Software for the 6809 Microprocessor
board

Workshop on Distributed Laboratory
Instrumentation Systems

Abdus Salam ICTP, Trieste, November 26 — December 21, 2001

C. Verkerk, 01710 Thoiry, France
A.J. Wetherilt, Arcelik A.S., Tuzla, Istanbul

Abstract

This preliminary document describes the software available for the
ICTP 6809 board: the RInOS8 multitasking kernel and the monitor
ICTPmon, both resident on the board, together with the tools for
cross-development. The RInOS kernel implements an environment for
multithreaded application programs with a well furnished set of inter-
process and interthread communication mechanisms. The lools for
cross-development, running under Linux on a PC, comprise the cross-
compiler, cross-assembler and linker chain, the associated libraries and
additional tools, such as a symbolic cross-debugger.

Software for the 6809 Microprocessor board . Verkerk and A.J. Wetherilt

Old Rinus and Jim Wetherilt were walking through some code.
They wept like anything to see obscure assembly mode.

It would be grand, they said, if C could make some road.

If seven firms with seven staff would code for half a year,

Do you suppose, old Rinus said, that they could make it clear?
I doubt it, said Jim Wetherilt, and shed a bitter tear.

With apologies to Lewis Carroll
(the Walrus and the Carpenter)

Workshop on Distributed Laboratory Instrumentation Systems. 2
Abdus Salam ICTP, Irieste Novernber 26 — December 21, 2001.

Contents

1 Introduction

2 User Manual for RInOS

2.1
2.2
2.3
2.4

2.6

2.9

2.8

Introductionn L
The ICTP09 board o v ..
An overview of RInOS o oL
Thread / Process management
2.4.1 The Task Control Block
2.4.2 Thread Creation
2.4.3 Context switching between threads
2.4.4 Thread terminationo
2.4.5 BSleeping and waking threads
2.4.6 Summary of thread management system calls
Semaphore management
2.5.1 Semaphore creation oL
2.5.2 UP and DOWN operations
2.5.3 Other semaphore operations
2.5.4 Summary of semaphore management system calls . . .
Memory management L.
2.6.1 The common memory manager
2.6.2 The paged memory manager
2.6.3 Summary of memory management system calls

Inferprocess communication manager
271 Messageso e
2.7.2 Numbered signals
273 Pipes.

2.7.4 Summary of interprocess communication system calls .
Device Drivers o oo e e e e
2.8.1 Interrupt handling within the device driver
2.8.2 The serial driver (ACIAL and ACIA2)
2.83 The DACdriver.

Software for the 680% Microprocessor board C. Verkerk and A.J. Wetherilt

284 The ADCdriver. 47

285 ThePlAdriver 47

2.8.6 Installation of a new driver. 49

2.9 The modified ASSIST09 monitor 49
2.9.1 ASSIST(09 commands 49

2.9.2 The code downloader 50

2.9.3 Debugging with the modified ASSIST09 monitor. . . . 52

3 The Cross-compilation Chain 53
3.1 The Cross-compiler 53
3.2 Assembler and Linker oL 56
3.3 The startup routine ert0.0 T 58
3.4 Program Libraries. o000, 60
3.5 The overall steering script cc09 69
3.6 Downloading the program 71
3.7 Debuggers 71
3.8 Auxilliary programs. L 74

4 Putting it all into practice 77
4,1 Things to watch when writing a C program. T7
4.2 New features added in 1999 80
4.3 Downloading and running your program 82
4.4 Decbugging your program o v v v v v e e e e e 82
4.5 Symbolic Debugging Commands 84
4.5.1 Creating a 'log’ of your debugging session 84

4.5.2 Setting and using breakpoints 84

4.5.3 Removing a breakpoint 86

4.5.4 Executing your program line by line. 86

4.5.5 Investigating the values of variables 87

4.5.6 Show the contents of thestack 87

4.5.7 Using an input file containing debugging commands . . 88

4,5.8 Repeatingacommand 38

4,59 Starting and exitingo oL 89

5 Bibliography 90
6 Credits 91
A m6809 Registers and programming model 93
B Returned error codes 96
Workshop on Distributed Laboratory Instrumentation Sysiems. 4

Abdus Salam ICTP, Trieste November 26 - December 21, 2001,

Sofiware {or the 6809 Microprocessor hoard C. Verkerk and A.J. Wetherilt

C System calls OR
D Device driver function calls 107
E Structure and definitions reference 111
F Linked lists used by RInOS 116
G Programming examples; assembly language 118

G.1 Create a thread using POSIX 1003.1 compatible method . 118
H A debugging example 122
I System calls from C 127
J Programming examples in C 129

J.1 A sample program using pipes 129

J.2 A similar program using messages 132
K Assembler listing of a compiled program 135
L Example of a .map file 140
M A debugging session with db09 144
N An example on-board symbolic debugging session. 152
Workshop on Distributed Laboratory Instrumentation Systems. d

Abdus Salam 1OTP, Tricsic November 26 — Decamber 21, 2001.

List of Tables

2.1 Task Control Block structure field offsets 21
2.2 Thread state values 22
2.3 Parameter structure offsets for thread creation 23
2.4 Stack layout before dispatching of thread 24
2.5 Thread attribute fields L. 24
2.6 Summary of thread management system calls 30
2.7 Semaphore structure definitionso o0 32
2.8 Semaphore type values oo 33
2.9 Summary of semaphore management system calls 36
2.10 Summary of memory management system calls. 37
2.11 Message structure offsets.o o0 39
2.12 Signal structure offsets.o 0L 39
2.13 Pipe structure offsets.o 41
2.14 Summary of interprocess communication system calls. 43
2.15 Interrupt table offsets,o 44
2.16 Device driver function requests. L. 45
217 IOCTL usage. e 47
2.18 Device driver installation structure L. 49
2.19 Commands supported by the ICTPmon Monitor. al
3.1 Useful options to pass to the C cross-compiler. 513
3.2 Options for the assembler as6809 56
3.3 Options for the linker aslink 57
3.4 Example memory layout of a compiled program 58
3.5 Functions available in libc.ao 61
3.6 Interface Functions for RInOS System Calls 63
3.6 Interface Functions for RInOS System Calls - Continued . . . 64
3.7 Functions available in libIO.a 0. o000 64
3.8 Denominations of logical devices 65
3.9 Mathematical functions callable from a C program. 66
3.10 Functions available in libgee.a . - . . o . . o 0oL L 68
3.11 Functions in libmath09.a for internalusc only. 68

6

Software for 1he 6809 Microprocessor board C. Verkerk and ALJ. Wetherilt

3.12 Function prototypes for libpthread.a, 69
3.13 Options defined for the Cross-debugger db09. 72
3.14 Commands supported by the Cross-debugger db09. 74
4.1 Help Screen for the symbolic cross-debugger db09. 83
Al Register Set o 93
A.2 Condition Code Register 93
B.1 Error codes returned by [Qcalls 96
B.2 Error codes returned by system calls 0L 97
C.1 Systemcalls L L 98
C.1 System calls — Continued 99
C.1 System calls — Continued 100
C.1 System calls -~ Continued, 101
C.1 System calls - Continued 102
C.1 System calls - Continued 103
C.1 System calls — Continued 104
C.1 System calls — Continued 105
C.1 System calls — Continuedo 106
D.1 Device driver function calls. 107
D.1 Device driver function calls - Continued 108
D.1 Device driver function calls - Continued 109
D.1 Device driver function calls - Continued 110
D.2 Device driver definitions L. 110
E.1 Thread Control Block (TCB) structure 111
E.2 Values used to define TCB fields — Thread state values 112
E.3 Values used to define TCB fields — Thread attribute bit fields 112
F.4 User settable thread attribute valuves 112
E.5 Message structure Lo oo 112
E.6 Thread creation structure 113
E.7 Semaphore structure oL 113
E.8 Semaphore types used by semaphore system calls 113
E.9 Signalstructure L. L o 113
E.10 Pipe structure L. 114
E.11 Interrupt table structure oL 114
E.12 System variables 114
E.13 Global maximum values 115
E.14 Hardware addresses 115
Workshop on Digtributed Laboratory Instrumentation Systems. T

Abdus Salam [CTP, ‘Iricste Novermber 26 — December 21, 2001,

Saftware for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

F.1 Linked lists in RInOS . . . 116
F.2 Linked lists in RInOS Contmued 117
.1 C functions, resulting in a system call . . . 127
1.1 C functions, resulting in a system call — Contmued . 128
Workshop on Distributed Laboratory Instrumentalion Systems. 8

Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

List of Figures

2.1 Schematic Drawing of the [CTTPP09 board
2.2 Memory Map of the M6809 under RInOS
2.3 Jumper Settings for the ICTP03 Boaxrd

Chapter 1

Introduction

The 6809 Microprocessor board was developed by A.J. Wetherilt, when at
the Marmara Research Centre in Istanbul, Turkey. He also developed the
RInOS multitasking kernel and the ICTPMon monitor program, which arc
both resident in EPROM on the board. The RIn0OS kerncl is onc of the
cornerstones of the available software, allowing a user to write programs to
a large extent compatible with the POSIX 1003.1c standard.

The other cornerstone is the GNU C cross-compiler, which was adapted
by C. Verkerk from an existing version for the 68HC11 microprocessor. The
cross-assembler and the linker were also adapted from existing versions.

The RInOS kernel and the cross-compiler chain are independent of cach
other. RInOS does not make any assumption about characteristics of the
compiler and vice-versa. The bridge between the two is built from the various
program libraries and the C startup routine. The result is that a user can
write a multi-threaded application program without any knowledge of the
6809 microprocessor and its instruction set. The size of a single application
program is limited to just under 32 Kbhytes. A maximum of 32 tasks can be
present in the system, provided the total size does not exceed 128 Kbytes
and no single program occupies more than 32 Kbytes.

Programs, writfen in C or in assembly language, can be easily compiled
on the PC and downloaded to the board., They can be debugged at assembly
language level directly on the board, making use of facilities of [CTPMon,
or under Linux, using a cross-debugger db09.

For the future, various further extensions are planned. The most signifi-
cant are: a portable version of RInOS, re-written in C, and more convenient
debugging facilities, based on gdb.

Several people contributed to this collection of software and software
tools. We mention here Carlos Kavka, Ulrich Raich, Pablo Santamarina
and Scrgei Borodin. Full eredit is given in the Acknowledgements.

10

Chapter 2
User Manual for RInOS

2.1 TIntroduction

RInOS (Real-time Integrated Operating System) is a rcal-time kernel de-
signed for use with the ICTP09 board. A total of over 40 primitive functions
are available for application programs by the use of system calls. RInOS
is integrated with a modified version of the ASSIST09 monitor supplied by
the Motorola Company for use with their 6809 microprocessor. This combi-
nation of RInOS with ASSIST09 allows the downloading and debugging of
multithreaded application programs at the assembler level. A library of C
functions has been written so that the user can access all the features of the
system from a high level langnage. Various cross-compiler tools developed
or adapted for use with the ICTP09 board under RInOS are available.

The RInOs kernel and library interface have been designed so as to follow
closely the POSIX 1003.1¢ standard for threads {PThreads). Although not
vet compliant fully with the standard, many of its features have been imple-
mented. It is hoped that both the ICTP09 board and RInOS will find usec not
only as an aid to the teaching of real-time principles and methodology but
also as rescarch and development tools in laboratory instrumentation. To
this end, the RInOS kerncl is "romable” and relatively easily adaptable to
other 6809 boards and configurations. A C version is planned for the future
that will be portable to other microprocessors.

2.2 The ICTP09 board

The 6809 board implements a large number of functions at the price of
some complexity: 24 integrated circuits are used in its construction (see
Figure 2.1). It comprises:

11

Sollware {or the 6809 Microprocessor board . Verkerk and A.J. Wetherilt

2 serial communications ports

1 parallel port

3 timer channcls

2 channels of 12 bit ADC input

2 channels of 12 bit DAC output

16k EPROM

8k basc RAM

128k RAM arranged in 4 pages, cach of 32k

The memory map of the system is shown in Figure 2.2,

The board is based around a MC6809 processor running at a clock speed
of 1 MHz. Although the 6809 is now an old microprocessor, its use in a piece
of hardware intended mainly for teaching purposes can be justified on the
grounds of its superior instruction set and clarity of use. The 6809 arguably,
still has the best instruction set of any 8 bit microprocessor or microcontroller
and is idcally suited for the current purpose. Development tools arc widely
and frecly available at many sites on the Internet which is a great advantage
for any device.

Throughout the design stage, stress has always been laid on those areas
that will allow the various aspects of microprocessor teaching to be empha-
sised, For this reason two identical serial communications ports have heen
provided. These allow communications drivers to be debugged easily using
once port connected via the monitor to the host machine and the sccond to the
hardware application. For both ports, the baud rate can be set by changing
jumper JP2. If faster rates are required, the ACIAs at 0xA020 and 0xA030
(Figure 2.1) must be configured so that the clock is divided by 1 rather than
16 and the jumpers adjusted accordingly. Communication uses only the TxD,
RxD and ground return lines of the RS232 9 pin ports. For interconnection
between the board and a host PC, null modem cables must be used.

The 6840 PTM provides 3 timer channcls. The first is attached to the
NMI line and is used by the monitor for tracing through code, and the second
is used for the system clock by the kernel. It issues a clock interrupt on the
IRQ line at 10 ms intervals. The third clock is available to a user and has
both gate and output on the on-board standard ICTP 26 pin strip conncctor.
To ensure these and other interrupt signals are processed, the jumpers must,
be set correctly on jumper JPL. Under RIn0OS, all interrupts except the

Workshop on Distributed Laboratory Instrumentation Systems. 12
Abdus Salam 1CTP, Irigste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

los £ -p |.i l
E i h
Pl
Hi
el E T
E -—!
g
+

ek | : ' fM\:»Ji:’ ;
. — 1] D

Al tmR

Loy

AN I BT

Fra] I-v

A 1L T
GO LU o L,

i A

H

"

i *

s |1
w3
(I (1
5 [E
-5 :3
| il

i 2

i

Figure 2.1: Schematic Drawing of the ICTP09 board

Workshop on Distributed Laboratory Instrumentation Systems. 13
Abdus Salam ICTP, Trieste Noverober 26 — December 21, 2001,

C. Verkerk and AL). Wetherilt

Software for the 6809 Microprocessor board

SHIANAIEHA 3DiAa3a

AN

D2aAVw F Dva DO
-4 Eo) - 4 DEOVY
LYW o0
=HIAWNL oOLOVv

Vi jalelv k-4

aael 22624

SADENIAA

AV HAd=a3HJdId3ad

SINVYVEHDOdAdd

NOILYIODINIddVY

el
AACLLEU WWOLIWAIO

YAHAV HHOAN HOLINOIN

MOVILIS NALSAS f

eosae MAOAA pue
SIUEISUCD) [SUID™M

dVvVINE AHdOWnW3Aawng

AddX

lelale |

lelsle e]

inlele - g

00 LS
000

ood L

00O LD

(alelele)

nwWwoddd

Figure 2.2: Memory Map of the M6809 under RInOS

14

Workshop on Distributed Laboratory Instrumentation Sysicms.
Abdug Salam ICTP, Trisste November 26 - December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.). Wetherilt

1
e _._: TR
IR Q ACLAZ
- - F1ERCy
- IRQ
] ACLAL
- - FIRO
T NI MONTTOR
R IR
PTM
- - FIRO
el TRQ
PIA
- - FL1ROy
JP 2 Baud Rate
DR 4800
- - 2400
- - 1200
- - 00

Dashed line indicates defaunlt jumper scltings.

Figure 2.3: Jumper Settings for the ICTP09 Board

MON signal from timer channel 1 which is jumpered to the NMI line, must
be jumpered to the IRQ line. Jumpering to the FIRQ line without special
provision will cause unpredictable results and generally will hang the system.
Refer to Figure 2.3 for a description of the jumper settings.

Random access memory is used to provide (i) a common area for system
and application program use and (ii) an area in which large processes can be
loaded. These arc supplied by a 2764 equivalent 8k RAM at 0x0000 - 0x1FFF
and a 581000 128k RAM at 0x2000-0x9FFF. Since the entire address space
of the 6809 is only 64k, the 128k of the 581000 is divided into 4 pages each
of 32k in sizc by decoding the upper two address lines of the 581000 with an
address latch. Writing the values 0-3 to the latch will cause the appropriate
page to be set. It is advised that application processes do not interfere with
this register when the kernel is running.

Two channels each of ADC and DAC are provided. No interrupt ca-
pability is provided for the ADC channels as at a clock rate of one MHz,
conversion takes less than approximately 25 us, which is only barely morc
than the time required to handle a straight forward interrupt request. For
times longer than this, timer channel 3 can be used.

Workshop on Distributed Laboratory Instrumentation Systems. 15
Abdus Salam ICTP, Trieste November 26 — Decernber 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

2.3 An overview of RIn0OS

Strictly speaking, RInOS comprises the kernel which holds the system dis-
patcher and interrupt handler together with functions for thread and semapho-
re management, and interprocess communications. The memory manage-
ment and default device drivers rely directly on the kernel code and bypass
the regular system call mechanisms, so that it is difficult to separate them
from the kernel proper. In addition, the modified ASSIST09 also draws on
a number of kernel functions for its opcration. It is possible to use the ker-
nel without installing the monitor, but then all downloading and debugging
facilities are lost. This would be the situation for a standalone version with
user processes or threads running in ROM.
RInOS consists of the following modules:

System initialisation

System dispatcher

Hardware interrupt handler
Process/Thread management
Semaphore management

Signal and message management
Pipe management

Memory management

Device drivers

Monitor services

Memory on the ICTP09 board is organised into three separate regions:
ROM (0xc000-0xffff); Common RAM (0x0000-0x1£ff); and Paged RAM (4x
0x2000-0x9fff). All hardware devices occupy the 8k between 0xa000-Oxbfff.
The first 0x100 bytes of each area of RAM are used by the memory manager
to indicate whether or not a block of memory is in use. RInOS uses the low
portion of shared RAM starting at 0x100 to storc information such as pointers
to various lists maintained by the system and flags to indicate system status.
A number of structures are defined that hold information needed by the
system. Examples of such structures are the thread control block (TCB) that
defines the state of all threads loaded by the system; blocks for semaphores,
signals, messages and so on. Those structures that are predefined by the
system reside in the low RAM area in the following order:

Task control blocks (32)
System semaphores (266)

Message blocks (32)
Signal blocks (32>
Pipe blocks (16)
Workshop on Distributed Laboratory Instrumentation Systems. 16

Abdus Salam ICTE, Trieste Novermber 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Here the bracketed gquantities refer to the default number of the struc-
tures created during system initialisation. Another important structure that
resides in this arca is the interrupt vector table. This table consists of an
entry for each hardware device in the system. When a hardware interrupt is
reccived, cach device is interrogated to determine whether it was the cause of
the interruption. If so, the entries in the interrupt vector table correspond-
ing to the device are loaded and a jump is performed to the device interrupt
function defined in the table. Since the table is in RAM, a user can change
the default behaviour by inserting new values into the table. The vector
table itself is initialised during system initialisation.

At the top 256 bytes of shared RAM, the monitor maintains its own work
area. Immediately below this, RInOS creates first the stack for the null
task and secondly the system stack. The remainder of the shared memory is
available for use by both the system and applications as required. A map of
shared RAM is given in Figure 2.2 on page 14.

Use of the ROM is divided into three areas. The first of these, starting at
0xc030 contains the RInOS code. The monitor resides at 0xt000. The third
area is a table of jump vectors at 0x[ff2 that is used by the 6809 processor to
veetor resets and hardware and software interrupts. On initial booting, the
processor reads the value located at Oxfffe and jumps to that value. This is
the start of the monitor. After performing its initialisation, the monitor calls
the RInOS initialisation manager at Oxc030 and waits for keyboard input.

User applications are downloaded to the paged RAM area by the mon-
itor. Two methods of loading are possible depending on whether the code
is relocatable or not. If the code is relocatable, it has an assumed origin
of 0 and must be position independent, otherwise the code must have the
absolute value 0x2200 as origin of exccutable code. as this is the start of
free paged memory available to the user. Only one absolute module can be
downloaded to the [CTPQ9 board and an etrror will be generated if a second
module ig attempted to be downloaded. On the contrary, as many relocat-
able modules as desired within the available memory limits (32k per page)
can be downloaded. The system memory manager will automatically handle
the creation of all neccessary structures for the process and assign memory.
Accompanying each downloaded module is a 0x100 byte area situated imme-
diately before the start of the memory reserved for the process. If desired,
a set of arguments from the command line can be sent with the code to he
downloaded. RInOs will make these arguments available to the application
on startup.

Once downloaded, an application program can make use of the kernel
functions by issuing a software interrupt. In assembler language, this takes
the form:

Workshop on Distributed Laboratory Instrumentation Sysiems. 17
Abdus Salam ICTP, Trieste Novembor 26 — December 21, 2001,

Software for the 6809 Microprocessor board . Verkerk and A.l. Wetherily

swi
.byte function-number

Before issuing the softwarce interrupt, most system calls require that var-
ious registers of the 6809 be loaded with parameters that define the action
to be performed. For example, The 0SThreadCreate system call, which is
implicitly called during the downloading process, requires that the X register
points at a structure containing such items as the start of the process’ code
segment, stack segment and length etc. In addition, the A register containg
the priority of the process to be created. The value following the .byte state-
ment is a byte sized function number for the system call. A complete list of
the system calls available under RInOS is given in Table C.1 on page 98. On
return from the system call, RInOS uses the carry bit in the 6809 condition
code register to indicate whether the call was completed satisfactorily. If the
carry bit is sct following a systemn call, an error has occurred, and the A
register contains the error code number as given in Table B.1, page 96. Oth-
erwise, when the carry bit is clear, the system call has completed normally
and the A register does not contain a valid error code, but may contain (in
some cases) a value returned by the system. A brief description of the 6809
registers and programming model can be found in Appendix A.

The process of issuing a system call from C is simplified by the provision
of a library of functions that load the registers with the required values and
issue the appropriate software interrupt.

During a system call, the processor, as an integral part of the software
interrupt call, first stacks the entire 6809 register sct together with the return
address and jumps to the location found at address Oxfffa, within the hard-
ware interrupt table in ROM. This value points to a location in the monitor
which in turn points to the system dispatcher.

Once RInOS receives the request, a number of actions occur prior to
jumping to the desired system call.

Firstly, RInOS saves the current stack in the Task Control Block (TCB)
for the current thread, and switches to the system stack. It also increments
a system flag (the intlvl variable) to indicate that it is running in system
space and that any subsequent interrupts should not reset the stack again.
The return address is changed to the first valid instruction at the second byte
following the swi instruction. This is achieved simply by adjusting the value
of the return address on the stacked register sct. Throughout the system call
it is assumed that the U register points at the base of the stacked registers
and acts as a stack frame pointer for the interrupted thread. In this way,
the register values can be accessed as desired. At this stage, the interrupt
mask bit in the 6809 processor is set so that interrupts arc disabled. If this

Workshop on Distributed Laboratory Instrumentation Systems. 18
Abdus Salam ICTP, Tricste November 26 — December 21, 2001.

Software [or the 6809 Micropraocessor board C. Verkerk and A.J. Wetherilt

situation were to continue, no hardware interrupts could occur and the system
would not respond in the desired manner to external cvents. Accordingly,
the interrupt mask is cleared at the first safe opportunity. Throughout the
kernel, interrupts arc cnabled when possible and disabled only when it would
be dangerons to allow more than a single thread simultaneous access to the
same block of code. Such code blocks are known as critical sections and
must bhe carefully guarded. The next step is to clear the carry bit in the
stacked copy of the condition code register to indicate that no error ocurred
by default. A subscquent error will cause this bit to be set, otherwise it will
remain cleared. Finally, the system call number is obtained which acts as an
offset into the dispatch jump table. The address of the required function is
loaded from the dispatch table and a jump is made to that location.

Return from a system call is basically the reverse process. The 6809
stack pointer register is loaded with the saved stack value in the TCB of the
highest priority task that can run and the registers popped making control
continue following the software interrupt. The highest priority task is not
always the same task that issued the original interrupt as during processing
of the system call, the calling thread can sometimes block, that is become
temporarily suspended until some action is complete, or else another, higher
priority task can be woken which will take precedence over the first task. A
discussion of such context switching is deferred until threads are discussed
in detail in the next section.

2.4 Thread / Process management

In most multitasking systems the concepts of process and thread refer to quite
different entifies; the overhcads necessary to create a process being consid-
erably larger than those needed to create a thread. Threads are generally
created within a single process and allow concurrency within that process.
Communication and synchronisation between thrcads within the process is
encouraged. Conversely, communication between threads created by differ-
ent processes is only possible under strictly defined conditions. RInOS does
not distinguish between thread and process creation: the two are identical.
However, the concept of threads being created by a parcent process is still a
valid one under RInOS. It will be assumed that any code downloaded using
the ASSISTO09 monitor will be a process and any children it subsequently
creates will be threads. If one process can learn the identity of another, it
will be possible for the two sets of child threads to communicate. Consc-
quently some of the terms used in the text will differ depending whether a
thread or process is being refered to. For instance, the previously mentioned

Woarkshop on Distributed Laboratory Instrumentation Systems. 19
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

HSoftware for the 6809 Microprocessor board . Verkerk and ALl Wetherilt

identity could be refered to as a process identity (pid) or a thread identity
(tid) depending on the context. In fact they refer to the same object.

2.4.1 The Task Control Block

Central to thread management is the Task Control Block (TCB). This is a
structure that contains all the information necded by the system to define
and manipulate a thread. It is constructed during thread creation and is
valid during the whole life of a thread. The TCB stucture is given in Table 2.1,
page 21.

Each field ol the TCB falls loosely into one of several categories depend-
ing on its function. Fields in the system category are used by RInOS for
scheduling and general thread management; fields in the semaphore and IPC
categories are used by the semaphore and signal/message managers respec-
tively; whereas fields in the user category reflect values either set or used by
application programs.

Blank TCBs are created during system initialisation. The number of
threads that can simultaneously exist is thus set to 32. This limit can be
changed up to a maximum of 255 by altering the value MAXTASKS and re-
assembling. Howcver, the current limit of 32 tasks is appropriate for most
applications considering the available hardware. In addition, a special task
known as the nul]l thread always exists. This thread is special in that it is
always available for running and cannot block, sleep or be killed. It has a
lower priority than any other thread and therefore will run only when there
are either no other threads in existence or that no other thread can run as
a result of blocking, sleeping or other reasons. The null thread is thus the
default thread for the system and has its id field set to 1.

During system initialisation the null thread is set ready to run. This
consists of the following actions:

(i) A stack is set up for the null thread and default values for each register
arc stored in the appropriate locations on the stack. The addresses of
both the start of the region reserved for the null thread stack and the
location containing the start of the register set or context are stored in
the fields STACKSEG and STACKPTR respectively. The size of the reserved
stack memory is also stored in the STACKLEN field of the TCB. When the
null task is dispatched, the system uses the information in these fields
to load the processor stack pointer register and pull the context from
the null thread stack. The final value to be pulled from the stack is the
address at which the processor will execute its next instruction. For
the null thread the memory at this address contains a single instruction

Workshop on Distributed Laboratory Instrumentation Systems. 20
Abdus Salam ICTP, Trisste November 26 — December 21, 2001.

Soltware for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

Field Off- | Size | Category | Description
set
PPPTR 0| 2 System | Link in priority list
(points to next TCB)
INSTANCE 21 1 Systemn | Instance of this thread
1D 31 1 Systemn | Thread’s identification number
PRIORITY 47 1 System | Priority value
BASE_PRIORITY a1 1 System | Base Priority
STATUS 61 1 Systermn | Thread’s status
CODESEG 7T 2 System | Start of thread’s code segment
STACKSEG 9| 2 System | Pointer to stack segment
STACKSIZE 11| 2 System | Size of stack segment
STACKPTR 13| 2 System | Thread’s stack pointer
PAGE 15| 1 Systemn | Page number of thread
PARENT 167 2 User Parcnt of thread
EXITSTS 171 1 User Exit status of thread
EXITCODE 18] 1 User Return code of thread
EXITFUNC 19| 2 User Pointer to thread’s exit function
EFARG 21| 2 User Pointer to exil function’s argument
MAILBOX 23| 2 1IPC Pointer to mailbox
SEMALNK 25| 2 | Semaph. | Link to chain of semaphores
TIMRCNT 271 2 System | Sleeping timec
TIMRLNK 29+ 2 System | Link fo timer list
ESEMALNK 311 2 | Semaph. | Link to threads waiting for
termination
SEMAOWND 33| 2 | Semaph. | Link to list of semaphores
owned by thread
SEMAWAIT 35| 2 Semaph | Pointer to semaphore thread
is waiting to own
MSGSEMA 37 1 IPC Message queue counting semaphore
ERRORSTS 331 1 User Last error status
ATTRIBUTE 39 | 1 | User/Sys | Thread’s sct of attributes

Table 2.1: Task Control Block structurce ficld offsets

Woarkshop on Distributed Laboratory Instrumentation Systems.
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

21

Soltware [or the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

that performs a tight loop forcing the processor continually to jump to
itself, This address is in RAM at 0x012e so that breakpoints can bhe
set on the null thread for debugging.

(ii) The STATUS field is cleared indicating that the null thread is capable
of being run when scheduled to do so. The STATUS field is used to
indicate the thread state; a non zero value indicates some condition
preventing the thread from being run. Possible values for this field are
given in Table 2.2, page 22. The null thread can only take the value
zero since it is always runnable. Other threads, however, can have any
values depending on the current state. Prior to creation (and when
totally dead) a TCB will show the value NOTASK (0x80) indicating that
this TCB is eligible for use. A ‘zombie’ thread is one which has finished
its activity but has the possibility that other threads will wait for its
demise and therefore cannot release its TCB entirely. Such a thread
will have the value _SUSPEND {0xc0). A thread put to sleep will show
the value _SLEEPING (0x06) and a blocked thread will indicate WAIT
(0x04). The final legal value, .IDLE (0x02), is used by the system to
indicate that a TCB has been reserved for use but is not yet runnable,

State Value | Description
NOTASK 0x80 | TCB not used
SUSPEND | 0xC0O | Thread suspended

-WAIT 0x04 | Thread blocked
SLEEPING | 0x06 | Thread sleeping
ADLE 0x01 | TCB claimed but not yet running
READY 0x00 | Thread running or waiting to run

Table 2.2: Thread statc values

(iii) The priority value is set in the PRIORITY ficld and the TCB is linked into
the system priority list. RInOS maintains a linked list of TCBs starting
with the system variable prioptr and linked using the TCB PPTR field.
Thus prioptr points at the highest priority thread in the system, that
is the thread having the largest value in the PRIORITY field. In turn, the
PPTR field of this TCB points at the next highest priority thread, and so
oni. The final TCB in the chain is that of the null thread, which having
the lowest priority of any thread has ifs PPTR field set to zero or null.
During initialisation, the null thread is the only thread in the linked
list and prioptr points directly at the null thread. Subsequently, as
other threads are created, they are inserted at appropriate points in
the list.

Workshop on Distributed Laboralory lnstrumentation Systems. 22
Ahbdus Salam ICTP, Tricsie November 26 — December 21, 2001.

Software for ihe 6809 Microprocessor hoard C. Verkerk and A.J. Wetherilt

Field Offset | Size | Description

PSEG 0 1 | Page register value for the thread

CSEG 1 2 | Start of Code segment / Module

SSEG 3 2 | Stack scgment,

SLEN 5 2 | Stack length

CSTART 7 2 | Entry point of code

ARGPTR 9 2 | Pointer to thread’s Argument/Environment block
TPRIO 11 1 | Requested priority

TPID 12 2 | Thread's pid (OSThreadInstall only)

TMEM 14 2 | Mcemory size requested (OSThreadInstall only)
TATTR 16 1 | Initial thread attributes

TDP 17 1 | Thread’s direct page

Table 2.3: Parameter structure offsets for thread creatien

2.4.2 Thread Creation

The process of thread creation by an application program or the monitor are
identical and similar to that of the creation of the null thread during system
initialisation. Whereas the null thread takes values from the system to fill its
various fields, these values must be supplied for other threads by the user.
This takes the form of supplying a table of valucs that the thread creation
function can access to obtain the information it needs to perform its task.
This structure is given in Table 2.3, page 23.

