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Why parallel programming?

• Solve larger problems
• Run memory demanding codes
• Solve problems with greater speed

Why on Linux clusters?
• Solve Challenging problems with low 

cost hardware.
• Your computer facility fit in your lab.
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Modern Parallel Architectures

Two basic architectural scheme:

Distributed Memory

Shared Memory

Now most computers have a mixed 
architecture
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Most Common Networks
Cube, hypercube, n-cube

Torus in 1,2,...,N Dim

switch

switched

Fat Tree
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Shared Memory
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Real Shared
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Virtual Shared
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Mixed Architectures
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Logical Machine Organization

The logical organization, seen by the 
programmer, could be different from 
the hardware architecture.

Its quite easy to logically partition a 
Shared Memory computer to reproduce 
a Distributed memory Computers.

The opposite is not true.
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Parallel Programming Paradigms

The two architectures determine two basic 
scheme for parallel programming

Message Passing (distributed memory)
all processes could directly access only their local 
memory

Data Parallel (shared memory)
Single memory view, all processes (usually threads) 
could directly access the whole memory
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Parallel Programming Paradigms, cont.

Standard Unix shell to run   
the program

Ad hoc commands to run the 
program

Source code DirectiveCommunication Libraries

Ad hoc compilersStandard compilers

Standards: OpenMP, HPFStandards: MPI, PVM

Data ParallelMessage Passing

Programming Environments
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Parallel Programming Paradigms, cont.

Its easy to adopt a Message Passing scheme in a Sheared 
Memory computers (unix process have their private memory).

Its less easy to follow a Data Parallel scheme in a 
Distributed Memory computer (emulation of shared memory)

Its relatively easy to design a program using the message 
passing scheme and implementing the code in a Data 
Parallel programming environments (using OpenMP or HPF)

Its not easy to design a program using the Data Parallel 
scheme and implementing the code in a Message Passing 
environment (with some efforts on the T3E, shmem lib)
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Architectures vs. Paradigms

Shared Memory
Computers

Distributed Memory
Computers

Message Passing

Data Parallel
Message Passing

Clusters of Shared Memory Nodes
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Parallel programming Models
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Domain decomposition
Data are divided into pieces of approximately the same 

size and mapped to different processors. Each 
processors work only on its local data. The resulting 
code has a single flow. 

Functional decomposition
The problem is decompose into a large number of smaller 

tasks and then the tasks are assigned to processors as 
they become available, Client-Server / Master-Slave 
paradigm.

(again) two basic models models 
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Multiple Program 
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Two basic ....

Architectures

Functional DecompositionDomain Decomposition

Parallel Programming Models

Data ParallelMessage Passing

Programming Paradigms/Environment

Shared MemoryDistributed Memory
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Small important digression

When writing a parallel code, regardless 
of the architecture, programming model 
and paradigm, be always aware of

• Load Balancing

• Minimizing Communication

• Overlapping Communication and Computation
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Load Balancing

Equally divide the work among the 
available resource: processors, 
memory, network bandwidth, I/O, ...

This is usually a simple task for the 
problem decomposition model

It is a difficult task for the functional 
decomposition model
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Minimizing Communication

When possible reduce the communication 
events:

Group lots of small communications into 
large one.

Eliminate synchronizations as much as 
possible. Each synchronization level off 
the performance to that of the slowest 
process.
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Overlap Communication and 
Computation

When possible code your program in such 
a way that processes continue to do 
useful work while communicating.

This is usually a non trivial task and is 
afforded in the very last phase of 
parallelization.

If you succeed, you have done. Benefits 
are enormous.
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MPI programming model 
on Linux Cluster

Carlo Cavazzoni
(High Performance Computing Group) 

CINECA
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INTRODUCTION: What is MPI?

MPI: Message Passing Interface

What is a message? 

DATA

MPI allows data to be passed between 
processes
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What is MPI?

MPI is standard defined in a set of documents compiled by 

a consortium of organizations: http://www.mpi-forum.org/

In particular the MPI documents define the APIs (application 

interfaces) for C, C++ and FORTRAN.

The actual implementation of the standard is demanded to 
the software developers of the different systems

In all systems MPI has been implemented as a library of 
subroutines over the network drivers and primitives
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Domain decomposition and MPI

MPI is particularly suited for a Domain 
decomposition approach, where there is 
a single program flow. 

Parallel computation consist of a number of processes, 
each working on some local data. Each process has 
purely local variables (no access to remote memory).

Sharing of data takes place by message passing, by 
explicitly sending and receiving data between processes
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Goals of the MPI standard

MPI’s prime goals are:
• To provide source-code portability
• To allow efficient implementation

MPI also offers:
• A great deal of functionality
• Support for heterogeneous parallel 

architectures
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Basic Features of MPI Programs

An MPI program consists of multiple instances of a serial 
program that communicate by library call.

