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Abstract 
 

An overview of embedded systems is first given.  This is followed 
by analysis, design and implementation.  Development techniques 
relevant to embedded system are introduced.  Embedded systems 
networking in distributed environment is discussed.  An introduc-
tion of web-based embedded systems then follows.  Examples of 
web-based systems are dealt with. 
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1   Overview of Embedded Systems 

1.1   Introduction 
Embedded systems have been around since 1950s. Early examples were a 
closed-loop control system at a Texaco refinery in Texas and a similar system at 
a Monsanto Chemical Company ammonia plant in Louisiana. When chemical 
plants used a mainframe computer for process control in 1950s and 1960s, the 
mainframe was really an embedded processor, albeit a big and expensive one.  
When a physicist used a PDP11 minicomputer in 1970s to control and monitor 
his cryogenics experiments, he had built an embedded system.  However, in 
those days, the number of such systems was not very large, basically because of 
the cost of hardware.  How many PDP11 can a cryogenics laboratory possess?  
From 1980 onwards PC and microcontroller based embedded systems have been 
widely used.  There is an enormous proliferation of such systems in workplaces.  
Now we see the post-PC period where embedded systems are generally cheaper, 
smaller and more powerful.  A recent high growth area is the wireless communi-
cations area where embedded systems again play a vital role.   
 
The importance of embedded systems can be easily deduced from its huge mar-
ket.  Statistics from the Semiconductor Industry Association (SIA) show for the 
year 2000 the following market values: (1) Microcontrollers: $19 billion, (2) 
Microprocessors: $30 billion, (3) Entire Semiconductor Industry: $200 billion.  
The distribution is as follows: (1) America: 31%, (2) Asia Pacific: 25%, (3) 
Japan: 23% and (4) Europe: 21%.  For comparison, the world population is now 
at 6 billion and the GDP at $39,128 billion.  Three countries whose GDP is near 
the world semiconductor market are the Netherlands ($355 billion), Malaysia 
($233 billion) and Switzerland ($191 billion). 
 
The reasons behind the rapid growth of embedded systems are due to their rapid 
and continuous reduction in price and the increase in power and complexity.  
The cost change for embedded controller is phenomenal in the last three decades 
- from $100,000 in 1970s, $10,000 in 1980s, $1,000 in 1990s.  It is below a 
thousand dollars now.  There has been an order of magnitude change in price for 
systems carrying the same function in a decade.   
 
Advances in telecommunications are another reason for the growth.  Data com-
munications equipment, cellular phones are two huge markets.  The explosive 
growth of the Internet and the progresses in software technology bring in a wide 
variety of hitherto unknown devices and products.  Web-based embedded sys-
tems are likely to be deployed in a wide range of applications, including the 
laboratories and the homes. 
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1.2   What are Embedded Systems? 
An embedded system is one with a built-in or embedded processor or computer, 
typically for carrying out some kind of real-time applications.  The computer in 
such a system is not used as a general purposed computing machine.  An embed-
ded processor may or may not have a standard keyboard and video monitor, but 
it will always have some kind of connection to the outside world, be it a synchro-
tron, an air-conditioner or a handphone.  While it is possible to cite many exam-
ples for which the time of response is not critical, there are far more applications 
of embedded systems which are time critical.  Thus the study of real-time aspects 
of embedded systems becomes an important issue and this workshop dedicates a 
significant amount of time on it. 
  
It is the application rather than the hardware itself that defines an embedded 
system.  A PC used as a general purposed computer is generally not considered 
an embedded system.  The same type of PC used in the laboratory to log data or 
control and thus forming an integrated equipment is an embedded processor.  In 
such a case, peripheral interface will be used.  However, it may involve only the 
standard I/O (input/output) ports such as the COM Port, Printer Port, SCSI or 
USB interface. 
  
There are numerous examples of embedded systems around us.  Embedded 
processors can be found in a large number of applications and situations: 
 
Laboratory - test equipment, data acquisition systems, control systems, dedi-
cated equipment.  The use of embedded systems in laboratories has been going 
on for a long time.  In 1960s and 1970s researchers in laboratories used mini-
computers as embedded processors.  Now standard PC and microcontrollers are 
typically used.  From 2000 onwards, the ubiquitous Ethernet and Internet make 
the use of distributed embedded systems in laboratory environment a reality.  
Test and laboratory equipment manufacturers are among the first major users of 
microprocessors in embedded systems.  For example, Tektroniks and HP (now 
Agilent) used microprocessors in their equipment as early as 1970s.  The prede-
cessor of this Workshop was a college on the use of microprocessors and PC 
under real-time environment for laboratories.   
 
Process industry - process control systems.  This is the granddaddy of real-time 
embedded systems.  Early examples were the closed-loop control system at a 
Texaco refinery in Texas in 1959 and a similar system at a Monsanto Chemical 
Company ammonia plant in Louisiana.  As the industry was able to pay, they 
were the ones that use mainframe computers as embedded processors.  It is 
interesting to note that the use of computers in the process industry more or less 
charts out the history of computer engineering and computer science.  Practically 
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all the hardware and software techniques have been used by this industry in one 
way or the other.  
 
Manufacturing industry - production line assembly equipment, automatic test 
equipment, robots.  Manufacturing industry benefits tremendously from embed-
ded processors especially in the area of automation or robotics. Without the use 
of embedded systems, you would not be paying the current price of about $1000 
for your PC which is really more powerful than a minicomputers in 1970s, let 
alone the ENIAC (Pennsylvania, 1945, 19,000 vacuum tubes, 200kW, 10 deci-
mal digits, 0.2 ms addition, 2.8 ms multiplication.) or the EDSAC (Cambridge, 
1949, 3,800 vacuum tubes, 500kHz mercury delay lines, 256 words, 35 bits, 1.5 
ms addition, 6 ms multiplication.)  Assembly plants in Malaysia, Mexico, Philip-
pines, Thailand, China and other countries are producing more than 4 billions 
microcontroller ICs this year. This is only possible when large amount of em-
bedded systems with clever software are used in the assembly and production 
lines. 
 
Automotive - engine controls, anti-lock braking, lamp, indicator and other con-
trols.  It turns out that the automotive industry is one of the most important cus-
tomers of the embedded processors.  The average amount spent by a car manu-
facturer on a car in microelectronics is more than one thousand dollars.  New 
models and especially up-market cars engage more.  The Mercedes S-series and 
the BMW 7-series both have more than 60 embedded processors in each vehicle.  
This industry stipulates high requirements; electronics used must be highly reli-
able while able to withstand severe conditions of temperature, vibration and 
electromagnetic interference.  Some processors were initially specially designed 
for the automotive industry and latter only modified for general purposed use.  A 
robust network CAN (Controller Area Network) was also first introduced in this 
market and is now adopted by many other industries. 
 
Consumer Electronics - audio-visual equipment, household electronics (micro-
wave ovens, washing machines, dishwashers, air-conditioners, etc.), Personal 
electronics (electronic toys, gadgets, etc.)  The list of products in this category is 
very large and is expanding continuously as the costs of embedded controllers 
drop.  It is inconceivable now to operate a new television set without an IR re-
mote controller.  This is of course easily made possible when the price of 4-bit 
microcontrollers drops below a dollar each. 
 
Offices – office and other commercial equipments.  Nowadays, fax machines, 
photocopiers, calculators, computers, scanners, printers, time attendance sys-
tems, access control systems, surveillances systems, amongst others, are used in 
most offices and commercial environment.  In banks, more specialised equip-
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ments including autoteller machines, counting machines are used.  All these are 
embedded systems of varying complexities. 
  
Telecommunications - pagers, telephones, wireless phones, cellular phones, 
switches, base stations and associated equipment.  This is yet another major area 
of embedded processor application.  With the rapid growth in the telecommuni-
cations especially in the area of cellular phones, telecommunications manufac-
turers have been pushing the advancement of embedded processors in terms of 
size, cost and complexity.  With the requirement of integrating analogue and 
digital circuitries, they are encouraging the chip designer and manufacturer to 
push towards the limits of this technology.  
  
Internet – PC and accessories.  Within a PC system, there are many embedded 
system submodules: keyboards, visual display units, I/O units, and modems.  
Peripherals are embedded systems: disk drives, printers, scanners, cameras, etc. 
As mentioned earlier, the growth in the Internet provides a significant impetus 
for the development of embedded systems. 

1.3   Embedded System Structure 
Despite the many different types of applications, the principles of operation, 
system components and design methodologies of embedded systems are essen-
tially the same.  A typical system consists of a Computer and an Interface to 
the physical environment, which may be a chemical plant, a car engine or a 
keyboard, for example.  In some applications, standard I/O (Input/Output) de-
vices such as the VDU, keyboard and printer are present, as in the case of proc-
ess controller in a chemical plant.  In others there are no standard I/O devices, as 
in the case of car fuel injection control.  In the former case, it is likely that a 
general purposed computer such as a PC or a more powerful workstation PC will 
be adapted as the embedded processor.  In the latter, microcontrollers designed 
together with dedicated electronics will be used.   
 
The computers generally fall into three categories: (1) Small, (2) Medium and (3) 
Large.  Small computers are used in small applications such as TV remote con-
trols.  In such applications, 4-bit microcontrollers are sufficient.  Medium sized 
computers are 8- or 16-bit microcontrollers or PCs.  They are used in jobs like 
data acquisition systems in laboratories or factories.  Large computers are typi-
cally high-end computers.  A plant monitoring and control system calls for such 
a computer. 
 
The interfaces in embedded systems may be grouped into the following types: 
(1) Common serial and parallel interface, (2) Industrial interface, (3) Networking 
interface, and (4) ADC & DAC.  By far the most common interface to the out-
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side world is the first group consisting of standard serial buses including RS-232, 
RS-423, RS-422 and RS-485.  The parallel interface (Centronics or IEEE 1284), 
commonly referred to as the printer port, is also an important interface.  More 
specific to embedded systems are a number of bus arrangements introduced by 
various semiconductor manufacturers.  The common ones are I2C, SPI, Mi-
crowire and 1-Wire bus. 

A second group of interfaces are used in industrial or other more special applica-
tions.  They are the IEEE 488 (GPIB, HPIB), SCSI (small computer system 
interface), CAMAC (Computer Automatic Measurement And Control) and CAN 
(Controller Area Network).  A number of newer interfaces may be grouped here 
as well.  They are the IrDA (Infrared Data Association), USB (Universal Serial 
Bus) and IEEE 1394 (FireWire or iLink). 
 
Embedded systems in a distributed environment such as the laboratory often 
have to be networked together.  While some of the above are used to network 
embedded systems, the more common ones for this purpose are the Ethernet, 
modems, ISDN (Integrated Services Digital Network), DSL (Digital Subscriber 
Line) , ADSL (Asymmetric Digital Subscriber Line), and ATM (Asynchronous 
Transfer Mode).  The Ethernet is used for intra-building networking.  The others 
are used for networking embedded systems over longer distances, over the Inter-
net in most cases. 

1.4   Real-time Embedded Systems 
It was mentioned earlier that embedded systems are typical used to carry out 
real-time applications.  What are real-time systems?  One definition is as fol-
lows: “Any system in which the time at which the output is produced is signifi-
cant.  This is usually because the input corresponds to some movement in the 
physical world, and the output has to relate to that same movement.  The lag 
from input time to output time must be sufficiently small for acceptable timeli-
ness.” 
 
The above definition covers a wide range of systems - from UNIX workstations 
to aircraft engine control systems.  When a command is entered in a UNIX 
workstation, we typically get a response on the screen 'with a sufficiently small 
time lag'.  In an aircraft engine control system, the response to commands and 
other input parameters has to be within certain time limits.  There is however a 
subtle difference between the UNIX workstation and the aircraft engine control 
system in terms of timeliness. 
 
An alternative definition of a real-time system is as follows: “A real-time system 
receives inputs and sends outputs to the target system at times determined by the 
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target system operational considerations - not at times limited by the capabilities 
of the computer system.”  This further defines the meaning of response time and 
it distinguishes between the UNIX workstation and the engine controller.  In a 
UNIX workstation, occasionally when we issue a command, we may not get the 
response in a time to our liking because the CPU is running some other higher 
priority tasks or simply overloaded.  In this case, the UNIX workstation no 
longer qualifies as a real-time system according to the more stringent definition 
mentioned above. 
 
Thus we have (1) Hard real-time system – one that must satisfy deadlines on 
each and every occasion, e.g. temperature controller of a critical process, and (2) 
Soft real-time system – one where occasional failure to meet deadlines accept-
able, e.g. autoteller machines. 
 
While real-time embedded systems have received a lot of attention in recent 
years, the earliest proposal of using a computer in real-time applications for 
controlling a plant actually dates back to 1950 when Brown and Campbell pub-
lished his paper: 
 

Brown, G.S., Campbell, D.P., "Instrument engineering: its growth and prom-
ise in process-control problems', Mechanical Engineering, 72(2): 124 (1950). 

A couple of early industrial installations of embedded systems are listed below: 
 

A plant monitoring system was installed in September 1958 by Louisiana 
Power and Light Company at a power station in Sterling, Louisiana, USA. 

An industrial computer control installation was implemented by Texaco 
Company for a refinery at Port Arthur in Texas, USA in March 1959. 

The above systems, as well as many other early systems were supervisory con-
trol systems that used steady-state optimisation calculations to determine the set 
points for standard analogue controllers.  In other words, the digital computer 
was used to compute and to send simple command to many standard analogue 
controllers that had been in use for a longer time in the industry.  These analogue 
controllers were generally expensive, complicated and required periodic calibra-
tions.  Later, direct digital control that allowed the direct control of plant actua-
tors was added and analogue controllers were not required. 
 
The early real-time programs were written in machine code, which was manage-
able when the tasks were well defined and the system small.  However, in com-
bining supervisory control with direct digital control the complexity of pro-
gramming increased significantly.  The two tasks have very different time scales 
and interrupting of the supervisory control is necessary.  This led to the devel-
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opment of general purposed real-time operation systems and high-level lan-
guages for such systems. 
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2   Analysis, Design & Implementation 
Bringing up an embedded system is no different from bringing up any other 
computer based system and it is important that one applies good design and 
engineering methodology.  Many different approaches have been advocated and 
there are many books written on the subject but basically the objective is to 
apply a systematic approach so that the target system may be built to specifica-
tions functionally and it is easy to maintain. 
  