Under RInOS threads are created using code already loaded and in posi-
tion (the monitor only creates the thread after it has downloaded the code).
This means that RInOS must be told where the code can be found. This
is done by the use of the PSEG and CSEG fields of the Thread Parameter
Table (TPT). These provide the page and the start of the code used by the
thread respectively and are copied directly into the PAGE and CODESEG fields
of the selected TCB. Similarly, the start and length of the stack segment given
by SSEG and SLEN are copied into STACKSEG and STACKLEN in the TCB. The
actual entry point of the code to be exccuted by the thread is specified by
the CSTART field and is copied into the initial thread context set up on its
stack. RInOS accepts arguments to a thread in the form of a pointer to the
arguments in the ARGPTR ficld of the TPT. This address is pushed onto the
stack prior to the register set. In addition, the address of the function that
is called when the thread terminates is also pushed onto the stack after the
argument pointer but before the context. The complete initial stack then
appears as in Table 2.4, page 24. When the thread is dispatched, the context

Workshop on Distributed Laboralory Instrumentation Systems. 23
Abdus Salam ICTP, Trieste Novernber 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Position Contents
S+14 Arg. Pointer
S+12 Return Addr.
S+10 Thread’s PC
S5+8 U Reg.
B+6 Y Reg.
S+4 X Reg.
S5+3 DP Reg.
S+2 B Reg.
S+1 A Reg.

S CC Reg.

Table 2.4: Stack layout before dispatching of thread

Attribute Value | Description

| DETACH_STATE 0x01 | Detach state bit
CANCEL_STATE 0x02 | Cancclation state bit
CANCEL_TYPE 0x04 | Cancellation type bit,
EXIT_.PENDING 0x80 | Exit pending bit
CANCEL_PENDING | 0x40 | Cancellation pending bit

Table 2.5: Thread attribute fields

is removed and the stack ressembles the stack of a simple function call with
the return address (in this case a function in the RInOS kernel) being pointed
at by the stack pointer register and a single argument on the stack above
the return address. Certain compilers use the 6809 direct page register for
various purposes and in such cases the TDP ficld can be used to set the initial
value of the direct page register in the initial context. RInOS itself does not
usc direct addressing and therefore can accept any value for this register.
The requested priority is set in the A register and passed to the TCB.

An important feature for POSIX 1003.1¢ compatibility is the ability to
set attributes for threads cither dynamically or statically. Under RiInOS,
those attributes that can be represented using a bit field are stored in the
ATTRIBUTE field of the TCB and set during thread creation using the TATTR
field of the TPT. Table 2.5, page 24 lists the bits of the attribute and their
usage. A full description of the properties of the various attributes is deferred
until better POSIX 1003.1c compatibility will be achieved.

The two byte pid of the thread consisting of the INSTANCE and the ID
fields of the TCB is returned in the D register to both the parent thread

Workshop on Distributed Laboralory [nsirumentation Systems. 24
Abdus Salam [CTP, Tricste November 26 — December 21, 2001.

Soltware for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

and its new child. The ID ficld refers to the number of the TCB in the TCB
table created during initialisation. Each time a TCB is reused by the system,
the value of the INSTANCE field is incremented by one. The combination of
INSTANCE and ID lowers the risk of false identification of a thread.

Two different functions are available for thread creation. The first of
these, 0SThreadCreate allows direct creation of a thread in the manner
described shortly. The second function 0SThreadInstall allows a function
to register itself with the system and to start RInOS. This is useful for
running applications in ROM which are not downloaded by the monitor.

The steps in thread creation are:

(i) A TPT is filled out, the priority level set in the 6809 A register and the
relevant function — either ‘create’ or ‘install’ — called.

(ii) A free TCB is found. If one is not available an error is returned to the
calling thread.

(iii) A context is created using values in the TPT.
(iv) A semaphore is created for the thread’s mailbox.

(v} The PARENT field is filled in using the system variables ctskinst and
ctskpid which concatenated together form the parent’s full pid. The
TCB fields EXITSTS, EXITCODE, EXITFNC and EFARG which refer to the
exit status, the return code from the thread, an optional termination
function and the argument to the function respectively, are set to zero
to indicate default values. The ERRORSTS field which records the error
status of the last system call made by the thread is similarly set fo zero
indicating that an crror has not yet occurred.

(vi) The fields TIMRCNT and TIMRLEK which are nsed by the system clock
to determinc when a thread should be woken if it is asleep, are zeroed
as a thread starts its life in a runnable state.

(vii) The thread is linked into the priority list behind (at lower priority) any
task with the same priority level.

(viii) The thread has its STATUS field cleared in its TCB.

{(ix) The highest priority thread in a runnable state now runs. If this is
the new child, its initial context is pulled from the stack and execution
sfarts at the address indicated in the TPT.

2.4.3 Context switching between threads

A context switch occurs when a running process becomes preempted, blocked
or is put to sleep. Whenever this occurs, the kernel must save sufficient infor-

Workshop on Distributed Laberatory Lostrumentalion Systems. 25
Abdus Salam LOTP, Trieste November 26 — December 21, 2001.

Sofiware for the 680% Microprocessor board C. Verkerk and A.J. Wetherilt

mation about the running process to enable it to start again at a later time
at the position it stopped. The information that must be saved consists of
the contents of the machine registers together with the stack pointer and the
address of the next instruction that would normally be executed. Together,
this information constitutes the context. RInOS saves this information by
requiring that all access fo the system is via either a software or hardware
interrupt. In both cases, the entire register set is pushed onto the current
stack and automatically saved. In addition, the particular software interrups
selected for system usage also switches off interrupts which allows the con-
cept of ’atomic’ or indivisible system calls which can be interrupted only at
the discrction of the kernel itself; at dangerous or inconvenient times, the
system can be protected from undesirable events. The steps taken during
each system call to save the context are as follows:

(i) The 6809 registers are loaded by the application with the desired values
and the system call issued. This causes the register set to be pushed
onto the current stack and execution to transfer (indirectly) to the
RInOS software interrupt handler.

(ii) The system variable intlvl is incrementcd to indicate the depth of
nested interrupts (both hardware and software). If it is found to be
zero prior to being incremented the current stack pointer is saved in
the STACKPTR field of the TCB and the system stack loaded. Otherwise,
the system itself has been interrupted and the system stack is already
in use. Resetting the system stack would be an error in this case and
lead to system failure.

(iii) The return address is incremented to the address following the function
number and the function number loaded.

(iv) The stacked context is made accessible by pointing at it with the 6809
U register.

(v) Interrupts are unmasked to allow the rapid processing of hardware
events.

(vi} A jump to the desired system call is made using the dispatch jump
table and the call is executed.

During the normal operation of a system call, another higher priority
thread may be made runnable by one of a number of means; it may be
woken up from sleep; it may become unblocked by some action of the system
call; or a new thread may even be created. This new thread should then be
the onc that resumes execution when control is returned from the system.
When one of these happen the following sequence of actions occurs:

Workshop on Distributed Laboratory Instrumentation Systems. 26
Abdus Salam ICTPF, Trieste November 26 — Dacember 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.). Weiherils

(i) If an error is indicated, the error nuniber is stored in the ERRORSTS field
of the current TCB and the carry bit set in the CCR byte of the current
context for return to the caller.

(ii) Interrupts arc masked to prevent spurious interruptions that could de-
stroy system information.

(iii) The intlvl system variable is decremented and its new value compared
with zero. If it is not zero then the current context is obtained from
the current TCB and pulled from the stack. This ensures that a context
switch cannot occur when a system call 1s itself interrupted.

(iv) The priority list pointed to by the prioptr system variable is scanned
for the first runnable thread. Since the list is maintained in strict order
of priority, the first suitable thread will also have the highest priority.

(v) The address of the TCB of this thread is stored in the system variable
ctskptr to indicate that this is now the current thread and the address
of the context for the new thread loaded from the STACKPTR field of its
TCB.

(vi) The contexs switch finishes with the new context being pulled from
the stack and execution resuming (or starting in the case of a newly
created thread) at the appropriate point. Interrupts arc unmasked as
the new CCR register is pulled from the stack.

Hardware interrupts use the same route to return back to the point of
interruption. Since context switches can also occur as a result of the asyn-
chronous action of a hardware interrupf it is important that all code be
written defensively, so that any sections that arc sensitive to context switch-
ing are guarded. The kernel makes use of the masking of interrupts at ap-
propriate points to perform this function and safeguard itself. Outside the
kerncl, mutexes and other synchronisation mechanisms must be employed.
Hardware interrupts do not affect the context of the current thread.

2.4.4 Thread termination

A thread can terminate in onc of several ways. Firstly, some threads are
expected to terminatc in the same way that a function in C is expected to
return; either explicitely or implicitely issuing a return statcment. Under
RInOS a thread can issue a rts (return from subroutine) statement which
causes the processor to pull the address at the top of its stack into the pro-
gram counter register and jump to the address. All threads have the address
of the RInOS thread termination handler pushed onto the stack during thread

Workshop on Distributed Laboratory Instrumentation Systems, 27
Abdus Salam ICTP, Trieste November 26 — Dacember 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

creation to allow this action. Alternatively, a thread can terminate by call-
ing the 0SThreadExit function explicitely which just calls the same thread
termination function.

Threads can also be terminated as the result of receiving the 0SThreadKill
system call from another thread. The course of action resulting from one of
these commands to terminate is ultimately similar in each case with minor
differences arising only for kill condition. The common sequence of events is:

(i) A thread can rcturn a value. This valne is placed in the B register prior
to issuing the system call. RInOS places this value in the EXITCODE
field of the TCB and subsequently into the B register of any thread
waiting for the thread fo exit.

(ii) RInOS allows a terminating thread the opportunity of executing an
exit function which was previously installed nsing the 0SAtExit system
call. The exit function takes as a parameter a pointer to an optional
argument list. The addresses of the function and its argument pointer
are stored in the TCB fields EXITFUNC and EFARG, respectively. The
default value of the EXITFUNC field is the address of a function in the
RInOS kernel that simply performs an immediate return. The exit
function is called before any other termination activity.

(iii) RInOS now initiates a number of checks to ensure that the terminating
thread owns no resources when it finally exits. Firstly, the thread is
unlinked from the priority list. This ensures that the thread cannot be
run when the termination call finishes. Secondly, the thread is removed
from the list of active timers. This act should only be necessary for a
thread receiving an 0SThreadKill system call. Next, any semaphores
owned by the terminating thread arc released and the thread is removed
from the waiting lists of all other semaphores.

(iv) Any threads which were waiting for this thread to end are woken
and the EXIT_PENDING bit in the ATTRIBUTE ficld set. The ESEMALNK
field in the TCB is the head of the list of threads waiting on the cur-
rent thread. A thread is placed in this list by calling 0SThreadJoin.
The value in the EXITSTS field is returned in the B register of such a
thread. The ERR_THRDKILL error is returncd by any thread killed by
the 0SThreadKill call.

(v} Whether or not the TCB used by the thread is rcturned to the pool
of available TCBs depends on the status of the DETACH_STATE bit of
the ATTRIBUTE field. If this bit is set either dynamically using the
0SSetThreadAttr systemn call or statically when the thread is created,
the TCB will be released and the STATUS field will be set to _NOTASK.

Workshop on Distribuited Laboraiory Instrumentation Systems. 28
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board . Verkerk and A.J. Wetherilt

Otherwise, the TCB will not be reused and the thread will become a
zombie. In this case the value .SUSPEND will be placed in the STATUS
field.

(vi) Finally, the stack segment uscd by the thread is released back to the
pool of available memory and a context switch performed.

If an attempt is made to kill a thread using the 0SThreadKill call,
several additional actions arc possible depending on the CANCEL_STATE and
CANCEL_TYPE bhits of the ATTRIBUTE field. If the CANCEL _STATE bit is cleared,
no cancellation is allowed and the system call returns the ERR_BADKILL error
to the caller. Otherwise the kill will succeed in one of two ways depending
on the value of the CANCEL_TYPE bit. If this bit is set to CANCEL_TYPE_ASYNC
the thread will immediately be terminated, otherwise the bit will have the
valuc CANCEL_TYPE DFRD (for ‘deferred’) and will be killed only at a time
when it is safe to do so. To indicate this state, the CANCEL_PENDING bit is set
in the attribute. The POSIX 1003.1c standard defines certain points within
a program where cancellation can safely occur and these are discussed in a
later section. The 0SCancelPoint system call allows the thread to specify
that it is safe to cancel and to perform that action if the CANCEL_PENDING
bit is set. In this way, a thread can prepare itsclf for cancellation.

2.4.5 Sleeping and waking threads

A thread can temporarily suspend itself from the list of runnable threads by
issning the 0SSleep systemn call. This call takes as an argument the time (in
system clock ticks of period 0.01 s) for which the thread will be suspended.
A duration of zero ensures that the thread will sleep forever (or until woken
by another thread). When this function is called the STATUS feld is set to
_SLEEPING. For non zero valucs of the duration, the thread is placed in the
active timer list pointed to by the system variable clktsk. The next link
and the duration are placed in the TIMRLNK and TIMRCNT fields of the TCB,
respectively. On each clock interrupt, the TIMRCNT field of each thread in the
list is decremented and any threads with timers reaching zero are removed
from the list and woken by setting the STATUS field to _READY.

Another thread can wake a sleeping thread by the usc of the 0SWake
system call. This call checks that the specified thread is in fact asleep and
sets its STATUS field to _READY if it is. The ERR_NOSLEEP error value is returned
if the thread was not asleep.

Workshop on Distributed Laboratory Instrumentation Systems. 29
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Function Number | Description

0OSYield 0 Voluntarily vield to another thread
OSThreadlnstall 12 Install a thread loaded at an absolute address
(OSThreadCreate 13 Create new thread

OSThreadExit 14 Terminate the current thread

OSThreadJoin 15 Wait for a specified thread to terminate
OSThreadKill 16 Kill a specified thread

OSSetPriority 17 Set, the priority of the current thread

OSSleep 18 Put the current thread to sleep for specified clock ticks
(OSWake 19 Wake a specified thread

OSAtExit 25 Set an exit function for the current thread
0OSGetTaskInfo 26 Get a pointer to the TCB of the current thread
O8Set Thread Attr 27 Set, the attribute of the current thread
0OSCancelPoint 28 Cancel the current thread if cancellation pending
OSGetLastError 29 Get last error code of the current thread

Table 2.6: Summary of thread management system calls

2.4.6 Summary of thread management system calls

A complete list of system calls used in thread management is given in Ta-
ble 2.6, page 30.

2.5 Semaphore management

Semaphores are perhaps the most important ingredient in a rcal-time sys-
tem after the mechanisms for process management in that they allow the
full use of the system facilities in a secure manner. Without the invention
of semaphores, real-time programming in particular and all multitasking ac-
tivity would be radically different. Semaphores provide a means of sharing
system resources in such a way as to prevent simultaneous access to critical
regions. Although several other constructs can provide protection for these
critical regions, semaphores are perhaps better suited and more general in
nature,

A semaphore is basically a lock that can be applied to a region of code
that needs to be protected from multiple access. A uscr can test the lock
and claim the resource if it is free in a single, atomic, action. Once the test
on the lock has started, no other process can interrupt the test which then
runs to completion. If the resource guarded by the semaphore is free, its use

Workshop on Distributed Laboralory Instrurentation Systems. 30
Abdus Balam LOTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

is given to the process requesting the resource. If the resource is already in
use, the process will block until the resource becomes free again.

Semaphores come in three basic varieties: The Mutex or binary semapho-
re; the Counting semaphore; and the Event semaphore. Each type
sharcs a number of common features but has somec characteristics of their
own. A semaphore is always created with an initial value. Counting sema-
phores can take any value between zero and a maximum value whilst Event,
semaphores and Mutexes are always either zero or one. The Mutex is actu-
ally a special case of the counting semaphore with a maximum value of one.
Apart from creation and destruction, two operations are generally defined for
a semaphore: UP and DOWN. The operation of DOWN on a semaphore
tests the current value and if non zero decrements the value and allows the
process performing the operation to continuc. If the value is already zero,
it is not decremented further and the calling process is blocked. The UP
operation is the reverse of this sequence and is called by a process when it
has finished with a resource. In an UP operation, if there are any processes
waiting on the semaphore, one or more {depending on the semaphore type)
of these processcs is sclected as the next owner of the resource and becomes
unblocked. If no process is waiting on the semaphore, its value is usually
incremented up to its maximum allowed level. Mutexes are used whenever
two or more threads access a common resource and the state of this resource
can be changed by one of the threads. For instance, one thread could write
to a buffer, which can be read by other threads. Before a thread accesses the
buffer, it must do a DOWN on a mutex. When the thread has finished using
the buffer it must release it by performing an UP operation on the mutex.

It must be stressed that successful use of semaphores relics on all processes
cooperating together. A single anarchistic process easily can causec the whole
system to fail by holding onto resources it no longer needs. Event semaphores
are frequently used to signal the occurrence of specific actions or events. Any
process interested in receiving notification that an event has occurred can
perform a DOWN on an Event semaphore and wait for its release.

Event semaphores wake all processes waiting on them; the first to run
being the one with the highest priority. It is common to find them being
used to wait for hardware triggers; the processes block until a button is
pressed or some other event requiring attention occurs.

2.5.1 Semaphore creation

Under RInQOS all three types of semaphore arc implemented. Space in the
kernel is reserved for a total of 256 semaphores (referred to as numbered or
system semaphores), Some 80 of these are used by system processes such

Workshop on Distributed Laboratory Instrumeniation Systems. 31
Abdus Salam ICTP, Tricste November 26 — December 21, 2001,

Soltware for the 6809 Microprocessor board . Verkerk and A.J. Wetherilt

Ficld Offset | Size | Description

SEMTYP 0 1 | Semaphore type

SEMVAL 1 1 | Semaphore value

NXTSEM 2 2§ Link to list of threads waiting on this sema
SEMOWNER 4 2 | Current semaphore owner

SEMOLNK | 6 2 | Link to list of owner's semaphores

Table 2.7: Semaphore structure definitions

as messages, signals and the default device drivers and are created during
system initialisation. The remainder are available for use by an application
program. Alternatively, RInOS also allows the creation of dynamic or user
semaphores using memory owned by the application. In this case the appli-
cation creates the semaphore structure given in Table 2.7, page 32 and uses
a pointer to this structure when performing operations on the semaphore.
The structure is common to both types of semaphore; the difference between
the two types being that system semaphores all have space reserved dur-
ing system initialisation and are identified by a unique number whereas user
scmaphores are created by the application and are identified by their address.

During scmaphore creation (for both system and user types) the fields
of the semaphore structure are filled in with appropriate values. The sys-
tem call 0SCreateSem performs this task for system semaphores and returns
the semaphore identification number. For user semaphores, the application
program must perform this task. The type of the semaphore is defined by
placing the desired value from Table 2.8, page 33, into the SEMTYP field of
the semaphore. It can be seen in this table that several options are available
for Event semaphores. The simple Event behaves in an identical manuner to
a Mutex except that it wakes all processcs waiting on it and sets its value
to 1. This is somctimes not the desired action: In some cascs it is neces-
sary to wake only those processes that are waiting on the semaphore when
the particular event occurs. If a process docs a DOWN on a simple Event
semaphore after the cvent has taken place, it will not be blocked but will
continue. In repetitive cvents, this type of semaphore after its first trigger
will always indicate the oceurrence of the event when what is required is the
occurrence of each individual trigger. To circumvent such problems, RInOS
also uses the Resettable Event semaphore which instead of incrementing its
value to one following the event trigger, always keeps the value of zero. In
this way when a process waits for the next event in a repetitive sequence,
the occurrence of a previous event does not affect whether or not it blocks.
Somewhat more rarely encountered but nonetheless of use, is the sitnation

‘Workshop on Distributed Laboratory Instrumentation Sysicms. 32
Abdus Salam ICTP, Tricste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Welherili

where a single event needs to be indicated, after which the semaphore will be
disposed of. RInQS uses such semaphores internally for signal and message
handling.

Semaphore type | Value | Description

MUTEX 0x01 | Mutex semaphore

COUNT 0x02 | Counting semaphore
I'WENT 0x04 | Event counter

REVENT Ox0c | Single event, reset after use
SEVENT 0x84 | Single event, freed after use

Table 2.8: Semaphore type values

During semaphore creation the SEMVAL field of the semaphore should be
filled with the desired initial value. This may be any value up to a limit of
255 for Counting semaphores but only either zero or one for Mutexes and
only zero for Events. All other fields in the semaphore should be sct to zero.

2.5.2 UP and DOWN operations

The DOWN operation on semaphores must guarantee that it cannot be in-
terrupted by any other process or event. It is therefore carried out within
the kernel with all interrupts masked during the critical sections.

The process of performing a DOWN on a semaphore differs slightly de-
pending in the semaphore type but can be summarised as follows:

(i} If the semaphore is a Mutex or an Event, the value is decremented
using a 'rotate right accumulator’ instruction. This both decrements
the value and allows a test as to whether the semaphore was previously
zero or not. If not zero, the semaphore is claimed for the calling process
by firstly writing the address of the caller in the SEMOWNER field, and
secondly, by linking the semaphore into a list of semaphores owned by
the caller. This list has its head in the SEMAOWND field of the current
thread’s TCB. The SEMOLNK field of the semaphores form the remainder
of the list: Each time a new semaphore becomes owned by a thread
the SEMOLNK field of the last semaphore is updated to point at the
new semaphore. The purposc of this list is to enable all semaphores
owned by a thread to be rcleased should that thread terminate for
some reason. It is good practice to ensurc that in the event of ter-
mination, all semaphores should have been rcleased previously so that
this mechanism is superfluous. The system now issues a relurn to the

Workshop on Distributed Laboratory lnstrumentaiion Systems. 33
Abdus Salam ICTP, Trieste Novernber 26 — Decernber 21, 2001,

Software for the 6809 Microprocessor board . Verkerk and ALl Wetherilt

caller. In the case of Counting semaphores, the value is also decre-
mented and tested. If previously non zero, an immediate return to the
caller is made. Counting semaphores are nol linked into the callers list
of semaphores.

(ii} Inthe case when the semaphore value was previously zero, the semaphore
manager now links the thread into the list of tasks waiting on the
semaphore with its head in the NXTSEM field of the semaphore and
linked using the SEMALNK field of the TCB structure. In the case of a
Mutex, the order of insertion into the list depends on the eurrent pri-
ority of the blocked thread; the higher its priority, the nearer the front
of the list. For Event and Counting types, the thread is inserted at the
rear of the list.

(iii} Finally, the thread is put to sleep by marking the STATUS field of its
TCB with the value _WAIT and a context switch performed.

The UP operation proceeds in the reversc order. It too guarantees atom-
icity and can not be interrupted during its crifical scctions.

(1) The list of processes waiting on the semaphore is first cxamined. If the
NXTSEM field is NULL, the value of the semaphore can be incremented
if currently below its maximum value (simple Event scmaphores are
always changed to one). If the semaphore is a Mutex or an Event, the
owner of the semaphore is set to NULL, and 1he semaphorc removed
from the thread’s list of owned semaphores. A return to the caller is
then performed.

(ii) If the list of waiting threads is nol empty, the first thread in the list
(in the case of Counting and Mutex semaphores) is selected as the
semaphore’s next owner and the appropriate actions taken. For Event
semaphores. all threads are woken. A Mutex can also be induced to
behave as an Event by placing the value Oxff in the B register prior
to issuing a call to cither 0SUpSem or 0SUpUserSem. This is to ensure
compatibility with certain features of the I’OSIX 1003.1c standard.

(ili) A context switch is now performed.

2.5.3 Other semaphore operations

A number of other operations are provided under RInOS to facilitate the use
of semaphores.

A semaphore can be released if it is no longer required. This is simple with
user semaphores, which the same as memory can be reused. Howcever, calls

Workshap on Distributed Laboratory Instrumentation Systems. 34
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 680% Microprocessor board C. Verkerk and A.J. Wetherilt

are provided for both user and system semaphores. These calls will ensure
that the correct tidying up is performed by the system and no loose pointers
remain. Sometimes, it becomes necessary to reset an BEvent semaphore and
OSResetESem is provided for this purpose. The user should bear in mind
that the mannal resctting of any semaphore can be a dangerous act.

In some situations it is desirable to have two semaphores acting in tandem
together. Using the standard system calls, it is obviously not possible to
petform atomically a DOWN on one semaphore followed by an UP on a
second. Such a requirement exists however, in the POSIX 1003.1¢ standard
concerning the implementation of structures known as condition variables.
The 0SDownHybrid system call is provided to enable condition variables to be
constructed. It takes two arguments of pointers to semaphores and performs
a DOWN on the first followed by an UP on the second (assumed to be a
Mutex).

Practically, it allows a Mutex defined as a lock guarding a semaphore
resource to be released by an application after blocking on the resource
scmaphore.

2.5.4 Summary of semaphore management system calls

Table 2.9 ,page 36 gives a summary of the system calls for semaphore man-
agement.

2.6 Memory management

RInOS implements a memory manager for several reasons. Firstly, to allow
multiple processes to be downloaded to the ICTPP09 board without the user
having to worry about the location of each process. Secondly, to handle
system requests for memory allocation and deallocation in a consistent and
safe manner, and lastly to form a bridge between the hardware page register
and the system. The memory manager does not rely on hardware and does
not. therefore, swap regions of memory or detect or prevent the illegal use of
memory not owned by a process. In a small embedded system there is no need
for such a mechanism. RInOS actually implements two memory managers;
one for each of the two regions of memory. They are both similar in operation,
and differ principally in the size of memory managed. Initialisation occurs
during system initialisation prior Lo any memory claims by the system.

Workshop on Distributed Laboratory Instrumentation Systems. 35
Abdus Salam ICTP, Tricste Novamber 26 — December 21, 2001.

Software for the 6808 Microprocessor board C. Verkerk and A.J. Wetherilt

Function Number | Category | Description

0OSCreateSem 1 System | Create new system semaphore

OSFrecSem 2 System | Release existing system
semaphore

OSDownSem 3 System | Perform a down on a given
system semaphore

OSUpSem 4 System | Perform an up on a given
system semaphore

OSResetESem 5 Systern | Reset an event systemn
semaphore

OSFreeUserSem 39 User Release existing user
semphore

OSDownUserSem 40 User Perform a down on a given
user semaphore

OSUpUserSem 41 Uscr Perform an up on a given
user semaphore

O5ResetUserESem 42 User Reset an event user
semaphore

OSDownHybrid 43 User Down on hybrid
semaphore-mutex combination

Table 2.9: Summary of semnaphore management system calls

2.6.1 'The common memory manager

The common memory manager is simpler than the paged memory manager
as it has only to deal with 8 kbytes of RAM as opposed to 128 kbytes.
[ts mechanism is straightforward: The first 256 bytes of common RAM is
reserved for a memory table represenfing the available 8 kbytes. Each byte
in the memory table therefore is mapped into 32 bytes of RAM. During
system initialisation, the entire table is filled with the value 0xff to indicate
that each 32 bytc block is available for use. Next, those arcas used by the
system are identified and marked with 0 (this being the ¢d of the system).
Subsequent, requests for common memory scan the table looking for blocks
large enough to accomodate the request. The algorithm is a simple scan
using the first such available block rather than the best fit or other search
strategies. Each block is marked with the id of owner to prevent its use
by another process later. Deallocation is performed similarly: A pointer to
the allocated memory together with the size of memory to free are passed
to the 0SCFreeMem system call. The pointer is converted into a memory

Workshop on Distributed Laboratory Instrumentation Svstems. 36
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Sofllware for the 6808 Microprocessor board C. Verkerk and ALl Wetherili

table address and the size of memory into a number of blocks. This number
of blocks starting with the address in the table are marked with Oxff to
indicate that the memory is free. If an error occurs the value ERR.CALLQOC
value is returned.

2.6.2 The paged memory manager

The page register is a latch at address Oxa040. Its function is to switch
the various pages of memory as required by the loader and RInOS. Each 32
kbyte page starts at address 0x2000 and has its first 256 bytes reserved for
use as a memory table. In this case one byte of the table is mapped into 128
bytes of paged RAM and thus the smallest amount of memory that can he
dispensed by the paged memory manager is 128 bytes. When a request for
paged memory is made, the size requested is again passed to the allocation
call 0SPAllocMem. Additionally, the page number (0-3) of the requested
memory is passed. If any page will do, then the value 0xff will indicate this.
The selected page is searched and if a sufficiently large block of memory is
found, it is allocated to the calling process, otherwise the ERR_PALLOC error
value is returned. Sufficient memory to hold the requested size is always
allocated if the scarch is successful. This means that the allocated memory
is often slightly larger than requested. The actual size allocated is returned
together with a pointer to the memory (which is null on an error) and the
page number. The allocated size should always be recorded to enable the
correct size to be freed later (If the memory will not be freed later then this
can be avoided).

2.6.3 Summary of memory management system calls

Function Value | Description
OSCAllocMem | 20 | Allocate blocks of common memory
OSCFreeMem 21 | Free blocks of common memory

OSPAllocMem | 22 | Allocate blocks of paged memory
OSPFreeMem 23 | Free blocks of paged memory

Table 2.10: Summary of memory management system calls.

Workslhop on Distributed Laboratory Instrumentalion Systems. 37
Abdus Salam ICTP, Triesic November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

2.7 Interprocess communication manager

Threads and processes need to communicate with each other in order to pass
data and other information. The life of a thread in this respect is much easier
than that of a process (in most systems) as threads, being part of the same
process, have the ability to share common data and code. Nonetheless, most
systems implement a number of mechanisms for sharing data and passing
data to other threads or processes. The simplest. of these is perhaps the usc of
shared memory. Data can be stored by one thread and read by another with
the minimum of overhead. Care must be exercised, however, to ensure that
both accesses are synchronised to prevent the occurrence of race conditions.
The easiest way to achieve this is to use a mutex lock to guard the shared
memory resource. Corrcetly applied a mutex can prevent totally any race
condititions developing in the system. Messages are another common method
of passing data. One thread dispatches a message to the mailbox of another
thread to indicate the occurrence of some event. When the receiver gets the
message, appropriate action can be taken. Messages are generally intended
for a single recipient. In some cases it is necessary to notify many or all
threads of the occurrence of some event. In this case a second type of message
or signal must be sent. Finally, pipes are frequently used for communication
of streams of data belween two threads. After creation a pipe can be opened
for reading by one thread and writing by another. The writer places data at
one end of the pipe and the reader removes it at the other end.

RInOS does not have system calls for shared memory as it is considered a
trivial matter to establish properly protected shared memory with the avail-
able primitives. However, RInOS does implement message passing, signals
and pipes for interprocess communication, and their usage is discussed in the
following sections.

2.7.1 Messages

A message is a structure with fields for holding data and other valucs and
is shown in Table 2.11, page 39. The data to be sent with the message arc
pointed to by the MSG field of the message structure. Each message block
is initialised during system initialisation by writing a ‘one’ in the MSGUSED
field to indicate that the message is free. All other fields are zeroed. When
a message 18 required, the message table is scanned for a free block and if
found, claimed by writing a zero in its MSGUSED field. If one is not found, the
ERR_BADMSG error is returned to the caller. Once a message block has been
claimed and the data pointer written into the MSG field it is linked into the

Workshop on Distributed Laboratory Instrumentation Systems. 38
Abdug Salam ICTP, Tricsic November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Field Offset | Size | Description
SENDER. 0 2 | Message sendet’s pid

NXTMSG 2 2 | Link to next message in list
MSG 4 2 | Pointer to message
MSEMA 6 2 | Message mutex

1

MSGUSED 8

Message is in usc

Table 2.11: Message structure offsets.

Field Offsct | Size | Description
SIGPTR 0 2 | Optional pointer fo signal parameters
SIGSEM 2 2 | Pointer to EVENT semaphore

Table 2.12: Signal structure offsets.

receiver’s mailbox. This is a linked list with its head in the MAILBOX field of
the receiver’s TCB and linked by the NXTMSG field of the message structure.

A thread may cxamine its message queue at any time by performing the
0SGetMessage system call. This call examines the message queue and returns
the address of the data field of the first message block it finds. If no message
is present the thread blocks and waits on the counting semaphore given in
the MSGSEMA field of its TCB. An UP will be performed on this semaphore
whenever a message 1s sent to the thread, abd the semaphore value indicates
the number of messages in the queue awaiting processing. A message sender
may also desire to wait until the message is read by the receiver. This can
be arranged using the 0SWaitMessage system call. This creates a system
semaphore and places a pointer to it in the message block at the MSEMA field.
This mutex is initialised to zero so that the sender will block when a DOWN
is performed on it. The receiver always checks this field and if a semaphore
is found, performs the necessary UP to wake the sender.

2.7.2 Numbered signals

Numbered signals are similar in many respects to messages except that they
are sent to all threads in the system. Their structure is given in Table 2.12,
page 39.

signals under RInOS are synchronous in that a signal handler is not
invoked to intercept and process them. Rather, a thread can wait for a
particular signal to arrive by calling the 0SWaitSignal system call specifying

Waorkshop on Distributed Taboratory lustrumentaiion Systems. 39
Abdug Salam 1CTP, Trieste Noverber 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

which signal as an argument. The thread will wait on the event semaphore
given in the SIGSEM field of the signal structure. When released, the recciver
can optionally obtain a pointer fo data from the signal 8IGPTR ficld. RInOS
does not define the meaning of any of the 32 available signals, but leaves
this up to the user. Of course all threads must agree on the meaning of each
signal.