Calls may be roughly divided into four classes:

1. Calls used to initialize, manage, and terminate 
communications

2. Calls used to communicate between pairs of 
processors. (Pair communication)

3. Calls used to communicate among groups of 
processors. (Collective communication)

4. Calls to create data types.
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A First Program: Hello World!

Fortran

PROGRAM hello

INCLUDE ‘mpif.h‘
INTEGER err

CALL MPI_INIT(err)
PRINT *, “hello world!”
CALL MPI_FINALIZE(err)

END

C

#include <stdio.h>
#include <mpi.h>

void main (int argc, char * argv[])
{
int err;

err = MPI_Init(&argc, &argv);
printf(“Hello world!\n”);
err = MPI_Finalize();

}
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Compiling and Running MPI Programs

Compiling (NO STANDARD): 
• specify the appropriate include directory  

(i.e. -I/mpidir/include)
• Specify the mpi library 

(i.e. -L/mpidir/lib -lmpi)
• Sometimes you may have MPI compiler wrappers that 

do this job for you. (i.e. mpif77 )

Running (NO STANDARD):
• mpirun command (i.e. mpirun –np 4 myprog.x)
• Other similar command (i.e. mpiexec –n 4 myprog.x)
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Basic Structures of MPI Programs
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§ Header files

§ MPI Communicator

§ MPI Function format

§ Communicator Size and Process Rank

§ Initializing and Exiting MPI
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Header files

All Subprogram that contains calls to MPI 
subroutine must include the MPI header file

C:
#include<mpi.h>

Fortran:
include ‘mpif.h’

The header file contains definitions of MPI constants, MPI
types and functions
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MPI Communicator

The Communicator is a variable identifying a group of 
processes that are allowed to communicate with each 
other.

There is a default communicator (automatically defined): 

MPI_COMM_WORLD

identify the group of all processes.

Ø All MPI communication subroutines have a communicator 
argument.
Ø The Programmer could define many communicator at the 
same time
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MPI function format

C:

Error = MPI_Xxxxx(parameter,...);
MPI_Xxxxx(parameter,...);

Fortran:

CALL MPI_XXXXX(parameter, IERROR)
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Communicator Size and Process Rank
How many processors are associated with a communicator?
C:

MPI_Comm_size(MPI_Comm comm, int *size)
Fortran:

INTEGER COMM, SIZE, IERR
CALL MPI_COMM_SIZE(COMM, SIZE, IERR)

OUTPUT:  SIZE 

What is the ID of a processor in a group?
C:

MPI_Comm_rank(MPI_Comm comm, int *rank)
Fortran:

INTEGER COMM, RANK, IERR
CALL MPI_COMM_RANK(COMM, RANK, IERR) 

OUTPUT:  RANK
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Communicator Size and Process Rank, cont.

P0 P1 P2 P3 P4 P5 P6 P7

RANK = 2

SIZE = 8

Size is the number of processors associated to the communicator

rank is the index of the process within a group associated to a 
communicator (rank = 0,1,...,N-1). The rank is used to identify 
the source and destination process in a communication
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Initializing and Exiting MPI
Initializing the MPI environment
C:

int MPI_Init(int *argc, char ***argv);
Fortran:

INTEGER IERR
CALL MPI_INIT(IERR)

Finalizing MPI environment
C:

int MPI_Finalize()
Fortran:

INTEGER IERR
CALL MPI_FINALIZE(IERR)

This two subprograms should be called by all process, and no 
other MPI calls are allowed before mpi_init and after
mpi_finalize
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A Template for Fortran MPI programs
PROGRAM template

INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

!!! INSERT YOUR PARALLEL CODE HERE !!!

CALL MPI_FINALIZE(ierr)

END
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A Template for C MPI programs 
#include <stdio.h>
#include <mpi.h>

void main (int argc, char * argv[])
{
int err, nproc, myid;

err = MPI_Init(&argc, &argv);
err = MPI_Comm_size(MPI_COMM_WORLD, &nproc);
err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);

/*** INSERT YOUR PARALLEL CODE HERE ***/

err = MPI_Finalize();
}
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Point to Point Communication

Let process A send a message to process B
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Point to Point Communication

• Is the fundamental communication 
facility provided by MPI library

• Is conceptually simple: A send a 
message to B, B receive the message 
from A. It is less simple in practice.

• Communication take places within a 
communicator

• Source and Destination are identified by 
their rank in the communicator
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The Message
• A message is an array of elements of some 

particular MPI data type
• MPI Data types

• Basic types
• Derived types

• Derived type can be build up from basic types
• C types are different from Fortran types
• Messages are identified by their envelopes,

• a message could be received only if the receiver specify 
the correct envelope

envelope body
source destination communicator tag buffer datatypecount

Message Structure
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Fortran - MPI Basic Datatypes

DOUBLE COMPLEXMPI_DOUBLE_COMPLEX

MPI_PACKED
MPI_BYTE

CHARACTER(1)MPI_CHARACTER

LOGICALMPI_LOGICAL

COMPLEXMPI_COMPLEX

DOUBLE PRECISIONMPI_DOUBLE_PRECISION

REALMPI_REAL

INTEGERMPI_INTEGER
Fortran Data typeMPI Data type
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C - MPI Basic Datatypes

MPI_PACKED

MPI_BYTE

long doubleMPI_LONG_DOUBLE
doubleMPI_DOUBLE

floatMPI_FLOAT

unsigned long intMPI_UNSIGNED_LONG
unsigned intMPI_UNSIGNED

unsigned short intMPI_UNSIGNED_SHORT

unsigned charMPI_UNSIGNED_CHAR
Signed log intMPI_LONG

signed intMPI_INT

signed short intMPI_SHORT
signed charMPI_CHAR

C Data typeMPI Data type
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Definitions (Blocking and non-Blocking)
• “Completion” of the communication means 

that memory locations used in the message 
transfer can be safely accessed
• Send: variable sent can be reused after completion
• Receive: variable received can now be used