As in most other cases, the tasks are analysis, design and implementation. 

2.1   Analysis 
During the first phase, the functions, requirements and possible constraints of the 
target system are analysed.  The problem must be well defined.  Otherwise there 
is no solution.  Difficulties in the later stage of a project often arise when the 
scope of the work is not rigidly known or when the designer is uncertain of the 
capabilities and constraints of the various hardware and software resources.  
Except for very small jobs, this analysis phase must be carried out with care.   
  
In specifying the requirements of a system, the following list of questions form a 
basis to freeze the specifications: 
 

What is the type of user interface required? 

What are the data processing and storage requirements? 

Communication requirements – does it connect to the Ethernet or the Inter-
net? 

What are the I/O requirements - serial, parallel, ADC/DAC? 

What are the real-time requirements or constraints?  

2.2   Choice of Hardware 
As mentioned earlier, an embedded system typically consists of two modules – 
the processor module and the interface module.  Before the actual design phase 
is entered, there is a decision to make.  That is whether the hardware should be 
purchased or built?  This normally hinges on economy consideration amongst 
others.  Delivery time may be another consideration, for example. 
 
Five or ten years ago, ready-made hardware modules for embedded system use 
were expensive and for many laboratory applications they are out of reach.  
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However, the past couple of years see the appearance of a range of affordable 
hardware modules specially targeted at the embedded system market.  Many 
semiconductor manufacturers produce processor and interface modules besides 
IC components.  A number of new manufacturers appear in the market offering 
very cost effective hardware that can no longer be ignored even for small appli-
cations in small laboratories. 
 
One such manufacturer is Rabbit Semiconductor, Davis, California.  In their 
recent catalogue, there is a module RabbitCore RCM2200 selling at $49 which 
has the following features:   
 

8-bit powerful CPU based on the Z80 

10Base-T Ethernet connection 

128K SRAM  

256K Flash  

26 general purpose I/O lines 
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If the decision is to build your own hardware, it is likely that for laboratory 
applications, 8-bit microcontrollers (MCU) are the choice.  Of course, for very 
large systems or for those requiring special data handling or processing, larger 
processors including the 32-bit CPU and DSP may be used.  However, it is noted 
that the PCs or high-end PCs would generally be a more cost effective solution 
in this case, if they can handle the task in hand. 
 
Indeed, for very small jobs, there are available off the shelf a range of small 4-bit 
MCUs.  The costs of the bare MCUs are in the following range: 
 

4-bit at $1 

8-bit between $5 and $10 

16- 32-bit between $50 and $100 

Information on the various products in the market can be obtained from the 
manufacturers’ websites.  The major suppliers are: Motorola, Mitsubishi, NEC, 
Hitachi, Philips, Intel, SGS-Thomson, Microchip, Matshushita, Toshiba, NS, 
Zilog, TI, Siemens, Sharp. 
 
Since the mid 1970s when microprocessors were first introduced, there have 
been a large number of processors produced.  Many of them fall into families of 
devices which have the same core CPU and general characteristics.  A few fa-
mous such families are:  
 

Motorola: 6805, 6809, 6811, 683xx 

Intel: 8051, 80186, 80386 

Zilog: Z8, Z80180 

Microchip: PIC family  

If the decision is to buy ready made hardware, it is still necessary to choose the 
right host of products offered by many suppliers.  If a PC can be used, it is 
probably still the simplest to implement.  However, other than the desk top or 
notebook PCs, there are the SBCs (Single Board Computers) that are effectively 
an entire PC shrunk into a single board.  These SBCs usually have all the stan-
dard I/O ports clustered around various connectors.  RAM disks are often avail-
able.  These are IC memories devices plugged into sockets on the SBC to replace 
floppy disks.  Advantech is a major supplier for SBC but there are many others 
in the market offering similar products. 
 
While SBCs are neat substitutes for PC, they are generally more expensive than 
the PC with the same capabilities.  This is due to the smaller volume of produc-
tion.  Thus SBC are typically chosen when size constraint dictates its use.  Or the 
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environment necessitates the use of industrial grade SBC.  (Industrial grade PCs 
are more expensive.) 
 
Many semiconductor manufacturers formerly producing only component ICs are 
now marketing board level modules which incorporate processors and I/O de-
vices.  These are sometimes referred to as core modules and are typically a fair 
bit less complex than the SBC.  However, they are suitable candidates for a wide 
variety of embedded system applications.  The attractions of these modules are 
cost and size.  The RabbitCore series of Rabbit Semiconductor, from which one 
example was mentioned earlier, is an example.  Dallas Semiconductor’s TBM 
390 (TINI Board Module) is yet another.   
 
These modules typically have a modern MCU with serial and parallel I/O suffi-
cient for most small to medium sized embedded system applications.  Memories 
are in the range of about 1 Mbytes, half of which are RAM.  Flash memories are 
getting common too.  For larger storage, serial memories can usually be added.  
In the last year or so, Ethernet connection is incorporated making the module 
ready web enabled.  This particular feature may prove to be an extremely impor-
tant enhancement in core modules. 
 
Software support for these core modules are generally good.  Most manufactur-
ers will provide development package consisting of both the hardware and the 
software environment.  An IDE (integrated development environment) is usually 
provided.  C compilers on top of assemblers are commonly available from either 
the manufacturer or a third party.  The TBM is rather unique in that it is designed 
to run Java in the Internet environment. 

2.3   Hardware Design 
After the decision of whether to build or purchase the hardware is made, one can 
embark on the design proper.  If the choice is on a standard PC or ready built 
hardware as the embedded processor, then the hardware design step is simplified 
to that of designing the interface board or circuitry to the target system.  Al-
though there can be an infinite variety of target systems, the interface require-
ments however can be grouped into just a few standard categories - digital I/O, 
analogue I/O, serial data communications and parallel data communications.  
Many of the interface requirements are normally provided for by the embedded 
processor hardware.  Perhaps signal conditioning circuits (instrumentation ampli-
fiers, precision attenuators, current drivers, etc.) are needed in the case of ana-
logue I/O or special actuators or sensors. 
  
What are steps taken if you have to design your own processor boards?  Ten or 
fifteen years ago, one would build a microprocessor based system using a hand-
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ful of chips including microprocessor, memory, peripheral devices and other 
glue chips to build an embedded processor.  And to do that effectively, certain 
basic skills have to be acquired.  In fact, the earlier Microprocessor College at 
ICTP spent four weeks trying to achieve just that. 
  
A good example of building a processor board in this way is the 6809 system 
used in the workshop and earlier Colleges.  There are many good reasons for 
doing so.   First of all, it generally has more memory resources than a single chip 
microcontroller.  This facilitates the use of more sophisticated resident firmware 
including a full-featured monitor or a real-time kernel, for example.  Often, there 
is readily available software for a popular microprocessor such as the 6809.  The 
designer may already be familiar with a well-known microprocessor and need 
not learn to use a new one. 
  
The trend however, is to use single chip microcontrollers whenever possible.  
The beauty of designing embedded systems using microcontrollers is the relative 
ease and simplicity.  In general, the overall cost of the system is also lower be-
cause of the lower component count. 
  
Whether we use microprocessors or microcontrollers, there is a set of good 
design rules or practice that one should adhere to.  Amongst them, one that has 
often been overlooked is that the design must incorporate facilities for debugging 
and testing.  Small tests or diagnostics, switches or indicators, added during the 
designing stage cost very little, but help tremendously in the later stage.  

2.4   Outline of Hardware Test Procedure 
It would be nice if sophisticated tools such as development system, in-circuit 
emulator and logic analyzer are available.  However, it is possible to test and 
debug with the basic electronics laboratory equipment such as multimeter, oscil-
loscope and function generator alone, if a systematic approach is adopted.   

• Printed circuit board (PCB) inspection for track continuity and possible 
bridging.  This is a step that is often overlooked.  However, it is a vital step 
because easily locatable faults if left undetected, usually cause much more 
debugging efforts at a later stage. 

• Power up the bare PCB and check voltages. 

• If it is a microprocessor-based system, such as the 6809, or a microcontrol-
ler-based system operating in expanded multiplexed mode, test the address 
bus and (partially) the data and control bus on the hardware kernel which is 
the processor itself.  This step is skipped if the system is single-chip, 
micocontroller-based. 
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In the case of 6809, this is done by forcing a NOP ($12) on the data bus 
by pulling up D1 and D4 to 5V via resistors and grounding all other data 
lines.  It causes the continuous execution of NOP for all memory locations.  
This in turn results in A0 toggling at half the system clock rate, A1 toggling 
at half the rate of A0 and so forth.  The address bus can thus be checked 
easily with an oscilloscope.  In this test, data bus and control bus are par-
tially verified.   

The above test procedure is actually making use of the 1-byte instruction of 
the microprocessor in an unintended manner.  For Z80, 8085 and 8088 
similar techniques can be used.  In Z80 and 8085, RST 7 ($FF) instruc-
tion  is used whereas in 8088 either  the 1-byte INT 3 or PUSH instructions 
may be similarly used.   

• If a logic analyzer is not available, implement a tight loop program in the 
EPROM or EEPROM such as a branch-to-itself loop (LOOP BRA 
LOOP).  For 6809, this consists of two bytes ($20 $FE) and takes three 
machine cycles to execute.  A two-byte reset vector is also needed in the 
ROM.  The execution of this very short program can be followed cycle by 
cycle on an oscilloscope and thereby confirming the proper operation, at 
least partially, of the data and control bus. 

• It is a good idea to include DIP switches and LED indicators in the hard-
ware even if they are not required in the final target system.  Test routines 
for I/O ports which have these input switches and output indicators can be 
written and tested.  Commonly used routines include incrementing the bi-
nary value of the output port at a slow rate for visual inspection, reading 
status of switches and sending it to the output port.  This stage of testing 
serves to verify the operation of I/O ports and to provide users with  func-
tion selection.  Normally on power up the system is programmed to check 
the status of the input switches and jump to appropriate test routines or the 
main program. 

• Small test routines for other components in the system are then imple-
mented.  This includes testing the serial link, the timers, ADC and the 
memories. 

• In some embedded systems where the memory is not very small, a monitor 
program or kernel is then implemented.    

• At this stage most of the hardware testing are done and the task moves on to 
application software testing and debugging.  However, there is one type of 
hardware bug which is not detected by the testing mentioned above.  These 
are problems caused by intermittent faults, glitches or external interference.  
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These are detected by means of logic analyzer or in-circuit emulator run-
ning in surveillance mode. 

2.5   Some Hardware Development Tools 
While one can get by with the basic tools for small embedded system develop-
ment, nevertheless it will help if a number of other hardware development tools 
are available, especially when one is dealing with more sizeable projects or when 
problems such as intermittent faults, external electromagnetic interference, and 
glitches arise as mentioned above.  It is impossible to give a thorough treatment 
of various hardware tools in detail here.  However, a number of more important 
ones are introduced below. 
 
Oscilloscope  - The oscilloscope really needs no introduction other than listed 
here for completeness sake.  It is noted that while the conventional dual-trace 
20MHz cathode ray oscilloscope (CRO) is still the faithful workhorse in the lab, 
there exists in the market now digital oscilloscopes with liquid crystal display 
(LCD) at a reasonable price.  Often it combines the function of a digital (me m-
ory) oscilloscope with a logic analyzer.  The importance of the oscilloscope 
cannot be over-emphasized - after all the HP and Tektronix logic analyzer de-
signers used their oscilloscopes to debug their embedded systems in the '70s! 
 
Logic Analyzer - The two traces of an oscilloscope is really rather inadequate or 
impossible when it comes to simultaneously monitoring the 40 or so lines of a 
typical microprocessor or microcontroller circuit.  Logic analyzers capture 48 or 
more signals and display them in multiple traces or in coded form.  Being a 
powerful embedded system itself, the logic analyzer can perform a number of 
other things that expedite the debugging of embedded systems.   
 
It allows a trigger condition (data, address and control bus pattern) to be set up 
and captures the cycle by cycle information in memory (typically few thousand 
cycles deep) when the trigger condition is met.  The captured data can be viewed 
as traces, in binary/hex form or in mnemonics of the target processor after being 
disassembled.  This provides a very powerful tool for monitoring what's going on 
at a very low level non-intrusively - at least while the embedded system is run-
ning at its normal speed. 
 
Most logic analyzers also provide timing analysis whereby the traces are sam-
pled at rates higher than the system clock and hence glitches or other irregular 
waveforms may be detected.   
 
Emulator - First introduced by Intel, now in-circuit emulators are used in large 
number of embedded system development.  This tool brings the debugging of 
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hardware one step higher than using the logic analyzer alone.  Basically it not 
only allows the target system to be monitored, but also has the ability to stop 
execution in a controlled manner, change memory and register contents and 
resume execution.  This is achieved by replacing the target system CPU with a 
more elaborate system typically containing the same type of CPU but having 
other resources which can carry out the actions mentioned above.  In theory the 
system emulates all the CPU's functions in real time. 

 

The major features of the in-circuit emulators are breakpoint, real-time trace, 
RAM overlay, and performance analysis. Breakpoint setting, as me ntioned 
above, allows us to stop execution, for example, at the end of a function and 
monitor the return value.  When the code does not behave as expected, real-time 
trace can be used to look at what the code is doing.  Embedded systems often 
have their code stored in ROM or EPROM.  To change the code during debug-
ging is tedious.  RAM overlay is a technique to circumvent this difficulty.  In-
stead of running the code in the target system ROM or EPROM, RAM in the 
emulator which can be easily modified is used.  Performance analysis deals with 
the problem of code not able to deliver the performance required, such as keep-
ing up with external events.  The analysis allows the programmer to scrutinize 
the execution of his code carefully and find remedies if possible. 
 
In the case of microprocessor-based systems, the target microprocessor is re-
placed by an emulating processor which has overall control over the data, ad-
dress and control bus and thus the operation of the entire system.  In the case of 
microcontroller-based systems, it is more complicated.  Typically, the emulator 
operates the microcontroller in the expanded mode so as to gain access to the 
internal bus.  It must also have: 

• extra RAM to hold the application software during development, 

• a monitor program, and 

• rebuilt ports to replace those lost in the expanded mode. 
 
