - storage/capital improvements
 - reallocation/transfers
 - rural drinking water
- Expanding environmental needs

 maintaining/enhancing water quality
 - maintaining/emitationg water quanty
 endangered species
- Managing existing supplies – flood planning response
- Legal and institutional challenges
 - inadequate/inappropriate government involvement
 - interstate/international conflicts/requirements
 - disputes among water users

	Water Resource Stress	
	water resource suces.	
	A National Perspective	
"Relative Region	nal Vulnerability of Water Resources to Climate Change"	
Co-Authors:	Neil Leary (IPCC formerly with USEPA) Russel Jones (Stratus Consulting) Joel Smith (Stratus Consulting)	
Originally Published	in: Journal of the American Water Resources Association. 1999, 35(6):1399-1410.	
Republished in: Wa	ter Resources Journal, United Nations. 2000. n. 204(March):17-28.	
and as a chapter in (Climate Change and Water Resources, K Frederick (ed.), forthcoming, Edward Elgar.	

Indicators for Supply and Consumptive Use Level of Development (share of annual streamflow withdrawn for use) Matural Variability (CV of annual streamflow) Indicators for Supply (share of precipitation evapotranspired)

<u>Groundwater Depletion</u> (groundwater withdrawals to average baseflow)

Industrial Water-Use Flexibility (share of withdrawals consumed)

Institutional Flexibility (relative costs of water transfers)

Indicators for Instream Uses (cont.)

<u>Dissolved Oxygen</u> (% of observations <5mg/l)

Low Flow Sensitivity (average baseflow cfs/mi^2)

<u>Species at Risk</u> (number of aquatic/wetland species at risk)

Vulnerability Summaries

Consumptive Use

Instream Use

Overall Index

Key Findings

- Vulnerability can vary significantly within large scale water resource areas.
- Supply and use vulnerability generally increases from east to west. Greatest in Southwest, California, Great Plains, and Texas.
- Instream use vulnerability (including flooding), generally increases from north to south. Greatest Southwest, Southern Plains, Mid-Atlantic, and Southeast.

4. Strategies for coping with vulnerability and scarcity

Ways We Can Better Cope

Improve water management systems

- develop models and approaches to evaluate institutional changes for more equitable and efficient prices and allocations
- develop more complete and dissaggregated data on demographic trends and water use characteristics to improve demand forecasting
- improve weather and climate forecasting capability and the accessability and use by irrigators

Increase urban and agricultural water-use efficiency

- develop water reuse and recycling infrastructure for new urban developments
- increase the accessability of water-saving technologies for both urban and rural users

5.

Watershed planning: models that integrate concerns and help us look forward

Objectives of Watershed Models

- Represent major spatial, physical, and economic characteristics of water supply and use
- Evaluate welfare, allocation, and implicit price changes associated with alternative hydrologic, management, and institutional conditions
- Identify opportunities to improve water management systems from a watershed perspective

Possible Climate Futures for the American Southwest: Precipitation

Source: The Potential Consequences of Climate Variability and Change (NAST 2000).

Watershed Management: An Approach To Watershed Modeling

"Economic Effects of Climate Change on U.S. Water Resources,"

Co-Authors:

Mac Callaway (RISOE, Denmark) Joel Smith (Stratus Consulting) Paul Kirshen (Tufts University)

Originally Published in: *The Impact of Climate Change on the United States Economy*, Robert Mendelsohn and James E. Neumann (eds.), Cambridge University Press, Cambridge.

Republished in: *Water Resources and Climate Change*, Chapter 17, Ken Frederick (ed.), 2002, Edward Elgar Publishing.