As with all constructs using event semaphores, the decision as to whether
once used the semaphore is to be reset or always remain set has to be made.
Logically, once a signal has been sent, it should always be available to threads
that wish to check for that signal. In practical terms, within a small system
such as the ICTP09-RInOS combination it is easy to exhaust the number of
available signals and hence be unable to send further ones. For this rcason,
RInOS allows the sender to select whether a signal is to be persistent or
will be reset. In addition if a persistent signal is to be reused, it can be
reset using the OSResetSignal system call. When making the decision as
to whether persistent or non-persistent signals are to be used, it should be
remembered that all threads (both extant and to be created in the future)
can receive persistent signals but only those waiting for the signal when the
signal actnally arrives will be able to receive non persistent signal.

2.7.3 Pipes

A pipe is basically a queue or fifo for holding data with suitable protection
for the queue in the form of counting semaphores to indicate full and empty
states and a mutex lock to guard access to all the resources of the pipe. The
pipe siructure is given in Table 2.13, page 41.

A total of 16 blank pipe structures are created during system initialisation
with the PIPE_USED field set to 1. To be used by an application, a pipe must
first be created. This consists of the following steps:

(1) The list of pipes is scauned until a free one is found. When found, it
is marked as in use by clearing the PIPE_USED field. The error value
ERR_PCREATE is returned if no free pipe can be found.

(ii} At this stage the interrupts are masked off so the initialisation process
can be protected to interruption. It is critical during the creation of
a pipe, to prevent another thread from attempting to usc the pipe
before it is properly initialised. The mutex lock is created first and is
initialised to zero. The interrupts are then unmasked as the critical
section has been performed. Now, if a thread tries to claim the pipe by
performing a DOWN on the lock mutex, it will block until the mutex
is released by the pipe creation function.

Workshop on Distributed Laboratory Instrumentation Systems, 40
Abdus Salam ICTP, ‘Iricstc Novernber 26 — Decamber 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Weiherilt

Field Ofset | Size | Description

PIPE_USED 0 1 | Pipe in use flag = 1 if free
PIPE.WDTH 1 1 | Pipe width in bytes
PIPE.MEM 2 2 | Pointer to allocated memory
PIPE_FRNT 4 2 | Pointer to front of buffer
PIPE_REAR 6 2 | Pointer to rear of buffer
PIPE_FPQOSN 8 1 | Index of front
PIPE_RIPPOSN 9 1 | Index of rear
PIPE_FULLS 10 1 | Full semaphore
PIPE_EMTYS 11 1 | Empty semaphore
PIPE_WMTX 12 1 | Write semaphore lock
PIPE_RMTX 13 1 | Read scmaphore lock
PIPE.LMTX 14 1 | Pipe resource lock

Table 2.13: Pipe structure offsets.

(iii) Memory is now reserved in the Common RAM area to be accessible
by all threads. The amount of memory reserved is determined by the
width of the pipe requested by the calling thread. The length of the
quene is always 32 bytes long (one memory block) but the width can
be up to 255 bytes. An error will be generated if a pipe of zero width
is requested. The pipe width and the address of the allocated memory
are stored in the fields PIPE_WDTH and PIPE_MEM respectively.

(iv) Two counting semaphores are created to represent FULL and EMPTY
states of the pipe. The FULL semaphore is initialised to a value
of 32 and the EMPTY semaphore to zero. When data are placed
into the gueue the FULL semaphore is decremented and the EMPTY
semaphore incremented. The opposite occurs for removal of data from
the queue. Thus if a read is attempted on an empty quene, the EMPTY
semaphore with a value of zero will block. Conversely, a full qucuc
with a FULL semaphore value of zero will block if an attempt is made
to write to it. The semaphore numbers for the FULL and EMDPTY
semaphores are placed in the pipe fields PIPE_FULLS and PIPE_EMTYS
respectively.

(v) Two pointers are established to indicate the front and rear of the
queue. The positions of the head and tail of the queue are given by
the PIPE_FPOSN and PIPE_RPOSN fields respectively. These are both
initialised to 32 to indicate an empty queue.

(vi} Two further mutexes arc created to protect the reading and writing

Workshop on Distributed Laboratory Instrumentation Systems. 41
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Saftware for the 6809 Microprocessor board C. Verkerk and A.J. Wetherils

(vii)

ends of the pipe. Before a thread can read or write to the pipe, the
corresponding mutex should by claimed to prevent other threads from
gaining access.
Finally, the mutex lock has an UP performed on it. This signifies that
the initialisation of the pipe is complete and any threads waiting to use
it can proceed.

The pipe creation system call, 08CreatePipe, returns the pipe identifier
for use in all subsequent operations on the pipe.
Reading and writing proceed as follows:

(1)

(i)

(i)

The pipe is opened for reading or writing. This consists of passing the
pipe identifier to OSROpenPipe or 0SWOpenPipe for reading or writing
respectively. These functions first perform a DOWN on the pipe lock
mutex (as do all pipe operations) before attempting any other action.
The function will block if the lock is already in use and resume only
when the lock is made available again. A DOWN is performed on the
appropriate reading or writing semaphore and the lock mutex released.

Data are read from or written to the pipe. For writing after claiming the
lock mutex, a DOWN is madc on the FULL semaphore. When access
is gained to this semaphore, the data are written to the address pointed
to by the PIPE_FRNT pipe field. The PIPE_FPOSN value is decremented.
If this value is zero, the PTPE_FRNT valuc is set to the address in the
PIPE_MEM ficld otherwise it is incremented by the width of the queue.
Reading proceeds in a similar manner. After claiming the lock mutex,
a DOWN is made on the EMPTY semaphore. After gaining access,
data is read from the address contained in the PIPE_REAR field. The
PIPE RPCSN value is decremented and if zero (at the end of the buffer)
the PIPE REAR pointer is loaded with the address of the buffer start
contained in the PIPE_MEM field. Otherwise, the pointer is incremented
by the width of the pipe. After both reading and writing the mutex
lock is released.

When the reading or writing operations have finished, the pipe should
be closed by calling either 0SWClosePipe or 0SRClosePipe. These
fuctions perform UPs on either the PIPE_RMTX or the PIPE_WMTX and
allow other threads reading or writing access to the thread.

A pipe can be released if desired using the 0SReleasePipe call. All
semaphores arc returned to the pool and the buffer memory released back to
the system. Finallv, the PIPE_USED flag is incremented to indicate that the
structure is free.

Workshop on Distributed Laboratory [ostrumentation Systems. 42
Abdus Salam ICTP, Trisste Novermber 26 - December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Function Value | Category | Description

OSSendMessage) Message | Send a message to a thread
OSWaitMessage 7 Message | Send a message and wait for response
0SGetMessage 8 Message | Receive a message

OSSignal 9 Signal | Send a numbered signal (0-31)

(OS5 WaitSignal 10 Signal | Wait for a numbered signal
OSResetSignal 30 Signal | Reset a numbered signal

0OSCreatePipe 31 Pipe Create a pipe
OSReleasePipe 32 Pipe Release a pipe
OSWOpenPipe 33 Pipe Open a pipe for writing
OSWClosePipe 34 Pipe Close a pipe for writing
OSROpenPipe 35 Pipe Open a pipe for reading
OSRClosePipe 36 Pipe Closc a pipe for reading
OSWritel’ipe 37 Pipc Write to an open pipe
OSReadPipe 38 Pipe Read from an open pipe

Table 2.14: Summary of interprocess communication system calls.

2.7.4 Summary of interprocess communication system
calls

This summary is given in Table 2.14, page 43.

2.8 Device Drivers

Device drivers are commonly provided within an operating system, so that
the use of hardware can be simplified and at the satne time to provide a
common interface for input and output. The use of most hardware devices is
complicated and involves actions at the assembly language level that should
be hidden from most user applications at the expense of efficiency of code.
RInOS implements device drivers for this rcason and provides a set of com-
mon functions for all of the devices on the JCTP09 board. The device driver
interface is through the second 6809 software interrupt (SWI2) and calls to
a driver, at the assembly language level, proceed as:

swi2
.byte device_number

‘Workshop on Distributed Laberatory Instrumenlation Systerns. 43
Abdus Salam ICTP, Tricsie November 26 — December 21, 2001.

Software for the 6809 Microprocessor board G. Verkerk and A.J). Wetherilt

This is an identical format to the system call interface, the only difference
being that whereas the software interrupt used for system calls masks the
interrupts when issued, swi2 does not. Both software interrupts are vectored
through the interrupt vector table at the end of ROM and find their way
through the monitor into the relevant interrupt handler in the RInOS kernel.
On receipt of a device software interrupt, the handler performs similar actions
to the function call dispatcher:

(1) The device_number byte is read and the stacked return address incre-
mented to point at the byte following the device number. If the de-
vice_nummber byte is larger than the maximum allowed value, an error
is generated.

(ii) The device_number is used to calculate the entry for this device in
the system interrupt service table. This fable is copied from ROM to
RAM during initialisation and has default entries placed into each of its
flelds. The structure of an entry in the system interrupt service table is
shown in Table 2.13, page 44. The interrupt service table contains the
addresses of functions and data structures used by both the hardware
interrupts and the device drivers in their operation. The software in-
terrupt handler copies the address of the entry in the interrupt service
table and the contents of the HARDWARE_ADDR and DATA_ADDR fields into
pointer registers of the 6809 and makes a jump to the address given in
the DRIVER_ADDR field.

Field Offset | Size | Description

[SR_ADDR 0 2 | Interrupt service handler
DRIVER_ADDIRR 2 2 | Device driver address
HARDWARE_ADDR | 2 | Hardware base address
DATA_ADDR 6 2 | Device scratch data area
DD INSTALLED 8 2 | Is driver installed?

Table 2.15: Interrupt table offsets.

Since the interrupt service table is located in RAM, it can be changed
by the user so that user supplied device drivers can be implemented. RInOS
supplies the 0SInstallDriver system call for this purpose.

The first step of the device driver is usually to determine the driver request
number. This is obtained from the A register in the current stack frame. A
jump to the requested function is then made. The possible function requests
are shown in Table 2.16, page 45.

Workshop on Distributed Laboratory Instrumentation Systems. 44
Abdus Salam 1CTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board . Verkerk and A.J. Wetherilt

Request | Val | Description Applicable devices
bread 0 | Single read channell All except DAC
bwrite 1 | Single write channell All except ADC
sread 2 | Multiple rcad channell | All except DAC
swrite 3 | Multiple write channell | All except DAC,ADC
toctl 4 | IOCTL All

init 5 | Device initialisation All

ilock 6 | Lock input mutex All except. DAC
iunlock 7 | Unlock input mutex All except DAC
olock 8 | Lock output mutex All except ADC
ounlock | 9 | Unlock output mutex All except ADC
bread2 10 | Single read channel2 ADC,PIA

bwrite2 | 11 | Single write channel2 DAC,PIA

sread?2 12 | Multiple read channel2 | ADC,PIA

swrite2 | 13 | Multiple write channel2 | None

Table 2.16: Device driver function requests.

2.8.1 Interrupt handling within the device driver

All hardware interrupts are processed by the hardware interrupt handler in
the RInOS kernel. Each hardware device is polled to ascertain whether it
was the causc of the interruption and if so, a jump is made to the address
of the device interrupt handler contained in the ISR_ADDR field of the device
entry in the interrupt service table. This Handler routine is an integral part
of the driver for each device that can raise interrupts. The first function
of any handler must be to remove the cause of the interrupt by performing
whatever action is required for the interrupted device. This usually takes
the form of reading a status register somewhere on the device. I such an
action is not performed, when the handler returns or unmasks the interrupt,
the interrupt will again occur and will probably lead to system failure. The
interrupt handler should keep the interrupts masked only as long as strictly
necessary to prevent any potential interrupts from other sources going astray.
The interrupt handler can, and often does, perform actions that result in a
context switch when the interrupt is finished. A typical example of such an
event is the unblocking of a thread waiting for device input. The interrupt
handler should take care not to change any register in the stacked context,
of the interrupted thread as a hardware interrupt is asynchronous and the
registers contain potentially vital information. System calls involving the
DOWN operation on semaphores will not block inside the interrupt handler,

Workshop on Distributed Laboratory Instrurnentalion Systems. 45
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

but will cause a context switch when the handler finishes. In any case, a
blocked interrupt handler is something that should be avoided at all costs.

2.8.2 The serial driver (ACIA1 and ACIA2)

The serial comunications driver is an interrupt driven driver for input and
output. In order for it to function the appropriate interrupts must be jumpered
to the 6809 IRQ line on the ICTPP09 board. Since the 6850 ACIA device has
only a single input and output channel, the functions for a second channel
are ignored. DPrior to use all drivers must bc initialised. This is done hy
default during system initialisation for all drivers except ACIA1. This is not
initialised as ACIA1 is the default channel of communication for the mon-
itor which uses a simple polling mechanism for its driver. To initialise the
RInOS driver for ACIA1 would therefore cut all the facilitics offered by the
monitor for downloading and system debugging. Therefore, ACIAL has to
be initialised by the user if it is to be made use of. During initialisation, the
ACIA driver creates a number of fields in its scratch data area. This is an
arca of at least 25 bytes in which the device driver can store information it
needs. Each driver is assigned its own area. The initialisation function for
the ACIA creates four mutexes, two each for the input and output channels.
One of each set of mutexes is to protect a stream from other threads whilst a
thread is using it. A very garbled strcam would resulf if two or more threads
were able to transmit together, and by locking the mutex, a thread can pre-
vent this abuse. The second mutex acts to regulate the activity of the thread
owning the device stream. When a byte is transmitted, the ACIA device
takes a finite time before the transmission register is emptied. If the thread
were to send a second byte during this time the first would be overwritten.
A mutex is thereforc cmployed to block further writing until the holding reg-
ister 1s emptied. Conversely when a thread wishes to receive a byte and a
byte is not yet available, the input mutex blocks until relcased by the arrival
of a new byte. This interplay with thc mutexes occurs within the ACIA
interrupt handler. When a byte is transmitted, an interrupt is issued when
the byte leaves the holding register and the interrupt handler performs an
UP on the mutex. Similarly, when a byte is received by the ACIA, handling
the interrupt il raises allows an UI’* to he performed on the input mutex,
waking any thread waiting for input. Similar principles are employed in the
other device drivers.

The multiple read function takes a string of bytes from the input stream
and places them into a holding bufler supplied by the user. The buffer is
filled until the device driver encounters a Carriage return-Line feed pair in
the input stream. These bytes are discarded and a terminating null or zcro

Workshop on Distributed Labaratory Instrumentation Systems. 46
Abdus Salam ICTDP, Trieste November 26 — December 21, 2001,

Software for the 6309 Microprocessor board C. Verkerk and A.J. Welherili

byte is added. Multiple transmission is simmilar: Bytes from a user supplied
buffer are transmitted until a terminating null byte is encounterd. A CR/LF
pair 18 then added and transmission halted.

The IOCTL function allows the user to manipulate directly the registers
of the hardwarc device. The format is the same for each driver and is given
in table 2.17, pag 47. Details of the device to programme must be known if
the [OCTL function is to be used effectively.

Register | Description

high(X) | Specifies Read = 1 or Write = 0

low(X) | Offset of register to be controlled from hardware base
B Byte to write to register

A Byte read from register

Table 2.17: IOCTL usage.

2.8.3 The DAC driver

The DAC driver is simple in comparison to all other drivers. The value to
write is passed to the driver and writien directly to the appropriate data reg-
ister. There is NO interrupt handler as the DAC does not raise an interrupt.

2.8.4 The ADC driver

The ADC driver is slightly more complicated than the DAC driver as a
mode exists to couple the timer channcl 3 to the measurements. If the
timer is not used, ADC conversions will be made whenever requested by
a call to the device driver. As the conversion time for the ADC is about 30
microscconds, no blocking is done and the processor waits until a conversion
is ready. If the timer is selected, then the call blocks until woken by the timer
interrupt. Multiple reads require the address of a buffer to store the data,
and the number of conversions to be made must be passed to the driver. The
conversion rate is specified by the timer which is set by a call to the ADC
initialisation function.

2.8.5 The PIA driver
The PIA diver has four modes in which it can be initialised. These are:

(i} The standard mode

Workshop on Distributed Laboratory Instrumentation Systems. 47
Abdus Salam ICTP, Trieste Novernber 26 — December 21, 2001.

Software for the 6808 Microprocessor board C. Verkerk and A.J. Wetherilt

(ii) The handshaking mode
(iii) The LCD board mode
(iv) The Colombo board mode

The standard mode is the most general and simplest as it is set up without
an interrupt handler. A mask supplicd in the X register during initialisation
is used to determine which lines are sct up as inputs and which as outputs.
The high byte of X specifies the direction of the A port lines with 1 = output
and 0 = input, and the lower byte specifies the B port. Byte width data can
be read from and written to the PIA on channel 1 for the A port and channel
2 for the B port. Multiple strings arc not supported.

In many cases, high speed parallel data transmission is required between
two boards. In such circumstances, the technique of handshaking is generally
used to ensure that data arc transmitted safely at the highest possible speeds.
The MC6921 peripheral interface adaptor (PTA) provides this facility in the
following manner. During the transmision of a scquence, a byte of data is
written to port B of the PIA. This action causes the CB2 signal to strobe
low for a few microseconds, indicating to the recciver that the data put on
the bus is valid and should be taken. On receipt of this strobe signal, the
receiver reads the byte and when ready, strobes the CB1 line momentarily
low in acknowledgement. The PTA is configured to raise an interrupt when
the ackowledgement, is received and if another byte is available it will cause
the sequence to continue. The advantage of such handshaking during data
transmission is that both transmitter and rcceiver can proceed at a rate
suitable to both (i.e. that of the slower device), and cnsure that no data arc
lost. during the process. The PIA is configured to receive data in the A port
in a similar manner, using the CAl and CA2 lines for handshaking.

The final two modes are used to interface with specificic I/O devices that
can he attached to the ICTP09 parallel port connector. The LCD hoard
consists of a liquid crystal display together with various switches and push
buttons for simulating events. The LCD display consists of 16 alphanumeric
characters and can he accessed using function 1 of the device driver. Null
terminated strings of up to 16 characters can be written to the display using
function 3. The state of a dip switch can be read using function 0 and an 8
strip LED on the board can be written to using function 11. It is possible to
wait for a pushbutton on the board to be pressed. During initialisation of the
driver in LCD mode, an event, semaphore is created and its number returned
to the user. When the pushbutton is presscd, the handler for the resulting
interrupt makes an UP on the semaphore, thus waking any threads waiting
on the sernaphore. Since multiple presses of the button can be expected, this

Workshop on Distributed Laboratory Instrumentation Systems. 48
Abdus Salam ICTP, Triestc November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

scmaphore is resettable. No debouncing is handled at this time in software
as the delay nccessary {of the order of 5 ms) is unacceptable in an interrupt
handler in a real-time systen,

The Colombo board mode is similar to the LCD except that instead of
the liquid crystal display, the board has four 8 segment light emitting diodes.
It reads switch settings with function 0 and writes hexadecimal values to the
LEDs using function 1. An interrupt is raised by the pressing of onc of
several pushbuttons depending on the jumper settings on the board. Please
refer to the notes on College hardware for more information concerning both
the Colombo and LCD boards.

2.8.6 Installation of a new driver

Installation of a new driver for any of the existing hardware can be achicved
using the kernel function 0SInstallDriver. This function allows either a
new driver to be installed or the existing driver to be replaced by the default
driver, depending on the value in the 6809 B register. The user must supply
the following information to the function in the form of a structure in memory
(see Table 2.18, page 49):

Ficld Offset | Size | Desceription
isr. 0 2 | Address of interrupt service handler

driver. 2 2 New device driver address
hhase. 4 2 Address of hardware base
scratch. 6 2 Address of device scratch data area

Table 2.18: Device driver installation structure

Following the installation of the driver, appropriate initialisation must be
performed by the user. It is important to note that since the new driver will
be available to all users, the device driver and its scratch area must be in
COMIMON IMEMmOory.

2.9 The modified ASSIST(09 monitor

2.9.1 ASSIST09 commands

The ASSIST09 monitor is made available by Motorola to provide a full range
of debugging tools for the 6809. The original version has been adapted and
extended to fulfill the requirements of the paged memory and kernel. The

Workshop on Distributed Laboratory Instrumentation Systems. 49
Abdus Salam LCTP, [rieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

commands given in Table 2.19, page 51 arc supported by the extended ver-
sion. All commands are lower case and must end with a carriage return.

These commands allow the user to download code to the ICTP0O9 board
and to set various parameters. Full tracing and breakpoint facilities arc
provided so that code can be debugged in situ rather than by the use of a
simulator.

2.9.2 The code downloader

Three separate commands are provided for the downloading of code to the
hoard: the 1, 1 size ..., and the la size Each of these downloads the
code in slightly different ways to accommodate the various possible ways in
which the code can be prepared. The first of these commands, 1, is intended
to place code into the memory of the ICTP09 board that has been assembled
or compiled with a definite origin and is noi position independent. This last
condition means that the memory manager in the kernel cannot be used
to find a suitable free location for the code. This command also does not
call the kernel to register the presence of the code in memory. In order
to run code downloaded with this command, the user should issue the g
address command. If kernel calls are to be made from the user program,
the 0SThreadInstall svstem call must be issued prior to any other call.
The other two downloader commands are provided so that a thread down-
loaded to the ICTP09 board can automatically be registered with RIn(S and
have both memory reserved and a TCB created for it. The two cases of ab-
solute and position independent code are distinguished (the la size ... and
1 size ... commands respectively). In both cases the size of the code, input
as a command parameter, is used to reserve memory for the process. The
absolute loader assumes that the code will be sent to address 0x2200 which
is the first free address available for executable code under RInOS, whereas
the loader for position independent code requests a suitable address from
the kernel memory manager. A thread creation structure is created and the
address of the thread’s memory is recorded. At this stage, a stack is cre-
ated and the starting address and length are placed in the appropriate fields
of the structure. The stack size defaults to 0x100 bytes but can be set to
any desired size via the ss size command. As optional parameters, both
commands accept the priority of the new thread and a list of arguments sep-
arated by blanks. If present the priority is read and placed into the creation
structure. Similarly, the arguments are read individually and copied directly
to the process segment prefix, 0x100 bytes prior to the start of the process

Workshop on Distributed Laboratory Instrumentation Systems, a0
Abdus Salam LCTP, Trieste Novernber 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Command Description

| Load at absolute address without starting kernel
la size [, priovity] [arg! arg2 ...] | Load to address 0x2200 a module of

length size, priority priority and

with argument list argl, arg?, ...

| size [, priority] [arg? arg2 ...] | Load relocatable module of

length size, priority priority and

with argument list argl, argZ, . ..

g [p:]address (o from current address or specified address

x Start kernel execution.

¢ addr Call a subroutine at address addr. Control will
return to monitor following the rts instruction.

b Display breakpoint list

b |p:]addr Add address p:addr to breakpoint list

b -[p:]addr Remove address p:addr from breakpoint list
Trace a single instruction

I Display /modify registers

d addr size Display size bytes of memory starting at addr

m addr Modify memory location addr

dd Toggle the wait status on or off. This

is used as an aid to debugging the LCD device

driver, which requires a wait normally supplied

by the system timer. Use of the system timer is
not recommended during debugging.

ss length Set size of defanlt stack to length length.

smp p Set. memory page to p

rmp Get memory current memory page

pid Got pid of current task

sp p pid Set priority of task with pid pid to p

rp [pid] Get priority ol task piéd or current task
if no argument is given

tn Trace n instructions

ctrl x Cancel current instruction

Note
i segmented memory addresses reler to paged memory. If a page is not specified, it defaults to the
current page;

ii The ¢ and x commands only return contrel to the monitor if a breakpoint is encountered. Other-
wise, the monitor effectively is killed as a process;

iii Breakpoints are allowed only in RAM. It is an error to place a breakpoint on & swi instruction
and will result in erratic behaviour.

iv The monitor accepts values only in hexadecimal form.

Table 2.19: Commands supported by the ICTPmon Monitor.

code segment. The first byte of this segment contains the number of argu-
ments passed on the command line and the arguments themselves appear at
offset 4. The final argument is terminated with a null character. The address

Warkshop on Distributed Laboratory Instrumentation Systems. 51
Abdus Salam IC'TP, Trieste November 26 — Deccmber 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

of the argument string is placed in the creation structure for passing to the
(USThreadCreate system call of the kernel. The code is then downloaded into
memory on the board. Finally, the starting address of the code is obtained
from the Motorola S19 format code file, and a TCB is created for the process.

Code downloaded using either the 1 size ... orthela size ... com-
mands must always be started using the x command. This is because instead
of starting the individual threads, RInOS itself must be started, which in turn
will start the thread with the highest priority. Although RInOS can run up
to 32 different position independent threads, only a single absolute thread
can be loaded at a given time and an error will be generated (in the case of
the la size ... command) if an attempt is made to load more than this
number. To circumvent this restriction, the single thread should create all
other threads required by the uscr as child threads and gracefully kill itself
when no longer needed.

2.9.3 Debugging with the modified ASSIST09 monitor

A fully commented example of a debugging session, using the modified AS-
SIST09 monitor is given in Appendix H, page 122.

Workshop on Distributed Laboratory Instrumentation Systems. 52
Abdus Salam ICTP, Trieste November 26 ~ December 21, 2001,

Chapter 3

The Cross-compilation Chain

3.1 The Cross-compiler

A GNU C compiler or eross-compiler chain consists of a sequence of five
programs, executed in sequence: a supervisory program (gec or xgec for
a compiler or a cross-compiler respectively), the preprocessor (cpp), the
compiler proper (ccl), the assembler (as) and the linker/loader (1d). The
entire chain is usually invoked by entering on the command line either gcc
or xyce. For reasons that will become clear later we do NOT recommend
to invoke zgce directly, but to use a shell script ¢c09 instead. The steering
script cc09 is adapted to the local situation and is infinitely more convenient
to use than zgce.

The cross-compiler for the 6809 microprocessor is an adaptation of the
GNU C compiler, which has been obtained by writing or modifying four
configuration files: a machine description file *'m680%.md’, two include files
local.h” and 'xm-local.h’) and an auxillary file ‘'m6809.¢’. These files only
influence the building of cc?. zgce and epp remain unchanged when one of
these files is modified. The assembler and linker used in the cross-compilation
chain for the m6809 microprocessor are not adaptations of GNU software,
but are the so-called ‘ Baldwin assembler/linker’.

The 6809 has a limited number of registers, which causes difficulties for
a GNU compiler. The cross-compiler is therefore made to believe that it has
many more registers at its disposal for storing intermediate results. These
'pseudo registers’ are simply memory locations in the so-called Dircct Page
of the 6809.

Because of other restrictions imposed by the 6809 microprocessor, the
cross-compiler originally recognized only three data types: ’char’, ’int’ and

23

Software for the 6809 Microprocessor board . Verkerk and A.J. Wetherilt

pointers. These data types arc 8, 16 and 16 bits wide respectively. Structures
and unions of the various data types arc correctly recognized.

During the autumn of 1997 the cross-compiler was enhanced with floating
point facilities, so now also the data type 'float’ is recognized. Floating point
numbers are stored in memory in short IEEE format, occupying 32 bits.
Three floating point psendo accumulators are defined in the direct page in
a format more convenient for arithmetic operations than the format used to
store floating point numbers in memory. The other pseudo registers are also
32 bits wide, so that they can contain floating point numbers. The floating
point operations are emulated by a package of floating point routines. The
compiler inserts a call to the appropriate function for every floating point
operation. The same is actually also true for a number of arithmetic oper-
ations on integers and bytes, for which no equivalent machine instructions
exist. Ifloating point numbers can be part of a structure or union.

The earlier versions of ccf (the latest of those versions is 3.4.6) could
only generate absolute code which must be loaded into memory at a fixed
address. During spring and summer of 1998 a new version (at present version
4.0.7} of cel was prepared, which produces Position Independent Code
(PIC) that will execute correctly at any address in memory. Version 4.0.7
is installed on the system as the standard cross-compiler. The PIC' code
produced by the standard version makes it possible to make full use of the
facilities of the RInOS kernel. Loading of a user program and starting
its excecution is different for PIC and absolute code. At the present state of
development, absolute code is very rarcly nsed.

The cross-compiler accepts the usual — and useful — options of a GNU C
compiler. For convenience, the more useful options are resumed in Table 3.1
on page 35. The '-g’ option was made to work only very recently. When
specified, it adds information for symbolic debugging fo the assembly
code it produces. This is done in the [orm of assembler pseudo-instructions
(.stabs), followed by the necessary information about symbols, line numbers
and the program structure,

The cross-compiler will produce the usual error messages and warnings.

Arguments (o a function are passed as follows: the first argument. is passed
to the function in the ZDO0 pseudo register and the remaining arguments are
pushed onto the stack. The last argument is pushed first, then the last but
ong, ctc. This ensures that they will be pulled off the stack in the correct
order. The return value of the function is passed back to the caller in the
ZD0 pseudo register.

The output of the cross-compiler is a file of assembly language statements,
representing either I’1C or absolute code. For instance, the function call:

Workshop on Distributed Laboratory Instrumentation Syslems, b4
Abdus Salam [CTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and ALl Wetherilt

Option | Effect
-D name | Define 'name’ for the preprocessor
-U name | Undefine 'name’ for the preprocessor

-E Preprocessing only, produces output: file.i

-5 Compile only, produces assembly language output: file.s

-C Compile and assemble, do not link; output: file.lst and filc.o
-[dir Add directory ’dir’ to search path for include files

-L dir Add directory 'dir’ to search path for librarics

-1 file Add library ‘libfile.a’ to search for referenced functions

-g Produce information for symbolic debugging

-0 name | Give 'name’ to the output file

-Wa,opt | Pass the string 'opt’ as an option to the assembler
-WlLopt | Pass the string 'opt’ as an option to the linker

-Wall The compiler will issue a warning for every irregularity

Table 3.1: Useful options to pass to the C cross-compiler.

(void) write(int fd, char* buf, int len);

could produce the following piece of code, where the Y register contains a
stack frame pointer, useful for locating the local variables !

ldx 2,y ; pick up the last argument (len)
pshs x ; push it onto the stack

ldx 4,y ; pick up the second argument (buf)
pshs x ; and push it onte the stack

ldd 6,y ; pick up the first argument (£d)

std *ZD0 ; and store it in pseudo register ZDO
lbsr _write ; branch to the function _write

leas 4.8 ; after returning, clean up the stack

where the memory locations referenced by 2,37, ’4,¥’ and '6,y’ would contain
the number {of type 'int’) of bytes to write, the address of the buffer where
the bytes are stored and the ’file descriptor’ respectively.

Other outputs can be obtained for the purpose of debugging the compiler
itself; the interested reader can find details in the GNU C compiler manual.

As said before, the compiler chain consists of five programs. The super-
visory program zgce will need to access ¢pp, cel, as and Id and scarch for
include files and program libraries. There may be other programs with the

1The comments have been added by the authors

Workshop on Distributed Laboratory Instrurmentation Systems. hb
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

same name present in the system, and in fact there are. In order to direct
xgee’ to look for these entities in the correct place, a symbolic link must be
sct up from the file ‘/usr/lib/gcc-1ib/m6809-1local/2.7.2’ to the dirce-
tory from where the downward scarch should start. In our case this is the
directory: ‘/usr/local/micros/m6809°.

3.2 Assembler and Linker

The assembler and linker were not adapted from GNU ’as’ and 'Id’ and thus
do not accept the usual options. Options are therefore passed by using the
‘-Wa,’ and ‘-W1l,’ mechanism defined by the GNU C compilers. The op-
tions which can be passed to the assembler in this way (or specified directly if
the assembler is invcoked in its own right; a practice that we don't recommend,
see below) are shown in Table 3.2 on page 56.

Option | Effect

-d Produce a listing with numbers in decimal

-X Produce a listing with numbers in hexadecimal

-g Undefined symbols are made 'global’

-a All user defined symbols are made ’global’ {dangerous!)
-1 Create a listing file, filename extension: .lst

-0 Create an object file, extension: .o

-5 Create a symbol table in a file with ext.: .sym

Table 3.2: Options for the assembler as6809

Apart from the usual assembler directives, other less familiar ones are
accepted: .area area-name(arguments), .follow area-name and .globl
symbol-name. They convey information to the linker. The ’.area’ dircetive
defines the memory region the following lines belong to. The ".area’ directive
specifies for instance _CODE, or _DATA, or _BSS and others. The arguments
specify if the area should be relocated and if it must be concatenated with
other defined areas with the same name. The .follow directive is used
to define the order in which the different areas should appear in memory.
.globl specifies that a symbol is global, so that the linker may fill in the
correct, address for references to it. Very recently the assembler has been
modified, to handle correctly the .stabs directive, producing information
which can be further treated by the linker.

The other assembler directives may be different from the ones used by
other cross-assemblers for the 6809 microprocessor. A Perl script exists to

Workshop on Disiributed Laboratory lnsirumentation Systems, 56
Abdus Salam ICTF, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

translate from the more familiar formats to the directives of as6809. For an
obvious recason it is called jim2rinus and it can be found in the directory
‘/usr/local/micros/m6809/src/tools/perl’.