Other features available in an emulator are: 

• communication facility between the monitor program and a host computer, 

• ability to download object code from the host computer to the target sys-
tem, 

• ability to display and change RAM contents and processor status of the tar-
get system, 

• single stepping and breakpoint features, and  
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• execution of the application program in full speed. 
 
The emulator is almost an indispensable tool in the development of embedded 
systems but the downside is that it is generally not cheap.  Good emulator can 
run to tens of thousands of dollars.  Fortunately there are a number of low-cost 
emulators typically produced by chip manufacturers themselves to promote the 
sales of their microcontrollers.  These are often sold under the name of evalua-
tion board of system.  They lack the sophistication of full featured emulators but 
nevertheless are very useful for small projects. 
 
ROM Emulator -  ROM emulators are like RAM overlays me ntioned above, 
used to temporarily replace the target system firmware.  A ROM emulator con-
sists of RAM and associated circuit, a connection to the ROM socket in the 
target system and a link to a host computer.  The host computer downloads the 
data into RAM which is then used by the target system as its ROM memory.  
This relatively simple tool is very effective in embedded system development 
because it reduces the iteration time significantly. 

2.6   Software Design and Development 
Since the late 1960s, the notion of software development as an engineering 
process has been universally accepted.  For embedded systems, software devel-
opment is basically a software engineering work.  In essence, the aim is to pro-
duce well-engineered software, not just software that provides the required func-
tionality.  Software should be: 

• Simple, clear and easily maintainable 

• Reliable 

• Efficient 

• User friendly, i.e. having an appropriate user interface 
 
Of the several models developed for software processes, we do not have to stick 
to a particular one religiously.  For practical reasons, it is likely that we shall 
pick whichever model that appears to be more appropriate for the job in hand: 
 

• The waterfall model or classic life-cycle approach 

• The prototyping approach 

• The spiral model 
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The waterfall model is the earliest and most widely used.  In a way it is the most 
natural approach, being derived from other engineering disciplines and is consid-
ered a good model which offers a clear picture of the development process.  
Prototyping and the spiral models are also practised in other engineering disci-
plines and their use often encompasses the waterfall model within themselves. 

2.7   The Waterfall Model of Software Development 

 
 
The Waterfall Model depicted above is easy to understand and it emphasises the 
importance of the various phases of software development.  In other words, 
software development is not just coding - thus you don't rush to the keyboard and 
start programming the moment you are given a job.  A civil engineer does not 
build a bridge by sending some steel beams and concrete to the site, he designs it 
first.  An electronic engineer does not go to the component rack and pick up a 
few resistors, capacitors and transistors and start soldering his amplifier, he 
designs it first.  Similarly a software programmer should not write the software 
without first designing it. 
 
Statistics on business software projects show the following cost breakdowns for 
the various phases: 
 

Phase Cost 
Requirements/Design 44% 
Coding 28% 
Testing 28% 

 
You do not consider mission completed when you have just finished writing 
your last line of code or pasting your last control on a form.  You test your code, 
thoroughly!  You are responsible for your own code just as a circuit designer is 
responsible for the functionality of his circuits.  A circuit designer does not send 
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out an untested circuit and let the user come back with failure reports.  The first 
principle in testing is of course test as you write your code as it is easier to find 
problems in small modules and the earlier the problem is found, the easier it is to 
fix.  For a thorough account of various testing techniques, read chapter 6 of "The 
Practice of Programming" by Kernighan and Pike. 
 
It is common for project groups to work long hours towards the deadline, some-
times round the clock.  However, it is obvious that debugging convoluted code at 
3 o'clock in the morning is unlikely to produce satisfactory results and thus no 
credit can be given even though you work seemingly long hours.  The real solu-
tion is to avoid having to get yourself into such a situation - having to test and 
debug your code in the small hours because otherwise you are holding up the 
progress of the whole project.  The difficulty or stress in many such situations 
can be avoided by having a well designed program and by having effective and 
thorough testing of code in the first place.  That is, design and test your program 
for greater efficiency. 
 
Design also allows you to eliminate ambiguities, in specifications and interface.  
Discuss your design with your fellow workers or supervisor.  Assumptions you 
make in your design will be known in the early stage by them and can be modi-
fied with less effort if necessary.  Difficulties you may have can also be ad-
dressed and solved much earlier.  Modules that are new and difficult to you can 
be identified and tested first.  Likewise critical modules are easily identified and 
can thus be dealt with accordingly. 
 
Possible improvements of old designs are to be encouraged.  However some 
improvements may have adverse effects on other part of the system or result in 
inconsistency.  Without a proper design document, it will be too late when others 
realise your unacceptable improvements.  And you will be reluctant to modify 
your code or design at that stage.   
 
There are earlier work or code that may be reused or modified for reuse.  You 
should find out as much as possible if you are new to the group.  Often, your 
supervisor can suggest or tell you the existence of such prior art or point you to 
someone who has it, provided that you show him or her the design so that the 
necessary components can be identified. 

2.8   Documentation 
Documentation can never be overemphasized.  Without good documentation, the 
requirements of the project itself are not known after a short while, even by you 
yourself.  Needless to say, the effort of maintaining the software subsequently 
will be costly if at all possible.   
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Documentation should not be postponed till the end of the project, except for 
collation of documents and writing of manuals.  Many of the documentation 
tasks should be carried out as the project progresses.  In fact each and every 
phase of the waterfall model calls for documentation to be done, there and then.  
You should never wait till you finish the whole project to document because you 
almost never ever will, and even if you do, you will have difficulties in recon-
structing past events. 

2.9   Programming Languages  
What programming language to use for embedded systems development?  Most 
people agree that one should use a high level language (HLL) to develop embed-
ded systems.  Amongst the HLLs, C is known to be a good choice for embedded 
systems because of its versatility and widespread use.  Java has become a strong 
candidate for its inherent object oriented programming features. 
 
Besides knowing C, an embedded system programmer usually has to learn the 
assembly language as well.  For very small projects, assembly language is still a 
good choice for speed and code efficiency.  Even when one writes in C, a small 
amount of code such as the interrupt routines and sometimes the device drivers 
are still implemented in assembly language.  Source code debugging is nice, but 
occasionally, one may have to debug at a lower level, especially when hardware 
debugger such as logic analyzer is used.  In which case, a good knowledge of the 
assembly language is needed.  
 
One important point in designing software for embedded system is to design 
with debugging in mind.  More often than not, your code won't work the first 
time.  Unlike hardware development, the time taken in testing and debugging 
during software development can be surprisingly long if you are not careful.  
Well organised code is a must if you want to minimize debugging time.  Well 
commented code mentioned above is another cardinal virtue in programming. 
 
Ideally a software development environment for embedded systems work should 
have the following three components: 
 
Host computer -  This is typically a PC which runs the editor, linker and com-
piler.  PC has become the de facto standard as development platform for embed-
ded systems because of its availability and the amount of commercial and public 
domain software tools obtainable.  Traditional embedded system vendors have 
designed their development tools with the PC in mind.  This also encourages a 
large number of third party software vendors to use the PC platform for their 
software tools. 
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Debugging engine  - This refers to the component that allows you to look into 
your target system in terms of code execution.  It may be in the form of an in-
circuit emulator or in smaller projects a monitor program resident in the target 
system itself.  This debugging engine allows you to open a window in the host 
computer and monitor the execution of your code or status of your processor in 
the target system.  For any serious work, it is no longer acceptable to compile 
your code, program the EPROM, plug it in and hope that it will work! 
 
Source-level debugger (SLD) - This is a piece of software running in the host 
PC which allows you to debug your code at source level, in conjunction with the 
debugging engine.  Not only does it communicate with the debugging engine or 
target system, it also provides intelligent assistance in the debugging stage.  For 
example it displays the source code (actual C statement instead of assembly 
code) at which the target is at, resolves symbolic references, examines in the 
high level format, allows breakpoint to be set at source level, single step through 
the code again at source code level, etc.  Generally a good SLD will provide all 
these features in very neat multiple window environment, thus making debug-
ging a much easier task than if it is done at assembly code or machine code level. 

2.10   Cross Development 
As mentioned above, mainly because of the ubiquitous position, the PC is almost 
universally used as the platform for embedded system development.  In which 
one would be doing cross development running a host of cross software - cross 
assemblers and linkers, cross interpreters, cross compilers.  Unless of course one 
is developing an embedded system with the same CPU as the PC used (e.g. 
80186, 80188, 80386EX or the PC itself used an embedded processor.).    
 
Cross development is necessary for a number of other reasons: 
 
Many microcontrollers used in embedded systems are just too small to be used as 
processors in development systems.  Native or resident assemblers and compilers 
may not be available for such systems. 
 
Existing computer facilities are readily available and with the appropriate cross-
development software tools, are suitable for carrying out the task of software 
development.  This is considered an important advantage because no extra hard-
ware is needed and software tools such as editors are already available. 
 
Nowadays, one can find cross-development software tool for almost any proces-
sor in the market.  Some manufacturers are supporting their products with a dial-
up facility or through Internet which allows users to download cross-assemblers 
and cross-compilers to the PC. 
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Thus, cross assemblers are programs that run on a computer with a different 
processor from that of the target system, and assemble programs written for the 
target system into re-locatable object code.  The linkers then relocate, usually 
with other object modules such as library modules, to the desired execution 
addresses for the target machine.  Common features of cross assemblers are: (1) 
provision for using macros in program, thus macro-assembler, (2) conditional 
assembly,  (3) assembly time calculations and (4) listing control. 
 
Similarly, cross compilers are programs that run on a computer with a different 
processor from that of the target system, and compile high level language pro-
grams written for the target system typically into assembly language programs.  
The use of cross compiler can reduce program development time significantly 
for large project.  It also makes programs more portable, since they are written in 
high level languages such as C.  A typical cross compiler consists of: (1) macro 
pre-processor, (2) parser, (3) optimiser and (4) code generator. 

2.11   Simulation 
Simulation is a way of using software to model the target system including the 
target processor itself.  A programmer can see his system running in the stable 
environment of his host computer which runs the simulation program.  This is 
used when the target system is not available, when the target prototype is still 
unreliable, or when the programmer has to access the low level status of the 
system not normally accessible in embedded systems. 
 
While it sounds like a great idea, unfortunately good simulators for embedded 
systems are not readily available.  This is due to the fact that the simulator has to 
deal with real-time events and sometimes rather complex I/O.  How can you get 
a general purposed simulator to understand your obtuse or ingenious interface to 
the solar tracking system?  How do you simulate real-time, asynchronous 
events?  To duplicate the data stream coming from the outside world is not easy 
either. 
 
Nevertheless, there are simulators available for many processors.  One successful 
category of simulators seems to be the microcontrollers such as the 8051.  When 
many of the I/O are integrated on a single chip, they are well defined and thus 
can be simulated more readily. 

2.12   Other Techniques for Embedded Systems 
There are several other techniques that are found to be useful in developing or 
debugging software for embedded systems.  A monitor program will help in the 
debugging process tremendously.  In structuring your program, the following are 
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found to be very useful: (1) state machine technique and (2) task scheduler and 
(3) real-time kernel. 
 
A monitor program in the case of MCU embedded systems is usually a small 
program of 1 to 2 Kbytes of memory for monitoring (and modifying) hardware 
related information.  These may be memory contents, I/O status or even proces-
sor status.  At low level debugging, a monitor program is an indispensable tool         
that allows a programmer to look into the hardware of the system.   
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3     Development Techniques 

3.1   State Machine Method 
For small systems, sequential organization of the program is often used.  The 
entire function of an embedded system is represented by a flowchart and imple-
mented accordingly using a single main loop.  When external inputs or events 
arrive, the program branches off to some modules to carry out the required ac-
tions.   
 
There are however a number of shortcomings using the above method: 

• Testing of a monolithic program is often difficult.   

• When the loop becomes large as more functions are added, life becomes 
complicated.  When a single large loop is used, there is a tendency to pro-
duce spaghetti code. 

• Subsequent modifications of system function, like adding another control 
switch, are tedious because the entire flowchart has to be revised and often 
re-implemented entirely. 

 
For many embedded systems, the complexities often justify a more systematic 
approach of designing the software.  Representing the function of a system by a 
state machine  is such an approach.  The power of state machine representation 
comes from the fact that it can subsequently be represented by a state table  
which is well suited for microcontroller and microprocessor implementation, 
even at assembly language level. 
 
Using the state table method of implementing the functions of a system, it is 
natural that the job be broken down into small, more manageable and often 
independent modules, called the action routines.  Such routines are more easily 
tested and often reusable. 
 
However, the single most important advantage of state table implementation 
really lies in the ease of function modification.  In most cases, only the state table 
is modified together with the necessary new routines, while most of the old code 
would be intact. 
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3.1   Example of State Machine Representation 
A simple example of a system with key switches and display is given here to 
illustrate the method of state machine representation.   

• Suppose we have a keypad with ten numeric keys 0 to 9 and two function 
keys ENTER and DELETE and a 4-digit numeric LED display. 

• On power up, the display shall show 0. 

• Numeric values can be entered on the keypad and as each digit is entered, it 
is scrolled into the display from the rightmost digit.  During this mode, the 
display blinks to indicate digit entering mode. 

• The digit entering mode is terminated with either the ENTER key or the 
DELETE key. 

• If ENTER is pressed, the display stops blinking. 

• If DELETE is pressed, the display stops blinking and shows 0. 
 
There are 3 possible states in this example: 
  

State Name Description 
S0 Initial Power-on state or after DELETE, display shows 0 

in steady mode. 
S1 Data Entry Digit entry mode, display shows digits in blinking 

mode. 
S2 Display Final display mode, display shows final value in 

steady mode 
 
There are 3 types of event: 
 

Event Name Description 
E0 Number Entry of any numeric key. 

 
E1 Enter ENTER key is pressed. 

 
E2 Delete DELETE key is pressed. 
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There are four action routines needed: 
 

Action Name Description 
A0 Reset Display 0. 
A1 Build digits Build up display buffer from right while numbers 

are entered and blink display. 
A2 Steady display Show steady display. 
A3 Null No action. 

 
The specification mentioned earlier is represented by a state diagram. 
 

             
 
The above state diagram can be easily transformed into a state table representa-
tion as follows: 
 

Present State Event Action Next State 
S0 E0 A1 S1 
 E1 A3 S0 

 E2 A3 S0 
S1 E0 A1 S1 
 E1 A2 S2 

 E2 A0 S0 
S2 E0 A3 S2 
 E1 A3 S2 

 E2 A0 S0 

 
The complexity of the system has thus been broken down into: 

• A number of action routines. 