• MPI communication modes differ in what 
conditions are needed for completion

• Communication modes can be blocking or 
non-blocking
• Blocking: return from routine implies completion
• Non-blocking: routine returns immediately, user 

must test for completion
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Communication Modes and MPI 
Subroutines

MPI_IRSENDMPI_RSENDAlways completes, 
irrespective of whether the 
receive has completed

Ready send

MPI_IBSENDMPI_BSENDAlways completes,
irrespective of receiver

Buffered send

MPI_ISSENDMPI_SSENDOnly completes when the 
receive has completed

Synchronous 
send

MPI_IRECVMPI_RECVCompletes when a 
message has arrived

receive

MPI_ISENDMPI_SENDMessage sent (receive 
state unknown)

Standard send

Non-blocking 
subroutine

Blocking 
subroutine

Completion 
Condition

Mode
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Standard Send and Receive
basic blocking point-to-point communication routine in MPI.

Fortran: 
MPI_SEND(buf, count, type, dest, tag, comm, ierr)
MPI_RECV(buf, count, type, dest, tag, comm, status, ierr)

Buf array of type type see table.
Count (INTEGER) number of element of buf to be sent
Type (INTEGER) MPI type of buf
Dest (INTEGER) rank of the destination process
Tag (INTEGER) number identifying the message
Comm (INTEGER) communicator of the sender and receiver
Status (INTEGER) array of size MPI_STATUS_SIZE containing

communication status information
Ierr (INTEGER) error code (if ierr=0 no error occurs)

Message body Message envelope
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Standard Send and Receive

C:
int MPI_Send(void *buf, int count, MPI_Datatype

type, int dest, int tag, MPI_Comm comm);

int MPI_Recv (void *buf, int count, MPI_Datatype
type, int dest, int tag, MPI_Comm comm, 
MPI_Status *status);

Both in Fortran and C MPI_RECV accept 
wildcard for source (MPI_ANYSOURCE) and tag 
(MPI_ANYTAG) 
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Sending and Receiving, an example
PROGRAM send_recv

INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF( myid .EQ. 0 ) THEN
A(1) = 3.0
A(2) = 5.0
CALL MPI_SEND(A, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF( myid .EQ. 1 ) THEN
CALL MPI_RECV(A, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)
WRITE(6,*) myid,’: a(1)=’,a(1),’ a(2)=’,a(2)

END IF

CALL MPI_FINALIZE(ierr)
END
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Sending and Receiving, an example
#include <stdio.h>
#include <mpi.h>

void main (int argc, char * argv[])
{

int err, nproc, myid;
MPI_Status status;
float a[2];

err = MPI_Init(&argc, &argv);
err = MPI_Comm_size(MPI_COMM_WORLD, &nproc);
err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if( myid == 0 ) {
a[0] = 3.0, a[1] = 5.0;
MPI_Send(a, 2, MPI_FLOAT, 1, 10, MPI_COMM_WORLD);

} else if( myid == 1 ) {
MPI_Recv(a, 2, MPI_FLOAT, 0, 10, MPI_COMM_WORLD, &status);
printf(”%d: a[0]=%f a[1]=%f\n”, myid, a[0], a[1]);

}

err = MPI_Finalize();
}
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Again about completion
Standard MPI_RECV and MPI_SEND block the calling 

process until completion.
For MPI_RECV completion: the message is arrived and the 

process could proceed using the received data.
For MPI_SEND completion: the process could proceed and 

data could be overwritten without interfering with the 
message. But this does not mean that the message has 
already been sent. In many MPI implementation, 
depending on the message size, sending data are 
copied to MPI internal buffers.

If the message is not buffered a call to MPI_SEND 
implies a process synchronization, on the contrary 
this is not true if the message is buffered.

Don’t make any assumptions (implementation dependent)
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DEADLOCK
Deadlock occurs when 2 (or more) processes are 

blocked and each is waiting for the other to make 
progress.

0

terminate

Action A

Proceed 
if 1 has taken 

action B

1init init

compute compute

Action B

terminate

Proceed 
if 0 has taken 

action A
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Simple DEADLOCK
PROGRAM deadlock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF( myid .EQ. 0 ) THEN
a(1) = 2.0
a(2) = 4.0
CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)
CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF( myid .EQ. 1 ) THEN
a(1) = 3.0
a(2) = 5.0
CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)
CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)

END IF
WRITE(6,*) myid, ’: a(1)=’, a(1), ’ a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END
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initinit

computecompute

Avoiding DEADLOCK

terminateterminate

0 1

Action B
Proceed 

if 1 has taken 
action B

Proceed 
if 0 has taken 

action A
Action A
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Avoiding DEADLOCK
PROGRAM avoid_lock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF( myid .EQ. 0 ) THEN
a(1) = 2.0
a(2) = 4.0
CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)
CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF( myid .EQ. 1 ) THEN
a(1) = 3.0
a(2) = 5.0
CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)
CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

END IF
WRITE(6,*) myid, ’: a(1)=’, a(1), ’ a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END
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DEADLOCK: the most common error
PROGRAM error_lock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
IF( myid .EQ. 0 ) THEN

a(1) = 2.0
a(2) = 4.0
CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)
CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)

ELSE IF( myid .EQ. 1 ) THEN
a(1) = 3.0
a(2) = 5.0
CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)
CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

END IF
WRITE(6,*) myid, ’: a(1)=’, a(1), ’ a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END
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Non-Blocking Send and Receive
Non-Blocking communications allows the 

separation between the initiation of the 
communication and the completion.