The assembler will produce output files according to the options specified
when it wag invoked. As the compiler does not specify an ‘origin’ for the
code, the program will be assembled assuming 0 (zero) as origin.

The linker, aglink will link ohject files prodiiced by the assembler with
a startup routine (‘crt0.0’) and will search the libraries specified on its
command line for routines referenced. This process is recursive, so that
a library routine may reference in turn other functions. In the course of
linking, memory references are relocated and the various .CODE areas pasted
together. The same is done for the pieces of the other arcas: ‘_DATA’ and
¢ _BSS’.

The linker also accepts a few options, the cssential ones arc cnumerated
in Table 3.3, page 57.

The linker will produce three output files, two with cxtensions ‘map’,
".819” and a third without any extension. The first gives a complete memory
map for all global symbols in each defined arca. The addresscs shown in the
‘map’ file are determined by the origin passed as an option to the linker:
0x0000 for Position Independent Code. The second file is there for historical
reasons and is at present not used. It is a file in Motorola 519 format, ready
for being downloaded to the board in the ancient situation when a ferminal
emulator was needed to communicate with the board.

The main product of the linker is a file in the standard ELF format,
which is divided into sections, containing the executable code — in the Mo-
torola S19 format, required by ICTPMon for downloading and as a memory
image, needed by the simulator which is part of 4509 — and the information
for symbolic debugging.

After linking and loading the memory layout of a program is as shown in
Table 3.4, assuming that RInOS decided to allocate space for it starting at
address 0x4100.

Option Effect

-i/-s Intel hex (file.ihx) or Motorola (file.s19) format

-m Generate a map file: {ile.map

-x/-d Define the radix (hex or dec) for number representation
-h arca=expr. | Specifies base address for the specilic area

fileN Files to be linked

Table 3.3: Options for the linker aslink

‘Workshop on Distributed Laboratory Instrurmentasion Systema. 57
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

[t is strongly recommended to compile multi-threaded programs into
a single ELF file for downloading. If the various threads are compiled and
linked separately, the size of each single thread may become exeessive and
each thread would contain a copy of the startup routine, which will lead to
difficulties. With multi-threaded programs in mind, a large space is reserved
for stacks. The same amount of space is reserved for the allocation of Direct
Pages. Each thread should get its own direct page, to protect the pseudo and
floating point registers used by the thread from being corrupted by another
thread.

0x0000 reserved by kernel
0x2100 | possibly occupied by
another program

0x4100 Arguments
0x4200 crt0
0x4300 Main program

followed by
subroutines defined
in the source file

library functions
_DATA area

_BSS area
0x..00 direct pages
0x..00
+0x0400
upto stacks
0x..00
+0x0800

Table 3.4: Example memory layout of a compiled program

The assembler and linker are {ully documented in the file asmink.doc, with
supplementary information in asminksup.doc. These files can be found in the
directory /usr/local/micros/m6809/doc. The recent additions to handle the
symbolic debugging information are NOT described in there.

3.3 The startup routine crt0.o

The linker follows a strict order for collating the various modules into the
code of the final program: the startup routine crt0.o comes first, followed

‘Workshop on Distributed Laboratary Instrumentation Systems. a8
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for Lthe 6R09 Microprocessor board C. Verkerk and A.J. Wetherilt

by the modules specified on the linker’s command line {(usually the main
program and its subroutines). Finally the libraries are searched to fill
in the missing references.

Execution of a compiled program will always start at the first instruction
of the startup routine crt0 which performs a number of important functions,
providing an interface between a program written in the C language and the
RIn0S kernel.

A C program requires that

(i) argce and argv be made accessible to the main program,

(ii) a function ._.main exists, which is called by the main program at the
beginning of its excecution,

(1) uninitialized global variables be set to zero before their use,

(iv) a main program ending with a ‘return’ statement should not go astray.

Untill recently, different versions of the crt0.o were nceded to handle
different situations: PIC or absolute code. Thanks to the recent developments
this is no longer required and the overall situation has become much cleaner
and easier to use.

crt0 can do a few more things for the convenience of the programmer,
such as initializing a few things and setting up a global structure which can
be used repeatedly [or creating new threads.

The following run-down of the code in ert0.s outlines the operations that
are performed.

(i) It defines where in the Direct Page the pscudo registers and floating
point accumulators are located.

(ii) Tt reserves space at execution address — 0x0100 for arge and argv for
use by the main program. When the task is created, the kernel puts
here the number of arguments and strings representing them. crt0
extracts from here the array of pointers (argv) and puts the pointers
in the same reserved space, where the main program can pick them up.

(iii) It reserves space in the DATA area for a structure needed by the function
thread create(). For the convenience of the user this structurc is
filled with initial values, ready to be used for generating child threads
(sce a later chapter for more details). The structure is described in
Chapter 2, Table 2.3, page 23.

(iv}) It reserves space for a few global variables in the BSS area: tid,
pia_mode and pshbttn.

Workshop on Distributed Laboratory Instrumentation Systems. 09
Abdus Salam 1CTP, Tricste Novernber 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

(v)

It also reserves space for a number of Direct Pages, one for cach thread,
upto a number of MAXTHREADS, defined in syscalls.h and —for an
assembly program— in syscalls.inc. Space is also reserved for the
same number of stacks. This reserved space is useful for multithreaded
programs. If a user fecls that they occupy too much space, he may
increase the value of MAXTHREADS, which is normally set to 4.

During execution it sets the value for the Direct PPage register and the
U register for the main thread.

The PIA is opened for writing to the LCD display.

In casc the program is running under db09 with the simulator of the
m6809 instructions, a call is made to initialize the kernel, followed by
a call to 0SThreadInstall.

After this it performs a subroutine call to the main program which in
turn, after somce preliminaries, calls a routine ___main, which is part
again of crt¢t. ___main will clear the space occupied by the .BSS area
(uninitialised global variables), Direct Pages and the unuscd part of
the stack area.

The main program may cnd with a ‘return from subroutine’ (rts) in-
struction, or it may perform an exit{arg) call. In both cases it returns
info ¢rt0, which will exccute an 0SThreadExit call, after having called
printerr to print an error message, if needed. The 08ThreadExit sys-
tem call will delete the current process’ TCB. If no other task is ready
to run, then the null task will start.

3.4 Program Libraries

As said previously, the linker will search a mumber of libraries for functions
to link in with the main program and its subroutines, as they are defined in
the source file. At the present state of development it was preferred to have
many small libraries rather than a few larger ones. So, four or five libraries
arc specified on the command line for the linker. Different types of libraries
can be distinguished.

(1)

A library containing functions used on a regular basis by a user, such as
those performing operations on strings, the family of printf() functions,
atoi(), etc. These are collected in libe.a, which can be considered as a
very modest imitation of the siandard C library. The contents of libc.a
are shown in Table 3.5, page 61 in the form of function prototypes.

Workshop ou Distribuied Laboratory Lostrumentation Systems. 60
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board

C. Verkerk and ALJ. Wetherilt

Function prototype

Purpose

int atoh(char* p)
int atoi{char* p)
void bzero(char* bl, int length)

int doprnt(....)

char* fgets(char* buf, int size,
int dev)

mt fprintf(int fd, char* fmt,

int fprotf(int fd, char* fmt,

int, fputs{char* p, int f}

int getc(int device)

int getchar(void)

char* gets(char* buf)

void* memcpy(char* dest,
char* gre, int size)

int printf({char* fmt, ...)

int pratf{char* fmt, ...)

int prt10(int val, char* buf)

int prt16(int val, char* buf)

int prt32(int val, char* buf)

int putc(int ¢, int i)

int putchar(char c¢)

int puts{char® p}

void sleep(int n)

int sprintf(char* buf, char® fmt,
int argl)

int sprotf{char® buf, char* mt,
)

int spute(int ¢, char* buf)

int stremp(char® s, char® t)

char* strepy(char* s, char* t)

size_t strlen{char* str)

Convert. ASCII hex string to integer
Convert ASCII decimal into integer
Zero 'length’ bytes of memory from

address bl
For internal use by printf(), fprintf()
Get string of 'size’

bytes from ’dev’ into 'buf’
Print arguments . .. to file "fd’

using format "fmt’
As fprintf() above, but cannot

handle floating point
Put string at address 'p’ to file with id 'f’
Get a character (cast to int) from 'device’
Get character (cast to int) from stdin
(et a string from stdin and put in "buf’
Copy ’'size’ bytes

from ’src’ to 'dest’
Print arguments . ..to stdout,

using format 'fmt’
As printf() above, but cannot

handle floating point,
Internal use by printf(), fprintf()
Internal nse by printf(}, fprintf()
Internal use by printf(), fprintf()
print a character to file 'Y’
print a character on stdout
Output string at address 'p’ to stdout’
Sleep for 'n’ scconds. See also msslecp()
Print arguments . .. to 'buf’,

using format fmt’
As sprint[{} above, but cannot

handle floating point
Put char '¢’ into "buf’
Compare string at 's’ with string at ’t’
Copy string at ’t’ to s’
Return length of string at ’str’

Table 3.5: Functions available in libe.a

Workshop on Distributed Laboratory Instrumentation Systems. 61
Abdus Salam 1ICTP, Tricsie Novemboer 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J, Wetherilt

(i)

(iii)

The reader should note that printf() is accompanied by a function
protf (). The difference is that the former can print floating point
numbers, whereas the latter is limited to printing integers, single char-
acters and strings. The same holds for the functions fprntf() and
sprotf (). In those cases where a program does not use floating point
numbers, use of these functions will reduce the overall program size by
close to 2000 (0x800) bytes.

Secondly there are the functions that throw a bridge between a C pro-
gram and RInOS. These functions are collected in libcreal.a. The pro-
totypes of the functions in libereal.a are listed in Table 3.6, page 63
and 64. They all arc "wrappers®, providing the necessary interface
between a function call in a C program and the sequence of machine
instructions needed to gain access to the 0S. ... calls in RInOS. With
very few exceptions, these functions return the number -1 in case an
error occurred. Otherwise they return zero, or a positive value, which
can be cither an integer, or a pointer. Some do not return at all, for
cbvious rcasons.

The names of the "wrapper® functions are closely related to the corre-
sponding system calls. For instance, RInOS’ 0SCreateThread becomes
create_thread(....) for the C programmer, 0SResetUserESem be-
comes reset_user_esem{...), ctc. The only exception is 0SSleep
which has become mssleep(int n). The reason is that sleep(int
n) exists in the normal C library (1ibc.a) where the argument n in-
dicates, following the standard, the time to sleep in scconds. sleep
calls in turn mssleep, after having multiplied its argument by hundred.
mssleep(int n) takes as argument the time in number of clock ticks
of 10 milliseconds each. mssleep{n) can be called directly by a user.

If, during a call to one of these functions an error occurs, the error
number is stored in the thread-specific variable errno. In plain English,
this means that each thread has its own errno variable, located in the
direct page allocated to the thread. The function printerr() will
output this error number on the LCD display on the display board.
This mechanism for reporting errors allows the user to write C code as
foliows:

if((tid=thread_create(int prio,struct* &tpt))<0)printerr(};

Another library, 1libIO.a acts as the bridge between a C program and
the input/output drivers in RInOS.

Workshop on Distributed Laboratory Instrumentation Systemns. 62
Abdus Salam ICTP, Tricste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board

C, Verkerk and A.J. Wetherilt

Function Prototype Corresponding #
From libcreal.a : System Call

char* at_exit(void* exit function, int* argument) | OSAtExit 25
char* calloc.mem(int tid, int size) OSCAllocMem 20
void cancel_point(void) _, OSCancelPoint 28
int cfree_mem/(int size, void* addr) OSCFreeMem 21
int create_pipe(int width) (8CreatePipe 31
int create_sem({int sem_type, int init_value) (SCreateSem 1
int down_hybrid(struct* sem, struct® mutex) OSDownHybrid 43
int down_sem(int sem_num) OSDownSemn 3
int down_user_sem(struct™ user_sem) OSDownUserSem | 40
int free_sem/(int scm num) OSFreeSem 2
int free_user_sem(struct™ user_scm) OSFreeUserSem 39
int get_last_error(void) OSGetLastError 29
char* get_message(int pid) OSReceive 8
char* get_task_info(void) OSGetTaskInfo 26
int install driver(int device_num, int new, OSInstallDriver 24

void* params)

int mssleep{int nticks} O8Sleep 18
char* palloc_mem(int tid, int* size, int* page) OSPAllocMem 22
int pfree_mem(int size, void* addr, int page) OSPFreeMem 23
void printerr{void) None

int read_pipe(int pipe_id, void* data) OSReadPipe 38
int rd.close_pipe(int pipe_id) OSRClosePipe 36
int rd_open_pipe(int pipe-id) OSROpenPipe 35
int release_pipe(int pipe.id) OSReleasePipe 32
int reset_esem(int sem.num) OSResetESem 5
int reset_signal(int signal num) OSResctSignal 30
int reset_user_esem(struct® user_sem) OSResetUserESem | 42
int send_message(int pid, char® message) 0OSSendMessage 6
int set_priority(int priority, int pid) (OSSetPriority 17
int set_thread_attr(int attrs) OSSetThreadAttr | 27
int signal{int sig num, int type, void* params) 0O8SSignal 9
void start(void) OSStart 11
int thread _create(int priority, void* create_block) | OSThreadCreate | 13
int thread_exit(void) 0O5ThreadExit 14

Table 3.6: Interface Functions for RInOS System Calls

Workshop on Distributed Laboratory Instrumentation Systems.
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

63

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Function Prototype Corresponding #
From libereal.a : System Call

int thread_install{void* create_block) OSThreadInstall | 12
int thread_join(int pid, int time_out) OSThreadJoin 15
int thread kill(int pid) OSThreadKill 16
int up_sem(int sem.num) OSUpSem 4
int up_user_sem(struct™ user_sem) | OSUpUserSem | 41
int wait_message(int pid, char* message) | OSWaitMessage | 7
void* wait_signal(int sig_num) OSWaitSignal 10
int wake(int pid) OSWake 19
int wr_close_pipe(int pipe.id) OSWClosePipe | 34
int wr_open _pipe(int pipe_id} OSWOpenPipe | 33
int write_pipe(int pipe_id, char* data) OSWritePipe 37
int yield(void) OSYield 0

Table 3.6: Interface Functions for RInOS System Calls — Continucd

Function Purpose]

int ICTP _10_close(void) Closes (resets) all devices

int ICTP_IO joctl{int dev, int mode, | reads/writes directly to hard-
int value) ware registers of physical dev

int ICTP 10 _open(int dev, int mode) | opens logical 'dev’ in 'mode’
int ICTP 10 _read(int dev, char®* buf, | reads n bytes from logical
int n) "dev’ into buf, returns
number of chars read
int ICTP_IO _write(int dev, char® buf, | writes n bytes from buf
int n} to logical 'dev’; returns
number of chars written

Table 3.7: Functions available in 1iblO.a

The functions defined in libIO.a are the equivalent of the low level in-
put/output functions of standard C: open(), close(), read(), write() and
ioctl(). To avoid conlusion, they are here renamed to ICTP_I0_open(),
ctc. Their prototypes are listed in Table 3.7, page 64. The reader
should note that these funetions do not use the number of the physical
device but a logical device number, which distinguishes between input
and output devices and devices which can do both. They are defined
in the header file ICTP_I0.h. Their denominations are shown in Ta-
ble 3.8, page 65. ICTP.I0 ioctl is an exception to this rule: it uses the

Workshop on Distribuled Laboratory Instrumentation Systems. 64
Abdus Salam 1CTP, Trieste November 26 — December 21, 2001.

Softwarc for the 68049 Microprocessor board C. Verkerk and AL, Wetherilt

physical device number. For example, you open the PTA for writing to
the LED array, and then you write to the LED array with:

ICTP_I0 _open(ICTP_IO_PIA, PIA_ICTP_DSPL_LED_MODE);
ICTP_I0_write{ICTP_TO0_LED, buf, size);

Denomination Description #
‘Standard’ devices:

ICTP 10 _ACTA1 ACTA1, equivalent to "stdin” 0
ICTPP 10_ACTA2 ACTA2 2
ICTP 10 PPIA PIA, "stdout” if LCD panel used | 1
Devices for input only:

ICTP_IOSWITCHES | Switches on the IO board 3
ICTP_IO_ADC Channel 1 of ADC on 6809 board | 4
ICTP_IO_ADC1 ADC Channel 1 4
ICTP_1IO_ADC2 ADC Channel 2 5
Devices for output only

[CTP_IO_LCD LCD panel on 10O board 6
ICTP_IO_LED LED array on 10 hoard 7
ICTP_IODAC Channel 1 of DAC on 6809 board { 8
ICTPIO_DAC1 DAC Channcl 1 8
ICTP 10 _DAC2 DAC Channel 2 9
Miscellancous devices:

ICTP IO _TIMER3 Channel 3 of timer 10

Table 3.8: Denominations of logical devices

The PIA is the only device which can be openced in different modes; (o
open devices other than the PIA, mode should be zero.

These low level functions are used by the higher level IO functions in
libc.a. At startup, the IPIA is opened for writing to the LCD display,
which can display 16 characters. A program that does not use any of
the other devices on the board can thercfore use printf(), putchar(), etc.
without any preliminary. In a sense, the LCD display is the 'stdout’
device.

Note that when a program is run under db09 with the simulator,; the
usnal output devices are not available. The functions in 11bI0. a detect
this situation and accept input from the keyboard and redirect output
intended for the LCD display to the screen.

Workshop on Distributed Laboratory [nstrumentation Systems. 65
Abdus Salam LOTP, Tricsie November 26 — December 21, 2001,

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

Function

Purpose

Trigonometric functions:
float sinf{float z);

float cosf{float x};

float tanf(float z);

float atanf(float 2},
foat asinf(float z);
float acosf{float z);
float deg2rad(float z};
float rad2deg{float x);

float logf{float z);

float log10f{float z);

float expf{float x);

float ten2xf({float x};

float powf(fioat x, float y);

float sgrif{float z);

float polynom(float =, float* coeff);

Miscellaneous functions:
float getpi(void);

float getef{void);

int roundf(float x);
float ceilf(float z);

float floorf{float z);

float fabsf(ficat z);
float finodf(float x, float y);

float frexpf{float =, int* exp_ptr);

float 1dexpf{fioat z, int e);
float modff{float =, float* int_ptr);

float fractint(float z, float® int_pir);

Ezponentials, Logarithms end Powers:

Returns the sine of the angle in degrees.
Returns the cosine of the angle 2 in degrees.
Returns the tangent of the angle » in degrees.
Returns the arctangent in degrees of z.

Not vet implemented.

Not yet iinplemented.

With z in degrees, returns value in radians.
With z in radians, returns value in degrees.

Returns the natural logarithm of 2.

Returns the logarithm base 10 of =

Returns e to the power x.

Returns 10 to the power 2.

Returns x to the power .

Returns the square root of z.

Polyniom 18 basis of many functions above.
coeff is pointer to first element of array

of it. pt. coellicients, ending with byte 0xfT.

Returns the value of the constant «.

Returns the value of the constant e.

Returns the integer nearcst to the value of o
NOTE: casting float to integer will truncate
Returns (as a float) the smallest integer not
less than =

Returns (as a float) the largest integer not
greater than z.

Returns the absolute value of z

Computes the remainder of z/y. Returns

x — 1 *y, where n is the quotient x/y,
rounded toward zero to the nearest integer.
{Free exponent) Returns float, stores
exponent. z = frexpf{value, &e); will cause
value = x * 2° to hold, z in interval {1/2,1).
{load the exponent) Returns the value & % 2¢,
Breaks z into integer and fraction {(as floats}.
Thus z = modf f(value, &i); returns float f
and stores float 4, such that value =i+ f.
This function is identical to modfl(} above.

Table 3.9: Mathematical functions callable from a C program.

(iv) The user callable mathematical functions which use floating point num-

bers are collected in libmath(9.a.

page 66.

They are shown in Table 3.9,

‘Workshop on Distributed Laboratory Instrumentation Systems. 66
Abdus Salam ICTP, Tricsic Novemnber 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

The ANSI standard requires that these mathematical functions use the
type double for their arguments and return value. The GNU cross-
compiler gives the possibility of using type float for both arguments
and return valucs, provided that the function names have the letter f
appended to their usual name. In order to avoid compiler warnings,
this convention has been followed for the functions in 1ibmath09.a.

Some of the functions above require that the argument lics within a
certain domain. For instance, the argument for the logarithm must
be positive. When such a (unction is called with an argument outside
its domain, the error EDOM 1s returned and the program exits. For
certain arguments the result of some of the functions above may fall
outside the range of floating point numbers that can be represented
in the 32 bit IEEE format. If this happens, the error ERANGE is
detected and either the largest representable value or zero is returned
by the function, depending on the error detected: overflow or underflow
respectively. In all cases, a more explicit indication of the error can be
found by inspcction of the location errno in the direct page, at offset
0x2e. For details of the crror numbers and their meaning, the reader is
invited to consult the file /usr/local/micros/m6809/include/math(9.h.

(v) Then there are libraries required by the compiler itself to complete its
code gencration. These are libgee.a and a large part of libmath09.a.
The first contains those arithmetic operations on integers which are
not implemented in the hardwarc of the 6809 microprocessor. The sec-
ond contains the functions to emulate Hoating point operations, which
were not shown in Table 3.9, page 66. These libraries should later be
combined into one. The calling convention and the way the result is
returned are not standard and therefore these functions arc of limited
interest to the user. For completeness the contents of these two librarics
are shown in Table 3.10, page 68 and Table 3.11, page 68. The reader
should be aware that the functions shown in those tables were mainly
written for use by the compiler and for internal use by the floating point
package itself. Most of them have an unconventional calling sequence,
making them unusable from a C program.

(vi) Recently a new library was added, implementing the major part of
the POSIX standard concerning multi-threaded programs (the so-
called pthreads). This library, libpthread.a is entirely written in C,
and makes use of the functions in libcreal.a. The prototypes of the
functions it contains are shown in Table 3.12, page 69

2For more details sce Annex IIT of Chapter 1, Volume I of the Lecture Notes.

Workshop on Disiribuicd Laboratory lnstrumeniation Systems, 67
Abdus Salam ICTDP, Trieste Novernber 26 — December 21, 2001.

Software for Lhe 6809 Microprocessor board

C. Verkerk and AL, Wetherill

Function | Purpose

divhi3 Divide two signed 16 bit integers

divxbd Divide contents of X register by those of
D register (unsigned)

imul Do a 16-bit by 16-bit multiply {unsigned})

modhi3 Modulo of two signed 16-bit integers

mulhi3 Signed multiply of two 16-bit integers

udivhi3 Unsigned divide of two 16-bit integers

umodhid | Unsigned modulo of two 16-bit integers

Table 3.10: Functions available in libgec.a

Function Prototype

Purpose

asc2fit{char* num, float* loc}

flt2asc(float* src, char* dest,)

flt2int()

fltadd(float* dest, float* srcl,
float® src2)

fitemp(float* srcl, float* src2)

fitdiv(foat* dest, float* srcl,
float* src2)

fitmul(float* dest, foai* srel,
float* src2)

fitround()

fltsub({foat* dest, Hoat* srcl,
float® sre2)

frdiv()

getfpacl()

getfpac2()

intfrac()

pshfpac2()

pulfpac2()

putfpacl()

putfpac2()

retnmbr()

sint2flt{float* dest, int* src)

uflt2int(}
umult ()

Converts ASCII representation of
floating number into IEEE format
in address "loc’

Convert, "float’ at ‘sre’ to a
string at ‘dest’

Internal use only

Add float *srel’ to 'sre2’ and
store result in 'dest’

Compare two floating point numbers

Divide float’ at 'srel’ by 'float’
in 'src2’, put result in “dest’

Multiply ‘float’ at 'srcl’ by 'float’
in sre2’, put result in 'dest’

Internal use only

Subtract 'Hoat’ at 'src2’ from
float’ in ’src2’, put result in 'dest’

Emulates the FDIV instruction of

68HC11. Internal use only

Internal, unconventional use only

Internal, unconventional nse only

Internal, unconventional use only

Internal, unconventional use only

Internal, unconventional nse only

Internal, unconventional use only

Internal, unconventional use only

Internal, unconventional use only

Convert signed ‘int’ in ’src into
foat’ in *dest’

Internal use only

Internal use only

Table 3.11: Functions in libmath09.a for internal use only.

Waorkshop on Distributed Laboraiory Iustrumentation Systems.
Abdus Salam IOTP, Trieste November 26 — December 21, 2001.

68

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Function Prototype

struct tch* get_thread{int handle)

int pthread.attr._destroy(pthread_attr_t *attr)

int pthread.attr_getdetachstate(pthread_attr_t *atir, int* detachstate)

int pthread_attr_getsechedparam{ pthread_attr_t *attr, struct sched_param *param)
int pthread_attr_getstackaddr(pthread_attr_t *attr, void **stackaddr)

int pthread_attr_getstacksize(pthread_attr_t ¥attr, size_t *stacksize)

int pthread_attr_init(pthread attr_t *attr)

int pthread_attr_setdetachstate(pthread attr_t *attr, int detachstate)

int pthread_attr_setschedparam(pthread_attr_t *atir, const struct sched_param *param)
int pthread_attr_setstackaddr{ pthread.attr.t *attr, void *stackaddr}

int pthread_attr_setstacksize{ pthread_attr_t *attr, gize t stacksize)

int pthread_cond_broadcast{pthrcad_cond_t *cond}

int pthread_cond_destroy{pthread cond_t *cond)

int pthread_cond_init(pthread_cond 1 *cond, const pthread_condatir_t *attr)

int pthread_cond signal(pthread cond.t *cond)

int pthread_cond_timedwait(pthrcad_cond t *cond, pthread mutex t *mutex, const struct timespec
int pthread_cond_wait{pthread_cond_t *cond, pthread mutex t *mutex)

int pthread_condattr.destroy{ pthread_condatir_t *attr)

int pthread_condattr_init{ pthread.condattr_t *attr)

int pthread_create(pthread.t *thread, const pthread_attr_t *attr, void *(*startfunc)(void *), void *a
int pthread_detach(pthread_t thread)

int pthread._cqual{pthread_t threadl,pthread_t thread?2)

void pthread_exit(int *termval)

int pthread_join{pthread-t thread,int **termval)

inf, pthread_join{pthreadt *thread,int **termval)

int pthread kill(pthread_t thread, int sig}

int pthread _mutex_destroy(pthread_mutex_t *mutex)

int pthread_mutex_init{pthread mutex t *mutex, const pthread.mutexattr_t *attr)
int pthread_mutex_lock{pthread_mutex_t *mutex)

int pthread_mutex_trylock{pthread_mutex t ¥mutex)

int pthread_mutex_unlock({pthread_mutex_t *mutex)

int pthread_once(pthread_once_t *once block, void (*init_routine)(void))

pthread_t pthread_self(void)

int pthread_setcancelstate{int state, int *oldstate}

int pthread_setcanceltype(int type, int *oldtype)

int pthread_testcancel{void)

int sched_get_priority.max(int policy)

int sched _get_priority_min(int policy)

Table 3.12: Function prototypes for libpthread.a

3.5 The overall steering script cc09

In order to instruct xgcc to pass the necessary options to the assembler and
linker, the user should type a command line, which with some bad luck may
look as follows:

Workshop on Distributed Laboratory Instrumentation Systems. 69
Abdus Salam ICTE, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board . Verkerk and AL Wetherilt

xgce -v -Wall -I/usr/local/micros/m6809/include -o prog.si9
-Wa,-glxs -L/usr/local/micros/m6809/1ib -lgcc -lc¢ -lcreal
-1I0real -lmath09 -Wl,-msx -W1l,-b_CODE=0x2100
/usr/local/home/userl/src/prog.c

Things have become casier with the use of cc09. Instead of calling di-
rectly xgec, the user can make use of a shell script that will set up the long
command line for him: ¢c09. In principle the user can type a line as short
as:

cc09 prog.c

The user may add options, if he wishes, and he is in fact encouraged to
do so. The more useful are: -v (for verbose) and -Wall, which will induce
the compiler to complain about nearly everything in your program. Asking
for verbose output to the screen gives an insight into what happens behind
the scenes and may help in finding out that something went wrong. Under
particular circumstances other options may be necded, such as -E, ~8, -¢
to stop the compilation process at certain stages, or -1, -L, -1 to specify
directories or files to use when searching for inciude files or libraries.
All options the user adds are passed by ¢¢09 to the program that needs thein,
including the arguments of the options. Note that there is no need to specify
the ~g option; cc09 automatically adds it for you.

As said, ¢c09 can instruct the compiler to stop at a certain point in
the chain, but it can also make the compiler start at a given peint. Where
actually to start 1s stimply derived [rom the extension of the submitted file.
A C program will be compiled, assembled and linked, a program written
in assembly language (extension .s) will be assembled and linked, whereas
an object module (extension .o) will be linked only. In all cascs where the
process is brought to a succesful end, the entire downloadable and cxecutable
program will be found in an ELF file prog, where prog is the name the user
gave to the program.

Options which are not recognised by cc09 are passed on unchanged. This
makes it possible, for instance to obtain output useful for dcbugging the
compiler itself.

In conclusion, when compiling for downloading to the hoard, the recom-
mended command is:

cc09 -v -Wall -oprog prog.c

The reader should note that multiple files can also be compiled, assem-
bled and linked by c¢c09 with a single command line. In that case it is

‘Workshop on Distributed Laboratory Instrumentation Systems. 70
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6309 Microprocessor board C. Verkork and AL, Wetherilt

recommended to specify the name of the final output file (with the -o op-
tion). Otherwise the final file will carry the name of the last file in the list.
Similarly, if it is desired to have an assembly listing of all compiled and/or
assembled files, the option ——save-temps should be used, otherwise only a
listing of the last file in the list will be produced. In the list of filenames,
files with extensions .c¢, .8 and .o may be mixed in any order. Thus the
following will work:

cc09 -v --save-temps -omyprog main.c subl.o sub2.s

3.6 Downloading the program

The prog file can be downloaded onto the hardware, via a serial line, driven
on the Linux side from one of the serial ports, and on the side of the m6809
board by ACIAl. The debugger db09 will take care of the downloading
and running of the program. In addifion you may also use it to debug your
program! The procedure to follow is described in the next chapter.

In principle it is also possible to usc a terminal emulator running on the
PC, to download the program. The terminal emulator will then communicate
with ICTPmon on the board, so low-level debugging will be possible, but
the procedure becomes much more complicated, and worse, the syvmbolic
debugging facilities will be lost. The preferred terminal emulator is seyon.

3.7 Debuggers

Two low-level debuggers have been available since a number of years, both
assembly language level debuggers. Very recently, the one running under
Linux (db09) has been upgraded to do symbolic debugging as well. db09 can
run in two modes: using its built-in simulator of the m6809 instructions, or
by maintaining a dialog with ICTPmon on the real hardware board, using
ICTPmon’s low-level debugging facilitics. More on this and the procedure
to follow to nse db09 in the next chapter.
The two low-level debugging facilities available are:

(i) The first is part of ICTPmon and runs directly on the hardware. It allows
to inspect and modify memory and register contents and to set break-
points, besides loading programs. The set of debugging commands
implemented for debugging are given in Table 2.19, page 51.

The uscr should be aware that breakpoints should be set after the pro-
gram has been loaded with the 1 command, but before the x command

Workshop on Distributed Laboratory Instrumentation Systems. !
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and ALl Wetherile

(i)

is issued. Once a breakpoint is reached, it should be removed, hefore
giving a g command. The user is also strongly advised, before single
stepping through the program instructions, to remove the jumper PTM
(see Figure 2.3, page 15) from the board, so that clock interrupts arc
disabled. Othcrwise he will single step through the interrupt routines
and never be able to get out of them.

The second is the cross-debugger db09, which runs under Linux and
has no need for the actual hardware, It accepts a few command line
options®, (see Tablc 3.13, page 72), but generally it is cnough to invoke
it, with:

db09 -s prog

The commands supported by db0@ are very similar to those of TCTPmon
and are shown in Table 3.14, page 74.

db09 has several features that are not available in the debugger of
ICTPmon. It allows to input data or commands from a file, to write
a log of the session to a file, or to write to another file the trace of
a program. DBesides breakpoints, — which by the way can be skipped
a specified number of times before they become active — watchpoints
can be set and removed. A watchpoint defines a memory location that

Option Description

-8 Makes db(9 run with the simulator. Default
is to run on the real hardware.

-1 <loadaddr> | Sets loadaddress. Defauit: 0

-r <runaddr> | Sets runaeddress. Avoid this option.

-e escchar Scts “escape” character. Default: Esc

-v Turn on “verbose” mode; a message will be

printed for every simulated clock interrupt.

Table 3.13: Options defined for the Cross-debugger db09.

will be “watched”, e.g. the user will be warned when the contents of
that memory location are changed, and — if required — execution will
stop.