• A service routine to scan the keypad and update display. 

• A state stable. 

• A very small main program. 
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The main program has reduced to a trivial program consisting of initialization 
and an infinite loop of reading the input buffer to get a new event, scanning the 
state table to decide what is the next state and the action to be taken.  The action 
is carried out simply by calling the action routine.   
 
The advantage of this seemingly tedious process is as follows.   First the state 
diagram technique allows a complete and systematic approach to the problem. 
All events can be analyzed at all possible states. This technique is often used to 
impleme nt communications protocols which can be rather complex because of 
the large number of possible states. 
 
The next important advantage of the state machine method is that subsequent 
modification of the functions of the system is relatively painless.  Often,  a rear-
rangement of the state diagram and state table is all that is necessary.  In other 
case, the modification may involve the introduction of several new action rou-
tines.  In either case, the modification is straightforward. 
 
The keypad and display service routine may be implemented as an interrupt 
service routine  based on 10-ms clock ticks from a programmable timer module, 
for example. 
 
                The main program:                             The interrupt service routine: 
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3.2   Task Scheduler in Embedded System 
An application in real-time embedded system can always be broken down into a 
number of distinctly different tasks.  For example, 

• Keyboard scanning 

• Display control 

• Input data collection and processing 

• Responding to and processing external events 

• Communicating with host or others 
 
Each of the tasks can be represented by a state machine.  However, implement-
ing a single sequential loop for the entire application can prove to be a formida-
ble task.  This is because of the various time constraints in the tasks – keyboard 
has to be scanned, display controlled, input channel monitored, etc.  
 
One method of solving the above problem is to use a simple task scheduler.  
The various tasks are handled by the scheduler in an orderly manner.  This pro-
duces the effect of simple multitasking with a single processor.  A bonus of using 
a scheduler is the ease of implementing the sleep mode in microcontrollers 
which will reduce the power consumption dramatically (from mA to µA).  This 
is important in battery operated embedded systems.   
 
There are several ways of implementing the scheduler – preemptive or coopera-
tive, round robin or with priority.  In a cooperative or non-preemptive system, 
tasks cooperate with one another and relinquish control of the CPU themselves.  
In a preemptive system, a task may be preempted or suspended by different task, 
either because the latter has a higher priority or the time slice of the former one 
is used up.  Round robin scheduler switches in one task after another in a round 
robin manner whereas a system with priority will switch in the highest priority 
task. 
 
For many small microcontroller based embedded systems, a cooperative (or non-
preemptive), round robin scheduler is adequate.  This is the simplest to imple-
ment and it does not take up much memory.  Ravindra Karnad has implemented 
such a scheduler for 8051 and other microcontrollers.  In his implementation, all 
tasks must behave cooperatively.  A task waiting for an input event thus cannot 
have infinite waiting loop such as the following: 
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While (TRUE) 
{ 

  Check input 
  … 
 } 
 
This will hog processor time and reprieve others of running.  Instead, it may be 
written as: 
  
 If (input TRUE) 
 { 
  … 
 } 
 Else (timer[i]=100ms) 
 
In this case, task i will check the input condition every 100 ms, set in the associ-
ated timer[i].  When the condition of input is false, other tasks will have a chance 
to run. 
 
The job of the scheduler is thus rather simple.  When there is clock interrupt, all 
task timers are decremented.  The task whose timer reaches 0 will be run.  The 
greatest virtue of the simple task scheduler ready lies in the smallness of the 
code, which is of course very important in the case of microcontrollers.  The 
code size ranges from 200 to 400 byes. 
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3.3   Real-time Kernel in Embedded Systems 
It would be ideal if we can incorporate a real-time operation system (RTOS) in 
the embedded system we build.  Unfortunately, more often than not, the memory 
and other resources of most embedded systems do not permit this.  There is 
however an alternative - that of using a subset of the RTOS to solve the problem 
of real-time requirements.  If the I/O and file handling is removed from the fully 
fledged RTOS, we are left with a kernel which deals with tasks handling.  This 
turns out to be a powerful tool in dealing with real life embedded system applica-
tions, such as the state machine technique. 
 
In embedded systems, interrupts are used to respond to external events and in 
doing so avoid the waste of CPU time by constant polling for such events.  How-
ever, interrupts handling can be rather complex if there are many processes to be 
handled simultaneously.  In many situations, embedded systems run more or less 
independent programs that share some common resources.  A very large inter-
twined program will result if we use simple interrupt handling technique.  Real-
time kernel (RTK) will help the programmer to deal with such circumstances by 
thinking in terms of concurrent tasks instead of individual routines that execute 
when certain events occur. 
 
Real-time kernels come in a great variety of types.  Many of the small RTKs are 
implemented in assembly language; others are implemented in HLL such as C.   
There are many RTK manufacturers producing kernels for 8-,  16- and 32-bit 
processors including proprietary and open market ones.  The price tag of these 
commercial RTKs ranges from USD100 to USD10,000. 
 
There are also a small number of real-time kernels appearing in journals, maga-
zines and books, which are normally available in source code.  One such exam-
ple is an RTK designed by Jean J. Labrosse called µC/OS, which is implemented 
in C with full source code available to the user. 
 
Jean J. Labrosse published an early version of µC/OS in Embedded Systems 
Programming magazine in June 1992.  It was written in C with the initial goal 
for creating a small but powerful kernel for the 68HC11 microcontroller.  It has 
since been extended to a portable system suitable for use with any microcontrol-
ler/microprocessor provided that it has a stack pointer and the processor status 
can be stacked and unstacked. 
 
Labrosse has subsequently written a book describing µC/OS.  The latest edition 
is: 
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Jean J. Labrosse, MicroC/OS-II The Real-Time Kernel, R & D Books, Law-
rence, Kansas, 1999,  ISBN 0-87930-543-6 

The complete source listing of µC/OS is available in the book.  It is also avail-
able in a companion disk. 
 
The code is protected by copyright.  However, you do not need a license to use 
the code in your application if it is distributed in object format.  You should 
indicate in you document that you are using µC/OS. 

3.4   Main Features of µC/OS 
The main features of µC/OS are: 
 
Portable  - It is written in C, with a small processor specific code in assembly to 
create task, start multitasking and perform context switching.  For 80186/80188 
the assemble language code is less than 4 pages. 
 
ROMable  - The size and design of the kernel is such that it is suitable for storing 
in ROM or EPROM.   
 
Priority driven - It always runs the highest priority task that is ready. 
 
Pre-emptive - When a task makes a higher priority task ready to run, the current 
task is pre-empted or suspended and the higher priority task is immediately given 
control of the processor.  Execution of the highest priority task is deterministic. 
 
Multitasking - Up to 63 tasks may be set up. 
 
Interrupt feature  - Interrupts can suspend the execution of a task.  If a higher 
priority task is awakened as a result of the interrupt, the higher priority task will 
run as soon as the interrupt completes.  Interrupts can be nested up to 255 levels 
deep. 
 



Embedded Systems   Ang, Chu Suan 

Workshop on Distributed Laboratory Instrumentation Systems  31 
Abdus Salam ICTP, Trieste, Italy.  November 26 – December 21, 2001 

3.5   µC/OS Tasks 
A task is an infinite loop function or one that deletes itself when it is finished.  
The infinite loop can be pre-empted by an interrupt that can cause a higher prior-
ity task to run as mentioned above.  A task can also call the following µC/OS 
services: OSTaskDel(), OSTimeDly(), OSSemPend(), OSMbox-
Pend(), OSQPend().  Each task has a unique priority, ranging form 0 to 
62.  The lower the value the higher the task priority. 
 
There are altogether six possible states for a task as listed below: 

• DORMANT -The state when a task has not been made available to µC/OS. 

• READY - When a task is created by calling OSTaskCreate(), it is in 
the READY state.  Tasks may be created before multitasking starts or dy-
namically by a running task.  If the created task has a higher priority than 
its creator, the created task is immediately given the control of the proces-
sor.  A task can return itself or another task to the DORMANT state by call-
ing OSTaskDel(). 

• RUNNING - The highest priority task created is in the RUNNING state 
when multitasking is started by calling OSStart(). 

• DELAYED -The running task may call OSTimeDly() and enters the DE-
LAYED state.  The next highest priority task then runs.  The delayed task is 
made ready to run by OSTimeTick() when the desired delayed time ex-
pires. 

• PENDING - The running may have to wait for an event by calling OSSem-
Pend(), OSMboxPend() or OSQPend().  It then enters the PENDING 
state.  The next highest priority task then runs.  The task is made ready 
when the event occurs.  The occurrence of an event may be signalled by 
another task or by an interrupt service routine (ISR). 

• INTERRUPTED - A task may be interrupted and enters the INTER-
RUPTED state.  The ISR then runs.  The ISR may make one or more tasks 
ready to run.  When all tasks are either waiting for events or delayed, an 
idle task OSTaskIdle() is executed.  
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µC/OS Task State Transition Diagram: 
 

 

3.6   Task Scheduling 
Task scheduling is done by OSSched() which determines which task has the 
highest priority and thus will be the next to run.  Each task has a unique priority 
number between 0 and 63.  Priority 63, the lowest, is assigned to the idle task 
when µC/OS is initialised. 
 
Each task that is ready to run is placed in a ready list.  The task scheduling time 
is constant irrespective of the number of tasks created.  OSSched() looks for 
the highest priority task and verifies that it is not the current task to prevent 
unnecessary context switch.  A context switch is then carried out by 
OS_TASK_SW(). 
 
OSSched() runs in a critical section to prevent ISR from changing the ready 
status of a task. 

3.7   Interrupt Processing 
µC/OS requires an interrupt service routine (ISR) written in assembly lan-
guage.  Interrupts are enabled early in the ISR to allow other higher priority 
interrupts to enter. OSIntEnter()is called on entering and OSIn-
tExit()on leaving the ISR to keep track of the interrupt nesting level.  There 
may be 255 levels.   
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µC/OS's worst case interrupt latency is 550 MPU clock cycles (80186/80188).  
µC/OS's worst case interrupt response time is 685 MPU clock cycles 
(80186/80188). 

3.8   Clock Tick 
Time measurement in suspending execution and in waiting for an event is pro-
vided by OSTimeTick(), which supplies the clock ticks or the heartbeats.  
OSTimeTick() also decrements the OSTCBDly field for each OS_TCB 
that is not zero.  The time between tick interrupts is application specific and is 
typically between 10 ms and 200 ms. OSTimeTick() increments a 32-bit 
variable OSTime since power up.  This provides a system time. 

3.9   Communication and Synchronisation 
µC/OS supports message mailboxes and queues for communication.  A task can 
deposit, through a kernel service, a message (the pointer) into the mailbox.  
Similarly, one or more tasks can receive messages through a service provided by 
the kernel.  Both the sending and receiving task have to agree as to what the 
pointer is pointing to.  A message queue is an array of mailboxes.   µC/OS sup-
ports semaphore (0-32767) for synchronisation and coordination. 
 
The above services are events.  Thus, a task can signal the occurrence of an event 
(POST) or wait for an event to occur (PEND).  However, the ISR can POST an 
event but cannot PEND on an event.  When an event occurs, the highest priority 
task waiting for the event is made ready to run. 

3.10   Memory Requirements 
The memory required for the program is less than 3150 for the 80186/80188 
microcontroller.  This can be reduced if some of the services are not required.  
The RAM or data memory is as follows: 

200 

+ ((1 + OSMAX_TASK) * 16) 

+ (OS_MAX_EVENTS * 13) 

+ (OS_MAX_QS * 13) 

+ SUM(Storage requirements for each message queue) 

+ SUM(Storage requirements for each task stack) 

+ (OS_IDLE_TASK_STK_SIZE) 
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3.11   Kernel Services 
For reference the kernel services are given in the following table: 
 

# Service Description 
1 OSInit() Initialize µC/OS 
2 OSIntEnter() Signal ISR entry 
3 OSIntExit() Signal ISR exit 
4 OSMboxCreate() Create a mailbox 
5 OSMboxPend() Pend for message from mailbox 
6 OSMbox Post() Post a message to mailbox 
7 OSQCreate() Create a queue 
8 OSQPend() Pend for message from queue 
9 OSQPost() Post a message to queue 
10 OSSchedLock() Prevent rescheduling 
11 OSSchedUnlock() Allow rescheduling 
12 OSSemCreate() Create a semaphore 
13 OSSemPend() Wait for a semaphore 
14 OSSemPost() Signal a semaphore 
15 OSStart() Start multitasking 
16 OSTaskChangePrio() Change a task's priority 
17 OSTaskCreate() Create a task 
18 OSTaskDel() Delete a task 
19 OSTimeDly() Delay a task for n system ticks 
20 OSTimeGet() Get current system time 
21 OSTimeSet() Set system time 
22 OSTimeTick() Process a system tick 
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4   Embedded Systems Networking in  
     Distributed Environment 

4.1   Introduction 
There are two broad methods of connecting embedded systems in a distributed 
environment: 
 

(1) Non-Internet connection 
(2) Internet connection 

 
Before the proliferation of the Ethernet and Internet, connecting embedded sys-
tems in a distributed environment such as a laboratory or a factory was usually 
achieved by conventional parallel or serial connections.  Parallel connections 
were suitable for short-range use, typically within a few meters, limited by diffi-
culties in driving synchronous multiple signals and cost of cabling. The advan-
tage of parallel connection was obviously higher data rates on a parallel bus.  
Parallel bus standards at Mbps rates were implemented when the standard serial 
link was still at Kbps. 
 
While there are dedicated parallel bus standards designed for specific industries 
or environments such as the General Purpose Interface Bus (GPIB), the Com-
puter Automated Measurement And Control (CAMAC) and the Small Computer 
System Interface (SCSI), the most common method is the parallel port, used 
typically for printer connection.  This is simple to use and is readily available, 
being a standard I/O port in all PCs.  The newer version (IEEE 1284) available in 
most new PCs is being used for many purposes other than connecting to a 
printer. 
 