- Develop a schematic diagram of the watershed system
 - Describes physical structure (tributaries, inflows, and reservoirs
 - Identifies and locates watershed services
 - Show diversion points and instream uses

Derive estimates for the model's <u>objective function</u>

- Develop demand and supply curves for each service based on water diversion or instream flow
- Describe model <u>constraints</u>

Model Basics

- Mass balance (upstream to downstream flow)
- Intertemporal storage in reservoirs
- Institutional flow restrictions

Outcomes: Colorado River Watershed

- Projected hydrologic and <u>runoff</u> changes
- Estimated changes in runoff and <u>allocation</u> in the Lower Colorado watershed
- Economic <u>impacts</u> across the watershed

Water, Food, and Quality of Life:

Take Home Messages

- Models are useful tools that can help plan and manage for a sustainable water future
- Consider market-based solutions: send the right messages to producers and consumers about water scarcity
- Encourage strategies that are flexible and that can adapt to changing conditions and uncertainties

Table 3-1 Summary of Water Resource Vulnerability Indicators							
Indicator	Description	Criteria Threshold ¹ 1 = Low Vulnerability 2 = Medium Vulnerability 3 = High Vulnerability	General Water Use	Area Consumptive Demand	of Concern Instream Use	Ecosystem/ Water Ouality	
Distribution Syste	m and Supply Indicators						
Water Use to Storage Qw/S	Ratio of total annual average surface and groundwater withdrawals in 1990 (Qw) to total active basin storage (S).	Vulnerability class: 1 (<0.6), 2 (0.6-3), 3 (>3).	¢	Ŷ			
Level of Development Qw/Qs	Ratio of total annual surface and groundwater withdrawals in 1990 (Qw) to unregulated mean annual streamflow (Qs).	Vulnerability class: 1 (<0.2), 2 (0.2-0.85), 3 (>0.85). This ratio reflects the extent to which a watershed's water resources are developed for consumptive uses.	¢	₽	Ŷ	Ŷ	
Natural Variability «T.s/Qs	Coefficient of variation of unregulated streamflow, computed as the ratio of the standard deviation of annual streamflow (\Re_8) to the unregulated mean annual streamflow (Q_8).	Vulnerability class: 1 (<33%), 2 (33-67%), 3 (>67%). Relatively high ratios indicate regions of extreme variability and, therefore, greater vulnerability to small hydrologic changes.	Ŷ	Ŷ	\$	¢	
Dryness Ratio (P-Qs)/P	Share of total average annual precipitation (P) that is lost due to evapotranspiration (ET), where ET is defined as $P-Q_5$.	Vulnerability class: 1 (<63%), 2 (63-78%), 3 (>78%). Regions with the highest evapotranspiration losses are most vulnerable to relatively small changes in precipitation.	\$	Ŷ		Ŷ	

		Table 3-1 (cont.) of Water Resource Vulnerability India	tic,	Mð	×I	
		Criteria Threshold ¹ 1 - Low Vulnerability 2 - Median Vulnerability 3 - High Vulnerability	Area of Concern			E
Indicator	Description		Water Use	tive Demand	Instream Use	Water Quality
Consumptive Use	and Institutional Flexibility Indica	ators				
Groundwater Reliance Q _{GW} /Q _W	Share of total annual withdrawals derived from groundwater in 1990.	Vulnerability class: 1 (<0.1), 2 (0.1-0.6), 3 (>0.6). Regions with relatively high groundwater reliance could be vulnerable to surface supply changes.		¢		
Groundwater Depletion QGW/QBase	Ratio of average groundwater withdrawals in 1990 to annual average baseflow, reflecting the extent that groundwater use rates may be exceeding recharge.	Vulnerability class: 1 (<8%), 2 (8-25%), 3 (>25%). Regions with high depletion rates are vulnerable to long-run changes in hydrology.	Ŷ	¢		
Vulnerability of Domestic Water Uses 1. Qs/pop. 2. (Qs-Qw)/pop.	Two measures estimating per capita water availability. The first measures per capita average annual streamflow (Qs). The second nets withdrawals (Qw) from streamflow.	Vuherability class for streamflow per capita: 1 [>20 million gallons per person per year (Mgpy)], 2 (5-20 Mgpy), 3 (<5 Mgpy). Vuherability class for net streamflow per capita: 1 (>10 Mgpy), 2 (3-10 Mgpy), 3 (<3 Mgpy).		Ŷ		
M&I Water Use Share Qwm&i/Qw	Municipal and industrial sector share of total average annual withdrawals.	Vulnerability class: 1 (<10%), 2 (10-40%), 3 (>40%). Regions with high shares may have less flexibility in satisfying M&I water demands.		\$		