Another feature of db09 is its ability of simulating clock interrupts. A
clock interrupt occurs every 10000 clock ticks, but only if interrupts are

%the most useful is -s.

Workshop on Distribuied Laboratory Instrumentation Systems. 72
Abdus Salam ICTP, ‘lrieste November 26 — December 21, 2001.

Software for ihe 6809 Microprocessor board C. Verkerk and A.l. Wetherill,

cnabled, exactly as on the hardware. The clock interrupts can be easily
turned off and on during a debuggiug session, so single stepping is pos-
sible. The interrupt facility makes it possible to debug multithreaded,
or similar programs which rely on clock interrupts, e.g. those programs
containing calls to sleep or mssleep. Also RInOS commands are ex-
ccuted as normal, since the kernel is part of the binary image loaded
into the PC’s memory by db03. The C source code can thus be used
unchanged by db0% -s. As an extra bonus, db09 allows the user to
debug the code of the kernel itself.

When db09 i running, it can be interrupted at any time by hitting the
escape key. This can be changed with the option -e hexnumber. This
facility is extremely useful when a program has gone out of control.
Hitting escape brings you back into the command loop of db09, so the
registers can be displayed, memory inspected, etc. This will in general
give precious clues as to what happened.

Both debuggers have their strengths and weaknesses. The ICTPmon de-
bugger has the advantage that it runs on the real hardware. System calls
and IO calls are executed truely. However, the necessity to remove a jumper
to cut off clock interrnpts makes single stepping awkward and makes system
calls to mssleep and wake unusable.

The db09 cross-dehugger has a number of advantages as described above,
but debugging of IO routines is practically excluded, unless the user is ready
for some breath-taking acrobatics.

The db09 cross-debugger, when used with the option -s has an addi-
tional advantage: it contains a number of commands, specific for the RIn0S
kernel!. These commands are of limited intcrest to an applications pro-
grammer, but they are very useful for developpers. They are not included in
Table 3.14, page 74. The disassembler may be of more general interest and
the command to invoke it is included in the Table 3.14.

Both dcbuggers work at the level of machine instructions, or, in other
terms, at the level of assembly language coding. Breakpoints must be set
at absolute locations in memory. In order to set a breakpoint at a spot in,
say, onc of the library functions which arc part of the program, the user
must consult the map file prog.map and the listing of the function where the
breakpoint should be placed. To obtain the absolute address, some calcula~
tions — in general an addition and sometimes also a subtraction - must be
performed in hexadecimal.

1These were added during the 1998 College by a team of participants as their project
work.

‘Workshop on Distribuied Laboratory lnstrumentation Systems. 73
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board

. Verkerk and ALl Wetherils

Command Description

7 or help Prints this message

X or exit Exits from the debugger

r Show the register contents

r reg=value

d [low] [high]

g [location]

m <addr> <byte> [bytec2]...

m <low> <high> <byte>
5
c [n]

bora
b <addr> [skip]

k <addr>
k all
i [filename]

1 [filename|

t [filename]

-t

e

~e

w <addr>

w kill

w <addr> kill
u [addr] [n]
RETURN

Sct one register to the HEX value

reg can ber a, b, d, x, v, u, 8, ¢ {(CCR),
p (dircet page), | (program counter)
Dump memery between low and high,
or low and low+186, if you don’t
specify high, or from the last dump

if you write only d

Go to location; if not specified,

g0 to current program counter value.
Sct memory at addr whith byte,
(addr+1)=byte2, etc.

Set memoty range to byte

gingle step

Continue [lor n instructions] or forever
or until next breakpoint

Show all breakpoints

Set a breakpoint at addr, skip it

[skip] times belore it stops.

Kills a breakpoint at addr

Kills all breakpoints

Open filename for input, read from file
until EQF. Without params, close file.
Open filename for output, send output
and keyboard {or file) input to the file.
Without paramcters, close the file
Turn on trace mode and optionally
get trace file

Turn trace off, close trace file if open
Enable clock interrupts

Disable clock interrupts

Set a watchpoint at <addr>.

Clear ALL watchpoints

Clear watchpoint at <addr>
Disassemble from addr, n instructions
Repeat the last command

Table 3.14: Commands supported by the Cross-debugger db09.

3.8 Auxilliary programs

A few auxilliary programs are available in the /usr/lecal/micros/m6809
directory or its subdirectories, which may be of use in certain circumstances.
These programs are:

Workshop on Distribuied Laboratory Instrumentation Systems. 74
Abdus Salam ICTP, Trieste November 26 — Descember 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

(i) download09. This program can he run from a terminal emulator to
download a pregram into the hardware board, as its name implies.
Normally there should be no need to use this program. Its job is also
entirely done by db09.

(i) postlog. When followed by the name of a log file from a debugging
session, this little shell script is useful to get rid of a series of unprintable
characters, which however cause the log file fo have an ugly appearance
on the screen.

(iii) s19tobin. This utility translates an .s19 file into a binary file, which
is an image of how the program would appear in memory on the m6809
board. The user types the following command line:

s819tobin prog.si9

and obtains a new file prog which contains the binary image.

(iv) 819t0db09. This program is similar to s19tobin, but it uses as input
two files: prog.s19 and a template file, containing a binary image of
the RInOS kernel. The command line is:

519todb09 prog.si® rinos [offset]

rinos is the template, located in the subdirectory src/RIn0S. The
optional argument offset {which must be a decimal number) is added
to the load addresses in the .s19 file. This shifts the position of the
program in memory and allows to check that the program is indeed
in Position Independent Code. The result ol the above command is a
binary file of 64 Kbytes, containing the program prog and the RIn0S
kernel.

(v) check pic(). This is a program to check if an object module or an
entire library is written in Position Independent Code. The name of
the object module or library must be given as argument. The program

will point at all locations wherce the code is ‘suspect’, i.e. possibly not
PIC.

{vi) jim2rinus. This program (in reality a Perl script), translates assem-
bler directives from the format required by one type of assembler {jim’s)
into those needed for another (rinus’). It can be found in one of the
subdirectories and can be easily adapted for other pairs of assemblers.
The command line is:

jim2rinus <prog.asm >prog.s

Workshop on Distributed Laboratory Instrumentation Systems. 75
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Sofiware [or the 6809 Microprocessor board C. Verkerk and AL). Wetherils

(vii) elvn2nin. This Perl script translates from 68HC11 assembly source
code into m6G80Y assembly source. It is specialized for a certain set
of assembler directives, but can be adapted for another set. It can
be found again in one of the subdirectories, either as elvn2nin or as
11t09. The command line is:

elvn2nin <progll.asm >prog09.s

Workshop on Distributed Laboratory Instrumentation Systemns. 76
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Chapter 4

Putting it all into practice

This chapter will outline the procedure to follow from writing a C program,
through the compilation and downloading, upto debugging it. Besides the
steps to follow, it will contain a few recommendations and tips.

4.1 Things to watch when writing a C pro-

gram

Writing a program in C which is intended to run on the ICTP09 board is
essentially the same as writing a program for any other machine. You may
work in your home directory or any other directory for which you have write
and execute permissions. There are only a few points to observe. In what
follows, we assume that you make use of ¢c09 and do not type separate
commands to the compiler, assembler and linker.

(i)

Put comments in your program!! It will be useful for you, and it will
make an instructor’s life much easier. In a preamble, explain what the
program is supposed to do.

It is a good idea to use a Makefile. You then have to think only once
about options, dependencics, cte. After you have gone through this bit
of extra work, vou then can sit back and just type: make.

You should include the following two files in your source: syscalls.h
and ICTP.I0.h. The second is not required if the LCD display is the
only device on the ICTP09 board that vou use.

You should declarc function prototypes of the functions you define,
otherwise xgcc will complain. Prototypes of the library funnctions have
been defined in syscalls.h. To avoid further complaints by xgecc, cast
the rceturn value of a function to (void) if you are not using it.

77

Software fur the 6309 Microprocessor board . Verkerk and A.J. Wetherilt

(v)
(vi)

(vii}

(xi)

A few variables should be declared extern, if you intend to use themn:
struct creation_block tcbmain and int tid.

The only data types you can usc are: char, int, float and pointers.
You may combine then into arrays, structures, unions and what
have you.

You may use floating point numbers and operations, including calcu-
lating sines, tangents, exponentials, etc. (See Table 3.9, page 66). You
may print floating point numbers using the %f format. The curious may
dump a floating point number in hexadecimal using the %1 format.

For a program that does not use floating point, you may wish to call
protf () instead of printf(). The program size will be reduced by
approximately 2000 (0x800) bytcs.

The main program may have arguments. Pointers to the arguments
are set up by the startup routine crt0. The values of the arguments
must be specified when downloading the program. They are all stored
as ASCIT strings, including the numerical ones. The conversion must
be done in the main program, using atoi() or atoh().

A total of 8 Kbytes of space is reserved for direct pages and stacks,
18 each of 256 bytes. Each child thread needs its own direct page.
All space not occupied by direct pages is available for stacks for the
child threads. For instance, a program with six threads {1 parent and
5 children) needs 1.5 Kbyte for direct pages, leaving an average stack
space of 1 Kbyte for cach of the six threads. Enough to use lots and lots
of local variables. If, on the contrary, you are going to create many child
threads, then you should remember that a limit may be imposed on the
amount of local variables cach thread may use. In case the rescrved
space would not suffice, you can ask for more with palloc_mem() and
do some extra work setting up tcbmain.

For cach child thread you create, you must specify four things: its pri-
ority, 1ts entry point, its direct page number and its stack address. The
easiest way to do this is to write a short subroutine (call it make_child
or whatever:

#include <syscalls.h>
extern struct creation_block tcbmain;
int make_child(int prior, void* child_entry)
{
int child;
tcbmain.tprio = prior;

Workshop on Distribuled Laboraiory Instrumentation Systems. T8
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

(xii)

(xiii)

{xiv)

tcbmain. sseg = tcbmain.sseg - 0x0100;
tebmain. tdp = tcbmain.tdp + 1;
tcbmain.cstart = child_entry;

if ((child=thread_create(prior, &tcbmain)} < Q) printerr();

return{child);

Note that tcbmain has been defined as a global structure and that all
other values needed to create a new thread are already filled out in
this global structure. It is important to note that the constant (in the
example equal to 0x0100) you subtract from tcbmain.sseg determines
the size of the stack of the thread that called make_child. If you
used lots of local variables in that parcnt thread, it may be wise to
reserve a larger stack.

xgce will put initialized global variables in the DATA area and unini-
tialized global variables in the BSS area (For an example of a .map file,
see Appendix H). The use of global variables is recomended for two
reasons. Firstly, memory for them is allocated independently of space
reserved for stacks and direct pages. Secondly, for multi-threaded pro-
grams they constitute the most convenient way of sharing data. Don’t
{orget to use a mutex if necessary!

Watch xgec’s output to the screen. All errors and warnings, including
those detected by the assembler or linker will be displayed.

Don’t panic if yon get a message which says something like this: Inter-
nal compiler error; ccl got fatal signal 13. In most cases it means that
you did something so strange that even ccl did not expect it. As this
message is the last thing cc1 will tell you, you are on your own to find
where vou stumbled. Call an instructor if necessary. There is a small
chance that you found a real bug in the compiler!

When vou bave compiled your program as a result of having issued the
following command line:

¢c09 -v -Wall myprog.c

or a similar one, e.g. without the -v and -Wall options, check that you have
obtained an ELI file myprog.

Workshop on Distributed Laboratory [nstrumentation Systems. 79
Abdus Salam ICTP, Trieste November 26 — Decamber 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

4.2 New features added in 1999

With the aim of implementing a symbolic debugging capability, a number
of modifications were made to the cross-development software for the ICTP
m6809 board. These changes resulted in a more unified approach to the
software for the m680% which in turn led to considerable simplification for
the user of the cross-software.

Untill recently dcbugging a program written [or the m6809 board was
rather difficult and required consultation of assembly listings and load maps,
needing a basic knowledge of the m6809 instruction set, and also the ability
to do mental calculations in hexadccimal. Both skills are not necessarily
available to a C programmer. Symbolic debugging uses line numbers of the
C program and the names of symbols (variables, constants, function names
etc.) in the interface to the user. The programmer can thus track bugs in
his code with greater easc, with the need to consult only the listing of the C
prograrm.

The modifications made to the software chain arc in summary:

(i) The compiler was made to accept the ’-g’ option. It now adds to its
output file of assembly code the necessary information to make sym-
bolic debugging possible: the ".stabs’ pseudo-iustructions which convey
information about the type of symbols, line numbers of the C source
code and the block structure of the program.

(ii) The assembler was upgraded to accept these pseudo-instructions and
to associate a memory address with each of these ’.stabg’.

(i) The linker then further modifies the addresses and adds the addresses
and names of the library functions which have been linked in. It pro-
duces an unique output file, in standard ELF format. This ELF file
contains the executable program in two forms: one to be used by the
debugger db09 when running the m6809 simulator and one which db0%
can download via a scrial connection to the hardware board. In addi-
tion the ELF file contains all information needed for symbolic debug-
ging of the user-compiled program(s). At present this information is
not available for library functions; these can only be debugged using
the assembly level facilities.

(iv) The debugger db09 was extended considerably to accept the ELF file
and to make use of the informnation contained in it. It can run in two
modes.

e The first uses the built-in simulator of the 6809 instruction set,
whereas the second

Workshop on Distribuied Laboratory Instrumentation Systemas. 80
Abdus Salam ICTP, Trieste November 28 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

o downloads the executable program into the hardware board and
then maintains a dialog with the ICTPmon monitor resident on the
board.

{v) The startup routine crt0.s and the compiler stecring script ‘cc09’ were
modified to refleet the newly created situation.

(vi) The libraries 1ibIOdb09.a and libIOreal.a were combined into a single
one: 1liblO.a. Also two other library functions ('mssleep()’ and ‘putc()’)
were changed. The 10 functions and the other two now detect auto-
matically if the program is running on the simulator or on the recal
hardware and they act accordingly.

The result for the user is that he now has to deal with two programs
only to compile, execute and — if necessary — debug his program: ¢c09 and
db09. As db09 maintains a dialog with the hardware board, there is no
need anymore fo run a terminal emulator program such as seyon. The user
compiles his program once only, and not twice as before {once for the real
mG809 and once for its simulator). There is only one single set of libraries
and onc single output file!. A listing of the user-compiled programs is also
produced, with numbered lines, to serve as an aid in debugging.

To compile a program the user now proceeds as follows:

cc(9 —-oname name.c

where name is the name vou gave to the file containing your C program. If
you want more information from cc09 and the compiler, type:

cc09 -v -Wall -oname name.c

If necessary, you can specify all regular options of ’gec’; the -g option is added
automatically and does not need to be specified.

If you have a long program, extending over more than one file, you can
compile and link everything in a single go, as the following example shows:

cc09 -v -ottllee ttllel.c ttliel2.c
The compiler will produce an ELF output file, its name is the name youn

gave in the -0’ option, without any extension. If you don’t give a name with
the -0 option, the output file will be called a.out.

!For convenience of the developpers, the asscmbly listing and the map file are still
available.

Workshop on Distribuled Laboratory Instrumentation Systems. 21
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 5809 Microprocessor board C. Verkerk and A.J. Wetherilt

4.3 Downloading and running your program

When the hardwarce hoard has been connected to a serial port of your PC
(this serial port should be known to the system as /dev/modem) and powered
up, the only thing vou have to do to download your program is to type, inside
a normal XTerm window:

db09 name [arguments]

where name is again the name of your program {and of its ELF file) and
arguments are optional. Then follow the instructions. Downloading is a
rather slow busincss, so you should have some patience. When the message
Task #02 loaded at address 2200 appears, the downloading was succes-
fully completed and the db09>> prompt will show. Now type:

X

and your program will run {hopefully without errors.....). If it does not run
at the first attempt, you should read the next section. Otherwise you may
ask an instructor to congratulate you.

4.4 Debugging your program

To debug your program you have the choice between two possibilities: Use
the recal hardware board or the simulator built-in with db09. The first choice
is the default and you should type, exactly as above:

db09 name [arguments]

For instance: db09 pt4 Hello 007

When the prompt db09>> shows on the screen, db09 accepts input from
the keyvboard. A help facility is available to sce the commands you may
give to db09. The help screen is reproduced in Table 4.1, page 83. The
commands will be described in more detail below. Before doing anything
else, you should set a breakpoint somewhere in your program, otherwise you
will not gain control over its execution once you have launched the program
with the X command, as above. An example debugging session is shown in
Appendix N,

If you choose to debug your program using the simulator (which is much
faster, as it climinates the slow transmission over the scrial line), you should
type:

db09 -s name [arguments]

‘Workshop on Distributed Laboratory lnstrumentation Systems. 82
Abdus Salam ICTP, Tricste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

Command Meaning

db09 HELP for commands for Symbolic Debugging

To see the assembly-level and expert commands, type: 7
X Start the RInOS kernel

A [bedfsux*]

B
B <name> [skip}

B <number> [skip]
C [number]

D <name> [cfis]
F [file]

H
I [filename]
K [name, ling]|

L [filename]
N [number]

R [command]

S

exit

When stopped at entry point of function, show
the arguments in the format indicated, one char
por arg., preceeded by format for return value
b=byte, c=char, d=decimal f=float, s=string,
u=unsigned, v=void, x=hex, * indicates a pointer
Show all breakpoints

Set breakpoint at symbol 'name’ (usually a
function entry); stop after ’skip’ passages

Set breakpoint at line number; stop after 'skip’
passages

Continue execution until next breakpoint or

for ‘'number’ of lines

Display value of variable 'name’ in given format
Sct current file to *file’ or, if no argument,

print the name of current file.

Shows this help screen

Open input file; without filename: close

Kill breakpoint at ‘name’ or line’. Without
argument, kills all breakpoints

Open log file; without name: close the file
Continue execution until NEXT line or

for 'number’ of lines

Repeat ‘command’ just before prompt appears
Without argument: clear what previous R set up
Show contents of stack

Exit from db09

To see the assembly-level commands, type: 7

Table 4.1: Help Screen for the symbolic cross-debugger db09.

(-s option for 'simulator’) From then onward, you can proceed exactly as
for the other case. The dbD9 commands are the same in both cascs, their
behaviour inside db09 changes however.

Workshop on Distributed Laboratory Instrumentation Systems. &3
Abdus Salam ICTP, Triesie November 26 — Decernbar 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Weiherilt,

Note that the asscmbly-level debugging commands are also available in
both cases?, but the user should be aware that there are considerable differ-
ences between low-level db09 and ICTPmon on the board.

4.5 Symbolic Debugging Commands

The symbolic debugging commands use a single capital letter for the
command itself, in contrast to the low-level commands, which use a single
lower case letter.

To sce the help screen, you should type the letter H followed by a carriage
return. (Typing a ? will show the low-level command set). In the help screen
the commands are given in alphabetical order. In what follows, we will follow
a more didactical approach.

4.5.1 Creating a ’log’ of your debugging session

It is highly recommended to keep a log of your debugging session, to avoid
that something cscapes your attention when it is scrolled off the screen. Also
the instructors will be grateful if you can show them precisely what you did.
To create a log file, simply type:

L mylog

or something similar when the db09>> prompt appears on vour screen. The
L command without a filename will close a previously opened log file.

4.5.2 Setting and using breakpoints

You can specify either a line number or a symbol name to indicate where
you wish to place a breakpoint. You may have compiled a set of [iles and
as the same line humber may appear in more than one file, the name of the
source file where the breakpoint should be placed must also be specified, in
case you want to use a line number.

B ttliel.c:39

will place a breakpoint al the beginning of line 39 in file ti1lel.c. To see
the numbered lines, consult the file itI1el.cnl ("en)’ for C with Numbered
Lines). In case you want to place many breakpoints in the same file, you can
save some typing by first specifying the file name:

20n the hardware, db09 makes available to the user ONLY the single lower-case
letter commands

Workshop on Distributed Laboratory Instrumentation Systemsg. 84
Abdug Salam ICTP, Tricste November 26 — December 21, 2001,

Software for the 6809 Microprocessor hoard C. Verkerk and A.J. Wetherilt

F ttlleZ.c
You cab now limit yourself to typing:

B 39
B 45
B 46
etc.

You may change to another file by using the F command again. Without an
argument, the F command will show the name of the "current file*™

If you choosc to sct a breakpoint at the entry point of a function (cither
a library function, or one you have compiled yourself), type:

B printf

or any other name of a function. When you reach a breakpoint at the entry of
a function, db09 will tell you so and show you the value(s) of the argument(s)
to the function, if any. In case you compiled the function yourself, db09 knows
the number of arguments and the type of each and it will show correct results
(except at present for floating point numbers). For a library function this
information is not {yct) available and db09 can only guess. If you happen
to know more about the function’s arguments, you may now issuc the A
command, indicating the type of each argument, preceeded by the type of
the function’s return value. For instance, vou may happen to know that in a
particular situation the function ’'printf’ receives 3 arguments: a string (the
format), an integer and another string, which are the things to be printed. Tt
will return an integer. To see the values of the arguments in this casc, type:

A dsds

(the first d is for the return value, sds for the arguments in their natural
order).

After you have reached a breakpoint you can inspect also values of vari-
ables and do a few other things. See further down. To leave a breakpoint
and resume execution, three commands arc available:

G

will restart cxecntion at [ull speed and run upto the end of the program, or
untill another breakpoint is hit.

C5

Workshop on Distributed Laboratory Instrumentaiion Systems. 85
Abdus Salam ICTP, Trieste November 26 — Decernber 21, 2001,

Software [or the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

(or any other decimal number) will continue for 5 (in this case) lines of C
code and then stop. It will stop before if it gets to a closing brace: }. In
other words, it will not allow you to get out of the preseni context block,
without noticing.

The third command you may use to leave a breakpoint is

N

This command will advance onc line in your C program and will follow the
flow of control. So the N (for Next line} command may also go backward in
your program, and follow loops faithfully. More on the ¥ command later.

You should use the G command to proceed from a breakpoint at a function
entry. db09 will put automatically a breakpoint at the return point of the
function and it will show the return value when it hits this return point. For
a library function the type of the return value will again be a guess, unless
you used the & command hefore.

You may also use the B command without an argument; it will show you
a list of the breakpoints set in your program.

4.5.3 Removing a breakpoint

It is easy to remove a breakpoint. Simply use the K command with the same
argument that was used before to set it. Examples;

K ttliel.c:39
K printf

K without any argument will kill all breakpoints.

4.5.4 Executing your program line by line

The N command allows vou to step through your program line by line. You
should first set a breakpoint at the first line (or further down in your program,
if you are confident about the first part) and then launch the execution with
the X command. Once you stopped at a breakpoint you may continue line
by line by typing

N

Note that N 1 is equivalent to N. N 7 (or any other positive nnmber) is also
allowed. It will step through a number of lines without stopping but you
should be aware that the results shown may be slightly different, in particular
for multi-threaded programs. The N command traces the execution machine

Workshop on Distributed Laboralory Instrumentation Systems, 86
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for 1he 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

instruction after machine instruction, which is extremely slow (of the order
of 5 instructions per second) due to the need to transmit many characters
between the board and the PC. It stops when the new memory address
corresponds to the beginning of a line in the C program. To speed up the
execution of the N command, it will not trace instruction by instruction inside
a function called from the program being debugged, or a system call. It will
warn yvou about this happening.

When executing the N command the LCD display on the board cannot
function in its usual way. It is therefore foreseen to redirect the output
intended for the LCD display to the PC’s screen, but going through all calls
to library functions as usual. What the LCD display shows stands out on
the screen and truly represents what it would show at this particular point
in the execution of the program.

4.5.5 Investigating the values of variables

Usc the D (for Display) command followed by the name of the variable to see
its value, for instance:

D mutex

Global variables do not cause problems, in general. Local variables may. For
instance, you might he tempted to ask for the valuc of a local variable outside
its scope. You will then be warned that it cannot be accessed. Be careful:
different local variables may have the same name in different places of your
program. You should know what vou are asking for! _

db09 knows about the type of all variables you defined, but it does not
know the type of variables defined in library functions. The D command
may then be followed optionnally by a format: a single character from the
following set: ¢ (for character), £ (for floating point®), i (for integer) or s
(for string).

At present you can only ask for the values of a simple variable. Mcmbers
of structures and unions are not yet correctly handled, but will be at a later
stage.

4.5.6 Show the contents of the stack

The S command caters for this. The present implementation of this command
is very rudimentary (except when you run db09 with the -s option). It
simply shows the value of the stack pointer itself and 32 bytes, starting from

*does not yet work correctly

Workshop oo Distribuied Laboratory lnstrumentation Systems. 87
Abdus Salam ICTP, Trieste Novernber 26 — Decernber 21, 2001.

Software for the 6809 Microprocessor board . Verkerk and A.J. Wetherilt

a memory address below the stack pointer and which is a multiple of 16.
You have therefore some interpretation to do. Note that the values of local
variables are easier discovered with the D command.

4.5.7 Using an input file containing debugging com-
mands

If vou find yourself in a situation where you will have to go through sev-
eral debugging scssions and to start each one you need to issuc a longish
list of commands (such as selting a series of breakpoints), you may find it
convenicent to write a short input file. An example of such an input file is:

L logl

B ttllel.c:39
X

K ttllel.c:39
I

To use it, you type
I in-file

where in-file is the name of your input file. This should in general be the very
first command you execute, but you may use an input file anywhere during
the debugging session. The last command in the example (I) will cloge the
input file and control over db0% will return to the keyboard.

4.5.8 Repeating a command

db09 remembers the last command it executed. To repeat the previous
command it is enough to type a carriage return character {the ENTER key).

There is also a mechanism that allows to repeat a stored command after
the execution of any command typed on the keyboard. An example is:

R D ret

The effcet of this is that after any keyboard command, vou will execute the
command D ret, where ret is a variable (local or global}. In this way you can
inspect continuously a variable without extra cffort. The stored command
will remain in force until another R command is issued. A R command without
arguments will simply crase the stored command.

Ouly a small subset of the symbolic commands can be specified with the
R command: D, 8 and N.

Workshop on Distribuied Laboratory Instrumentation Systems, 88
Abdus Salam 1COTP, ‘Irieste Novermber 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

4.5.9 Starting and exiting

The X command starts the kernel running and launches the user program,
To exit from db09, type exit when the db09>> shows.

CAVEAT:

The development of the symbolic debugging facility is not yet entirely fin-
ished. You may therefore have some surprises! We apologize and we will be
interested to know about the possible bugs you may detect.

Workshop on Distributed Laboratory Instrumentation Systems. 89
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Chapter 5

Bibliography

<n

|

. Andrew 5. Tancnbaum, "Modern Operating Systems”, Prentice-Hall
International, 1987.

"The ASSIST09 monitor”, 6809 Programming manual, Motorola Ine,

Jean J. Labrosse, *u/COS, the Real Time Kernel”, R&D Publica-
tions,1992.

"The MCX11 Real Time Executive”, Motorola Inc.

"The RTEMS Real Time Ezecutive”, Real Time Executive for Multi-
processor Systerns, Jan 1996. Available from rtems@redstone. army.mil

B. Nichols, D. Buttlar, J. Farrell, ”Pthreads Programming”, O'Reilly &
Associates Inc, 1996.

Richard M. Stallman, "Using end Porting GNU CC”, Free Software
Foundation, Inc, 1993, ISBN 1-882114-35-3. Can be extracted from
the gee-info files.

Documentation for the cross-assembler/linker can be found in the di-
rectory /usr/local/micros/m6809/doc.

“MC6809 — MC6809E Microprocessor Programming Manual”, Motorola
Inc, 1983.

90

Chapter 6

Credits

e The ICTP monitor, was adapted from Motorola’s Assist09 by Jim
Wetherilt.

e The multitasking kernel, running from EPROM on the 6809 board
was developed by Jimm Wetherilt. Inspired by Motorola’s MCX11, Real
Time FErecutive it was practically rewritten from scratch and many
important features added.

o The GNU C cross-compilers for the 6809 and 6811 processors have a
rather long story. The original machine description and macro files
for the 6809 were developed by Th. E. Jones, University of Wisconsin
(jones@sal.wisc.edu), and then adapted to the 6811 processor by Otto
Lind {otto@coactive.com), Carlos Kavka used the latter with only a
minor modification to build a cross-compiler for the 6811. We config-
ured the 6809 cross-compiler from this 6811 version, as we felt it to be
superior to the original 6809 compiler.

During the autumn of 1997 the 6809 cross-compiler was upgraded to ac-
cept floating point. The Hoating point library was built from a package
written in 1986 for the 6811 hy Gordon Doughman, Motorola Semicon-
ductor, Dayton, Ohio; revised in 1988 by Scott Wagner, Rochester In-
strument Systems, Rochester, New York, and further revised in 1993 by
[.D. Hiscocks, University of Alberta, Canada. The Perl script elvn2nin
was used to transpose from 6811 code to 6809 assembly code.

During Spring and Summer 1998 the cross-compiler was modified to
generate Position Independent Code.

The cross-assemblers for the 6809 and 6811 and the cross-linker, were
originally developed by A.R. Baldwin of Kent State University and
enhanced by Ken Hornstein (kenh@emf.nrl.navy.mil).

91

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

e Part of the C library (libc.a} was originally written by T.E. Jones,
and later adapted to our particular version of the cross-compiler. lib-
math09.a contains adaptations of routines originally written by His-
cocks.

¢ Ulrich Raich made a new GUI for the terminal emulator seyon, thereby
greatly simplifying the downloading procedure.

e The original simulator for the 6809 was written by L.C. Benschop,
Eindhoven, the Netherlands. PPablo Santamarina added the debugger
part, Sergei Borodin added watichpoints during the Regional College of
Spring 1997 and finally the simulation of clock interrupts was added in
January 1998. In the meantime the program changed name from the
original v09 to db09.

e The simulator of the 10 devices, the Colonibo board and Chu Suan
Ang’s Display board, was written by Ulrich Raich. It runs under X11
and visualizes on the screen the effect of 10 operations. The user
program written in C is compiled into code for the Intel processor of
the PC. The user program can thus be debugged with xxgdb.

Workshop on Distributed Laboratory Instrumentation Systems. 92
Abdus Salam ICTP, Trieste November 26 — Deccmber 27, 2001,

Appendix A

m6809 Registers and
programming model

The Motorola m6809 microprocessor appeared on the market in 1981 or 1982,

It is & member of the m6800 family of 8-bit microprocessors, but it has 16-bit

2's-complement arithmetic. It distinguishes itself from other microprocessors

of the same period by its very neat and symmetric instruction set and a large

range of addressing modes. As all Motorola processors, it is a “big-endian”.
It has the following sct of registers, accessible by the programmer:

Name | Size | Description

A 8 | Accumulator for byte arithmetic

B 8 | Accumulator for byte arithmetic

D 16 | Accumulator. Consists of A and B register
side by side, A being the most significant

X 16 | Index Register

Y 16 | Index Register

U 16 | “User stack pointer”, usable as Index Register

S 16 | Stack Pointer Register

CC 8 | Condition Code Register

DP 8 | Direct Page Register

pPC 16 | Program Counter

Table A.1: Register Set

E|F

H][T[N[Z|V]|C]

Table A.2: Condition Code Register

93

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

The bits in the Condition Code Register have the following meaning:
The N (negative), 7 (zero), V (overflow) and C {carry) bits are used alone, or
in certain logical combinations, by the branch instructions. F (fast interrupt)
and I {(interrupt) are the interrupt mask bits, E (entire) and H (half-carry)
are flag bits.

The m6809 processor has the following addressing modes:

Absolute: the address given in the instriction is an absolute address
(Motorola calls this addressing mode “extended”).

Immediate; the operand is found in the location immediately after the
instruction.

Direct; the contents of the DP register are concatenated with the 8-bit
address associated with the instruction, to form a 16-bit address.

Indexed: one of the four Index or Stack Pointer Registers is used to
form the effective address. This can be in one of the following ways:

a constant offset is added to the contents of the Index register:
ldd 75,x, or leay 2.,y.

the contents of a register are added to the contents of the index
register to form the effective address: sta b,u.

post-increment and pre-decrement, either by 1 or by 2: inc ,x+,
or std ,--y.

relative to the program counter. A constant is added to the present
contents of 1he program counter to form the effective address:
1ldd here,pcr, or stb there,pcr.

Indirect addressing falls also in this category of “indexed address-

'k

ing”.

¢ Inhcrent: the instruction does not need an address, gencrally because
it operates directly on a register.

When an instruction needs an address, all these addressing modes can
be used, without exception.
The instruction set contains:

e Load and Store instructions, which are valid for all 8 and 16-bit regis-

ters,

except CC and DP: 1dd here, stx ,--s, etc.

¢ Add and Subtract instructions: addd 7,x, or suba #56, etc. They
work on 8 and 16-bit operands.

Workshop on Distributed Laboratory Instrumentation Systems. 94
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 68309 Microprocessor board C. Verkerk and AL Wetherilt

Multiply instruction: it does an unsigned multiplication of the contents
of the A and B registers, putting the result in D.