However, by far the most important networking technique in a distributed envi-
ronment beyond the size of a test bench is, of course, the serial bus, exemplified 
by the RS-232-C (Recommended Standard number 232, revision C from the 
Electronic Industry Association) and its related standards.  Like the parallel port, 
the use of this serial technique is extremely handy.  There are two serial ports 
available in most standard desktop PCs – COM1 and COM2.  Users and manu-
facturers alike are taking advantage of these two serial ports for almost every 
type of equipment.   
 
The limitations of the standard PC serial ports are data rate and distance, being 
20 Kbps and <50 feet.  Related standards such as RS-485 eliminate such limita-
tions to a great extent while still maintaining the simplicity of the standard.  For 
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example, RS-485 is capable of 4000 feet and 10 Mbps performance.  It has an 
added advantage of a bus configuration which allows it to connect to 32 trans-
mitters and 32 receivers.  (For comparison, the RS-232 is a point-to-point con-
nection which can only connect two machines together.)  Although existing OS 
in PCs would not be able to handle continuous 10 Mbps data rate, the 4000-foot 
transmission distance is a welcome feature in distributed laboratory environment. 
 
As newer equipment and gadgets (especially video devices) demand higher and 
higher data rates, there are a couple of high-speed serial communication stan-
dards that have been introduced to the PC world in recent years.  Universal Serial 
Bus (USB) provides for peripheral speeds of up to 1.5 Mbps for low-speed de-
vices and up to 12 Mbps for full-speed devices. The latest USB 2 specification 
increases the data rate to 480 Mbps.  The cable length is limited to 5 metres, 
extendable to 25 metres using 4 hubs or with active cables.  A total of 127 de-
vices may be connected. 
 
A competing standard to USB is the IEEE 1394 (FireWire or iLink) which has a 
maximum data rate of 400 Mbps and is cable of connecting up to 63 devices.  At 
this dazzling speed, full frame rate video can be transmitted from cameras to PCs 
directly through a thin cable.  The cable length is 4.5 metres, again extendable 
with hubs and repeaters. 
 
Some applications call for wireless connection.  This is provided by IrDA, a 
standard defined by the Infrared Data Association. It specifies wireless transfer 
via infrared radiation at 875 nm.  IrDA 1.1 has a maximum data rate of 1.152 
Mbps.  At this rate, the range is small, typically less than 20 cm. 
 
The recent ubiquitous deployment of the Ethernet and Internet and the availabil-
ity of low cost embedded systems, capable of functioning as web server, have 
changed everything in networking equipments in a distributed environment.  It is 
now the age of the Internet!  In this respect there are two approaches.  One is to 
forget your old equipment and design new web-based ones and network them.  
The other is to add a web-enabled front-end or intermediary to your existing 
equipment and thus make it accessible via the Internet.  Prudence and reality tell 
us that there are many situations where existing equipment cannot be abandoned 
or redesigned.  Thus the second approach is an important one.  Indeed, many 
companies dedicated to providing such hardware and software have appeared in 
the last couple of years.  Their solutions are typically very attractive and cost 
effective, and we shall look at a couple of them. 
 
If you embark on an entirely new project then you have two options in hardware 
for your embedded systems.  If you are lucky enough to have a large budget, 
then use a PC or one of its derivatives (SBC and embedded PC) as your embed-



Embedded Systems   Ang, Chu Suan 

Workshop on Distributed Laboratory Instrumentation Systems  37 
Abdus Salam ICTP, Trieste, Italy.  November 26 – December 21, 2001 

ded processor.  The interface hardware can also be purchased as standard plug-in 
boards on the PCI (Peripheral Component Interconnect) bus.  This eliminates 
hardware design completely.  There are numerous suppliers producing a plethora 
of I/O boards.  You can almost always find what you want provided that you can 
afford it.  We shall not look into this area in these lectures. 
 
Sometimes a PC is an overkill for your applications or your budget simply can-
not afford using PCs.  Until recently, building web-based applications under such 
a situation has been difficult.  One often settled for the non-Internet option.  
Rather affordable hardware is currently available in the market either as compo-
nents or ready built modules that are web-enabled.  We shall look into this area.   

4.2   Non-Internet Connection 
The hardware or physical layer specifications of a few common methods of 
connecting embedded systems are described in this section.  They are 
 

(1) The parallel port  
(2) The serial port 
(3) Selected high-speed ports 

4.3   The Parallel Port  
Originally intended for printer connection, this port has undergone several revi-
sions and it now provides bi-directional connection to a host of equipment.  The 
initial printer port in the IBM PC in 1981 was really designed for unidirectional 
connection to the relatively slow dot-matrix printers at the time.  It transferred 
data at 150 kilobytes/second and was software intensive.  Lack of design stan-
dards forced a cable limitation to 6 feet.  In 1987, IBM PS/2 was introduced and 
this PC enhanced the parallel port by adding bi-directional data flow. 
 
Printer and computer manufacturers started to enhance the parallel port standard 
in 1991 and this resulted in two improved standards: EPP (Enhanced Parallel 
Port) and ECP (Extended Capability Port).  EPP was introduced by Intel, Xircom 
and Zenith Data Systems and was used primarily by non-printer peripherals such 
as CD ROM, tape drives, hard disks etc.  ECP was introduced by Hewlett Pack-
ard and Microsoft and was used primarily by new printers and scanners. 
 
In 1994 the current IEEE 1284 standard, “Standard Signalling Method for a Bi-
directional Parallel Peripheral Interface for Personal Computers”, was released.  
This standard encompasses all the other modes of parallel port, viz. 
 
 



Embedded Systems   Ang, Chu Suan 

Workshop on Distributed Laboratory Instrumentation Systems  38 
Abdus Salam ICTP, Trieste, Italy.  November 26 – December 21, 2001 

(1) Compatibility mode – Centronics or standard mode 
(2) Nibble mode – 4 bits at a time using status line for data 
(3) Byte mode – 8 bits at a time using data line 
(4) EPP – bi-directional, up to 2 Mbytes/second 
(5) ECP – bi-directional, DMA transfer, up to 2 Mbytes/second 

 
The standard specifies a cable length of 10 metres. 
 
The original parallel port consists of 17 signal lines falling into three groups – 
Data (8 lines), Status (5 lines) and Control (4 lines).  The remaining 8 lines in the 
DB25 connector port are grounded.  For compatibility, the 17 signal lines are 
maintained even in the advanced EPP and ECP mode.  However, the function 
and designation of the lines are modified according to the new requirements of 
the modes.  
 
In the original PC, the data lines are output-only lines and thus they cannot be 
used to read data from peripheral devices.  (The nOC output control pin of the 
74LS374 D-type flip-flops are permanently grounded to enable all output lines.)   
To get round this problem, the Nibble mode uses 4 of the 5 status (input) lines to 
read 4 bits at a time from the peripheral devices.  While this is more complicated 
and slow, it has the advantage of compatibility with the oldest PCs.   
 
Most PCs produced after 1987 have the ability to control the direction of the data 
port thus making bi-directional transfer of 8-bit data using the same port possi-
ble.  This is the Byte mode. 
 
For the first three modes of communication – Compatibility, Nibble and Byte – 
handshaking of data between the PC and peripheral is carried out by the CPU 
and it takes several clock cycles to transfer a single byte or nibble.  This limits 
the data rate to 150K bytes per second for byte-wide transfer and to 50K bytes 
per second for nibble-wide transfer.  These data rates are however quite respect-
able for many laboratory applications.  Because of their simplicity, they are used 
in many embedded system applications.  Hence, we shall look into the actual 
transfer cycles in these modes. 
 
The EPP mode enhances the performance of the parallel port by increasing the 
data rate to 2M bytes per second while still maintaining compatibility with the 
standard port.  A read or write cycle is done within one ISA I/O cycle.  This is 
achieved with a local protocol between the host and peripheral using a state 
machine and the necessary hardware to carry out interlocking handshakes.  To 
enhance the performance, the EPP protocol defines four types of data transfer 
cycles: (1) data write, (2) data read, (3) address write and (4) address read.  
While data cycles and address cycles are intended for transferring data and ad-
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dress/command respectively, they are really just two transfer channels and can 
be used flexibly by device manufacturers. 
 
The EPP data rates are sufficient for use with network adapters, hard disks, other 
tape storage devices and CD ROMs.  Thus many device manufacturers adopted 
the EPP mode swiftly as an optional data transfer method. 
 
The ECP came even later as another high performance parallel port mode.  It is 
specifically designed with printers or similar devices in mind.  The protocol 
allows for (1) data and (2) command cycles in both forward (write) and reverse 
(read) directions.  In this respect it is similar to the EPP.  However, it includes 
several features that are very specific to implementations but powerful.  They are 
(1) Run Length Encoding (RLE) data compression, (2) FIFOs on both forward 
and reverse channels and (3) DMA and programmed I/O for the host register 
interface. 
 
The RLE, with a compression ration up to 64:1, is useful for printers and scan-
ners that handle raster images with large amounts of identical data (blank or 
black).  The channel addressing concept is intended for addressing multiple 
logical devices using a single physical port.  A good example of such a require-
ment is the combined Fax/Scanner/Printer machine.   
 
The following tables show the pin designations and other relevant information 
for the first three modes of operation.  These are modes that are widely used by 
embedded systems implementers in the laboratory.  The remaining two modes, 
EPP and ECP, while more advanced, are not as commonly used in simple labora-
tory applications.   When high data rates are required, it is now advisable to 
implement high-speed serial link interfaces such as the USB or FireWire. 
 
Compatibility Mode (or Standard Parallel Port Mode) 
 

Pin Signal  I/O Reg Description 
1 nSTROBE  Out CR-0 Falling edge strobes data byte into printer  
2 D0  Out DR-0 Bit 0 of data 
3 D1  Out DR-1 Bit 1 of data 
4 D2  Out DR-2 Bit 2 of data 
5 D3  Out DR-3 Bit 3 of data 
6 D4  Out DR-4 Bit 4 of data 
7 D5  Out DR-5 Bit 5 of data 
8 D6  Out DR-6 Bit 6 of data 
9 D7  Out DR-7 Bit 7 of data 

10 nACK  In SR-6  Low pulse indicates byte received 
11 BUSY  In SR-7  High indicates printer busy  
12 PE In SR-5  High indicates out of paper  
13 SELECTED  In SR-4  High indicates printer online  
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14 nAUTOFEED  Out CR-1 Low to insert line-feed on each carriage 
return 

15 nERROR  In SR-3  Low to indicate printer error  
16 nINIT Out CR-2 Low to reset printer  
17 nSELECT  Out CR-3 Low to select printer  
18-
25 Ground    Ground 

CR - Control Register 
DR - Data Register 
SR - Status Register 
 
 
Compatibility Mode Data Transfer Cycle 
 
 

 
 
 
Nibble Mode (Reverse Transfer) 
 

Pin  SPP Signal  Nibble Mode I/O Description 
1 nSTROBE  Not used Out Not used 
2 D0  Out 
3 D1  Out  
4 D2  Out  
5 D3  Out  
6 D4  Out  
7 D5  Out  
8 D6  Out  
9 D7  

 
 
 
 
Not used 

Out  

Not used 

10 nACK  PtrClk In Low indicates valid nibble  
High in response to HostBusy going high 

11 BUSY  PtrBusy In  Data bit 3 then bit 7  
12 PE AckDataReq In Data bit 2 then bit 6 
13 SELECTED  Xflag In Data bit 1 then bit 5 

14 nAUTOFEED  HostBusy Out Low indicates host ready for nibble 
High indicates nibble received 

15 nERROR  nDataAvail In Data bit 0 then bit 4 
16 nINIT NINIT Out Not used 
17 nSELECT  1284Active Out High indicates 1284 mode 

18-25 Ground  Ground  Ground 
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Nibble Mode Data Transfer Cycle 

 
 
 
 
On the peripheral side, the reverse transfer in the Nibble mode can be imple-
mented with a quad 2-line-to-1 multiplexer such as the 74LS157 as shown in the 
following diagram. 

 
 
Byte Mode 
 

Pin  SPP Signal  Byte Mode I/O Description 
1 nSTROBE  HostClk Out Pulse low to indicate byte received 
2 D0  D0  I/O Bit 0 from peripheral to host 
3 D1  D1  I/O Bit 1 from peripheral to host 
4 D2  D2  I/O Bit 2 from peripheral to host 
5 D3  D3  I/O Bit 3 from peripheral to host 
6 D4  D4  I/O Bit 4 from peripheral to host 
7 D5  D5  I/O Bit 5 from peripheral to host 
8 D6  D6  I/O Bit 6 from peripheral to host 
9 D7  D7  I/O Bit 7 from peripheral to host 

10 nACK  PtrClk In Low indicates valid data 
High in response to HostBusy going high 

11 BUSY  PtrBusy In  Printer busy 
12 PE AckDataReq In Follows nDataAvail 
13 SELECTED  Xflag In Extensibility flag, not used 

14 nAUTOFEED  HostBusy Out Low indicates host ready for nibble 
High indicates nibble received 
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15 nERROR  nDataAvail In Low indicates data available 
16 nINIT NINIT Out Not used 
17 nSELECT  1284Active Out High indicates 1284 mode 

18-25 Ground  Ground  Ground 
 
 
Byte Mode Data Transfer Cycle 

 
 

4.4   The Serial Ports  
The two serial communication ports in the PC follow the RS-232 standard of the 
Electronics Industry Association.  It was introduced in early 1960s and has since 
been the most widely used serial communication technique in the laboratory.  
The title of the standard, "Interface Between Data Terminal Equipment and Data 
Communications Equipment Employing Serial Binary Data Interchange" indi-
cates the original intention.  That is, to connect Data Terminal Equipment (DTE) 
to Data Communications Equipment (DCE).  DTE and DCE are the two pieces 
of equipment at the two endpoints of a telecommunication channel.  The DTEs 
used to be dumb terminals with which the users interact.   The DCEs were mo-
dems that connected to telephone lines.  In most laboratory and office environ-
ments now, the DTEs are more likely to be PCs.  The DCEs may still be mo-
dems, but they may also be non-existent because the other endpoint is nearby 
and it is easier to use straight-through cables instead of the telephone network.  
In this case, the DCEs are called Null Modems. 
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The RS-232 uses an asynchronous mode.  Typically, data is transferred in sym-
bols or words of 5 to 8 bits, one bit at a time, least significant bit first, at a prede-
termined speed called the baud rate.  However, from one word to the next, the 
time interval is not fixed and thus asynchronous.  A long string of words may be 
transferred in a contiguous manner, one immediately trailing the previous one, or 
they may be sent intermittently, with varying pauses between words.   
 