	Summary of Prope	Table 3-1 (cont.) osed Water Resource Vulnerabi	lity In dic	ators		
		Criteria Threshold		A rea of	Concern	
Indicator	Description	1 = Low Vulnerability 2 = Medium Vulnerability 3 = Hick Vulnerability	General Water	Consump- tive	Instream	Ecosystem/ Water
Consumptive	Use and Institutional Flexibility Indicat	tors (cont.)	030	Dentand	0.00	j Quany_
Agricultural Water Use Share Qwsg/Qw	Agricultural sector withdrawals (Qw ₄) as a share of total average annual withdrawals.	Vulnerability class: 1 (~70%), 2 (20-70%), 3 (~20%), Because agriculture can serve as a source of water during periods of low supply, regions with relatively low shares of agricultural water use may have less flexability in satisfying water demands.		Ŷ		
Industrial Water Use Flexibility	Share of total annual average industrial water use that is consumed (i.e., not returned to the system).	Vulnerability class: 1 (<10%), 2 (10-40%), 3 (<40%). Greater rates of consumptive use by industry can indicate more intensive use of relatively expensive water-awing technologies, and, therefore, less flexibility in achieving further water savings in periods of low supply.		¢		
Institution al Flexi bility	An integer-based flexibility score ranging from one to five is assigned to each state based on the relative degree of barriers to water trading.	Vulnerability class: 1 (flexibility score 0 or 1), 2 (flexibility score 2 or 3), 3 (flexibility score 4 or 5). States permitting water trading, such as most with prior appropriation, are more flexible in adapting to hydrologic changes.	ţ	ę	¢	Ŷ

	Summary o	Table 3-1 (cont.) f Water Resource Vulnerability Ind	licators			
		Criteria Threshold ¹	Canaral	Area of Concern		
Indicator	Description	1 = Low Vulnerability 2 = Medium Vulnerability 3 = High Vulnerability	Water Use	tive Demand	Instream Use	Water Quality
Instream Use I	ndicators					
Hy dropo wer Capacity	Distribution of regional hydroelectric power capacity, in megawatts (MW).	Vulnerability class: 1 (<10 MW), 2 (10-500 MW), 3 (>500 MW). Identifies regions where hydroelectric producers as a whole are most at risk to losses from reduced streamflow.			Ŷ	
Flood Risk	Population within the 500-year flood plain.	Vulnerability class: 1 (<20,000), 2 (20,000-200,000), 3 (>200,000).			Ŷ	
Navigation	A verage annual expenditures on dredging activities in navigable waterways.	Vuherability class: 1 (<\$2 million), 2 (\$2-\$20 million), 3 (>\$20 million), Higher cyponditures indicate relative importance of waterway and magnitude of existing efforts to clear waterway. Higher streamflows could result in greater deposition of sediment, while lower streamflows could require additional dredging to maintain navicable waterways.			Ŷ	

	Summary of Pro	Table 3-1 (cont.) posed Water Resource Vulnerabili	ity In dica	tors		
		Criteria Threshold		Area of	Concern	
Indicator	Description	1 = Low Vulnerability 2 = Medium Vulnerability 3 = High Vulnerability	Water	tive Domand	Instream	Water
Ecosystem/Wat	ter Quality In dicators		Uac	Demanu	0.00	Quany
Snow Influence	Share of average annual precipitation (P) that falls as snow (P ₁) (i.e., snow water equivalent).	Vulnerability class: 1 (<12%), 2 (12-36%), 3 (>36%). Regions where snowmelt accounts for a significant share of available moisture are most vulnerable to shifts in seasonal precipitation.	¢			Ŷ
Ecosystem Ice Cover Sensitivity	The average annual number of days with average temperatures below 0 °C.	Vulnerability class: 1 (<32 days), 2 (32-85 days), 3 (>85 days), Many ecosystems, particularly lakes and forests, have evolved with specific cold weather requirements.				¢
Ecos ystem Heat Sensiti vity	The average annual number of days with maximum temperatures exceeding 35 ℃.	Vulnerability class: 1 (<15 days), 2 (15-40 days), 3 (>40 days). Extreme heat is a significant source of stress on ecosystems. Even regions adapted to relatively high temperatures may not easily tokerate even small increases in maximum temperatures.		Ŷ		÷