Compare instructions: they compare the contents of an 8-bit or 16-
bit register with the contents of the effective address, by performing
a subtraction. They then set the appropriate bit or bits in the CC
register.

Branches and Long Branches: conditional and unconditional branches
exist in two flavours. The first can branch to a location at most 128
bytes before or 127 bytes beyond the branch instruction itself. The
long branches can branch 32768 locations backward and 32767 bytes
forward. The branch to subroutine bsr and long branch to subroutine
lbsr also belong to this category.

Jump and Jump to Subroutine: these two instructions jump to an
absolute location. The jump to subroutine is associated with a return
from subroutine instruction.

Increment, Decrement, Complement, Negate, Shift and Test instruc-
tions, acting on 8-bit registers or memory bytes: inca, dec loc, ctc.

Transfer and Exchange instructions, which transfer contents of one reg-
ister to another of the same length, or exchange contents between two
registers.

Push and Pull instructions, which put the contents of a list of registers
on the stack, or take them off: pshs d4,x%,y,cc or pulu y,d,dp. The
order of pulling and pushing is fixed, and not according to the order of
the list.

Software Interrupt instructions: swi, swi2 and swi3. They behave as
if a hardware interrupt had occurred: all registers are pushed on the
stack and then the [’C register is set to a fixed value, between 0xfff2
and Oxffff.

Miscellaneous instructions, such as nop, sex, cwai, ete.

For morce details, the reader should consult Motorola’s MC6809 - MC6809E
Microprocessor Programming Manual.

Workshop on Distributed Laboraiory Instrumentation Systems. 95
Abdus Salam ICTP, Trieste Novernber 26 — December 21, 2001.

Appendix B

Returned error codes

Herc is a list of the error numbers that can be returned. The table has
been split into two. The first gives the error codes returned by the interface
routines for the IO calls. Not all of them arc used at present. The table on
the next page shows the errors which can be returned by a system call. The
error message printed by printerr() is also indicated; the messages shown
in the last column are always preceded by: “ERROR:” when printed.

Symbolic name # | Meaning Error message
ICTPIO.EQF -13 | EOF found EOF
ICTPIOILLEGAL DEVICE | -12 | illegal device number ILL-DEV
ICTPIO.QUT.OF RANGE -11 | data out of range TOO LARGE
ICTP_IO_HW_ERR -10 | hardware error HARDWARE
ICTP_.IO_MSG_WR_ERR -9 | could not write message MSG-WRITE
ICTP_IOMSG_RD_ERR -& | could not read message MSG-READ
ICTPI0MSG DELETE_ERR | -7 | Could not delete message queue MSG-DEL
ICTPIOMSG_CREATE ERR | -6 | Could not create message queue MSG-CREAT
ICTPIOILLEGAL DEV -5 | no such device ILL-DEVIC
ICTP IO0_WRONLY -4 | trying read on a writeonly dev WR-ONLY
ICTP 10 _RDONLY -3 | trying write to a readonly dev RD-ONLY
ICTPIO BAD_CONFIG -2 | writing to LCD when in LEDmode | BAD-CONF
ICTP 10 BUSY -1 | only a single board may be opened | IO-BUSY
ICTP IO SUCCESS 0 | operation sucecesful NONE

Table B.1: Error codes returned by 10 calls

96

Software for the 6809 Microprocessor board

C. Verkerk and AL, Wetherill

Symbolic name # | Meaning Error message
ERR_-NONE 0 | No error has occourred NONE
ERR_BADCALL 1 | Tllegal system call BAD-CALL
ERR.BADTASK 2 | Non existent thread BAD-TASK
ERR.BADINST 3 | Incorrect thread id TH-INSTAL
ERR.TCREATE 4 { Thread creation error TH-CREATE
ERR-NOSLELFP 5 | Thread is not sleeping NO-SLEEP
ERR.BADXTEN 6 | egal (null) exit function BAD-EX-FC
ERR SMCREATE | 7 | Semaphore creation error SM-CREATE
ERR_PWDTH & | A pipe of zero width has been requested | PIPE-WDTH
ERR-PCREATE 9 | Pipe creation error PIPE-CREA
ERR PUNINIT 10 | Attempt to use an uninitialised pipe P-NO-INIT
ERR_-CALLOC 11 | Common memory allocation error CALLOC
ERR_PALLOC 12 | Paged memory allocation error PALLOC
ERR_BADSIG 13 | Hlegal signal number BAD-SGNL
ERR_INTLVL 14 | Illegal action inside nested interrupt INT-LEVEL
ERR_BADMSG 15 | Anillegal message has been received BAD-MSG
ERR_SMTMR, 16 | Scmaphore was released by timeout SM-TIMOUT
ERR_SMREL 17 | Sema was released by a release call SM-RELEAS
ERR.SMTRM 18 | Sema released by a terminating thread SM-TH-END
ERR.THRDTMR | 19 | Thread was terminated by a timecout TH-TIMOUT
ERR_THRDKILL | 20 | Thread was terminated by a kill signal | TH-KILLED
ERRBADSEMA | 21 | Illegal semaphore number requested BAD-5EMA
ERR.BADKILL 22 | Thread could not be killed BAD-KILL
ERR_FLOAT._PT | 23 } An error oceurred in the flt pt package FLOAT.PT

Table B.2: Error codes returned by system calls

The FLOAT_PT error will be accompanied by another error message:

o Either EDOM, if the argument to a function is not in the required
domain. For instance a negative argument to log(x).

e Or ERANGE, if the result of the function lies outside the range of
floating point numbers that can be represented in 32 bits. Either the
largest possible number or zero is returned in that casc.

‘Workshop on Distributed Laboratory Instrameniation Systems. a7
Abdus Salam ICTP, Tricste November 26 — December 21, 2001.

Appendix C

System calls

Usage: Include the file syscalls.inc
Call the function with:

swi

.byte Function

Symbolic name | # | Description and behaviour

OSCreateSem | 1 [Create new system semaphore

Argnments: A = Type (MUTEX, COUNTING,
EVENT etc)
B = Initial valuc

Reburns : A = Semaphore number

Onerror: A = ERR.SEMCREATE

Blocking : Will not block

OSFreeSem 2 | Release existing system semaphore
Arguments: A = Semaphore number
Returns : Nothing

Onerror: A = ERR.BADSEMA
Blocking : Will not block

OSDownScm 3 | Perform a down on a given system semaphore
Arguments: A = Semaphore number
Returns : Nothing

On error : A = ERR BADSEMA
Blocking : Will block

Continued on next page

Table C.1: System calls

98

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

Continued from previous page
Symbolic name # | Description and behaviour
OSUpSem 4 | Perform an up on a given system scmaphore
Arguments: A = Semaphore number
B = -1 if all waiting threads are to be
released
Returns : Nothing
On crror : A = ERR.BADSEMA
Blocking : Will not block
OSResetESem 5 | Reset an event system semaphore
Arguments: A = Semaphore number
Returns : Nothing
Onerror: A = ERR BADSEMA
Blocking : Will not block
OSFreclUserSem 39 | Release existing user semaphore
Arguments: X = Address of semaphore
Returns : Nothing
On error : Nothing
Blocking : Will not block
OSDownUscrSem | 40 | Perform a down on a given user semaphore
Arguments: X = Address of semaphore
Returns : Nothing
On crror : Nothing
Blocking : Will block
0SUpUscrSem 41 | Perform an up on a given user scmaphore
Arguments: X = Address of semaphore
Returns : Nothing
On error : ~ Nothing
Blocking : Will not block
OSResetUserESem | 42 | Reset an event user semaphore
Argnments: X = Address of semaphore
Returns : Nothing
On error : Nothing
Blocking : Will nof block
OSDownHybrid 43 | Perform down on semaphore and up on mutex
combination
Arguments: X = Address of resource semaphore
Y = Address of mutex lock
Returns : Nothing
On error : Nothing
Blocking : Will block
Continued on next page

Table C.1: System calls — Continued

Workshop on Distributed Laboratory Instrumentation Systems.
Abdus Salam [CTP, Trieste November 26 — Decemnber 21, 2001,

99

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Continued from previcus page

Symbolic name #

Description and behavicur

()SStart 11

Start RIn0OS.
This function never returns
Argnments: None

OSThreadInstall | 12

Install thread loaded at absolute address.
This function does not return.
Arpuments: X = Address of thread creation structure

OSThreadCreate | 13

Create new thread
Arguments: A = Thread priority
X = Address of thread creation structure
Returns : D = Thread identifier (handle) of
new task
X = Address of new task.
On error: A = ERR_TCREATE
Blocking: Will not block

OSThreadExit 14

Terminate a thread.

This function is called implicitely or explicitely
by a terminating thread and never returns.

If an exit function has been installed, this

is called first. All semaphores owned by the
thread are veleased, and the thread is removed
from the waiting lists of any semaphores. Any
counters are purged.

Arguments: B = Thread return code
Blocking: Will not block

OSThreadJoin 15

Wait for a thread to terminate
Argnments: D = Thread handle
X = Timecout in clock ticks
{zero = an indefinite wait)

Note: For POSIX 1003.1 compatibility this
should always be zero
Returns: B = Return code of terminating thread

A = Status code of terminating thread
On error: A = ERR.BADTASK
Blocking: Will block

Continued on next page

Table C.1: System calls - Continued

Workshop ou Digtribuied Laboratory Instrumentation Systems, 100
Abdns Salarn 1CTP, Trieste November 26 — December 21, 2001,

Soliware for the 6809 Microprocessor board

Continued from previous page
Symbolic name # | Description and behaviour
(3SThreadKill 16 | Kill a thread according to the state
of the cancellation atiribute.
(i) CANCEL_STATE = OFF: The thread is not
cancelled and an error is indicated
(ii) CANCEL_TYPE = DFRD: The thread is
marked as CANCEL_PENDING
{(iii)CANCEL_TYPE = ASYNC: The thread
is terminated.
Argumenis: D = Thread identifier
Returns : Nothing
O error: A = ERRBADTASK
ERR_BADKILL
Blocking: Will not block
OSAtExit 25 | Sei an exit function
Arguments: X = Address of exit function
Y = Address of function argument
Returns : Nothing
Onerror: A = ERRBADXTFN
Blocking : Will not block
OSSetPriority 17 | Reset a thread’s priority
Arguments: A = New priority
X = Thread identifier
(00 = current thread)
Returns : Nothing
Onecrror: A = ERR.BADTASK
ERR_BADINST
Blocking : Will not block
0O8GetTaskInfo 26 | Get a pointer to the current TCB
Arguments: Nothing
Returns : X = Address of current thread TCB
On crror : Nothing
Blocking : Will not block
OSSetThrecadAttr | 27 | Set current thread attribute
Arguments: A = Valuc to set mask bits
B = Magk for attribute
Returns : Nothing
On error : Nothing
Blocking : Will not block
Continued on next page

C. Verkerk and A.J. Wetherilt

Table C.1: System calls — Continued

Workshop on Distribuied Laboratory Instramentation Systems.
Abdus Salam ICTP, Triesic November 26 — December 21, 2001.

101

Software for the 6809 Microprocessor board

Continued from previous page
Symbolic name | # | Description and behaviour
O8CancelPoint | 28 | Cancel current thread if cancellation
pending. This function does not return if
canccllation is successfnl
Arguments: Nothing
Returns : Nothing
On crror ; Nothing
Blocking : Wil not block
O8GetLastError | 23 | Get last error code of current thread
Arguments: Nothing
Returns ; B = Last error code of current thread
Onerror: Nothing
Blocking : Will not block
0OSSleep 18 | Put thread to sleep for x clock ticks
Avguments: X = Number of clock ticks to sleep
(zero = indelinite sleep)
Returns : Nothing
On crror : A = FRR BADTASK
Blocking : Will block
OSWake 19 | Wake a thread
Arguments: D = Thread identifier
Returns : Nothing
Onecrror: A = ERR.BADINST
ERR_BADTASK
ERR_NOSLEED
Blocking : Will not block
O5Yield 0 | Voluntarily vicld to another thread
Arguments: None
Retnrns : Nothing
On crror : Nothing
Blocking : Will not block
OSCAllocMem | 20 | Allocate common memory
Arguments: A = Thread number (0 = system)
X = Requested size
Returns : X = Address of allocated block
(Null on error)
Onerror: A = ERR.CALLOC
Blocking : Will not block
Continued on next page

Table C.1: System calls - Continued

Workshop on Distributed Laboralory Insirumentation Systems.

Abdus Salam ICTP, Trieste Novemnber 26 — December 21, 2001.

C. YVorkerk and A.J. Wetherilt

102

Soltware for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Continued from previous page
Symbolic name | # | Description and behaviour
OS5CFreeMoem 21 | Frec common memory
Arguments: D = Size of memory to be freed
X = Address of start of memory block
Returns : Nothing
On error : Nothing
Blocking : Will not block
OSPAllocMem | 22 | Allocate paged memory
Arguments: A = Thread number (0 = system)
B = Page requested {-1 for any page)
Returns : A = Page of allocated roemory
X = Address of start of allocated block
Y = Size of memory allocated
Onerror : A = ERR.PALLOC
Blocking : Will not block
QOSPFrecMem 23 | Free paged memory
Arguments: A = Page number of memory block
to be freed
X = Address of start of memory block
Y = Size of mermory block
Returns : Nothing
Onerror: Nothing
Blocking : Will not block
OSSendMessage | 6 | Send a message to a thread
Arguments: D = Receiving thread id
X = Address of message
Returns : Nothing
Oncrror : A = ERR_BADINST
ERR SMCREATE
Blocking : Will not block
OSWaitMessage | 7 | Send a message and wait for response
Arguments: D = Receiving thread id
X = Address of message
Returns : Nothing
Onerror: A =ERR.IBADINST
ERR_-SMCREATE
Blocking : Will block
Continued on next page

Table C.1: System calls - Continued

Workshop on Distributed Laboratory Instrumentation Systerns.

103

Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

Continued from previous page

Symbolic name | # | Description and behaviour

OSGetMessage | 8 | Receive a message.
Arguments: Nothing

Onerror: A = Nothing
Blocking : Will block

Function will block if none available.

Reoturns : X = Address of message

Returns : Nothing

OSSignal 9 | Send a numbered signal (0-31)

Arguments: A = Signal number
B = Signal type (0 = Auto reset, 1 =
no reset on send)
X = Address of optional data

On error : A = ERR_BADSIG
Blocking : Will not block

(OSWaitSignal | 10 | Wait for a numbered signal

Blocking : Will block

Arguments: A = Signal number
Returns ; X = Address of optional data
On error : A = ERR_BADSIG

OSResctSignal | 30 | Resef a numbered signal

Returns : Nothing

Arguments: A = Signal number

Onerror: A = ERRBADSIG
Blocking : Will not block

OSCreatePipe | 31 | Create a pipe

Arguments: B = Pipe width (in bytes)

Returns : B = Pipe handle

On error : A = ERR_PCREATE
ERR PWDTH
ERR.SMCREATE

Blocking : ~ Will not block

OSReleaselPipe | 32 | Release a pipe

Returns : Nothing

Blocking : Will block

Arguments: B = Pipc handle

On error : A — ERR_PUNINIT

Continued on next page

Table C.1: System calls — Continued

Workshop on Disiribuled Laboralory Instrumentation Sysiems.
Abdus Salam ICTP, Trigste November 26 — December 21, 2001,

104

Software for the 6809 Microprocessor hoard C. Verkerk and A.J. Wetherilt

Continued from previous page
Symbolic name | # | Description and behaviour
OSWOQOpenPipe | 33 | Open a pipe for writing
Arguments: B = Pipe handle
Returns : Nothing
Onerror: A = ERR_PUNINIT
Blocking : Will block
OSWClosePipe | 34 | Close a pipe [or writing
Arguments: B = Pipe handle
Returns : Nothing
On error ; A = ERR.PUNINIT
Blocking : Will block
OSROpenPipe | 35 | Open a pipe for reading
Arguments: B = Pipe handle
Returns : Nothing
Onerror: A = ERR PUNINIT
Blocking : Will block
O5RClosePipe | 36 | Close a pipe for reading
Arguments: B = Pipe handle
Returns : Nothing
Onerror: A = ERR_PUNINIT
Blocking : Will block
OSWritePipe 37 | Write to an open pipe
Arguments: B = Pipe handle
X = Address of data buffer to send down
the pipe
Returns : Nothing
Onerror: A = ERR_PUNINIT
Blocking : Will bleck
(OSReadPipe 38 | Read from a pipe
Arguments: B = Pipe handle
X = Address of buffer in which to place
data
Returns : Nothing
Onerror: A = ERR_PUNINIT
Blocking : Will block
Contimied on next page
Table C.1: System calls — Continued
Workshop on Distributed Laboratory Instrumentation Sysicma. 105

Abdus Salam ICTP, Iriestc November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Continued from previous page
Symbolic name | # | Description and behaviour
OSInstallDriver | 24 | Install/Replace a device driver
Arguments: A = Device driver number to replace
acial, = ACIAlL
acia2, = ACIA2
dac. = DAC
adc. = ADC
pia. = PIA
timer. = PTM3
B = 0/1 (substitute new/Replace with
the default)
X = Address of device structure
Returns : Nothing
On crror : Nothing
Blocking : Will not block
Table C.1: System calls ~ Continued
‘Workshop on Distributed Laboratory Instrumentation Systems. 106

Abdus Salam ICTP, Trieste Novernber 26 — December 21, 2001.

Appendix D

Device driver function calls

Usage: Include the file syscalls.inc
Call the function with:

swi2

.byte device_identifier

Funetion | # | Description and behaviour

bread 0 | Single read channell
Arguments : A =10
Returns : B = Input byte (byte devices)

D = Input word (word devices)
Blocking : Will block (ACIA1,ACIA2, PIA mode 1}
Applicable: All devices

bwrite 1 | Single writc channell
Arguments : A =1
B = byte to write {byte devices)
X = Word to write (word devices)
Returns : Nothing
Blocking : Will block in most modes
Applicable: All devices

Continued on next page

Table D.1: Device driver function calls

Software for the 6809 WMicroprocessor board

C. Verkerk and ALJ. Wetherilt

Continued from previous page
Function | # | Description and behaviour
sread 2 | Multiple read channell
Arguments : A =2
X = Addrcss of holding buffer
Y = Number of conversions (ADC only)
Returns : Nothing
Blocking : Will block {ACIA1,ACIA2, PTA mode 1)
Applicable: All devices except DAC
ACIAL, ACIA2, PIA mode 2, will have null
terminated buffers
swrite 3 | Multiple write channell
' Arguments: A =3
X = Address of buller to wrile
Returns : Nothing
Blocking : Will block
Applicable: All devices except DAC,ADC
ACTA1, ACIA2, PIA mode 3, will have
null terminated buffers
ioctl 4 | IOCTL
Arguments: A =4
B = Byte to write to register (Write mode)
high(X) = Read / Write (1/0)
low(X) = Offset from base register
Returns : B = Byte read from register (Read mode)
Blocking : Will not block
Applicable; Al devices
init 5 | Device initialisation
Arguments : A =35
B = Mode
X = bit mask to determine input/output lines
(PIA mode 0 only)
Returns : A = Semaphore number (PIA modes 2 and 3 only)
Blocking : Will block
Applicable: All devices
The system initialiscs all devices
except ACIA1 during system
initialisation. This driver must
explicitly be initialised before use.
The PIA is initialised to mode 0 by default.
Continued on next page
Table D.1: Device driver function calls — Continued
Workshop on Distributed Laboratory Instrumentation Systems, 108

Abdus Salam ICTP, Tricsie November 26 — Decemnber 21, 2001,

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherili

Countinued from previous page
Function | # | Description and behaviour
ilock 6 | Lock input mutex. Used to

construct a safc multitasking device

driver, by guarding the resource.

Arguments: A =6

Returns : Nothing

Blocking : Will block

Applicable: All devices except DAC
inrleck 7 | Unlock input mutex

Arguments: A =7

Returns : Nothing

Blocking : Will block

Applicable: Al devices exeept DAC
olock & | Lock output mutex

Arguments : A =8

Relurns : Nothing

Blocking : Will block

Applicable: All devices except ADC
ounlock 9 | Unlock output mufex

Arguments: A=9

Returns : Nothing

Blocking : Will block

Applicable: Al devices except ADC
bread2 10 | Single read channel2

Arguments : A =10

Returns : B = Input byte (PIA)

D = Input word (ADC}
Blocking : Will not block
Applicable: ADC, PIA only
Continued on next page

Table D.1: Device driver function calls -- Continued

Workshop on Distributed Laboratory Instrumentation Systems,
Abdus Salam 1CTP, Trieste November 26 — Dacember 21, 2001,

109

Software for the 6809 Microprocessor board

C. Verkerk and AL). Welherilt

Continued from previous page

Function | #

Description and behaviour

bwrite2 11

Single write channel2

Arguments : A =11
B = Byte to write (PIA)
D = Word to write (DAC)
Returns : Nothing
Blocking : Will not block
Applicable; DAC, PIA only
sread? 12 | Multiple read channcl2
Arguments : A =12
X = Address of ata holding buffer
Y = Number of conversions to make {(ADC)
Returns : Nothing
Blocking : Will block
Applicable: ADC, PTA model only

Table ID.1: Device driver function calls — Continued

Name

[# [Description

Hardware device driver identifiers

acial. 0 | Serial port #1 driver
acia2. 1 Secrial port #2 driver
pia. 2 Parallel port driver
ade. 3 ADC driver

dac. 4 DAC driver

timer. 5 | Timer #3 driver

pia device driver modes used when opening the device

0x30

pia_colombo

pia_std 0 | PIA standard mode
pia_hndshk | 0x10 | PIA handshaking mode
pia_led 0x20 | PIA LCD board mode

PLA Colombo board mode

Table 13.2; Device driver definitions

Workshop on Distributed Laboratory Instrumentation Systems.
Abdus Salam ICTP, Trigsie November 26 — December 21, 2001,

110

Appendix E

Structure and definitions

reference
Field Off | Size Category Description
sot,
PPTR 0 2 System Link in priority lst (points to next TCB)
INSTANCE 2 1 Systein Instance of this thread
ID 3 1 System Thread identification number
PRIORITY 4 1 System Priority value
STATUS 5 1 System Thread status
CODESEG 6 2 System Start, of thread code segment
STACKSEG 8 2 System Pointer to stack segment
STACKSIZE | 10 2 System Size of stack segment
STACKPTR 12 2 System Thread stack pointer
PAGE 14 1 System Page # of thread
PARENT 15 2 User Parent of thread
EXITSTS 17 1 User Exit status of thread
EXITCODE 18 1 User Return code of thread
EXITFUNC 19 2 User Ptr to thread exit function
EFARG 21 2 User Ptr to exit function argument
MAILBOX 23 2 IPC Pointer to mailbox
SEMALNK 25 2 Semaphore | Link to chain of semaphores
TIMRCNT 27 2 System Sleeping time
TIMRLNK 29 2 System Link to timer list
ESEMALNK 3 2 Semaphore | Link to threads waiting for termination
SEMAOWND | 33 2 Semaphore | Link to list of semaphores owned by thread
SEMAWAIT 35 2 Semaphore | Pointer to semaphore thread is waiting to own
MSGSEMA 37 1 IpC Message queue counting semaphore
ERRORSTS 38 1 User Last error status
ATTRIBUTE | 39 1 | User/system | Thread set of attributes

Table E.1: Thread Control Block (TCB) structure

111

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherils

Field Value | Description

NOTASK 0x80 | TCB not used

SUSPEND | 0xC0 | thread suspended

_WAIT 0x04 | thread blocked

SLEEPING | 0x06 | thread slecping

ADLE 0x01 | TCB claimed but not yvet running
-READY 0x00 | thread running or waiting to run

Table E.2: Values used to define TCB fields - Thread state values

Table E.3:

Field Value | Description

DETACH STATE 0x01 | Detach state bit field
CANCEL_STATE 0x02 } Cancelation state bit field
CANCEL_TYPE 0x04 | Cancelation type bit field
EXIT PENDING 0x80 | Exit pending bit
CANCEL_PENDING | 0x40 | Cancelation pending bit

Values used to define TCB fields - Thread attribute bit ficlds

Field Value
DETACH STATE.ON Ox01fe
DETACH STATE_OFF Ox00{e
CANCEL STATE_ON (0x021d
CANCEL.STATE_OFF 0x00fd
CANCEL.TYPE.ASYNC | 0x04fb
CANCEL.TYPE_DFRD 0x00fb

Table E.4: User settable thread attribute values

Field Off | Size | Description

set
SENDER 0 2 | Message sender pid
NXTMSG 2 2 | Link to next message in list
MSG 4 2 | Poiuter to message
MSEMA) 2 | Moessage mutex
MSGUSED | 8 1 | Message is in use

Table ¥.5: Message structure

Workshop on Distributed Laboratory Instrumentation Systems.
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

112

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Field Off | Size | Description
PSEG 0 1 | Page register value for the thread
CSEG 1 2 | Start of Code segment / Module
SSEG 3 2 | Stack segment
SLEN 5 2 | Stack length
CSTART 7 2 | Entry point of code
ARGPTR | 9 2 | Pointer to thread Argument/Environment block
TPRIO 11 1 Requested priority
TPID 12 2 | Thread pid (OSBackAlloc only)
TMEM 14 2 | Memory size requested (OSBackAlloe only)
TATTR 16 1 Initial thread attributes
TDIP 17 1 Thread direct page
Table E.6: Thread creation structure
Field Off | Size | Description
set
SEMTYD 0 1 Scemaphore typoe
SEMVAL 1 1 Semaphore value
NXTSEM 2 2 | Link to list of threads waiting on this semaphore
SEMOWNER. | 4 2 Current semaphore owner
SEMOLNK 6 2 Link (o list of owners semaphores

Table E.7: Scmaphore structurc

Field Value | Description
MUTEX 1 Mutex semaphore
COUNT 2 Counting semaphore
EVENT 4 Event counter

REVENT | (xc | Single event, reset after use
REVNT 0x8 | Test for REVENT
SEVENT | 0x84 | Single event, freed after usc

Table E.8: Semaphore types used by semaphore system calls

Field Off | Size | Description
sot
SIGPTR | 0O 2 Optional pointer to signal paramecters
SIGSEM | 2 2 | Pointer to EVENT semaphore

Table E.9: Signal structure

Workshop on Digtributed Laboratory Instrumentation Systems. 113
Abdus Salam 1CTP, Trieste November 26 — December 21, 2001.

Software for the 68049 Microprocessor board C. Verkerk and A.J. Wetherilt

Field Off | Size | Description

set
PIPE_USED 0 1 | Pipein use flag = 1 if free
FPIPE_WDTH 1 1 Pipe width in bytes
FPIPEMEM 2 2 Pointer to allocated memory
PIPEFRNT 4 Pointer to front of buffer
PIPE.REAR 6 Pointer to rear of buffer
PIPE FPOSN 8 Index of front

PIPERPOSN | 9

PIPEFULLS 10
PIPEEMTYS | 11
PIPE.WMTX | 12
PIPE RMTX 13
PIPELMTX 14

Index of rear

Full semaphore
Empty semaphore
Write semaphore lock
Read semaphore lock
Pipe resource lock

L

Table E.10: Pipe structure

Field Off | Size | Description

st
ISR-ADDR 0 2 | Interrupt service handler
DRIVER_ADDR. 2 2 Device driver address
HARDWARE ADDR | 4 2 Hardware base address
DATA_ADDR] 2 Device scratch data area
DD_INSTALLED 9 2 Is driver installed

Table E.11: Interrupt table structure

symbol | Address | size | Description

ctskinst | 0Ox100 1 | Current thread instance

clskpid Ox101 1 | Current thread

ctskptr 0x102 2 | Address of current task’s TCB

intlvl 0x107 1 | Depth of nested interrupts:

= 0 when in a task

= >0 when interrupts arc nested or in the kernel
Head of linked list of threads in order of priority
Head of linked list of threads waiting on timer
Page register copy

Default stack size

prioptr 0x108
clktsk 0x10c¢
pagereg Ox10f
defstack | 0x111

| S SN T A

Table E.12: System variables

Workshop on Distributed Laboralory Instrumentalion Sysiems. 114
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

Symbol Value | Description

MAXTASKS 32 | Maximum number of tasks for system
MAXSEMAS 255 | Maximuin number of semaphores for system
MAXMSGS 32 | Maximurn number of messages

MAXSIGS 32 | Maximum numbecer of signals

MAXPIPES 16 | Maximum number of pipes

Table E.13: Global maximum values

Symbol

Address | Description

prlatch
PIABASE
TIMR
ACIA1
ACIA2
ADCBASE
DACBASE

0xa040 | Physical page register
0xal00 | PIA

0xal10 | PTM

0xa020 | ACIAlL

0xa030 | ASCIA2

0xa040 | ADC

0xa044 | DAC

Table E.14: Hardware addresses

Workshop un Distributed Laboratory Instrumentation Systems.
Abdus Salam ICTP, Tricste November 26 — December 21, 2001.

115

Appendix F
Linked lists used by RInOS

RInOS uses a number of linked lists to perform some of ils functions.

Thread priority list
List function The maintainance of a list of all threads created by
the system in order of decreasing priority. This
list always contains at least the null thread.
Head of list prieptr at address 0x108 in the RInOS work area.
Link PPTR in the TCB

Active timer list

List function A list of all threads waiting for the completion of
' an active timer

Head of list ¢lktsk at address 0x10¢ in the RInQS work area.

Link TMRLNK in the TCB

Continued on next page

Table F.1: Linked lists in RInOS

116

Software for the 6809 Microprocessor hoard C. Verkerk and A.J. Wetherilt

Continued from previous page

Semaphore waiting list

List funetion To maintain a list of all threads wishing to own
the resource guarded by the semaphore

Nead of list ~ NXTSEM in the semaphore hody

Link SEMALNK iu the TCB body

Semaphore owners list

List function A list of all semaphorcs currently owned by a given
thread. This is required in order to rcicase these scmaphores
during tcrmination.

Head of list SEMAQWND in the TCB body

Link SEMOLNK in the semaphore body

Thread waiting list

List function A list of all threads waiting for the termination
of a given thread

Head of list ~ ESEMALNK in the TCB of the thread
being waited for

Link ESEMALNK in the TCB of the threads waiting for
termination

Mailbox message list

List function A list of messages waiting in the mailbox of a given thread

Head of list ~ MAILBOX in the TCB body

Link NXTMSG in the message body

Tahble F.2: Linked lists in RInOS — Continued

Workshop on Distributed Laboratory Instrumentaiion Systems. 117
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Appendix G

Programming examples;
assembly language

A basic example is presented in assembler language, that illustrate various
aspects of the use of RInOS. The assembler example uses the standard Mo-
torola syntax and statements and can be assembled by a user who has access
to this assembler. An origin of zero is assumed throughout, which allows
the ASSISTO09 monitor to download the code to an address determined by
the RInOS memory manager. This assembler example requires that the file
syscalls.ine, be included in the source code.

Before this assembly language program can be assembled under Linux,
making usc of cc09, it must be “treated” by jim2rinus. The changes to be
madc are:

¢ include syscalls.inc must be written as .include "syscalls.inc,

& cqu becomes =,

rinb should read .blkb,

fcb becomes . byte,

e a label must end with a :, thus start becomes start:.