Advantages: between the initiation and 
completion the program could do other 
useful computation (latency hiding).

Disadvantages: the programmer has to 
insert code to check for completion.
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Non-Blocking Send and Receive

Fortran: 
MPI_ISEND(buf, count, type, dest, tag, comm, req, ierr)
MPI_IRECV(buf, count, type, dest, tag, comm, req, ierr)

buf array of type type see table.
count (INTEGER) number of element of buf to be sent
type (INTEGER) MPI type of buf
dest (INTEGER) rank of the destination process
tag (INTEGER) number identifying the message
comm (INTEGER) communicator of the sender and receiver
req (INTEGER) output, identifier of the communications handle
ierr (INTEGER) output, error code (if ierr=0 no error occurs)
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Non-Blocking Send and Receive

C:

int MPI_Isend(void *buf, int count, 
MPI_Datatype type, int dest, int tag, 
MPI_Comm comm, MPI_Request *req);

int MPI_Irecv (void *buf, int count, 
MPI_Datatype type, int dest, int tag, 
MPI_Comm comm, MPI_Request *req);
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Waiting and Testing for Completion
Fortran:
MPI_WAIT(req, status, ierr)

A call to this subroutine cause the code to wait until the 
communication pointed by req is complete.

req (INTEGER) input/output, identifier associated to a 
communications event (initiated by MPI_ISEND or MPI_IRECV).

Status (INTEGER) array of size MPI_STATUS_SIZE, if req was 
associated to a call to MPI_IRECV, status contains informations 
on the received message, otherwise status could contain an 
error code.

ierr (INTEGER) output, error code (if ierr=0 no error occours).

C:
int MPI_Wait(MPI_Request *req, MPI_Status *status);
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Waiting and Testing for Completion
Fortran:
MPI_TEST(req, flag, status, ierr)

A call to this subroutine sets flag to .true. if the communication 
pointed by req is complete, sets flag to .false. otherwise.

req (INTEGER) input/output, identifier associated to a 
communications event (initiated by MPI_ISEND or MPI_IRECV).

Flag (LOGICAL) output, .true. if communication req has completed 
.false. otherwise

Status (INTEGER) array of size MPI_STATUS_SIZE, if req was 
associated to a call to MPI_IRECV, status contains informations on 
the received message, otherwise status could contain an error code.

ierr (INTEGER) output, error code (if ierr=0 no error occours).

C:
int MPI_Wait(MPI_Request *req, int *flag, MPI_Status *status);
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Send and Receive, the easy way.

The easiest way to send and receive data without 
warring about deadlocks

Fortran:
CALL MPI_SENDRECV(sndbuf, snd_size, snd_type, destid, ip,
rcvbuf, rcv_size, rcv_type, sourid, ip, comm, status, ierr)

Sender side

Receiver side
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Send and Receive, the easy way.
PROGRAM send_recv
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
IF( myid .EQ. 0 ) THEN

a(1) = 2.0
a(2) = 4.0
CALL MPI_SENDRECV(a, 2, MPI_REAL, 1, 10, b, 2, MPI_REAL, 1, 11, 
MPI_COMM_WORLD, status, ierr)

ELSE IF( myid .EQ. 1 ) THEN
a(1) = 3.0
a(2) = 5.0
CALL MPI_SENDRECV(a, 2, MPI_REAL, 0, 11, b, 2, MPI_REAL, 0, 10, 
MPI_COMM_WORLD, status, ierr)

END IF
WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)
CALL MPI_FINALIZE(ierr)
END
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Lab 1: My First MPI program

Implement and test the code:

1. Implements the Template MPI program

2. Compile

3. Run

4. Insert some code in the template 

(printout rank and size)
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Lab 1: DEADLOCKS

Implement and test the code:

1. The Deadlock program

2. The Avoid Deadlock program

3. The Deadlock program with non-blocking 

MPI_ISEND, MPI_IRECV, MPI_WAIT and MPI_TEST

4. The Most common error program with MPI_SEND, 

MPI_RECV and arrays of increasing size
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LAB 2: Reduction and Binary Tree

Reduction: sum up the partial results of 
different process (maybe the most common 

parallel operation required in a parallel program)

a1 a2 an

A=a1+a2+…+an

P0 P1 Pn-1…
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LAB 2: A Simple strategy
a1

a2

an

A=A+a1

P0

P1

Pn-1

…

P0

P0

P0

A=A+a2

A=A+an

P0 A=a1+a2+…+an

This algorithm
complete in n steps
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LAB 2: Binary Tree - I
P0 P1 P2 P3 P4 P5 P6 P7

P1 P3 P5 P7

P3 P7

P7

This algorithm
complete in log2n steps

a1 a2 a3 a4 a5 a6 a7 a8

a1+a2 a3+a4 a5+a6 a7+a8

a1+a2+a3+a4 a5+a6+a7+a8

a1+a2+a3+a4+a5+a6+a7+a8
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Lab 2: Binary Tree - I