	Summary of Pro	Table 3-1 (cont.) oposed Water Resource Vulnerabil	ity In dica	tors			
				Area of Concern			
Indicator	Description	Criteria Threshold ¹ 1 = Low Vulnerability 2 = Medium Vulnerability 3 = High Vulnerability	General Water Use	Consump- tive Demand	Instream Use	Ecosysten Water Ouality	
Ecosystem/Wat	er Quality Indicators (cont.)						
Dissolved Oxygen	Percent of observations of ambient concentrations less than 5 mg/l.	Vulnerability class: 1 (<3%), 2 (3-15%), 3 (>15%). Dissolved oxygen levels in waterways decline with increasing temperatures, causing stress to aquatic wildlife.				Ŷ	
Low Flow Sensitivity	Unregulated mean baseflow in millions of gallons per day (Mgd), the amount of streamflow originating from groundwater outflow.	Vulnerability class: 1 (>4,800 Mgd), 2 (800-4,800 Mgd), 3 (<800 Mgd), Baseflow is a measure of the capacity of a watershed to sustain instream flows during low-flow periods. Aquatic ecosystems within watersheds with relatively low baseflows are most vulnerable to periods of severe and sustained drought.	Ŷ			Ŷ	
Species at Risk	Number of aquatic/wetland species known to be at risk, either threatened or endancered.	Vulnerability class: 1 (<5 species), 2 (5-13 species), 3 (>13 species).				Ŷ	

.

Model Structure: Objective Objective Function: MAX CPS by choosing F., S., X., H. $CPS = \sum_{i} DF_{i} * \left[\sum_{i} (a_{ni} + .5b_{ni}W_{ni} - .5c_{ni}W_{ni})W_{ni} \right] consumptive use$ $\sum_{i} W_{ni0} (\overline{V}_{ni} - V_{ni0}) + V_{ni0} (\frac{W_{nit}}{W_{ni0}})^{\beta_{ni}} \qquad (\text{COBEM only})$ + $\sum_{r \in N} h_r \cdot P \cdot H_{rt}$ hydropower benefits $+\sum_{n}^{r\in N} (1+e^{l_n+m_n p_n})$ navigation benefits $-\sum_{n=1}^{n} (f_n + g_n FL_{n!}) FL_{n!}$ flood damages (above threshold) $-\sum_{n=1}^{\infty} K_n(1-(1-e^{k_n F_m}))$ thermal waste heat (opportunity costs) $+\sum_{n=1}^{n}q_{n}F_{n}$ secondary wastewater treatment benefits $-\sum_{n} [(\frac{SL_{n!}}{\bar{F}_{\perp}}) \cdot C \cdot \sum_{i} 2r_{ni}W_{nii}]$ advanced wastewater treatment costs

Model Structure: Constraints Subject to: $F_{nt} = F_{n-1,t} + I_{nt} + R_{nt} + \sum r_{ni} W_{n-1,i,t} - \sum W_{nit}$ flow balance $S_r^{\min} \leq S_{rt} - S_{r,t-1} + R_{rt} + E_{rt} \leq S_r^{\max}$ storage balance $S_{rT} = S_{rO}$ terminal storage constraint $FL_{nt} \ge F_{nt} - FT_n$ flood level constraint $GW_{nit} \leq GW_{ni}$ groundwater supply $H_{nt} - F_{nt} + SP_{nt} \leq \overline{H}_r$ hydropower capacity constraint $E_{n} = 0.5(PET_n + \frac{PET_n}{S^{max}}S_n)$ reservoir evaporation constraint

· . .