G.1 Create a thread using POSIX 1003.1 com-
patible method

* Examplel.asm
*

Create a POSIX 1003.1 compatible thread with the following attributes:

118

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

* Detach state = Detachable
* Cancel state = Cancelable
* Cancel type = Defered

* Stack size = 0x1000

* Stack address = Don’t care
* Priority =4

* The thread will not take an argument

include syscalls.inc
* Data area
parentid mb 2 Handle of parent thread
childid rmb 2 Handle of child thread

* Define an attribute structure for the thread

attribute rmb 11

attr_stacksize equ O Offset of stack size attribute

attr_page equ 2 Offset of stack page

attr_stackaddr equ 3 Offset of stack address attribute
attr_detachstate equ b Offset of detach state attribute
attr_cancelstate equ 6 Offset of cancel state attribute
attr_canceltype equ 7 Offset of cancel type attribute
attr_priority equ 8 Offset of scheduling priority attribute
attr_directpage equ 9 Offset of data direct page

attr_schedpolicy eqgu 10 Offset of scheduling pelicy (not implemented)

* Entry point of parent thread
start
std parentid,x Save parent handle which is returned by RInOS

* Fill in attributes

leax attribute,pcr Point at the attribute structure
144 #DETACH_STATE_ON Set detachstate
sta attr_detachstate,x
1dd #CANCEL_STATE_ON Set cancel state
sta attr_cancelstate,x
ldd #CANCEL_TYPE_DFRD Set cancel type
sta attr_canceltype,x
1ldd #$1000 Set stack size
std attr_stacksize,x
ldd #0 Indicate no preference for stack address
std attr_stacksddr
sta attr_page Set page to don’t care
lda #4 Set scheduling priority
sta attr_priority,x
Workshop on Distributed Laboratory Insirumentation Svstems. 119

Abdus Salam ICTP, Trieste Novermber 26 — December 21, 2001,

Software for the 6809 Microprocessor board

. Verkerk and A.J. Wetherili

* Call thread create function

* thread_create(thread *handle,attribute #attr,void *start,attribute *attr)
* First push arguments on to stack

ldd
pshs
1dd
pshs
pshs

*

#0

d
child,pcr
d

X

Now issue call to function

bsr
leas
std

* Just wait
ldx
swi
fecb

* Terminate
rts

for

thread_create

6.8
childid,per

Null argument pointer
Addressof child function

Address of attribute

Remove stacked function parameters
Save returned child handle

thread to finish

#0

0SThreadJoin

implicitely

No timeout allowed by POSIX 1003.1 so always clear
Wait for child thread teo terminate

*Child thread functioen. This function does nething
* char child(void)

child

* gxplicit termination via system call

1db
swi
fch
rts

#1

053ThreadExit

This value is returned to any waiting thread

Return to system {should not execute this)

* thread_create(thread *handle, attribute *attr,void *start,attribute *attr)

thread_creat

e

* Offsets on stack:

* 3+0
542
S5+4
546

L

leau
leas

Return address

Thread argument address
Thread starting address
Attribute address

0,8
POSIZE,s

Establish stack frame
Place thread creation block on stack

#* Fill in thread creation structure using attribute and function arguments

1dy
leax
ldd

6,1
0,8

Point at the attribute
Point at the creation structure

attr_stackaddr,y Get requested address

Workshop on Distributed Laboralory Instrumeniation Systems.

120

Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Sofiware for the 6809 Microprocessor board C. Verkerk and ALJ. Wetherilt

bne cthreadl

* Requested stack address is null so create a new stack using memory manager

pshs u Need an extra register

lean 0,y

lda attr_page Get requested memory page

ldx attr_stacksize,y Get requested stacksize

swi Call memory allocation function

fcb USPAllocMem

sta attr_page,u

sStx attr_stackaddr,u

sty attr_stacksize,u

leay 0.,u Reset ¥ to point at attribute

puls u Reset u to point at stack frame
cthreadl

leax 0,s Point at thread creation structure on stack

ida attr_page,y Set page

sta PSEG,x

1ldd start,pcr Set strt of code segment

std CSEG,x

ldd attr_stackaddr,y Set stack address

std S8EG,x

ldd attr_stacksize,y Set stack length

std SLEN,x

ldd 4,2 Set thread entry point

std CSTART, x

144 2,1 Set thread argument

std ARGPTR, x

lda attr_priority,y Set thread starting priority

sta TPRIO,x

1d4 #0 No extra memory is needed

std TMEM, x

lda attr_detachstate,y Set thread attributes

ora attr_cancelstata,y

ora attr_canceltype,y

sta TATTR,x

lda attr_directpage,y Set data direct page

sta DP,x

* Issue call to kermel function

1da attr_priority,y Set priority
swi
fcb 0SThreadCreate

* Return thread handle in d
rts

Workshop on Distributed Laboratory Instrumentation Systems. 121
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Appendix H

A debugging example

In this section it is assumed that a terminal ecmulator programme is available
and running, and that the ICTI’09 board is connected via the first serial
port. to the host and to a suitable power supply. Since the commands used
to transmit code across the link depend on the particular terminal emulator
used, all such commands will be in italics as pseudo commands. Thus, send
code would causc the code to be transmitted to the board.

Before any session is begun, when the terminal is running, the RESET
button on the [CTP09 board should always be pressed. This both resets the
board to a known state and gives the user an indication that the board is
responding correctly by returning a sign on message. Currently this message
is "RIn0OS” followed by the version number. Connections, band rate settings
etc should be checked if this message does not appear. The prompt sign >’
always appcars when the monitor is ready to receive input.

TP5.519 is an absolute code file with an origin at 0x2200, and length
%618 bytes. It i1s to be downloaded with a stack size of 0x300 bytes, priority
4 and the arguments ” Mary had a little lamb”.

Firstly we set the default stack size to 0x300:

>gs 300

This can be checked by looking at the memory. The RInOS work area starts
al. 0x100 and the default stack size occurs at 0x111.
The command

>d 110
will reveal the following memory dump:

01 2 3 45 6 7 8 9 A B C D E F
0110 00 03 Q0 00 00 40 00 EC 00 82 00 45 00 8C 00 D1 e.....
>

122

Software for the 6809 Microprocessor board C. Verkerk and ALl Wetheriit

At addresses 0x111 and 0x112 is the value 0x0300, indicating that the
stack size is now set to 0x300.
The file can now be sent using the following instruction sequence:

>la 618,4 Mary had a little lamb

followed by the emulator command send code. The monitor will now
send the code to the board. When transmission is complete the monitor will
respond with:

Task \# 2 loaded at address 00:2200
>

The TCB of the new task can be examined by doing a memory dump of
the first 0x80 bytes of the RInOS work area:

>d 100 80
Which will give on the display:

01 2 3 45 6 7 8 9 A B C D EF

0100 00 01 01 30 01 01 30 01 01 58 00 00 00 64 00 00 ..0..0..X...d..
0110 10 03 00 00 00 40 00 EC 00 00 00 45 00 8C 02 80@..... E....
0120 00 00 00 00 00 02 Q0 10 00 20 Q0 00 00 64 20 FE |
0130 00 00 00 01 00 00 00 EC 01 00 00 45 1E FO Q0 00 E....
0140 00 00 0C 00 00.02 Q0 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 Q00 Q0 00 01 30 01 02 04 00 22 00 0....".
0160 24 00 03 00 2C FO Q0 01 00 Q0 00 C6 AF 64 Q0 00 ...,........ d..
0170.00 00 00 Q0 00 00 00 00 00 Q0 00 Q0 00 01 Q0 00
>

Several points are worth noting here. The null thread is always the first
thread and as such has its TCB at address 0x130. The task we have just
loaded can be seen at address 0x158. The priority is at offset 4 and can be
seen to be 4 as sct. The task handle at offset 2 is 2 and the status of the
task is O indicating that it is ready to run when dispatched by the kernel.
The priority field at offset 4 into the TCDB is set to 4 in accordance with
the command line. The various linked lists set up during initialisation can
clearly be scen. Starting af the priority list pointer at address 0x108, the
list of tasks in order of priority can be read, at offset zero of TCB, as 0x158
which in turn points at 0x130 which is null.

The memory allocated to the new task can also be examined:

Workshop on Distributed Laboratory Instrumentation Systems. 123
Abdus Salam ICTP, Tricste Nowvember 26 — Docemnber 21, 2001,

Soltware for the 6809 Microprocessor board . Verkerk and ALl Welheorily

>d 2000 20

01 2 3 45 6 7 8 % A B C D EF
2000 00 00 02 02 02 02 02 02 02 02 02 02 02020202
2010 02 02 02 02 02 02 02 02 02 02 FF FF FF FF FF FF
>

From the TCB we can find the code segment, the stack segment, and
the stack length at offsets 6 (0x13e), 8 (0x160), and 10 (0x162) respectively.
These show that the code segment starts at address 0x2200, and the stack
segment starts at 0x2a00 with a length of 0x300 bytes, in agreement with
the values seen in the memory allocation table in which the physical address
0x2a00 is represented by the block at location (0x2014. The 0x100 bytes
starting at 0x2100 (address 0x2002 in the memory allocation table) is the

process prefix segment which contains the following:

>d 2100 20

01 2 3 4 5 6 7 8 9 A B C D E F
2100 05 BF 00 FF 4D 61 72 79 20 68 61 64 20 61 20 6CMary had a 1
2110 69 74 74 6C 65 20 6C 61 6D 62 00 50 00 12 00 40..ittle.lamb.P...Q
>

As expected, the number of arguments passed at the command line and
stored in location 0x2100 is 5. The argument string can clearly be seen
starting at location 0x2004 and ending with a null character at location
0x211a.

Before starfing RInOS, a few breakpoints will be set, one each in the
main thread and one in the null thread. The null thread has been placed
in RAM to allow breakpoints to be set. We choose to set the breakpoint in
the main thread at the start of the exccutable code. This can most easily
be found from the code listing, but let us find this value using the monitor
functions. As there is no field to denote the entrance point of the code in
the TCB we can deduce it from the context placed by RInOS on the stack.
The stack pointer {at offset 12 in the TCB) at address 0x164 has the value
0x2cf0. We dump this valuc:

>d 2¢f0
© 1 2 3 4 5 6 7 8 9 A B C D E F

2CF0 00 01 02 29 00 B2 00 95 29 00 25 87 C6 11 21 00 ..)....).%...1.
>

The 6809 pulls its registers in the order: cer, a, b, dp, x, ¥, u, pc. At
offset 10 into the stack (0x2cfa) therefore we can find the starting address of
the task in memory. We can see that this is the address 0x2587 and we set
a breakpoint at this location.

Workshop on Distributed Laboratory Instrumentation Systems. 124
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Weiherili

>b 25687

00:2687

>h 12e

00:2587 00:012E
>

Note also that the D register {A+B) contains the thread handle 0x0102,
Now start RInOS:

>X

The monitor will stop at address (0x2587 in the main thread. If the timer is
correctly jumpered issuing the command

>8
PC-2587 A-01 B-02 X-00b5D Y-002D U-2900 S-2B7C CC-80 DP-29
>

will bring ns immediately back to the same instruction. This is a peculiar-
ity of the monitor and to proceed we must first pass through the breakpoint
by removing it.

>b -2587 00:012E
>g

PC-012E A-00 B-00 X-0100 Y-00CO U-0000 S-1EFC CC-80 DP-20
>

The next stop is in the null thread. This will only occur when no other
thread is able to run either because of blocking or as a result of thread
termination. It is easy to determine which by cxamining the RInOS work
arca again.

>d 100 80

01 2 3 45 6 7 8 9 A B CUDEF
0100 G0 01 01 30 01 01 30 00 01 30 00 FF 00 00 01 00 ..0..0..0
0110 00 03 00 00 00 40 Q0 EC 00 82 00 05 00 8C 00 D1@....
0120 00 96 00 FB Q0 FF 00 FF 00 FB 00 FF 00 F7 20 FE
0130 0C 00 00 01 Q0 00 00 EC 00 Q0 00 05 1E FO G0 00
0140 00 96 00 GO Q0 FF 00 00 00 GO0 00 00 00 00 GO 00

0150 00 Q0 00 GO 00 00 00 00 01 30 01 02 04 CO 22 00 0....

0160 28 80 03 00 2B 72 00 01 Q00 00 00 C6 AF 77 00 00 ...+r....

0170 00 00 00 23 5A 00 00 00 Q0 GO 00 00 00 01 OC 80 . .#Z.....
>

Workshop on Dislributed Laboratory Instrumentation Sysicms. 125
Abdus Salam ICTP, Tricsie November 26 — Decermnber 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Here we see that the priority list pointer at address 0x108 points directly
at the null thread without any other thread in the chain. This means that
the main thread has terminated; were it still alive, it would be linked into the
priority list. That the main thread has indeed finished can also be seen from
the value of its status field at offset 5 into its TCB (address 0x15d). This
has the value Oxc0 indicating a suspended, zombie thread that can never be
removed. If the attribute bits had been sef to allow the thread to be detached
(Detach state ON) the thread would have been killed outright. The thread
terminated normally and returned a zero value, according to the EXITSTS
and EXITCODE fields at offsets into the TCB of 17 and 18 respectively.

Workshop on Disteibuted Laboratory Instrumentation Systems. 126
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Appendix 1

System calls from C

Function Prototype Corresponding +#
From libereal.a : System Call

char* at_exit{void* exit_function, int* argument) | OSAtExit 25
char* calloc_mem(int tid, int size) OSCAllocMem 20
void cancel_point(void} OSCancclPoint 28
int efree.mem(int size, void* addr) OSCFreeMem 21
int create_pipe(int width) OSCreatePipe 31
int create_semf{int scm_typc, int init_valuc) OSCreateSem 1
int down_hybrid(struct® sem, struct™ mutex) OSDownHybrid | 43
int down_sem({int sem.num) OSDownSem 3
int down_user_sem(struct® user_sem) OSDownUserSem | 40
int free_sem{int sem_num) OSFreeSem 2
int free_user_sem{struct* user_sem) OSFreeUserSem | 39
int get.last_error(void) OSGetLastError | 29
char* get_message(int pid) OS5Receive 8
char* get_task_info{void} 0SGetTaskInfo 26
int install_driver{int device_num, int new, ObSlnstallDriver 24

void* params)

int mssleep(int niicks) OSSleep 18
char* palloc_memf{int tid, int* sizc, int* page) OSPAllocMem 22
int pfree_mem{(int sizc, void* addr, int page) OSPFreeMemn 23
void printerr(void} None

Continued on next page

Table I.1: C functions, resulting in a system call

127

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

Continued from previous page

Function Prototype Corresponding #
From libereal.a ; System Call

int read_pipe{int pipe_id, void* data) OSReadPipe 38
int rd.close_pipe(int pipe_.id) OSRClosePipe 36
int rd_open_pipe(int pipc_id) OSROpenPipe 35
int release_pipe(int pipe_id) OSReleasePipe 32
int reset_esem(int sem num) OSResetESem 5
int reset_signal(int signal num) OSResetSignal 30
int reset._user_esem(struct® user_scm) OSResetUserESem | 42
int send_message(int pid, char* message) OSSendMessage 6
int set_priority(int prierity, int pid) (OSSetPriority 17
int set_thread_attr{int attrs) OSSetThreadAttr | 27
int signal{int sig.nuin, int type, void* params) 0OS8Signal 9
void start(void) OSStart, 11
int thread_create(int priority, void* creale_block) | OSThreadCreate | 13
int thread_exit{void) OSThreadExit 14
int thread _install{void* create_block) OSThreadInstall 12
int thread_join(int pid, int time_out) (SThreadJoin 15
int thread kill{int pid} (OSThreadKill 16
int up_sem{int sem num} OSUpSem 4
int up_user_semi{struct® uscr_sem) 0OSUpUserSem 41
int wait_message(int pid, char* message) OSWaitMcssage 7
void* wait_signal{int sig_nnmj OSWaitSignal 10
int wake(int pid) OSWake 19
int, wr_close_pipe(int pipe_id) OSWClosePipe 34
int wr_open_pipe(int pipe_id) OSWOpenPipe 33
int write._pipe(int pipeid, char* data) OSWritePipe 37
int yield(void) OSYield 0

Table [.1: C functions, resulting in a system call Coutinued
Workshop on Distributed Laboratory Instrumentation Systems. 128

Abdus Salam ICTP, Trieste November 26 - December 21, 2001,

Appendix J

Programming examples in C

J.1 A sample program using pipes

/* File: ttdc.c
*

Transpesition of Jim’s tp4.s into C.

The program tests the usage of pipes. The main thread sets
up a pipe and sends strings to the child, which prints them
on the lcd display.

Defining a very long string turned out to be difficult. The
string is defined in pieces, which are glued together in
‘primebuf’.

¥ O X % X X X ¥ X X *

cv, January 19, 1998
*/

#include <syscalls.h>
#include <ICTP_IO.h>

extern int tid;

extern struct creation_block tcbmain;
char primebuf[512];

char cbuffer[512];

char localbuf[16];

int mainpid, clpid;

int pipe, width, clprio;

/* Function prototypes: */

129

Software for the 6809 Microprocessor board C. Verkerk and A.J. Welherilt

void main{void) ;
void childl(void);
int create_child(int);

void main(void)

{
int i;
char *pt;

char * pt2;
char* msgl[10];

/* Define anumber of ‘short’ strings */

char *pQ = "The Walrus and the Carpenter were walking ";
char *pl = "close at hand “;

char *p2 = "They wept like anything to seesuch quantities";
char *p3 = " of sand. If this were only cleared “;
char *p4 = "away, they said, it would be grand. ",
char *pb = "If seven maids with seven mops swept it for “;
char *p6 = "half a year Do you suppose the Walrus said, “;

char *p7 = "that they couldsweep it clear?";
char *p8 = "I doubt it said the Carpenter, and shed a -
char *p9 = "bitter tear. "

/* Define an array of pointers */
msgl [0] = pO;
msgl[1] = p1;
msgl[2] = p2;
msgl[3] = p3;
msgl[4] = p4;
msgl[5] = pb;
msgl[6] = p6;
msgl[7] = p7;
msgli[8] = p8;
msgli[9] = p9;

mainpid = tid;
width = 1;
clpric = 3;

pt2 = primebuf;

/* Glue the strings together, leaving out the \0 characters %/
pt = msgl[0];

Workshop on Distributed Laboratory Instrumentation Systems. 130
Abdus Salam ICTP, 'Tricste November 26 - December 21, 2001.

Software for the 6809 Microprocessor board . Verkerk and A.J. Wetherilt

for (i=0; 1i<10; i++, pt=msgi[i]) {
while (kpt != ’\07) *pt2++ = *pt++;

¥

*pt2++ = ’\07;

*pt2 = \0G7;

pt2 = primebuf;

/* Create a child thread and */
/* Set up a pipe for writing, and write to the pipe */
pipe=create_pipe(width);
¢lpid = create_child(clprio);
wr_open_pipe(pipe);
while(*pt2 1= Q) {
write_pipe(pipe, pt2++};
};

write_pipe(pipe, pt2); /* Don’t forget the send the \0’ =/

/* Close the pipe and finish off %/
wr_close_pipe{pipe};
release_pipe(pipe);
thread_join(cilpid, 0);
(void)thread_exit(};

/* Child opens the pipe, reads from it and outputs 15 chars */
/* at a time to the LCD display =/
void childil(void)
{
int k;
char* pt;

localbuf[15] = *\0*;
pt = cbuffer;

rd_open_pipe(pipe);
do {
for (k=0; k<15; k++) localbuf[k] ='\0’;
for{k=0; k<15; k++, pt++) {
read_pipe(pipe, pt);
localbuf [k] = *pt;
if (xpt == ’'\0’) break;
}

‘Workshop on Distributed Laboratory lnstrumeniation Sysiems.
Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

131

Software for the 6809 Microprocessor hoard C. Verkerk and AL Woelherils,

(void)printf ("}s\n", localbuf};
mzsleep(100);
} while(*(pt-1) I= *\0’);
(void)printf (")s\n", localbuf);
rd_close_pipe(pipe};

return;

}

/* Standard routine to create a child thread */
int create_child({int prior)
{
int chlpid;
tcbmain.tpric = prior;
tcbmain.sseg = tcbmain.sseg - 0x100;
tcbmain.tdp = tcbmain.tdp + 1;
tcbmain.cstart = childl;

(chlpid =thread_create(prior, &tcbmain}) ;
return(chipid};

J.2 A similar program using messages
/* File: tt2b.c
Transpesition of Jim’s test2.s inteo C.

The program tests thread creation and sending and recieving of messages
cv, January 8, 1998

L A L S

*/
#include <syscalls.h>

extern int tid;
extern struct creation_block tchmain;
int mainpid, clpid, c2pid, msglid, msg2id;

/* Function prototypes: */
void main{veid);
void childl(void);

Workshop on Distribuied Laboratory Instrumentatlion Sysiems. 132
Abdus Salam CTP, Trieste November 26 — December 21, 2001,

Software for the 6802 Microprocessor board C. Verkerk and A.J. Wetherilt

int create_child(int);

void main(void)

{
int clprio;
char msgl[] = "Now is the";
char msg2[] = "winter of our";

mainpid = tid;
clprio = 3;
cipid = create_child{ciprio);

/* keep sending messages */
while(1) {
if (send_message (clpid, msgl) <0) printerr();
/* give time to receive, print and read the message */
mgsleep(100);
if (send_message(clpid, msg2) <0) printerr();
mssleep(100);
}
exit (0);
b

void childl(veid)
{

char* mess;

/* keep receiving a message and printing it */
while(1} {
if ((mess = get_message(0)) < 0) printerr{);
(void)prntf("{s\n", mess);
by
return;

}

int create_child(int prior)
{
extern struct creation_block tcbmain;
int chlpid;
tcbmain.tprio = prior;
tcbmain.sseg = tcbmain.sseg - 0x100;

Workshop on Distributed Laboratory Instrumentation Systems.
Abdus Salam ICTP, Tricste November 26 — December 21, 2001.

133

Software for the 6809 Microprocessor board C. Verkerk and A, Wetherilt

tcbmain.tdp = tcbmain.tdp + 1;
tcbmain.cstart = childi;

if({chlpid =thread_create{prior, &tcbmain)) < Q) printerr(};
return(chipid};

Workshop on Distributed Laboratory Instrumentation Systems. 134
Abdus Salam ICTP, Tricstc November 26 — Decamber 21, 2001,

Appendix K

Assembler listing of a compiled
program

The following is an cxample of an assembler listing produced by the cross-
compiler, assembler, linker chain. The comments have also been generated
by the compiler and are reproduced without having done any editing. The
program is the same as the second example in the preceeding Appendix.

;33 Start MCE808 xgcc assembly output

;33 xgee compiler compiled on katje

i3 This is versien 4.0.6 of xpcc for mB80Y

;33 OPTIONS: -mlong_branch !strength. reduce

i3i OPTIONS: peephele !omit _frame_pointer !signed-char
15 Source: tt2ec.¢

;33 Destination: /tmp/cca(1132.s=

Lol I« T L ISR L I

9 ;3 Compiled: Tue Aug 25 15:06:50 1998
10 ;;; (META)compiled by GNU C versiom 2.7.2.
11 55 et et S E LS R
12 .module tt2Zc.c
13
14 .area _BS3
t5 .area _CODE

0000 16 LCO:

0000 4E BF 77 20 60 73 17 .ascii "“Now is the"

20 74 68 65
OGOA 00 18 .byte 0x0
000B 19 LC1:

OOQB 77 69 6E 74 65 72 20 .ascii "winter of our®
20 6F B8 20 6F 75

72
0018 00 21 .byte Ox0
22 .globl _main
Q019 23 _main:
24 P = == =
25 ;;: PROLOGUE fer main
26 T e e
0519 32 E8 ES 27 leas -27,s ; allocate 27 bytes auto variables
001C 34 20 28 pshs y ; Save stack frame
Q01E 1F 42 29 tfr s,y ; Set current stack frame

135

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

4020 9E 00 30 ldx *ZD1
4022 34 10 31 pshs x ; pushed register *ZD1
0024 9E 00 32 ldx *ZD2
0026 34 19 33 pshs x ; pushed register *ID2
34 ;;;END PROLOGUE
0028 17 Q0 00 35 1lbsr ___main ; CALL: (V0IDmode} ___main,pcr {0 bytes)
0028 1F 20 36 tfr y,d
002D C3 DO D4 37 addd #4
0030 DD 00 38 std *ZD1 ; addhi2: vy by #4 -> *ZD1
0032 1F 20 39 tfr y,d
0034 C3 00 04 40 addd #4
0037 DD 00 41 std *ZD2 ; addhid: y by #4 -> *ZD2
0032 CC 00 OB 42 1dd #11 ; first part of mevhi for ¥const
003C 34 06 43 pshs d ; second part of ‘'movhi’, case PRE_DEC
OC3E 30 8C EBF 44 leax LLO,per ; address of symbol -> X
0041 1F 10 45 tfr x,d ; 1st part of movhi for symbol or label
0043 34 06 46 pshs 4 ; second part of ’‘movhi’, case PRE_DEC
0045 DC 00 47 ldd *2D2 ; first part of mevhi for REG
Q047 LD 00 43 std *2D0 ; second part of movhi, REG
049 17 00 00 49 1bsr _memecpy ; CALL: {(V0IDmode} _memcpy,pcr (4 bytes)
04C 32 64 50 leas 4,s ; addhi: R:s = R:ig + 4
004E 1F 20 51 tfr y.d
0050 €3 00 COF 52 addd #15
(0353 DD 00 53 std *ZD1 ; addhi3d: y by #15 -> *ZD1
0055 1F 20 54 tfr y,d
0057 €3 00 OF 56 addd #15
GOBA DD 00 56 std *ZD2 ; addhi3: y by #15 -> *ZD2
005C CC 00 OE EY 1ldd #14 ; first part of movhi for #*comst
Q0GF 34 086 58 pshs d ; second part of ‘movhi’, case PRE_DEC
0061 30 8C AT 59 leax LC1,pcr ; address of symbel -> X
0064 1F 10 60 tfr x,d ; 1st part of movhi for symbol or label
0066 34 06 81 pshs d ; second part of ‘movhi’, case PRE_DEC
0068 DC 00 62 ldd *ZD2 ; first part of movhi for REG
Q064 DD 00 83 std #ZD0 ; second part of moevhi, REG
Q06C 17 00 0O 64 1bsr _memcpy ; CALL: (VOIDmede) _memcpy,per (4 bytes)
Q0BF 32 864 65 leas 4,s ; addhi: R:s = R:s + ¢
0071 EC 8D 00 00 66 1ldd _tid,per ; first part of movhi, default.
0075 ED 8D 00 OO 67 s8td _mainpid,pcr ; second part of movhi, default.
0079 CC 00 03 68 1dd #3 ; first part of movhi for #const
007C ED 22 62 std 2,y ; second part of ‘movhi’ case PLUS register(l).
007E EC 22 0 ldd 2,y ; first part of ’movhi’ case PLUS register{l).
0080 DD 0O 71 std *ZD0 ; second part of movhi, REG
Q82 17 00 BY 72 1lbsr _create_child ; CALL: R:+ZD0 = _create_child (#0 bytes)
0085 DC 00 73 1dd *ZD0 ; first part of movhi fer REG
Q08T DD QO 74 std #ZD01 ; second part of movhi, REG
008% DC OO0 75 1ldd *ZD1 ; first part of movhi for REG
008B ED 8D 00 02 76 std _clpid,per ; second part of movhi, defanlt.
QOBF 77 L2:
QDBF 16 G0 03 78 lbra L4
0092 16 00 49 79 1lbra L3
0095 80 L4:
0095 1F 20 81 tfr y,d
0097 C3 00 04 82 addd #4
Q094 0D 40 83 std *ZD1 ; addhi3d: y by #4 -> *ZD1
409C DC 00 84 1dd #2ZD1 ; first part of movhi for REG
009E 34 06 85 pshs d ; second part of ’'movhi’, case PRE_DEC
DOAG EC 8D 00 02 86 1ldd _clpid,per ; first part of movhi, default.
00A4 DD Q0 87 std *ZD0 ; second part of movhi, REG
0046 17 00 0O 88 lbsr _send message ; CALL: R:#ZD0 = _send message (#2 bytes)
00AS 32 52 89 leas 2,3 ; addhi: R:s = Ris + 2
00AR DC 00 90 1ldd *ZD0 ; first part of movhi for REG
DOAD DD 00 91 std *ZD1 ; second part of movhi, REG
Workshop on Distributed Laboratory Instrumentation Systems. 136

Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6509 Microprocessor board

. Verkerk and AJ. Wetherily

DOAF DC 00 92 ldd *ZDM ; tathi: R:%ZD1
OOBL 10 2C 00 03 93 1bge L& ; (bge) long branch
QOBS 1T Q0 QO 94 1lbsr _printerr ; CALL: (V0IDmede} _printerr,pcr (0 bytes)
O0B8 35 L5:
OGBS 1F 20 96 tfr y,d
QOBA C3 00 OF 97 addd #15
O0BD DD 00 98 std +ZD1 ; addhi3: y by #15 -> *ID1
O0BF DC 00 99 1dd *ZDt ; first part of movhi foxr REG
00C1 34 08 100 pshs d ; second part of ’movhi’, case PRE_DEC
0QC3 EC 8D 00 D2 101 1dd _clpid,per ; first part of movhi, default.
00C7 D 00 102 std #ZD0 ; second part of movhi, REG
00C9 17 00 Q0 103 1lbsr _send_message ; CALL: R:#ZD0 = _send_message (#2 bytes)
GOCC 32 52 104 1leas 2,s ; addhi: R:z= = R:a + 2
QOCE DC 0O 106 1dd *ZD0 ; first part of mevhi fer REG
oong DD QO 106 std *ZD1 ; second part of movhi, REG
00B2 DC 00 107 1dd #ZD1 ; tsthi: R:#ZD1
00D4 10 2C 00 03 108 1lbge L6 ; (bge) long branch
00DS 17 00 0 109 1lbsr _printerr ; CALL: (V0IDmede) _printerr,per {0 bytes)
QO0DB 119 L6:
00DB 16 FF Bl 111 1lbra L2
OODE 112 L3:
QQDE 4F 113 clra ;
QODF BF 114 clrb ; first part of movhi for #0
QOEQ DD Q0 115 =std *ZD0 ; second part of movhi, REG
00E2 17 00 00 116 1bar _exit ; CALL: R:#ZD0 = _exit (#0 bytes)
QOES 117 L1i:
118 ;;;EPILOGUE
00ES 3B 10 119 puls x ; Pulling register *Z02
DOE7 9F 00 120 stx *ZD2
0OOES 35 10 121 puls x ; Pulling register +ZD1
GOEB GF 00 122 stx *ZD1
QQED 3% 20 123 puls y ; Restore stack frame
ODFEF 32 E8 1B 124 1leas 27,5 ; deallocate 27 bytes aunto variables
GOF2 39 126 rts ; return from functiomn
126 ;33— -—=- =
127 ;;: END EPILOGUE for main
128 ;=== e
00F3 120 LC2:
QQF3 25 73 130 .asecii "%s"
00F5 0A 131 .byte OxA
00F6 G0 132 .byte 0x0
133 .glebl _childl
00F7 134 _childl:
135 ;e
136 ;;; PROLOGUE for childi
137 ;= ====—— e e
QOFF 32 VE 138 leas -2,s ; allocate 2 bytes auto variables
QOF8 34 20 139 pshs y ; Save stack frame
OCFB 1F 42 140 tfr s,y ; Set current stack frame
QOFD SE OO0 141 1dx *ZD1
OOFF 34 10 142 pshs x ; pushed register #ZD1
143 ;;:END PROLOGUE
0101 12 144 nep
0102 145 LB:
0102 16 00 03 146 1bra L10
0105 16 00 28 147 1lbra 19
0108 143 L10:
0108 4F 149 c¢lzra ;
0109 5F 150 ¢lrk ; first part of movhi for #0
0104 DD GO 151 std *ZD0 ; second part of movhi, REG
010C 17 00 Q0 152 1bsr _get_message ; CALL: R:*ZD0 = _get_message (#0 bytes)
GO10F DC 00 153 ldd *2D0Q ; first part of movhi for REG
Workshop on Distributed Laboratory Tnstrumentation Systems. 137

Abdus Salam LCTP, Iviesic November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Q111 DD 00 154 =td *ZD1 ; second part of movhi, REG
0113 DC Q0 165 1dd *2D1 ; first part of movhi for REG
0115 EP 22 156 std 2,y ; second part of ’movhi' case PLUS register(1).
0117 16 46 03 167 1lbra Lil
0114 17 00 00 158 1lbsr _primterr ; CALL: (V¥0IDmede) ._printerr,pecr (0 bytes)
011D 159 Li1:
011D EC 22 160 1ldd 2,y ; first part of ’movhi’ case PLUS register(l),.
Q11F 34 06 161 pshs d ; second part of ‘movhi’, case PRE_DEC
0121 30 8C CF 162 leax LC2,pcr ; address of symbol ~> X
0124 1F 10 163 +tfr x,d ; 1st part of movhi for symbol or label
0126 DD QO 164 std *ZD0 ; second part of movhi, REG
0128 17 00 00 165 1bsr _pratf ; CALL: R:#ZDO = _prntf (#2 bytes)
012B 32 62 186 leas 2,s ; addhi: Ris = R:s + 2
012D 16 FF D2 167 1lbra L&
0130 168 L9:
0130 16 00 00 169 1lbra L7
0133 170 L7:
171 ;;;EPILGGUE
133 35 10 172 puls x ; Pulling register *ZD1
0135 9F 00 173 stx *ZD1
0137 36 20 174 puls ¥y ; Restore stack frame
0139 32 82 175 1leas 2,3 ; deallocate 2 bytes auto variables
013 39 176 zrts ; return from functiom
L B ittt
178 ;;; END EPILOGUE for childl
179 G s=m T mem s m e m e m e
180 .glebl _create_child
013C 181 _create_child:
182 ;3 e -
183 ;;; PROLOGUE for create.child
184 ;; =rmmmmmmmmm e
313¢ 32 YC 185 1leas -4,s ; allocate 4 bytes auto variables
013E 34 20 186 pshs y ; Save stack frame
0140 1F 42 187 tfr s,y : Set current stack frame
0142 9E 00 188 1dx #ZD1
0144 34 10 189 pshs x ; pushed register *ZD1
190 ;;;END PROLOGUE
0146 DC €O 191 1dd #ZD0 ; first part of movhi fer REG
G148 ED 22 192 std 2,y ; second part of ’movhi’ case PLUS register(l),
014A E6 23 193 1db 3,y ; first part of movqi’ case PLUS register(l).
014C ET 8D 00 0B 194 stb _tcbmain+ll,per ; second part of movgi, defanlt.
015¢ EC 8D 00 03 195 1dd _tcbmain+3,per
0154 €3 FF 00 196 addd #-286
0157 ED 8D 00 03 197 std _tcbmain+3,per | addhid: _tcbmaint3,per by #-256 -> _tcbmaint+3,per
Q1G58 E6 8D 00 11 198 1db _tcbmaintl7,per
015F CB 01 199 addb #1
Q161 E7 8D 00 11 200 stb _tcbmain+tl?,pcr ; addqil3: _tebmain+i?,per by #1 -> _tcbmain+l7,per
0165 30 &C &F 201 leax _childl,per ; address of symbol -> X
0168 1F 10 202 +tfr x,d ; 1st part of movhi for symbol or label
0164 ED 8D 00 07 203 std _tcbmain+¥,pcr ; second part of movhi, default.
016E 30 8D 00 00 204 leax _tchmain,per ; address of symbol -> X
0172 1F 10 206 tfr x,d ; lst part of movhi for symbol or label
0174 34 06 206 pshs ¢ ; second part of *mevhi’, case PRE_DEC
0178 EC 22 207 1ldd 2,y ; first part of 'movhi’' case PLUS register{(1).
0178 DD 00 208 std *ZD0 ; second part of movhi, REG
QL7L 17 Q0 00 209 1bsr _thread.create ; CALL: R:*ZD0D = _thread_create (#2 bytes)
Q17D 32 &2 210 leas Z,s ; addhi: R:3 = Ris + 2
Q17F DC 00 211 1dd *ZD¢ ; first part of mevhi for REG
0181 DD 0O 212 =td *ZD1 ; second part of movhi, REG
0183 DC 00 213 1dd *ZD1 ; first part of movhi for REG
Q185 ED 24 214 std 4,y ; second part of 'movhi’ case PLUS register{l).
0187 EC 24 215 1ldd 4,y ; tsthi: R:4,y
Workshop on Distributed Laboratlory Tustrumentation Systems. 138

Abdus Salam ICTP, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

0189 10 2C 00 03 218 1bge L1323 ; (bge) long branch
018D 17 G0 0O 217 1lbsr _printerr ; CALL: (VOIDmede} _printerr,pcr {0 bytes)
0190 218 L13:
Q190 EC 24 219 ldd 4,y ; first part of ‘movhi’ case PLUS register(l)}.
g192 DD 00 220 std *ZD0 ; second part of movhi, REG
0194 16 00 00 221 1lbra Li2
0197 222 L12:
223 ;;;EPILOGUE
0197 35 10 224 puls x ; Pulling register =IDL
0193 9F 0 2256 stx *ZD1
0188 35 20 226 puls y ; Restore stack frame
019D 32 64 237 leas 4,s ; deallocate 4 bytes autoc variables
{1G9F 39 225 rts ; return from Function
229 e e e
230 ;;; END EPILOGUE for create_child
231 e ————
232 .,area _BSS
233 .globl _mainpid
0000 234 _mainmpid: .blkb 2
235 .globl _clpid
0002 236 _clpid: .blkb 2
237 .glebl _c2pid
0004 238 _c2pid: .blkb 2
239 .glebl _msglid
Gao6 240 _msglid: .blkb 2
241 .glohl .msg2id
G008 242 _msg2id: .blkb 2
243 ; END
Workshop on Distributed Laboratory Instrumentation Systems. 139

Abdus Salar ICTP, ‘Trieste Novernber 26 — Decernber 21, 2001

Appendix L

Example of a .map file

Below is the .map file of the program shown in the second example of Ap-

pendix J.