As an hint observe that:

Sender Receiver
Step 1 MOD(myid,2)=0 MOD(myid,2)=1
Step 2 MOD(myid,4)=1 MOD(myid,4)=3
Step 3 MOD(myid,8)=3 MOD(myid,8)=7
…
Step n MOD(myid,2**n)= MOD(myid,2**n)=

2**(n-1)-1 2**n-1

myid: processor index
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Lab 2: Binary Tree - II
P5 P6 P7

P1 P3 P5 P7

P3 P7

P7

a1 a2 a3 a4 a5 a6 a7 a8

a1+a2 a3+a4 a5+a6 a7+a8

a1+a2+a3+a4 a5+a6+a7+a8

a1+a2+a3+a4+a5+a6+a7+a8

P0 P2 P4 P6

P1 P5P0 P2 P4 P6

P3P1 P5P0 P2 P4 P6

P0 P1 P2 P3 P4
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Lab 2: Binary Tree - II

As an hint observe that:

Sender Receiver
Step 1 MOD(myid,2)/1=0 MOD(myid,2)/1=1
Step 2 MOD(myid,4)/2=0 MOD(myid,4)/2=1
Step 3 MOD(myid,8)/4=0 MOD(myid,8)/4=1
…
Step n MOD(myid,2**n)/ MOD(myid,2**n)/

2**(n-1)=0 2**(n-1)=1

myid: processor index
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Lab 2: Parallel Sum

Implement the parallel sum:

1. Using Simple strategy

2. Binary tree I

3. Binary tree II 

Use only MPI_SEND and MPI_RECV
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Collective Communications

The power of MPI
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Collective Communications

• Barrier Synchronization
• Broadcast
• Gather/Scatter
• Reduction (sum, max, prod, … )

-Communications involving a group of process
-Called by all processes in a communicator
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Characteristics

• Collective communication will not interfere with point-
to-point communication and vice-versa

• All processes must call the collective routine
• No non-blocking collective communication
• No tags
• Receive buffers must be exactly the right size

Safest communication mode
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MPI_Barrier

Stop processes until all processes within a 
communicator reach the barrier

Fortran:
CALL MPI_BARRIER( comm, ierr)

C:
int MPI_Barrier(MPI_Comm comm)
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Barrier

P0 P1 P2 P3 P4

P0 P1 P2 P3 P4

P0

P1

P2

P3

P4

t1 t2 t3

barrier barrier
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Broadcast (MPI_BCAST)

One-to-all communication: same data sent from 
root process to all others in the communicator

Fortran:
INTEGER count, type, root, comm, ierr
CALL MPI_BCAST(buf, count, type, root, comm, ierr)
Buf array of type type

C:
int MPI_Bcast(void *buf, int count, MPI_Datatype 

datatypem int root, MPI_Comm comm)

All processes must specify same root, rank and comm
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Broadcast

P0
P1

P2

P3

a1

P0

a1

a1

a1

PROGRAM broad_cast
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
IF( myid .EQ. 0 ) THEN

a(1) = 2.0
a(2) = 4.0

END IF
CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COMM_WORLD, ierr)
WRITE(6,*) myid, ': a(1)=', a(1), 'a(2)=', a(2)
CALL MPI_FINALIZE(ierr)
END
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MPI_Scatter

One-to-all communication: different data sent from 
root process to all others in the communicator

Fortran:
CALL MPI_SCATTER(sndbuf, sndcount, sndtype, rcvbuf, rcvcount,

rcvtype, root, comm, ierr)

• Arguments definition are like other MPI subroutine
• sndcount is the number of elements sent to each process, not 

the size of sndbuf, that should be sndcount times the number of 
process in the communicator

• The sender arguments are significant only at root

sender receiver
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MPI_Gather

One-to-all communication: different data collected 
by the root process, from all others processes in 
the communicator. Is the opposite of Scatter

Fortran:
CALL MPI_GATHER(sndbuf, sndcount, sndtype, rcvbuf, rcvcount,

rcvtype, root, comm, ierr)

• Arguments definition are like other MPI subroutine
• rcvcount is the number of elements collected from each process, 

not the size of rcvbuf, that should be rcvcount times the number 
of process in the communicator

• The receiver arguments are significant only at root

sender receiver
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Scatter/Gather

Scatter

P0

sndbuf

P0 a1

rcvbuf

P1 a2

rcvbuf

P2 a3

rcvbuf

P3 a4

rcvbuf

P1 P2 P3P0 a1 a2 a3 a4

rcvbuf rcvbuf rcvbuf rcvbuf

Gather

P0 a2 a3a1 a4

sndbuf

a4a3a1 a2
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Scatter/Gather examples

PROGRAM scatter
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, nsnd, I, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(16), B(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
IF( myid .eq. root ) THEN
DO i = 1, 16
a(i) = REAL(i)

END DO
END IF
nsnd = 2
CALL MPI_SCATTER(a, nsnd, MPI_REAL, b, nsnd, 
& MPI_REAL, root, MPI_COMM_WORLD, ierr)
WRITE(6,*) myid, ': b(1)=', b(1), 'b(2)=', b(2)
CALL MPI_FINALIZE(ierr)
END