No clock or other timing signal is sent.  It thus requires a start bit to indicate the 
beginning of a byte and a stop bit to signify the end.  It is the receiver’s job to 
sample the bits based on these marking bits.  For the purpose of error checking, a 
parity bit (either even or odd parity) may be added at the end of each word or 
symbol.  The transmitter computes the parity bit based on all the data bits.  The 
receiver checks if the actual parity bit value corresponds to the calculated value. 
  
The actual signals sent on the line are positive and negative voltages with respect 
to ground potential.  A bit 0 or logical 0 is sent as SPACE or +5 to +15 volts; a 
bit 1 or logical 1 is sent as MARK or –5 to –15 volts.  The receiver recognises    
–3 to –25 volts as MARK and +3 to +25 as SPACE.  The region between –3 
volts to +3 volts is a transition region where the state is undefined.  The wide 
range of voltages for the two valid states are very useful in actual implementa-
tion, taking care of line drop, supply fluctuation, ground potential difference etc.  
A number of restrictions imposed by the standard further enhance the robustness.  
For example, the output of the transmitter may be shorted to other lines without 
causing any damage to itself and the receiver must be able to withstand voltages 
in the range of –25 volts to 25 volts.   
 
When a line is idle, it is in the MARK state.  The start bit is SPACE, stop bit(s) 
is MARK.  The timing diagram of sending numeral “1” or 0x31 with even parity 
is shown below.   
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The standard specifies a total of 21 control signals or ‘circuits’ on top of the two 
data lines (Transmit Data and Receive Data).  The original specification thus 
requires a DB-25 connector with 25 circuits.  The control lines are used to con-
nect to a DCE or modem for control or test functions.  It turns out that many of 
the control lines are not needed for standard modem connections.  In fact they 
may not be used at all if an RS-232 port is connected to another RS-232 port on 
two pieces of equipment.  In this case, the only requirement is of course to con-
nect the Transmit Data of one DTE (the PC) to the Receive Data of the other.  
This crossing of two wires, from pin 2 to pin 3, constitutes a Null modem. 
 
In most PCs, a subset of the lines is used for the serial port.  Six control signals 
are chosen, making it possible to house the port in a DB-9 connector with 9 
circuits.  The connector on the PC or DTE is a male (or plug) while the 
corresponding one on the modem or DCE is a female (or socket).  If two PCs are 
connected using the serial COM ports, the cable (or the Null modem) obviously 
has two female DB-9 connectors.  
 
Three types of connectors are used for RS-232: DB-9 (9-pin D-shell connector), 
DB-25 (25-pin D-shell connector) and RJ45 (modular telephone connector).  The 
various signal assignments on the DTE (or PC) side are as follows: 
 

Name Direction Description DB-9 DB-25 RJ45 
CD ß Carrier Detect 1 8 2 
RxD ß Receive Data 2 3 5 
TxD à Transmit Data 3 2 6 
DTR à Data Terminal Ready 4 20 3 
Gnd  Signal Ground 5 7 4 
DSR ß Data Set Ready 6 6 (1) 
RTS à Request To Send 7 4 8 
CTS ß Clear To Send 8 5 7 
RI ß Ring Indicator 9 22 1 

Direction is DTE (PC) relative to DCE (modem) 
 
The common bit rates of RS-232 are at 1200, 2400, 4800, 9600, 19200 bps.  
With modern drivers, higher bit rates, while non-standard, are possible. 
 
The standard specifies a cable length of 50 feet or 2500 pF in cable capacitance, 
at 20K bps.  If cables with lower capacitance are used, it is possible to transmit at 
distances greater than 50 feet.  For example the UTP Cat-5 cable has a capaci-
tance of 17 pF/ft.  Thus about 150 feet of cable may be used.  Likewise, reducing 
the transmission speed increases the maximum cable length.  Laboratory tests 
showed that a cable length of 500 feet is possible at 9600 bps. 
 
Flow control in RS-232 if needed is carried out either in hardware or software to 
prevent buffer overflow on the receiver.  In the hardware or the RTS/CTS flow 
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control method, the transmitter asserts a Request To Send signal when it has data 
to transmit.  The receiver asserts a Clear To Send signal only when it is ready to 
receive data.  In the software or XON/XOFF control mode, the receiver tells the 
transmitter to send more data by sending an XON control character (0x11).  
When the receiver buffer is nearly full, it stops the transmitter by sending an 
XOFF control character (0x13).  Both the XON and XOFF are sent as data and 
no hardware control signals are involved.    
 
Very small embedded systems connected to the serial port may get their power 
from the serial port itself although this is not part of the standard.  A serial port 
mouse is such an example.  Since DTR and RTS are often not used as intended, 
they may act as a source of small power supply.  These pins are designed to drive 
a load of 3~7 kOhm at 7 to 11 volts typically and they can be used to drive a 
regulator to produce regulated 5-volt output, provided that the load current is 
small, typically less than 10 mA, depending on the type of driver used in the 
port.  An output pin from a standard 1488 RS-232 driver chip can supply up to 
6.5 mA at 5 volts and that for the MAX232  is 5 mA.   Devices operated in this 
manner are called pin powered devices. 

4.5   Differential Drive Serial Communication Standards  
        (RS422, RS485) 
While RS-232 is simple and readily available, there are some shortcomings that 
reduce its speed and transmission distance.  First, it assumes common ground 
potential between the two endpoints, the result of the single-ended (or unbal-
anced) drive.  This may not be so when the separation of the devices increases.  
A receiver at a different ground potential will sense the signal voltages with an 
undesired offset. 
 
A single signal cable makes screening or shielding of electromagnetic noise 
difficult if not impossible.  While a separate screen sheath may be used on the 
cable, internal noise generated by other signal lines is a problem.  This crosstalk 
effect becomes more and more severe as transmission speed goes up. 
 
A different EIA standard, the RS-423 attempts to eliminate the shortcomings of 
RS-232 to a certain extent.  By using different electrical parameters including a 
controlled slew rate on the signal (rise and fall times at 30% of unit interval at >= 
1K baud), a speed of 100K bps at 4000 feet can be achieved. 
 
However, a more significant enhancement of the serial communication technique 
is achieved by using differential or balanced drive.  Two famous EIA standards 
that operate in this mode are the RS-422 and RS-485.  A pair of wires is used for 
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transmitting each signal.  The voltage difference between the two wires is unaf-
fected by difference in ground potentials and the receiver should function prop-
erly provided that the common mode voltage limit is not exceeded.  If these two 
balanced wires are twisted together the difference voltage is unaffected by exter-
nal electromagnetic noise, including crosstalk.  Noises picked up by the two 
wires are likely to be identical and hence they are cancelled at the receiver input 
which is a differential voltage sensor. 
 

 
 
 
Using this differential drive technique, transmission speed up to 10M bps can be 
achieved.  The cable length is specified at 4000 feet.  The RS-422 standard also 
specifies a multi-drop (party-line) arrangement where one driver (master) is 
connected to 10 receivers (slaves) that listen simultaneously.  The master trans-
mit lines are connected to all the receivers of the slaves.  The slave transmit 
signal is carried on another pair.  They are all connected to the receiver of the 
master.  At any one time, only one of the slave transmitters is turned on to avoid 
garbling of data. 
 
The RS-485 is a true multipoint arrangement whereby all the transmitters and 
receivers are connected to a single pair of wires, the bus.  This is possible be-
cause the transmitter can be put into a high impedance or tri-state mode.  Up to 
32 pairs of transmitters and receivers may be connected together.  The standard 
does not specify the method for orderly transmission in this bus system.  One 
simple implementation method is for the master to initiate a communications 
request to a slave station by addressing it.  It turns off its transmitter immediately 
and the slave can then transmit on the bus.   
 



Embedded Systems   Ang, Chu Suan 

Workshop on Distributed Laboratory Instrumentation Systems  47 
Abdus Salam ICTP, Trieste, Italy.  November 26 – December 21, 2001 

 
 
 
A 9-bit protocol is often used in the multidrop network shown above.  An extra 
9th  bit is added to the typical 8-bit data in the serial transmission to indicate it is 
an address frame.  When the master wants to transmit a block of data to a par-
ticular slave, it first sends an address byte as data and turns on the 9th bit.  The 
particular slave, whose address matches that sent by the master, knows that it is 
being addressed.  It thus receives the subsequent block of data based on whatever 
protocol was agreed upon earlier.  Other slaves ignore the block of data not 
intended for them. 
 
As standard transceivers (or UART) for RS-232 do not support 9th bit address-
ing, the parity bit is often used as the 9th bit.  This is the case if the PC is used.  
In this case, the parity checking capability is lost of course.  However, this is 
often not a problem as many existing applications ignore the parity checking in 
the first place.  Other block checking techniques including the CRC are used. 
 
A summary of the RS-232 and RS-485 electrical specifications are shown below. 
 
RS-232 

Parameter Conditions Min Max Units 

Output (Open Circuit)   
     25 V 

Output (Loaded) 3 K <=RL<= 7 K 5 15 V 
Output Resistance -2V<=Vo<=2V   300 Ohm 
Output Current (Short-
Circuit)     500 mA 

Output Slew Rate     30 V/µs 
Maximum Load Capacitance     2500 pF 
Receiver Input Resistance 3V <= VIN<=25V 3000 7000 Ohm 

 
 
RS-485 

Parameter Conditions Min Max Units 

Output (Open Circuit)   
  

 1.5 
-1.5 

 6 
-6 

V 
V 

Output (Loaded) RLOAD = 54 Ohms 
  

 1.5 
-1.5 

 5 
-5 

V 
V 
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Output Current (Short-
Circuit) Output to +12V or -7V   ±250 mA 

Output Rise Time RLOAD = 54 Ohms 
CLOAD = 50 pF   30 % (bit 

width) 
Output (Common Mode) RLOAD = 54 Ohms -1 3 V 
Receiver Sensitivity -7 <= Vcm <= +12   ±200 mV 
Receiver (Common-Mode)   -7 +12 V 
Receiver Input Resistance   12K   Ohm 

 

4.6   Universal Serial Bus (USB) 
The Universal Serial Bus (USB) was standardised in 1995 by a group of compa-
nies to introduce an advanced serial bus to the PC.  In the short period since its 
appearance, it has been widely accepted and all new PCs now incorporate the 
USB ports.  There are a myriad of USB peripheral devices produced (over 1000 
products have passed the compliance test), including mice, scanners, printers, 
digital cameras, hard disks, multimedia equipment, etc. 
 
For embedded system developers, the USB provide an alternative and more 
powerful way of interfacing to the PCs.  It is a serial bus with hot-swap capabil-
ity, meaning a device may be connected or disconnected without turning off the 
power.  
 
USB 1.1 offers two data rates, full speed at 12 Mbps and low speed at 1.5 Mbps.  
USB 2.0 offers high speed at 480 Mbps.  Devices of different speeds may be 
mixed and the bandwidth may be divided into asynchronous and isochronous 
streams.  The latter offers guaranteed or reserved bandwidth and is useful for 
streaming devices, such as audio and video equipment. 
 
A total of 127 devices may be connected to a single host.  This is done by con-
necting multiple USB hubs in a daisy chain.  Devices are connected to the down-
stream port of a hub while the upstream port is connected to the host or another 
hub (in the upstream of the bus topology).  Devices are either self powered or 
powered from the bus.  A typical USB hub may provide 100 mA on each down-
stream port in the Bus Powered mode, and 500 mA on the Self Powered mode. 
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USB devices are connected using a simple cable consisting of a twisted pair of 
wires for signal and an untwisted pair for power (Vbus at 5 V and ground).  Cable 
segments can be up to several metres depending on the wire gauge used.   
 

  
The clock speeds for high-, full- and low-speed operations are 480, 12, and 1.5 
Mbps respectively.  The voltage level for logical 1 at the final target connector is 
defined by (D+) - (D-) > 200 mV and that for logical 0 is (D-) - (D+) > 200 mV. 
 
The USB uses a polled bus protocol whereby the host (or PC) initiates all data 
transfers.  A transaction begins by the host sending a token packet.  It contains 
information on the type and direction of transaction, device address,  and end-
point number.  Data transfer than occurs between the source and the destination 
by the source sending either a data packet or a packet indicating no data.  The 
destination closes the transaction by returning a packet indicating where the 
previous packet has been received successfully. 
 
The pipe concept is used to refer to the channel between an endpoint in a device 
and that in a host.  Two types of pipes are defined: stream and message.  Streams 
have no defined data structure while messages have.  A message pipe called 
Default Control Pipe is set up when a device is powered.  It provides access to 
the device configuration, status and control information.  Pipes have associations 
of data bandwidth, transfer service type, and endpoint characteristics like direc-
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tions and buffer sizes.   A flow control mechanism allows the construction of 
flexible schedules.  This allows concurrent servicing of a heterogeneous mix of 
streams, i.e. multiple streams can be served at different intervals with packet of 
different sizes. 
 
There are four types of data transfers: (1) Control Transfer, (2) Bulk Data Trans-
fer, (3) Interrupt Data Transfer and (4) Isochronous Data Transfer.   
 
Control transfer, a lossless data transfer method, is used to configure a device at 
attach time.  Bulk data transfer is used for transferring asynchronously large 
volume of data.  Data integrity is ensured at hardware level by error detection 
and retries if necessary.  An example is the transfer from the host to a printer.  
 
Interrupt data transfer is used for transferring small amount of data with small 
latency or rate specified by the device.  Data are typically event notification, 
character or coordinates in one or more bytes.  An example is the pointing de-
vice. 
 
Isochronous data transfer is designed for real-time streams such as voice and 
video.  A dedicated bandwidth is allocated for this transfer.  The timeliness is 
ensured at the expense of occasional transient data losses. In other words, hard-
ware retries are not used in case of data loss.  This is known to be better for real-
time voice and video transmission. 
 
The USB standard implements a data flow model that can be divided intro three 
layers: (1) Function Layer, (2) USB Device Layer, and (3) Physical Layer as 
shown below. 
 