Hexidecimal

Addr

0000

Size

JABS.

Global

DIRECT _start
_B55_length
_DATA_length
DIRECT_length
_CODE_length
PAGES_length
STACK .length
_CODE_start
_DATA_start
_BSS_start
PAGES_start
STACK _start

Size

140

0000 =

oD75 =

Decimal Bytes (Attributes)

0. bytes (AB3,0VR)

Decimal Bytes (Attributes)

3445. bytes (REL,CON)

Software lor the 6809 Microprocessor board C. Verkerk and ALJ. Weiherili

2104 _argv
2180 _Empty
2200 _start
226C ___main
228A _exit
22B9 _main

2397 _childl

23DC _create_child
2440 _prontf

2470 _send

2470 _send_message
2491 _printerr

2665 _putc

274B _receive

274B _get_message
2772 __dprot

2432 _memcpy

2483 _thread create
2AB7 __prti0

2B86 __prtis

2C2F _ICTP_IO_write
2088 ___modhi3

2DBB ___divhi3

2DF0 _divxbd

Hexidecimal
Area Addr Size Decimal Bytes (Attributes)
DIRECT 0000 003D = 61. bytes (ABS,0VR,PAG)

Workshop on Distributed Laberalory Instrumentation Systems. 141
Abdus Salam ICTPE, Trieste Novernber 26 — December 21, 2001,

Software for the 6809 Micropracessor hoard C. Verkerk and A.J. Wetherilt

002C errno

O02E Fpacclex
Q02F Fpacclmn
0032 Mantsgnl
0033 FpaccZex
0034 FpaccZmn
0037 Mantsgn2
0038 Fpacc3ex
0039 Fpacc3mn
003C Mantsgn3

Hexidecimal
Area Addr Size Decimal Bytes (Attributes)
_DATA 2E7H 0016 = 22. bytes (REL,CON)

2E75 _tcbmain

Hexidecimal
Area Addr Size Decimal Bytes (Attributes)
_BSS 2E3B 0011 = 17. bytes (REL,CON)

2E8D _pia_mode
2ESE _pshbttn
2E90 _mainpid
2E92 _clpid
2E94 _c2pid
2E98 _msglid
2E98 _msglid

Hexidecimal

Area Addr Size Decimal Bytes (Attributes)
PaGES JESC 1000 = 4096. bytes (REL,CON)
Hexidecimal

Area Addr Size Decimal Bytes (Attributes)
STACK - SESC 1100 = 4352, bytes (REL,CON)
Workshop on Distributed Laboratory Instrumentation Syslems. 142

Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Welherill

Files Linked [medule(s)]

fusr/lib/gec-1ib/m6809-1ocal/2.7.2.2/crt0.0 [startup]
/tmp/ccafll132io [tt2ec.c]

Libraries Linked [object file]
/appl/micros/m6809/1ib/1libc.a [protf.o/]
/appl/micros/m6809/1ib/libcreal . a [send_message.o/]
/appl/micros/m6809/1ib/libcreal . a L printerr.o/]
/appl/micros/m6809/1ib/libc.a C putc.o/]
/appl/micros/m6809/1ib/libcreal . a [get_message.o/]
/appl/micros/m6809/1ib/libc.a [dprnt.o/]
/appl/micros/m6808/1ib/libc.a L memcpy .o/]
/appl/micros/m6809/1ib/libcreal.a [/142]
/appl/micros/m6809/1ib/libc.a [prti0.o/]
/appl/micros/m6809/1ib/1libec.a L prii6.o/]
/appl/micros/m6809/1ib/1ibilreal.a [I0write.o/]
/appl/micros/m6809/1ib/libgee.a L modhi3.o/]
/appl/micros/m8809/1ib/1ibgcc.a [divhi3.o/]
/appl/micros/m8809/1ib/1ibgecc.a { divxbd.o/]

User Base Address Definitions

_CODE=0x2100

Workshop on Distributed Laboratory lustrumentation Systems.
Abduos Salam 1CTP, Trieste November 26 — Docember 21, 2001.

143

Appendix M

A debugging session with db09

The program ttlf.c, which 1s buried somewhere in the directory tree of
Jusr/local/micros/m6809 (use “find” to find it) is faulty. It is a super
“Hello World” program and it should create a child thread, which then prints
those famous words. It disappears into blue sky instead. Here is the program:

#include <syscalls.h>

extern int tid;
extern struct creation_block tcbmain;
int mainpid, clpid, clprio;

/* Function prototypes: */
void main(void);
void childl(void);

void main(void)}
{
/* Set up tcbmain and create a child thread =*/
/* Then wait for it to finish, before exiting #*/
tcbmain.sseg = tcbmain.sseg -0x0100;
tcbmain.tdp = tcbmain.tdp + 1;
tcbmain.cstart = c¢hildl;
clprio = 3;
clpid = thread_create(&tcbmain, clprio);

thread_join(clpid, 0);
(void)thread_exit();

144

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

void childi(void)

{
printf("Hello World\n'"};
return;

}

In order to debug this program we will need to consult the assembler
listing, reproduced below:

;31 Start MCE80§ xgecc assembly output

1ii xgec compiler compiled on katje

;i; This is version 4.0.6 of xgcc for mB209

; OPTIONS: —mlong branch !strength_reduce
;i OPTIONS: peephole lomit_frame_ peinter !signed-char
;i1: Source: ttif.c
;3 Destination: /tmp/ccal0340.s

9 ;:; Compiled: Tue Aug 25 15:55:54 1993

10 ;;; (META)compiled by GNU C versicn 2.7.2.

0~ S b L b

12 .module ttlf.c

14 .area _BSS
15 .area _CODE
16 .globl _main

4000 17 _main:
18 jgmmm s s e
t9 ;;; PROLOGUE for main
20 T e
0000 32 60 21 leas -0,s ; allecate 0 bytes aute variables
0002 34 20 22 pshs y ; Save stack frame
0004 1F 42 23 tfr s,y ; Set current stack frame
0D0DE 9E 00 24 1dx *ZD1
0008 34 10 25 pshs x ; pushed register #ZD1
26 ;;;END PROLOGUE
0004 17 00 00 27 lbsr ___main ; CALL: (V0IDmode) ___main,per {0 bytes)
000D EC 8D 00 03 28 1ldd _tcbmaint+d,per
0011 €3 FF 00 29 addd #-206
0014 ED &D 00 03 30 std _tcbmain+3,pcy ; addhi3: _tchmaint3,per by #-256 -> _tcbmain+3,per
0018 E6 8D 00 11 31 ddb _tebmain+l?,per
001C CB 01 32 addb #1
QQ1E E7 8D 0D 11 33 stb _tcbmain+l7,per ; addqild: _tecbmain+l7,per by #1 -> _tcbmain+i?,pcr
0022 30 8C 5D 34 leax _childl,pcr ; address of symbel -> X
0026 1F 10 35 tfr x,d ; 1st part of movhi for symbol or label
{027 ED 8D 00 07 3 s=td _tcbhmaint¥,per ; second part of movhl, default.
0028 CC 00 03 37 ldd #3 ; first part of movhi for #conat
002E ED BD 00 04 38 std _clprio,pcr ;| second part of movhi, default.
0032 EC 8D 00 04 39 1ldd _ciprio,pecr ; first part of movhi, default.
0036 34 06 40 pshs d ; second part of ’‘movhi', case PRE_DEC
0038 3¢ 8D Q0 GO 41 leax _tcbmain,pcr ; address of symboel -> X
003C 1F 10 42 tfr x,d ; 1st part of movhi for symbol or label
CO3E DD Q0 43 std #ZD0 ; second part of movhi, REG
0040 17 00 00 44 1bsr _thread_create ; CALL: R:#ZD0 = _thread_create (#2 bytes)
0043 32 62 45 leas 2,5 ; addhi: R:s = R:s + 2
0045 DC 00 46 1dd #ZD0 ; first part of movhi for REG
Q047 DD OO0 47 atd #*ZD1 ; second part of movhi, REG
0049 DC 00 48 1dd #ZDi ; first part of movhi for REG
GO4E ED 8D {0 02 49 std _clpid,per ; second part of movhi, defanlt.
Workshop on Distributed Laboratory Instrumentation Systems. 145

Abdus Salam [CTP, Triesle November 26 — December 21, 2001,

Software for the 6809 Microprocessar board . Verkerk and A.J. Wetherilt

004F EC 8D 00 02 5S¢ ldd _clpid,per ; tsthi: R:_clpid,per
0053 10 2C 00 03 51 1lbge L2 ; (bge) long branch
0057 17 00 Q0 52 lbsr _printerr ; CALL: (V0IDmode) _printerr,pcr (G bytes}
0054 853 L2:
Q05A 4F 54 elra ;
O05B BF 55 «¢lrb ; first part of movhi for #0
GOBC 34 08 56 pshs d ; second part of ‘movhi’, case PRE_DEC
OQSE EC 8D 00 02 57 ldd _clpid,per ; first part of movhi, default.
0062 DD 0O 58 =std *ZD0 ; second part of movhi, REG
0084 17 00 00 59 1lbsr _thread_join ; CALL: R:*ZD0 = _thread.join (#2 bytes)
Q087 32 62 60 leas 2,8 ; addhi: R:s = R:s + 2
Q068 17 00 00 61 1lbsr _thread exit ; CALL: R:#ZD0 = _thread_exit (#0 bytes)
006C 62 Li:
63 ;;;EPILOGUE
006C 38 10 64 puls x ; Pulling register =ZD1
00BE 9F Q0 B85 stx *ZD1
0070 35 20 66 puls y ; Restors stack frame
0072 32 €0 67 leas 0,3 ; deallocate O bytes auto variables
Q074 3¢9 688 rts ; return from function
B9 i e
70 ;;; END EPILOGUE for main
T T S
0075 72 LCO:

0075 48 85 BC 6C 6F 20 73 .ascii "Helle World"
57 6F 72 6C 64

0080 04 74 .byte Ox4
0081l oo 75 .byte Q=0
76 .globl _childl
0082 77 _childl:
- T R e e L e e TPt
79 ;;: PROLOGUE for childl
Bl ;= e
G082 32 60 81 leas -0,s ; allocate O hytes auto variables
00g4 34 20 82 pshs y ; Save stack frame
0DBE 1F 42 83 tfr s,y ; Set current stack frame
84 ;;;END PROLOGUE
0035 30 &8C EA 85 leax LCO,pcr ; address of symbol -> X
Q03B 1F 10 86 +tfr x,d ; 1st part of movhi for symbol or label
QG8D DD Q0 87 std *ZD0 ; second part of movhi, REG
QO8F 17 00 00 88 1lbsr _prntf ; CALL: R:#ZD0 = _pratf (#0 bytes)
0092 16 00 00 89 1lbra L3
0095 30 L3:
91 ;;;EPILOGUE
0095 35 20 92 puls y ; Restore stack frame
0087 32 60 83 leas 0,s ; deallocate 0 bytes auto variables
0098 39 84 rts ; return from function
o e e el
96 ;;; END EPILOGUE for childl
97 533 - - - --

98 .area _B33
99 .globl _mainpid

(000 100 _mainpid: .blkb 2
101 .globl _clpid

0002 102 _clpid: .blkb 2
103 .glebl _clprie

0004 104 _clpric: .blkb 2
105 ; END

We will also need to consult the file tt1f.map. We reproduce here only
those parts that are of interest for our debugging example:

Hexidecimal

Workshop on Distributed Laboratory Instrumentation Systems. 146
Abdus Salam ICTP, Trieste Novernber 26 — December 21, 2001.

Software for the 6809 Microprocessor board

C. Verkerk and A.J. Wetherilt

Size

DIRECT start
_BSS8_length
_DATA_length
DIRECT _length
_CODE_length
PAGES_length
STACK _length
_CODE_start
_DATA_start
_BSS_start
PAGES_start
STACK _start

Addr

2100

Size

_arge

~argstr

_argv

_start

___main

-exit

_main

.childl

_prntt
_printerr
_putc

__dprnt
_thread_join
_thread_create
_thread_exit
__prtio
-_prtise
_ICTP_ID_write
___modhi3
___divhi3

_divxhbd

0000 =

OBEB =

Decimal Bytes (Attributes)

0. bytes (ABS,0VR)

Decimal Bytes (Attributes)

2907. bytes (REL,CON)

Workshop on Distributed Laboratory Instromentation Systems.
Abdus Salam ICTF, Trieste November 26 — December 21, 2001,

147

Software for the 6809 Microprocessor board C. Verkerk and ALJ. Weiherilt

Hexidecimal
Area Addr Size Decimal Bytes (Attributes)
DIRECT 0000 003F = 63. bytes (ABS,0VR,PAG)

0000 ZDO

0004 ZD1

0008 ZD2

etc. etc.
Hexidecimal
Area Addr Size Decimal Bytes (Attributes)
_DATA 2C5B 0016 = 22. bytes (REL,CON)

2CHB _tcbmain

Hexidecimal
Area Addr Size Decimal Bytes (Attributes)
_BSS 2071 000D = 13. bytes (REL,CON)

2C71 _tid

2C73 _pia_mede
2C74 _pshbttn
2C76 _mainpid
2C78 _clpid
2C74 _clprioe

Hexadecimal:
etc. etc.

After compiling the program with cc09 -tdb09 -v -Wall ttif.c, we
rin it with db09. The debugging session is shown here. As the program goes
astray, we decide that we will start by sctting breakpoints just before and
just after the functions called from the main program, onc by one. The first,
function call is to thread_create, so this is where we will put hreakpoints
for a start. From the listing we see that the Ioad address of the main pro-

Workshop on Distribuled Laboralory Instrumentation Systems, 148
Abdus Salam ICTY, Trieste November 26 — December 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

gram corresponds to its entry point, which simplifies the caleulation of the
addresses where to put breakpoints. For the explanation of what is going on,
see the comments, which start with a # and which have been added later.

[rinus@katje romtestl# db09® -v ttif
ab09>1 ttif.log
db09>1 inf

db09>Clock Interrupts have been disabled
db09>Watchpoint 0 at address A030 modified from D101

PC.. OP.. &, B. X... Y.., U... 5... DP
D103 8601 03 0A A030 115D 1EBO 1EBO 00

Watchpoint ¢ at address A030 modified from D10F

invoke db09 in verbose mode
keep a log of the session

get the first commands from
input file ‘inf’

‘inf’ puts here a
watchpoint

all this is kernel
initialisation

EFHINZVC
11010000

cC
Bo

PC.. OP.. &. B. X... ¥... U... 8... DP EFHINZVC CC

Di1l 6DA8 91 04 AO30 115D 1EBO 1EBO 00 11011000 D8

BreakPoint Reached # end of kernel
PC.. OP.. A. B. X... Y... U... 8... DP FEFHINZVC CC # initialisation
Co06 1322 01 00 11DA 1144 10EQ0 1ECO 00 01000000 40

db09>Clock Interrupts have been enabled

‘inf’ enables the clock

db09>N Address Stop # and lists watchpoints

0 AQ30 0

db09>N Address BSkip Hit # and lists breakpoeints set
000 CO06 000001 000000

db09>b 2340 # Now we enter inte action: set
db08>b 2343 # breakpts around thread_create
db0S>g # start the program running

I was interrupted from: 22e7, newpc= cf94 # Here we are in a very long loop
I was interrupted from: 22e5, newpc= cfP4 # in crtQ: we set to zero the

I was interrupted from: 22e3, newpc= cf®4 # direct pages, unused stack and
I was interrupted from: 22el, newpc= cf94 # the _BSS area.

I was interrupted from: 22e7, newpc= cf94 # The time between two messages
I was interrupted from: 22e5, newpc= cf@4 # is equivalent to 10 ms on the
I was interrupted from: 22e3, newpc= cf94 # real hardware

I was interrupted from: 22el, newpc= cf94

I was interrupted from: 22e7, newpc= cf94

I was interrupted from: 22eb, newpc= cf94

BreakPoint Reached
PC.. OP.. A. B. X... Y... U,.. 5... DP
2340 13068 2C 5B 2CBB 4CF6 2D00 4CF2 2D
db09>d 2400

00 01 02 03 04 05 06 07 08 09 04

0K we hit first breakpoint
EFHINZYC CC
01000000 40

we inspect pseude register ZDO
0B 0C OD OE OF

2D00: 2C BB 00 00 00 00 00 00 00 00 0O

db08>d 4cfl
00 01 02 03 04 05 06 O7 08 09 04

00 00 00
ZDO contains 0x2C5B

we also inspect the stack
0D CGE OF

4CFQ: 4C F6 00 03 00 00 21 82 22 A4 21

db09>d 2¢50 2c6F

DC 21 Q0
stack (at 4CF2) has 0003
let us look at 2CEB

Warkshop on Distributed Laboratory [nstrumentation Systems.

149

Abdus Salam LCTP, Trieste November 26 — December 21, 2001.

Software [or the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

00 01 02 03 04 05 06 07 08 02 OA 0B OC 0D OE OF

2C50: 00 08 00 10 00 20 00 40 00 80 00 00 21 00 4B OO @....!'.K.

2C60: 01 00 23 82 21 00 01 01 02 3B YE 00 2E 00 00 QO A I
this is tcbmain, as ttlf.map
confirms

db08>g # we continue teo run

I was interrupted from: 12e, newpec= 0 # Dops, we did not expect this!

I was interrupted from: 12e, newpc= 0 # at least not so many of them!

I was interrupted from: 12e, newpc= O

I was interrupted from: 12e, newpc= O

I was interrupted from: 12e, newpc= 0

I was interrupted from: 12e, mewpc= 0

I was interrupted from: 12e, mewpc= 0

I was interrupted from: 12e, newpec= (¢

I was interrupted from: 12e, newpc= 0

I was interrupted from: 12e, newpe= 0

I was interrupted from: 12e, newpe= 0

I was interrupted from: 12e, newpc= 0

I was interrupted from: 12e, newpc= 0

Signal= 2 # we hit ‘esc’ to stop this

db09>r # show regs to see where we are

PC.. OP.. A, B. X... Y... U... S... DP EFEINZVC CC

0000 0100 EC 03 DOOD DOOC Q000 FFAS 00 00100001 21 # THIS IS WRONG!!!
¥ we are in hyperspace

db09>x ¥ we stop here

[rinus@katje romtest]#

We never reached the second breakpoint, so we conclude that we do not
return from thread_create. The first argument to thread create is in
the pscudo register ZD0 and the sceond is on the stack, as things should be.
Presumably thread_create has been tested before and can be trusted, so the
mistake must be ours. Inspection of the function prototypes in Appendix I,
page 127 reveals that we swapped the two arguments: priority should be the
first and be passed in ZD0. Maybe thread_create has created a monster, as
the behaviour of the program would indicate, but the fault is easily repaired.

After a short cditing session and recompilation of the program we try
again:

Workshop on Distributed Laboratory Instrumentation Systems. 150
Abdus Salam ICTPE, Triests November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and ALJ. Wetherilt

[rinus@katje romtest]# db09 ttlg # invoke db0® without any option
db09>1 ttilg.log # the first steps are as before
db09>i inf

db09>Clock Interrupts have been disabled
db09>Watchpoint 0 at address A030 modified from D101
PC.. OP.. A. B. X... Y... U... S... DP EFHINZVC CC
D103 8601 03 0A A030 115D 1EBCO 1EBO 00 11010000 DO
Watchpoint 0 at address A0O30 modified from D10OF
PC.. OP.. A. B. X... Y... U... 5... DFP EFHINZVC CC
D111l 6DAS 91 0OA AQ30 115D 1EBO 1EBO 00 11011000 D8
BreakPoint Reached

PC.. OP.. A. B. X... Y... U.._. 8... DP EFHINZVC CC
COo06 1322 01 00 11D4 1144 10EQ 1ECO 00 01000000 40
db09>Clock Interrupts have been enabled

db09>N Address Stop

0 A0Q30 o

db09>N Address Skip Hit

000 C006 000001 000000

db09>db08>g # we don’t set breakpoints now
Hello World # IT WORKS NOwW!!!1!!!

Signal= 2 # hit ‘esc’ key

db09>r # see where we are

PC.. OP.. A. B. X... Y... U... S... PP EFHINZVC CC

012E 20FE 00 00 Q000 0000 0000 1EFC 00 00000000 00 # In the NULL THREAD!!!
db0S>x # Everything is fine, so stop.
[rinus@katje romtest]#

We managed to get our super Hello World program to work correctly.

Workshop on Distributed Laboratory Instrumentation Systems. 151
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Appendix N

An example on-board symbolic
debugging session.

For this example of an on-board symbolic debugging session using db09, we
have chosen a short program, pt4.c, which illustrates the passing of argu-
ments to the main program. In this cxample, the use of nearly all commands
available for symbolic debugging will be shown. The listing of the program
pt4.c, with line numbers, is as follows:

1 #include <syscalls.h>
2 #include <pthread.h>
3 #include <ICTP_IO.h>

4

5 void main(int argc, char x*argv[])
6 {

7 int k;

8

9 for (k=0; k<argc; k++) {

10 pratf ("%s\n", argv[k]);

11 mssleep(50);

12)

13k = atoifargv[2]);

14 protf("s=¥s d=¥4x\n", argv[2], k);
15 mssleep(50);

16 exit(0);

17 ¥

i8

After having compiled the program, using the command:

152

Saliware for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

ccQ9 -optd pté.c

we typce:

db09 pt4 Hello 007

The prompt db09>> will now appear. We then typed as our first command:

I inn2
The contents of this input file are as follows':

log2

pté.c:9
22fe 01
3afe 00
3aff 00

ptd.c:9

H=mMpg g g o

The first line of inn2 will create a file log2 with a log of our symbolic debug-
ging session. We have used this log to prepare the present Appendix. The
first lines of this log arc®:

db09>B pt4.c:9 # We set a breakpoint at line 9

db09>m 22fe 01 # Behind the scenes we set up for redirection
01 # of output from LCD display to the screen
>db09>m 3afe 00 # Note the use of ’low-level’ menitor commands
0C # We set a flag and clear two bytes. These
>db09>m 3aff 00 # last two commands are tricky: the address to
He # change differs from program to program
>db09>X # Now we start the RIn0S kernel and pt4
Breakpeint reached at line pt4.c:9 # We reached line 9

db0S>K ptd.c:9 # Breakpoint is no leonger needed. Kill it
db0g>1 # This ends reading the input file

!Regretiably, at the time when this Appendix was prepared, we had in the input file
to do a few things behind the scenes. Hopefully this will not be necessary anymore today.

?The comments were added by the authors at the time this Appendix was prepared, of
COUTSE,

Workshop on Distributed Laboratory Instramentation Systems. 153
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

We now want to place two breakpoints, one at line 13 after exiting the loop,
and one at the entry point of the library function atoi. We then check
that the breakpoints have in fact been placed correctly. After that we start
executing the N command, to step line by line through our program®. The
result is:

db09>B ptd.c:13 # Set a breakpoint at line 13

db09>B atoi # And one at a function entry

db09>B # Check where the breakpoints are

N Address Skip Hit

000 2373 000000 000000 line pt4.c:13

001 23F5 000000 000000 atoi # All OK

dbOS>N # Now the first N command

Line 10 (file: pt4.¢) # brings us to line 10

db0S> # Hitting ’'Enter’ repeats the last command
Function Call: ___mulhi3 # This is used by ’ccl’ internally

Breakpoint reached # Here we are at the entry to
Function Call: _prntf # Now ’_prntf’ is called
Breakpoint reached # This is the entry of ’_prntf’

Line 11 (file: ptd.c) # We reached lime 11

*#44> LCD Display: ptd <#%*x # At this point LCD would show: ’pt4’
db09> # We repeat N once more

Function Call: _mssleep

Breakpoint reached

Line 12 (file: pt4.¢) # And reach line 12, via a call to ’_mssleep’
*%%%> LCD Display: ptd <s#xx # LCD display is unchanged

__mulhi3

db0o>D k # We inspect the value of ’k’, the loop index
Value of k = 0 (= 0x0) # It is still zero
db09>N # We do another 'N’

Line 10 (file: pt4.c) # And get back to line 10 again
**4%> LCD Digplay: ptd <sokkx # With LCD unchanged
db0o> # Repeat the N command
Function Call: ___mulhil

Breakpoint reached

Functien Call: _prntf

Breakpoint reached

Line 11 (file: pt4.c)

s#x*x> LCD Display: Hello <xx+x # Now LCD shows ’arg{l]’: Hello
db0g> # N again

Function Call: _mssleep

Breakpoint reached

3 At this point, we had to pull out the PTM’ jumper, otherwise the N command will
not work. Hopefully this is also corrected by now

Workshop on Distributed Labaratory Instrumentation Sysiems. 154
Abdus Salam ICTP, Trieste November 26 — December 21, 2001,

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherilt

Line 12 (file: pté.c)
*#4x> LCD Display: Hello <#**x

db0g9>D k # Inspection of 'k’ shows ’1’ as result
Value of k = 1 (= 0x1)
dh09>N # We continue with another N

Line 10 (file: pt4.c) # And go once more through the loop body
*dokk> LCD Display: Hello <ok

db09>D k

Value of k = 2 (= 0x2) # 'k’ has become '2?
db0g9>N

Function Call: _malhi3

Breakpoint reached

Function Call: _prntf

Breakpeint reached

Line 11 {(file: ptd.c)

*%%%> LCD Display: 007 <sokokk # And LCD now shows the string: "007"

db08>G # We go forward with the ‘G’ command
Breakpoint reached at line pt4.c:13 # and reach the break at line 13
db09>D k # We are outside the loop and not yet inside
No local symbol k in present context # line 13, which explains this
db0S>B prntf # We set an extra breakpoint

db09>B # And check

N Address G&kip Hit

000 2373 C00C00 ©C00000 line ptd.c:13

001 23F5 000000 000000 atoi

002 23C5 000000 000000 prntf # A1l OK

db09>G # We do ’G’ again and hit the break at ’atoi’

Breakpoint reached at entry of function ’ateoi’, called from line 13
If number and type of arguments known, use 'A’ command

Guessed 1st argument: 8462 (= 0x210e) # This guess is correct
There may be more arguments on the stack:
Stack Pointer = 396C # db09 shows value of the stack pointer.

At ’396(C’ is the return address '2383°
0 ¢+ 2 3 4 b5 6 7 8 9 A B C D E F

3960 EO 21 QOE 3A 21 84 39 72 3A 00 23 F5 23 83 00 04 .!.:1.97r: . #.4%...
3970 21 84 21 88 00 03 00 03 22 97 21 80 C5 D6 21 00 1.1..... R P I
dbC9>4 ds # We know that ’atoi’ returns an ’int’ and takes
Argument (s): "007" # (a pointer to} a string ("007") as argument.
db09>G # We do ’G’ to execute ’atoi’.

Breakpoint reached when returning from ’atoi’; return value = 7

db09>G # We saw that ’'atoi’ returns the integer ’T’

Breakpoint reached at entry of function ’prntf’, called from line 14
If number and type of arguments known, use ’A’ ccommand

Workshop on Distributed Laboratory Instrumeniation Systems. 155
Abdug Salam ICTP, Trieste November 26 — Deccmber 21, 2001.

Software for the 6809 Microprocessor board C. Verkerk and A.J. Wetherili,

Guessed lst argument: 8964 (= 0x2304) # Correct: address of format
There may be more arguments on the stack:
Stack Pointer = 3968 # At ’3968°: return address, then address of

string "007" (°210E’) and value of ’k’: ’0007’

01 2 3 4 5 6 7 8 9 A B C D E F
3960 23 04 39 72 3A 00 23 C5 23 A7 21 QE 00 07 00 04 #.9r:.#.#.!...,.
3970 21 84 21 88 00 03 00 07 22 97 21 80 C5 D6 21 00 !'.1..... P R
>db09>A dssd # We know arguments and return of ’prontf’. Use °’A’°
Argument(s): "s=Ys d=j4x\n", "007", 7 # Here are the 3 arguments
db09>G # Do 'G’. Return value of ’prntf’ follows
Breakpoint reached when returning from ‘prntf’; return value = 0
db09>D k # Inspect value of 'k’ again
No local symbol k in present context # We are ’out of bounds’
db09>N # Now we do an ’N’ command again
Line 15 (file: ptd4.¢) # To reach line 15
*xxx> LCD Display: 8=007 d= 7 <kxxx # LCD display now shows this
dp09> # Repeat the ‘N’ command

Function Call: _mssleep
Breakpeint reached
Line 16 (file: pt4.c) # To reach line 16

xkkk> LCD Display: s=007 d= 7 <=k # With the same display
db09> # Repeat N’ once more

Function Call: _exit # To get into ’_exit’ in ’crtQ’. Now nothing
Line 17 (file: pt4.c) # more happens. We pushed the on-board ’reset’
xx> LCD Display: ERROR:NONE Sk # And obtained this
db09>exit # At the prompt we type ’exit’

Besides the use of the 'B’, "N’ and ’G’ commands, this example has shown
how one can inspect the value of a variable ("D’ command) and the values
of function arguments and its return value (CA’ command). In addition, the
‘17 and 'T" commands wcre illustrated. We also demonstrated that low-level
commands of ICTPmon are accessible from within db09; in fact all commands
which are defined by a single letter can be used.

Waorkshop on Distributed Laboratory Instrurnentation Sysiemas. 156
Abdus Salam [CTP, Trieste November 26 — December 21, 2001,