PROGRAM gather
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, nsnd, I, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(16), B(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
b(1) = REAL( myid )
b(2) = REAL( myid )
nsnd = 2
CALL MPI_GATHER(b, nsnd, MPI_REAL, a, nsnd, 
&  MPI_REAL, root MPI_COMM_WORLD, ierr)
IF( myid .eq. root ) THEN
DO i = 1, (nsnd*nproc)
WRITE(6,*) myid, ': a(i)=', a(i)

END DO
END IF
CALL MPI_FINALIZE(ierr)
END

scatter gather
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MPI_Alltoall

P0

P0

P0

P0

P0

P0

P0

P0

a4

b4

c4

d4 a4 b4 c4 d4

a3

b3

c3

d3

a3 b3 c3 d3

a2

b2

c2

d2

a2 b2 c2 d2

a1

b1

c1

d1

a1 b1 c1 d1

Fortran:
CALL MPI_ALLTOALL(sndbuf, sndcount, sndtype, rcvbuf, rcvcount, rcvtype,
comm, ierr)

sender receiver

Very useful to implement data transposition

rc
vb

uf

sn
db

uf
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Reduction

The reduction operation allow to:
• Collect data from each process
• Reduce the data to a single value
• Store the result on the root processes 
• Store the result on all processes
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Reduce, Parallel Sum

P0

P1

P2

P3

P0 a1

a2

a3

a4

Sa=a1+a2+a3+a4

Sa

Reduction function works with arrays

other operation: product, min, max, and, …. 

Internally is usually implemented with a
binary tree

b1

b2

b3

b4

Sb=b1+b2+b3+b4

Sb

P2 Sa Sb

P3 Sa Sb

P1 Sa Sb

January 31 - February 15 
2002

MPI programming model, ICTP -
Linux Cluster School 

MPI programming model - 88

MPI_REDUCE and MPI_ALLREDUCE

Fortran:
MPI_REDUCE( snd_buf, rcv_buf, count, type, op, root, comm,

ierr)

snd_buf input array of type type containing local values.
rcv_buf output array of type type containing global results
count (INTEGER) number of element of snd_buf and rcv_buf
type (INTEGER) MPI type of snd_buf and rcv_buf
op (INTEGER) parallel operation to be performed
root (INTEGER) MPI id of the process storing the result
comm (INTEGER) communicator of processes involved in the operation
ierr (INTEGER) output, error code (if ierr=0 no error occours)

MPI_ALLREDUCE( snd_buf, rcv_buf, count, type, op, comm, ierr)

The argument root is missing, the result is stored to all processes.
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Predefined Reduction Operations

Minimum and locationMPI_MINLOC

Maximum and locationMPI_MAXLOC
Bitwise exclusive ORMPI_BXOR

Logical exclusive ORMPI_LXOR

Bitwise ORMPI_BOR
Logical ORMPI_LOR

Bitwise ANDMPI_BAND

Logical ANDMPI_LAND
ProductMPI_PROD

SumMPI_SUM

MinimumMPI_MIN
MaximumMPI_MAX

FunctionMPI op
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Reduce, cont.

C:
int MPI_Reduce(void * snd_buf, void * rcv_buf, int count, 

MPI_Datatype type, MPI_Op op, int root, MPI_Comm comm)

int MPI_Allreduce(void * snd_buf, void * rcv_buf, int count, 
MPI_Datatype type, MPI_Op op, MPI_Comm comm)
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Reduce, example
PROGRAM reduce 
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), res(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
a(1) = 2.0
a(2) = 4.0
CALL MPI_REDUCE(a, res, 2, MPI_REAL, MPI_SUM, root, 

&  MPI_COMM_WORLD, ierr)
IF( myid .EQ. 0 ) THEN

WRITE(6,*) myid, ': res(1)=', res(1), 'res(2)=', res(2)
END IF
CALL MPI_FINALIZE(ierr)
END
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Lab 3, Matrix transposition, elements distribution

P1

P2

P3

P0 a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

a11

a12

a13

a14

a15

a16

a17

a18

a21

a22

a23

a24

a25

a26

a27

a28

a31

a32

a33

a34

a35

a36

a37

a38

a41

a42

a43

a44

a45

a46

a47

a48

a51

a52

a53

a54

a55

a56

a57

a58

a61

a62

a63

a64

a65

a66

a67

a68

a71

a72

a73

a74

a75

a76

a77

a78

a81

a82

a83

a84

a85

a86

a87

a88

A At
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Lab3: Step 1, communicate blocks

P1

P2

P3

P0 a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

A At

a11 a12

a21 a22

a31 a32

a41 a42

a51 A52

a61 a62

a71 a72

a81 a82
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Lab 3: Step 2, transpose each blocks

P1

P2

P3

P0 a11

a12

a21

a22

a31

a32

a41

a42

a51

A52

a61

a62

a71

a72

a81

a82

At

a11 a12

a21 a22

a31 a32

a41 a42

a51 A52

a61 a62

a71 a72

a81 a82

At
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Lab 3: Matrix transposition

Implement the Transposition algorithm
Using:

1. Multiple gather or scatter operation

2. A single alltoall communication

January 31 - February 15 
2002

MPI programming model, ICTP -
Linux Cluster School 

MPI programming model - 96

Lab 4: Parallel Matrix Multiplication

C = A B cij = Σk aikbkj

P1

P2

P3

P0
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

A, B and C being NxN matrixes distributed by row 
across processes

Write a subprogram implementing matrix multiplication

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44
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Lab 4: Parallel Matrix Multiplication