 
 



Embedded Systems   Ang, Chu Suan 

Workshop on Distributed Laboratory Instrumentation Systems  51 
Abdus Salam ICTP, Trieste, Italy.  November 26 – December 21, 2001 

The physical layer provides physical, signalling and packet connectivity function 
between the host and a device.  The device layer carries out general USB opera-
tion between the host and a device through a logical link.  In the host, this is 
typically carried out in the operating system, as API for example.  The function 
layer is used for high level function communication between the host and a 
device, again through a logical link as viewed by the software.   
 
There are a number of manufacturers producing components specially designed 
for implementing embedded systems using the USB.  The functions of the physi-
cal and device layers are taken care off by the USB chips.  An example is the 
CY7C630/1XXA series produced by Cypress Semiconductor Corporation.  This 
particular series of chips conforms to the USB 1.1 specifications operating at 1.5 
Mbps.  Members of the family have an 8-bit RISC microcontroller with a built-in 
1.5-Mbps USB Serial Interface Engine (SIE).  Memories are in the range of 128 
bytes RAM and 2 to 4 Kbytes EPROM.  Besides the USB interface, two 8-bit 
parallel ports are available.  Such USB chips are suitable for small to medium 
scale applications including serial port conversion, keyboard, mouse, joystick 
and many others.   The block diagram of a CY7C63000 chip is shown below. 
 

 
 

4.7   IEEE 1394 Bus 
This is an emerging high speed serial bus originally developed by Apple (called 
FireWire) and used by Sony in digital video equipment (called iLink).  It was 
accepted as an industrial standard in 1995 (called IEEE 1394).  Before the intro-
duction of USB 2.0 specifications, the IEEE 1394 was the highest speed serial 
bus at 400 Mbps.  A 1.6 Gbps and 3.2 Gbps versions are being defined and 
developed.  The following is a partial of peripherals available with IEEE 1394 
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interface: digital video camcorders, digital cameras, printers, mass storage de-
vices, ADCs. 
 
It is similar to USB in principle.  It has both asynchronous mode isochronous 
mode of transmission suitable for both bursty data and real-time video streams.  
At 400 Mbps, full frame rates digital video streams can be transmitted.  It has hot 
swapping capability.  It allows up to 63 devices to be connected.  Devices can 
also be bus powered or self powered. 
 
One significant difference between IEEE 1394 and the USB is the bus topology.  
The IEEE 1394 uses a peer-to-peer configuration, instead of the master-slave 
configuration.  This means a PC is not needed to act as a host or master for 
communication.  An IEEE 1394 digital video camera can be connected to a 
video player directly.  Similarly more than one PC can be connected to a digital 
camera to use the same video stream.   
 
This, together with the speed and other requirements, makes the specifications 
rather complex.  The specifications document is a few hundred pages divided 
into many areas of applications, including instrumentation, industrial and auto-
motive, on top of the more familiar video related specifications of digital video, 
MPEG, digital TV, etc.  In the instrumentation area, one application is to replace 
the now rather slow IEEE 488 GPIB with an IEEE 1394 bus.  There is an effort 
to define how the IEEE 488.2 command structure can be transmitted over the 
IEEE 1394. 
 
As in the USB, the IEEE 1394 uses a three layers model for communication: 
Physical, Link and Transaction.  The physical layer handles the signals required 
by the bus; the link layer formats data into packets.  Packets are passed on to the 
transaction layer which then present them to the application above it.  Semicon-
ductor chips are available for handling the functions of the physical and link 
layers.  Part of the transaction layer functions is also handled by the dedicated 
IEEE 1394 chip.  The rest are in software, in the OS and the user programs. 
 
In the Linux environment, version 2.2 onwards support IEEE 1394.  The subsys-
tem has been included with the standard kernel sources since version 2.3.40.  It is 
distributed as a patch to version 2.2.  IEEE 1394 is also supported on the Win-
dows and Macintosh platforms. 
 
The IEEE 1394 cable consists of two differential signal pairs,  a power and a 
ground line.  Two types of connectors are defined: a six-wire version (measures 
10 mm by 5 mm) and a four-wire version (measures 5 mm by 3 mm) without the 
power pair.  The maximum cable length for speed greater than 200 Mbps 4.5 m.  
At lower speed, cables up to 14 m long can be used.  Multiple devices can be 
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daisy-chained using repeaters to extent communication distance.  It is interesting 
to note that the future IEEE 1394b specifications also support cable length of 100 
m using plastic optical fibre and multiple kilometre using glass optical fibre.   
CAT-5 cables can be used at 100 Mbps at distances up to 100 m. 

4.8   Controller Area Network (CAN) 
The Control Area Network (CAN), originally developed for the automotive 
industry by Robert Bosch in 1980s, is a real-time serial data communications bus 
now being deployed in many distributed environment.  It is now accepted as an 
international standard (ISO 11898 and ISO 11519 for high and low speed appli-
cations respectively).   Many semiconductor manufacturers (e.g. Atmel, Fujitsu, 
Intel, Microchip, Motorola, Philips, Siemens, etc.) produce a wide range of 
controller and interface chips for CAN.  
 
CAN controllers are physically small and relatively cheap devices to be used for 
real-time data acquisition and control applications.  Data are transmitted on a 
two-wire bus using 5-V differential mode using a multicast protocol.  Large 
number of devices may be connected to the bus.  The limit is imposed by the 
drive capabilities of the control chips and up to 64 nodes is common.  Unlike 
most other bus arrangements, devices are not identified by their device address.  
Data messages transmitted on the bus do not carry source or destination address.  
Unique message identifiers are used instead.  A node sends out a message with 
an identifier and all the nodes on the bus receive it.  It’s up to the receiving node 
to decide whether to process the incoming message.  The message identifier also 
serves as a priority indicator.  The lower identifier has a higher priority.   
 
Contention is solved by Carrier Sense, Multiple Access with Collision Detect 
(CSMA/CD) as in the Ethernet.  However, an enhanced feature for non-
destructive bitwise arbitration is used to resolve collision.  This is achieved by a 
wired-AND mechanism.  A logical 0 in the identifier bit pattern is considered 
dominant and it overwrites a logical 1 which is recessive as shown below.  Thus 
a node sending out message with an identifier 123h will overwrite node with 
message identifier 223h and that then with identifier 124h.  Once a node trans-
mitter with a lower priority loses, it turns into a receiver and listens to the mes-
sage at a higher priority (or lower identifier value). 
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A useful feature in the message-based protocol of the CAN is the Remote 
Transmit Request (RTR).  This allows a node to request information from other 
nodes.  The protocol also permits additional nodes to be added without having to 
reprogram the existing nodes in the network.   
 
Four different types of messages or frames are defined: (1) Data Frame, (2) 
Remote Frame, (3) Error Frame and (4) Overload Frame.   
 
A data frame consists of the data field and several other fields to provide addi-
tional information.  The whole frame can be divided into Arbitration Field, Con-
trol Field, Data Field, CRC Field, Acknowledge Field and End of Frame Field.  
The Arbitration Field is the message ID mentioned above and is used for priori-
tising messages on the bus.  The prioritising field has 11 (standard frame) or 29 
(extended frame) identifier bits and one RFR bit.  If the RFR is set, the frame 
becomes a remote frame.  The control field consists of a bit that signifies ex-
tended frame and a four-bit Data Length Code (DLC).  The value of DLC  is 
between 0 and 8 representing 0 to 64 bits.  The remote frame has no data field, 
irrespective of the value of the DLC. 
 
The CRC is a 15-bit CRC field with a delimiter.  The acknowledge field is used 
to indicate if the message was received correctly, irrespective of whether it was 
processed or ignored.  This is done by asserting a dominant bit on the bus at the 
ACK slot bit time. 
 
When a node detects an error, it sends an error frame.  When a node is not ready 
to receive additional messages, it sends an overload frame on to the bus.  CAN 
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was designed with error tolerant and robustness in mind.  Thus, there are many 
types of errors being used: (1) CRC Error, (2) Acknowledge Error, (3) Form 
Error, (4) Bit Error, and (5) Stuff Error.   
 
Although CAN is not a standard bus in PCs, CAN interface cards are readily 
available.  As mentioned earlier, a wide range of CAN-based controller chips are 
available as standard semiconductor parts.  There are two hardware implementa-
tions: (1) Basic and (2) Full.  The former uses a standalone CAN controller 
connected to an existing microcontroller.  The latter integrate CAN controller, 
CPU and RAM in a single package.   
 
Data rates of CAN bus depends on the length of the bus.  For ISO11898 compli-
ant devices, 1 Mbps is guaranteed for lengths up to 40 m.  500 m cable may be 
used if data rate is reduced to 125 Kbps. 
 
An example of a small CAN controller chip is the MCP2510 by Microchip.  It is 
a 18-pin standalone CAN controller featuring an industry standard SPI serial 
interface. On-board features include interrupt capability, message masking and 
filtering, message prioritisation, and multi-purpose I/O pins.  Multiple trans-
mit/receive buffers significantly offload the microcontroller overhead required to 
handle CAN message traffic. Applications for the MCP2510 include device 
control, sensor monitoring, meter interfacing, automotive electronics, and in-
strument control. 

4.9   Inter-IC Serial Buses 
Working with embedded systems, one often comes across several serial buses 
used between ICs or modules within a system.  These are typically de facto 
standards originally developed by IC manufacturers for specific functions and 
subsequently expanded to more general use.  Even though they are only used for 
short interconnections, they are getting increasing important to embedded sys-
tems designers as miniaturisation and simplicity in designs are being empha-
sised. For example, using a serial bus between a flash memory device and the 
microcontroller not only reduces the complexity in circuit design, but also brings 
down the overall cost as serial devices are typically cheaper because of the 
smaller package and the PCB would be significantly smaller.  The only draw-
back in using a serial bus is of course transmission speed reduction.  However, in 
many laboratory scale embedded systems, the data rates of ~100 Kbps to ~10 
Mbps available in serial buses are more than sufficient. 
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4.10   I2C (Inter Integrated Circuit Bus) 
This is a bidirectional two-wire serial bus introduced by Philips Semiconductor 
in 1980s  for their television and other audiovisual products.  Today it is widely 
used in the industry for embedded systems. 
 
The two active lines are SDA (serial data) and SCL (serial clock).  A device has 
an unique address (7 or 10 bits) and may be receiver-only, or transmit-
ter/receiver.  Each device may be either a master or slave depending on whether 
it initiates a data transfer.  Multiple masters are allowed in a bus.  Over the years, 
data transfer speed has been increased from 100 Kbps (standard) to 400 Kbps 
(fast) and 3.4 Mbps (high speed). 
 
A bus master places the address of the destination (slave) on the bus.  All devices 
on the bus listen and the one being address communicates with the master.  If 
more than one master transmit, an arbitration scheme is used to decide the prior-
ity. 

4.11   SPI (Serial Peripheral Interface) 
This is a bidirectional full-duplex four-wire serial bus used originally by Mo-
torola in their microcontrollers.  The four wires are a clock, a data in, a data out 
and a select signal.  The generic names of the SPI input/output (I/O) pins are: 
 
• SS (slave select) 
• SPSCK (SPI serial clock) 
• MOSI (master out slave in) 
• MISO (master in slave out) 
 
In full duplex operation, the MISO pin of the master SPI module is connected to 
the MISO pin of the slave SPI module. The master SPI simultaneously receives 
data on its MISO pin and transmits data from its MOSI pin.  Slave output data on 
the MISO pin is enabled only when the SPI is configured as a slave.  To support 
a multiple-slave system, a logic 1 on the SS pin puts the MISO pin in a high-
impedance state. 
 
The MOSI pin of the master SPI module is connected to the MOSI pin of the 
slave SPI module. The master SPI simultaneously transmits data from its MOSI 
pin and receives data on its MISO pin.   
 
The serial clock signal from master to slave synchronizes data transmission 
between the two.  A byte of data is exchanged in 8 clock cycles. 
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The SS is used to select a slave when a device is configured in slave mode.  
When an SPI is configured as a master, the SS input can be used in conjunction 
with a flag to prevent multiple masters from driving MOSI and SPSCK thus 
resolving contention. 

4.12   SCI (Serial Communications Interface) 
This is the Motorola implementation of the RS-232 asynchronous serial commu-
nications bus.  It is a partial implementation in that only the two I/O data lines 
are implemented and that they are at TTL voltage level instead of the standard 
bipolar signals as in the RS-232 specifications. 
 
For short distance connections, such as within an equipment, direct TTL levels 
are sufficient.  If long transmission distance is necessary, or if the other end of 
the connection is a standard RS-232 port such as the PC COM port, voltage 
translation between TTL and RS-232 can be done. 
 
Several manufacturers produce chips for this purpose.  An example is the 
MAX232A by Maxim.  It operates from a 5V power supply and generates typi-
cal voltages of +8 V and –8 V using charge pump voltage doubler and voltage 
inverter. 
 

 

4.13   Microwire 
This is a serial interface bus defined by National Semiconductor and used in 
many of their products including the COPS microprocessors.  It is a three-wire 
(SO, SI and CK) interface very similar to the SPI.  In fact many the SPI interface 
may be used to connect to Microwire memories and peripheral devices.   
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4.14   1-Wire Bus 
This is a serial bus defined by Dallas Semiconductor.  1-Wire devices lower 
system cost and simplify design with an interface protocol that supplies control, 
signalling, and power over a single-wire connection. A variety of identification, 
sensor, control, and memory functions are available in conventional IC packages, 
and stainless-steel-clad casing called iButtons. 
 
A 1-Wire network consists of a master and one or more slaves devices connected 
together through the 1-Wire interface.  The master initiates and control half 
duplex data transfer on the bus.  It uses conventional TTL voltage levels of 
maximum 0.8 V for logical 0 and minimum 2.2 V for logical 1.  The master has 
a weak resistive pull-up open drain output.  A slave shorts circuit the data line to 
change logical state to 0.  For large network, the weak pull-up is supplemented 
by a controlled strong pull-up. 
 
Every slave device has a unique 64-bit address, which consists of an 8-bit family 
code, a 48-bit serial number and an 8-bit CRC of the first seven bytes.   
 
Slave devices must have its own timing circuit and this is synchronised by the 
falling slope of the signal on the bus.  A slave typically obtains its power from 
the 1-Wire bus by means of an on-chip capacitor.    
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5     Web-based Embedded Systems  

5.1   Introduction 
As mentioned earlier, the proliferation of the Ethernet and Internet brings in 
another dimension in networking embedded systems.  In a nutshell the suite of 
Internet protocols and the cost reduction in embedded Ethernet hardware change 
the way embedded systems are connected in a distributed environment. 
 