P1

P2

P3

P0 c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

P1

P2

P3

P0 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

P1

P2

P3

P0 b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

C         =         A              B

c11 = a11 a12 a13 a14b11 b21 b31 b41+ + +
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Lab 4: Parallel Matrix Multiplication

P1

P2

P3

P0 c11 = a11 a12 a13 a14+ + +

c21 a21 a22 a23 a24= + + +

c31

c41

a31 a32 a33 a34

a41 a42 a43 a44

= + + +

= + + +

b11

b11

b11

b11

b21

b21

b21

b21

b31

b31

b31

b31

b41

b41

b41

b41
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Lab 4: Step 1, alltoall 

P1

P2

P3

P0 b11

b21

b31

b41

P1

P2

P3

P0 b11 b21 b31 b41

b11 b21 b31 b41

b11 b21 b31 b41

b11 b21 b31 b41

Perform an All gather, of the first column of
slements or blocks
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Lab 4: Step 2, local work

P1

P2

P3

P0 c11 = a11 a12 a13 a14b11 b21 b31 b41+ + +

c21 a21 a22 a23 a24= b11 b21 b31 b41+ + +

c31

c41

a31 a32 a33 a34

a41 a42 a43 a44

= b11 b21 b31 b41+ + +

= b11 b21 b31 b41+ + +

Each processor calculate the first elements 
or blocks of the matrix C
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Lab 4: Step 3, local work

Repeat Step 1 and Step 2 for each column elements
or blocks of matrix C, until matrix C is complete
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Lab 2: solution
PROGRAM simple_reduce
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc, i
INTEGER status(MPI_STATUS_SIZE)
REAL a, ra, sump

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
DO i = 1, nproc

IF( myid .EQ. i-1 ) a = REAL( i )
END DO
IF( myid .EQ. 0 ) sump = a
DO i = 2, nproc

IF( myid .EQ. 0 ) THEN
CALL MPI_RECV(ra, 1, MPI_REAL, i-1, i, MPI_COMM_WORLD, status, ierr)
sump = sump + ra

ELSE IF( myid .EQ. i-1 ) THEN
CALL MPI_SEND(a, 1, MPI_REAL, 0, i, MPI_COMM_WORLD, ierr)

END IF
END DO

IF( myid .EQ. 0 ) WRITE(6,*) myid, ’: sum = ’, sump
CALL MPI_FINALIZE(ierr)
END
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PROGRAM binary_reduce1
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, i, inm, in2, in2m, n
INTEGER status(MPI_STATUS_SIZE)
REAL a, ra, sump

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
DO i = 1, nproc
IF( myid .EQ. i-1 ) a = REAL( i )

END DO

sump = a
i = 1

10   IF( i .GE. nproc ) GO TO 20
in2  = i * 2
IF( MOD(myid,in2) .EQ. (i-1) ) THEN
CALL MPI_SEND(sump, 1, MPI_REAL, myid+i, i, MPI_COMM_WORLD, 

&      ierr)
ELSE IF( MOD(myid,in2) .EQ. (in2-1) ) THEN
CALL MPI_RECV(ra, 1, MPI_REAL, myid-i, i, MPI_COMM_WORLD, 

&      status, ierr)
sump = sump + ra

END IF
i    = i * 2
GO TO 10

20   CONTINUE

IF( myid .EQ. nproc-1 ) WRITE(6,*) myid, ': sum = ', sump
CALL MPI_FINALIZE(ierr)
END

Lab 2: solution

January 31 - February 15 
2002

MPI programming model, ICTP -
Linux Cluster School 

MPI programming model -
104

PROGRAM binary_reduce2
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, i, in2
INTEGER status(MPI_STATUS_SIZE)
REAL a, ra, sump
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
DO i = 1, nproc
IF( myid .EQ. i-1 ) a = REAL( i )

END DO
sump = a
i = 1

10   IF( i .GE. nproc ) GO TO 20
in2  = i * 2
IF( MOD(myid,in2)/i .EQ. 0 ) THEN
CALL MPI_SEND(sump, 1, MPI_REAL, myid+i, i, MPI_COMM_WORLD, 

&      ierr)
CALL MPI_RECV(ra, 1, MPI_REAL, myid+i, i, MPI_COMM_WORLD, 

&      status, ierr)
sump = sump + ra

ELSE IF( MOD(myid,in2)/i .EQ. 1 ) THEN
CALL MPI_RECV(ra, 1, MPI_REAL, myid-i, i, MPI_COMM_WORLD, 

&      status, ierr)
CALL MPI_SEND(sump, 1, MPI_REAL, myid-i, i, MPI_COMM_WORLD, 

&      ierr)
sump = sump + ra

END IF
i    = i * 2
GO TO 10

20   CONTINUE
WRITE(6,*) myid, ': sum = ', sump
CALL MPI_FINALIZE(ierr)
END

Lab 2: solution
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MPI advanced Topics

January 31 - February 15 
2002

MPI programming model, ICTP -
Linux Cluster School 

MPI programming model -
106

MPI Virtual Topologies

• Convenient process naming

• Naming scheme to fit the communication pattern

• Simplifies writing of code

• Can allow MPI to optimize communications
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Use Virtual Topologies