 
 

 
It is now cheaper and simpler to connect an embedded system, even a small one 
such as a simple thermometer, to another equipment via the Internet (or its varia-
tion the Intranet) than to link the two together using traditional direct connection.  
When the equipment is within the range of a LAN (typically ~ 100 m), the 
Ethernet is the choice for physically connection.  To cover large distances, the 
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Ethernet will typical have one of the several ways to connect to the public tele-
communications network.  Thus the embedded system is connected to the WAN 
(wide area network).   The links to the telecommunications network can be mo-
dems, ISDN, DSL, or leased lines.  These links are not the job of the embedded 
systems designers.  The job of the designers boils down to adding the Ethernet 
connection to the equipment, or a serial link to the modem if Ethernet is not 
used. 
 
The suite of Internet protocols (UDP and TCP/IP, and application protocols FTP, 
HTTP, SNMP etc.) are covered by other lectures in this workshop, we shall not 
delve into this topic in any depth.  However, the Ethernet interface and the serial 
link that connect the embedded system to the Internet shall be discussed here.   
 
Last few years saw the appearances of experimental, hobbyist and commercial 
real-time embedded systems on the Internet that can be accessed easily using 
standard browsers.  However, one of the earlier implementations is the Cam-
bridge coffee pot webcam that appeared in 1991 (predated world wide web) and 
subsequently put on the www.  (http://www.cl.cam.ac.uk/coffee/coffee.html) 
Now there are numerous webcams on the Internet.  At the height of its fame, 
there were more than 2 million people viewing the plain coffee pot in Trojan 
Room in Computer Laboratory in Cambridge.  
 
While it is fascinating and significant to be able to view video frames from any 
place in the world with an Internet connection, the basic principle is straightfor-
ward and simple.  A server gets data (video frames in this case) ready in a form 
meaningful to the client (the web browser) and the client accesses it via the 
Internet.  It turns out that the server side effort is relatively simple (writing an 
HTML document, with SSI server side includes).  The client (the browser) is a 
complex program but it is a standard application in all platforms.  In fact, the 
earliest Cambridge coffee pot server and client impleme ntation was done in one 
day, at that initial stage, for fun! 
 
The more recent implementations of web-based that are of interest to the embed-
ded community is in the implementation of small and lean embedded web serv-
ers.  They are standalone servers that have their own IP (Internet address) and are 
connected to the Internet without using a PC.  One of the tiniest is a match head 
sized web server using an 8-pin PIC microcontroller (PIC12C509A). 
(http://www-ccs.cs.umass.edu/~shri/iPic.html)  It has TCP/IP stack and a HTTP 
web-server.  The TCP/IP stack is fitted into 256 bytes.  This project proves the 
point that putting up a web-based embedded system, albeit a rather basic one, 
can be done with very little hardware, and software! 
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More realistic embedded web servers are built with microcontrollers having 
more memories than that of the PIC12C509A, which has a mere 1536 bytes of 
ROM and 41 bytes of RAM.  Almost every microcontroller manufacturer now 
has application notes on how to implement TCP/IP stack on their range of mi-
crocontrollers.   
 
Vendors and suppliers of embedded web servers are mushrooming in the Internet 
because of the potential market they see.  At the moment embedded Ethernet 
modules that have memories in the range of 256 Kbytes to 1 Mbytes, an Ethernet 
link, several serial links, and parallel I/Os are available in the price range of $50 
~ $100.  For most laboratory applications when the volume is low, it is the most 
cost effective way for implementing embedded web-based systems. 
 

5.2   Migration to Web-based Systems 
The embedded systems designer faces a dilemma – whether to build the com-
plete application on the new embedded web-based modules or to retain the exist-
ing or legacy systems.  As in the case of other technological innovation, there are 
several approaches to handling the migration to the new technology.  In embed-
ded systems at this time, there are two ways as shown below. 
 

 
 
The first decision that has to be made is whether to use the new embedded web-
based microcontroller module as: 
 

(1) An add-on to the legacy system or  
(2) A replacement of the legacy electronics.    
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The add-on option has the advantage of little or no disruption to the existing 
system.  In many cases where the existing systems have standard serial or paral-
lel I/Os, no hardware or software modifications are needed.  In others, appropri-
ate modification to bring the existing system peripheral acceptable to the embed-
ded Ethernet module has to be done.  This is straightforward in many laboratory 
type systems.  If the legacy system is a complex piece of equipment, this is also a 
good option to adopt. 
 
The shortcoming of this add-on option is the lacking in functional enhancement 
of the final system other than the Internet connection.  The Internet connection 
may be all that is needed.  In which case it is obviously the simplest solution.   
 
The replacement option is to replace the part or all the existing controller elec-
tronics with the embedded module.  This is an attractive solution in some cases 
because new functions may be added to the existing system using the more 
powerful embedded microcontroller.  Cost may be another factor.  The new 
crops of embedded microcontroller modules are substantially cheaper than the 
older microprocessor-based systems.  Thus if additional systems are needed, the 
old hardware may be expensive or obsolete.  However, the effort and cost of 
rewriting or porting the software and firmware have to be weighed carefully 
against the gain achieved through hardware replacement. 

5.3   Hardware Connection to the Internet 
Irrespective of the ways - add-on or replacement - the new embedded web-based 
module functions in the legacy system, there are still two alternatives for con-
necting to the Internet world: 

 
(1) Ethernet connection 
(2) Serial connection 
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The Ethernet is now so widely deployed that there is hardly any laboratory or 
office that does not use it to network PCs or other equipment.  Thus, for embed-
ded systems, Ethernet capable feature would simplify connection to the Internet.  
A 10Base-T or 100Base-T connection from an embedded system will be most 
convenient; the connection to the outside world then reduces to linking the sys-
tem to a hub or switch with a simple CAT-5 UTP (unshielded twisted pair) cable. 
 
Until recently, the rather complex CSMA/CD physical layer protocol (MAC) and 
the large buffer size (~ 1500 bytes) required for the Ethernet frame meant that 
implementation was costly.  Interface to the Ethernet controller chips was typi-
cally designed for 16- or 32-bit buses which were rather uncommon in small and 
medium scaled embedded systems.  Many small embedded systems thus cannot 
justify having an Ethernet interface.  The situation has changed in the last two 
years.  Both cost reduction and simplification of driving circuitries make it pos-
sible to tug an Ethernet interface on an embedded system now.  There are only 
two key components needed – an Ethernet controller chip and a line driver trans-
former.  An 8-bit microcontroller can now be used to interface to the controller 
chip. The cost of the Ethernet controller and the line driver is in the range of $10 
~ $20.   
 
While the Ethernet interface is the ubiquitous link to the Internet, it is not the 
only way.  An embedded system can be connected to the outside world via a 
serial link like the RS-232 COM port on the PC.  There are a number of situa-
tions where this method of connection is preferred.  First, it is cheaper to use a 
serial port, which is a standard item in most microcontrollers.  This const reduc-
tion refers to the embedded system side.  It is noted that a matching serial port 
(in the form of Internet router) is needed on the network side.  This may increase 
the overall system cost because an Internet router with serial ports has to be 
installed.  Such Internet routers are not as common as the Ethernet hubs in most 
laboratories.  Dispensing with the Ethernet controller chip reduces both the 
hardware and software complexity needed on the microcontroller host.  In the 
tiny web server project mentioned earlier using a small PIC controller, there is 
simply not enough hardware resources on the microcontroller to drive an 
Ethernet controller. 
 
Another reason for deploying a serial link is to connect to a modem for Internet 
access.  This is a very common mode of connection.  Most of us use a modem 
dial-up to access the Internet at home.  Embedded systems to be used at locations 
without an Ethernet can use the serial mode in a similar ma nner.   
 
In a very small implementation of a single embedded system connected to a PC 
acting as a host processor or controller, the serial link is also the choice.  In this 
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case, the PC host’s COM port is simply connected to the serial port of the em-
bedded system using a crossover cable (null modem).   

5.4   Ethernet Connection 
While there are several ways of Ethernet connections and several high speed 
Ethernets (e.g. 10 Gbps) being introduced and standardized, the type that con-
cerns the embedded systems designer is the plain 10Base-T, which is 10 Mbps, 
base-band, with twisted pair.  This is the most widely used method of accessing 
the Ethernet in most laboratories.  In a typically network, switches or hubs are 
used to link the various Ethernet nodes.  An embedded system with a 10BaseT 
port only needs an Ethernet cable (CAT-5, UTP with modular RJ45 plugs at both 
ends, up to 100 m) to connect to an available port on a hub.   
 
In the event that you have to build your own Ethernet for your embedded sys-
tems network in your laboratory, what are the hardware components involved?  
First you typically need a PC with an Ethernet connection.  Many new PCs in the 
market have a built-in Ethernet port.  For older PCs, a PCI Ethernet card (less 
than $20) can be used.  Then you need a Ethernet hub which connects all nodes 
in your network.  Hubs come in various forms.  A small one with 4 to 8 ports 
($20 ~ $50) would normally be sufficient.  Then of course you need the cables 
with RJ45 terminations. 
 
As in the case of serial link, it is possible to connect a host PC to an embedded 
system with just a crossover cable.  No Ethernet hub is necessary in this case.  
This turns out to be a handy set-up for testing and debugging your embedded 
system.  Before you deploy your embedded system in the Internet, you may want 
to test your system by just connecting it to a standalone host PC with a simple 
crossover cable. 

5.5   Ethernet Controller 
Most PC users are familiar with the NIC (network interface card) which provides 
the interface to the Ethernet.  Two widely used cards are the 3Com 3C509 and 
the Novell NE2000.  These cards, typically connected to either an ISA or PCI 
bus, use Ethernet controller chips which are rather sophisticated.  The full func-
tions of these Ethernet controller chips are often not required in embedded sys-
tems.  Although the controller chips are rather complex, they nevertheless can be 
implemented in small 8-bit microcontroller systems with relative ease.  
 
One of such controllers is the RTL8019AS produced by Realtek which is the 
most widely used with 70% world market share in 1999.  Both controllers are 
simple to use and relatively low cost.  Packaged in a 100-pin PQFP (plastic quad 
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flat pack) measuring 14 by 20 mm the RTL8019AS has the following main 
features:  

• 16 Kbytes SRAM  

• IEEE802.3 compliant  

• Software compatible with NE2000 

• PnP 

• Full-duplex 

• Power down modes 

• Supports BROM 

• Diagnostics LED outputs 
 
Another similar controller is the CS8900A by Cirrus Logic.  Originally designed 
as an ISA-bus Ethernet controller, it can be adapted for 8-bit microcontroller use.  
A complete Ethernet circuit can be designed on a PCB of about 10 cm2.  A block 
diagram of this chip is shown below: 
 

 
 
The controller is accessed through either 8- or 16-bit ports.  There are 8 registers 
which can be memory mapped into usual address space.  Each register is 16 bits.  
For embedded system applications, these registered are accessed directly by the 
microcontroller. 
 

Address 
Offset 

I/O Register 

0h R/W Receive/Transmit Data (Port 0) 
2h R/W Receive/Transmit Data (Port 1) 
4h W TxCMD (Transmit Command) 
6h W TxLength (Transmit Length) 
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8h R Interrupt Status Queue 
Ah R/W PacketPage Pointer 
Ch R/W PacketPage Data (Port 0) 
Eh R/W PacketPage Data (Port 1) 

 
The Ethernet frame transmission is carried out as follows: 
 

(1) To transmit a frame, first write a transmit command (00C0h) to the 
TxCMD  port and the length to the TxLength port.  In the case of 8-bit 
connection, each is done in two steps, a low byte and then a high byte to 
the appropriate address.   The BusTX register is then checked to see if the 
transmit buffer is available.  This is done by setting the Packetpage 
Pointer with the correct value (in this case 0138h) and check the Packet-
Page Data (Port 0) for the appropriate status, in this case bit 8 
(Rdy4TxNow flag).   

 
(2) If transmit buffer is available (Rday4TxNow flag set), data are written, 

one byte at a time, to the Receive/Transmit Data (Port 0). Again two 
bytes in two consecutive locations of the port. 

 
The steps for frame reception are: 
 

(1) Poll Rx Event Register to determine if a frame is ready to be read.  This 
is done by reading the RxStatus word from data port 0, high order byte 
first. 

 
(2) The frame length is then read from data port 0, again high order byte 

first. 
 

(3) The frame data is then read from data port 0, low order byte first.  Repeat 
until the whole frame is read. 

 
One can see the simplicity of interfacing the controller from the following refer-
ence design for an 8-bit microcontroller using the CS8900A. 
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Two LED outputs are usually provided by the Ethernet controller to monitor line 
status as shown in the diagram above.  A LANLED is turned on (logical low) 
when the controller transmits or receives a frame, or when a collision is detected.  
It remains low until there has been no line activity for 6 ms. 
 
A LINKLED  is controller by either the controller or the host.  In the former, this 
LED is turned on whenever there are  valid 10Base-T pulses.  In the latter case, 
this LED is turned on whenever a HCB0 bit (a bit in a SelfCTL register) is set. 
 
Ethernet controllers such as the CS8900A have a built-in 10Base-T transceiver 
including analogue and digital circuitry needed to connect to a simple isolation 
transformer.  A block diagram of the transceiver is as follows: 
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Fifth-order Butterworth low-pass filters are used for the receiver and transmitter.  
The nominal 3 dB cutoff frequency of the filters are 16 MHz and the attnuation 
at 30 MHz is –27 dB.   
 
In 10Base-T transmitter, Manchester encoded data from the ENDEC (encoder 
decoder) pass through a predistortion circuit for wave shaping and preequaliza-
tion.  The signal is then filtered before being fed to differential drivers and fi-
nally brought out to the TxD+ and TxD- pins.  Link pulses are sent in the ab-
sence of transmit packets.  These are positive pulses, one bit time wide, gener-
ated every 16 ms. 
 
In the receiver, a squelch circuit determines if the incoming filtered signal is 
valid (reaches the threshold).  The receiver pair RxD+ and RxD- is monitored 
continuously.  If a packet or link pulse is not received within a time limit (150 
ms), transmission of packet is disabled.  The received signals are also checked 
for polarity.  In the case of polarity reversal, it is possible to set the controller to 
correct for the reversal.   