• Create new communicators

• Compute the processes coordinates 

• Mapping functions
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Virtual Topology an Example
2D Torus
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Topology types

• Cartesian topologies
Ø Each process is connected to its neighbors in a 

virtual grid
Ø Boundaries can be cyclic
Ø Processes can be identified by Cartesian 

coordinates

• Graph topologies
Ø General graphs
Ø Will not be covered here
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Creating a Cartesian Virtual Topology

C:
int MPI_Cart_create (MPI_Comm comm_old, int ndims, int

*dims, int *periods, int reorder, MPI_Comm
*comm_cart)

Fortran:
INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR
LOGICAL PERIODS(*), REORDER
CALL MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS,

REORDER, COMM_CART, IERROR)
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Arguments

comm_old (input) existing communicator

Ndims (input) number of dimensions

periods (input) logical array indicating 
whether a dimension is cyclic
(If TRUE, cyclic boundary conditions)

reorder (input) logical
(If FALSE, rank preserved)
(If TRUE, possible rank reordering)

comm_cart (output) new cartesian communicator
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Mapping process grid coordinates to ranks

C:
int MPI_Cart_rank (MPI_Comm comm, init *coords, 

int *rank)

Fortran:
INTEGER COMM,COORDS(*),RANK,IERROR
CALL MPI_CART_RANK(COMM,COORDS,RANK,IERROR)
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Mapping ranks to process grid coordinates

C:
int MPI_Cart_coords (MPI_Comm comm, int rank, int 

maxdims, int *coords)

Fortran:
INTEGER COMM,RANK,MAXDIMS,COORDS(*),IERROR
CALL MPI_CART_COORDS(COMM,RANK,MAXDIMS,COORDS,IERROR)
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#include<mpi.h>
/* Run with 12 processes */
void main(int argc, char *argv[]) {

int rank;
MPI_Comm vu;
int dim[2],period[2],reorder;
int coord[2],id;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
dim[0]=4; dim[1]=3;
period[0]=TRUE; period[1]=FALSE;
reorder=TRUE;
MPI_Cart_create(MPI_COMM_WORLD,2,dim,period,reorder,&vu);
if(rank==5){

MPI_Cart_coords(vu,rank,2,coord);
printf("P:%d My coordinates are %d %d\n",rank,coord[0],coord[1]);

}
if(rank==0) {

coord[0]=3; coord[1]=1;
MPI_Cart_rank(vu,coord,&id);
printf("The processor at position (%d, %d) has rank %d\n",coord[0],coord[1],id);

}
MPI_Finalize();

}

Virtual Topology example
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PROGRAM Cartesian
C Run with 12 processes

INCLUDE 'mpif.h'
INTEGER err, rank, size
integer vu,dim(2),coord(2),id
logical period(2),reorder

CALL MPI_INIT(err)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rank,err)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,size,err)
dim(1)=4
dim(2)=3
period(1)=.true.
period(2)=.false.
reorder=.true.
call MPI_CART_CREATE(MPI_COMM_WORLD,2,dim,period,reorder,vu,err)
if(rank.eq.5) then

call MPI_CART_COORDS(vu,rank,2,coord,err)
print*,'P:',rank,' my coordinates are',coord

end if
if(rank.eq.0) then

coord(1)=3
coord(2)=1
call MPI_CART_RANK(vu,coord,id,err)
print*,'P:',rank,' processor at position',coord,' is',id

end if
CALL MPI_FINALIZE(err)

END

Virtual Topology example
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Computing ranks of neighboring 
processes

C:
int MPI_Cart_shift (MPI_Comm comm, int direction, int 

disp, int *rank_source, int *rank_dest)

Fortran:
INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST
INTEGER IERR
CALL MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE,
RANK_DEST, IERR)
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Arguments

direction dimension in which the shift should be made
disp length of the shift in processor coordinates

(+ or -)
rank_source where calling process should receive a message

from during the shift
rank_dest where calling process should send a message

to during the shift

Does not actually shift data: returns the correct ranks for a
shift which can be used in subsequent communication calls

If shift off of the topology, MPI_Proc_null is returned
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Cartesian Partitioning

Often we want to do an operation on only part of 
an existing Cartesian topology

Cut a grid up into ‘slices’

A new communicator is produced for each slice

Each slice can then perform its own collective
communications

MPI_Cart_sub and MPI_CART_SUB generate new
communicators for the slice
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MPI_Cart_sub

C:
int MPI_Cart_sub (MPI_Comm comm, int *remain_dims,
MPI_Comm *newcomm)

Fortran:
INTEGER COMM,NEWCOMM,IERROR
LOGICAL REMAIN_DIMS(*)
CALL MPI_CART_SUB(COMM,REMAIN_DIMS,NEWCOMM,IERROR)

If comm is a 2x3x4 grid and remain_dims={TRUE,FALSE,TRUE},
then three new communicators are created each being a 2x4 grid

Calling processor receives back only the new communicator it is in
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MPI on the web

http://oscinfo.osc.edu/training/

http://www.netlib.org/mpi/index.html

http://www-unix.mcs.anl.gov/mpi/learning.html

http://www.ncsa.uiuc.edu/UserInfo/Training/


