
1

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 1

Parallel Programming

An overview

Carlo Cavazzoni
(High Performance Computing Group)

CINECA

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 2

Why parallel programming?

• Solve larger problems
• Run memory demanding codes
• Solve problems with greater speed

Why on Linux clusters?
• Solve Challenging problems with low

cost hardware.
• Your computer facility fit in your lab.

2

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 3

Modern Parallel Architectures

Two basic architectural scheme:

Distributed Memory

Shared Memory

Now most computers have a mixed
architecture

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 4

Distributed Memory

memory

CPU

memory

CPU

memory

CPU

memory

NETWORK

CPU

memory

CPU

memory

CPU

no
de

no
de

no
de

no
de

no
de

no
de

3

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 5

Most Common Networks
Cube, hypercube, n-cube

Torus in 1,2,...,N Dim

switch

switched

Fat Tree

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 6

Shared Memory

CPU

memory

CPU CPU CPU CPU

4

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 7

Real Shared

CPU CPU CPU CPU CPU

System Bus

Memory banks

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 8

Virtual Shared

CPU CPU CPU CPU CPUCPU

HUB HUB HUB HUB HUB HUB

Network

me
mo

r
y

me
mo

r
y

me
mo

r
y

me
mo

r
y

me
mo

r
y

me
mo

r
y

node node node node node node

5

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 9

Mixed Architectures

CPU

memory

CPU

CPU

memory

CPU

CPU

memory

CPU

NETWORK

node

node

node

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 10

Logical Machine Organization

The logical organization, seen by the
programmer, could be different from
the hardware architecture.

Its quite easy to logically partition a
Shared Memory computer to reproduce
a Distributed memory Computers.

The opposite is not true.

6

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 11

Parallel Programming Paradigms

The two architectures determine two basic
scheme for parallel programming

Message Passing (distributed memory)
all processes could directly access only their local
memory

Data Parallel (shared memory)
Single memory view, all processes (usually threads)
could directly access the whole memory

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 12

Parallel Programming Paradigms, cont.

Standard Unix shell to run
the program

Ad hoc commands to run the
program

Source code DirectiveCommunication Libraries

Ad hoc compilersStandard compilers

Standards: OpenMP, HPFStandards: MPI, PVM

Data ParallelMessage Passing

Programming Environments

7

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 13

Parallel Programming Paradigms, cont.

Its easy to adopt a Message Passing scheme in a Sheared
Memory computers (unix process have their private memory).

Its less easy to follow a Data Parallel scheme in a
Distributed Memory computer (emulation of shared memory)

Its relatively easy to design a program using the message
passing scheme and implementing the code in a Data
Parallel programming environments (using OpenMP or HPF)

Its not easy to design a program using the Data Parallel
scheme and implementing the code in a Message Passing
environment (with some efforts on the T3E, shmem lib)

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 14

Architectures vs. Paradigms

Shared Memory
Computers

Distributed Memory
Computers

Message Passing

Data Parallel
Message Passing

Clusters of Shared Memory Nodes

8

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 15

Parallel programming Models

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 16

Domain decomposition
Data are divided into pieces of approximately the same

size and mapped to different processors. Each
processors work only on its local data. The resulting
code has a single flow.

Functional decomposition
The problem is decompose into a large number of smaller

tasks and then the tasks are assigned to processors as
they become available, Client-Server / Master-Slave
paradigm.

(again) two basic models models

9

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 17

Multiple Program
Single Data
(MPSD)

Data Parallel
OpenMP

Functional
decomposition

Data Parallel
HPF

Flint
Taxonomy

Programming
Paradigms

Model

Multiple Program
Multiple Data
(MPMD)

Message Passing
MPI, PVM

Single Program
Multiple Data
(SPMD)

Message Passing
MPI, PVM

Domain
decomposition

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 18

Two basic

Architectures

Functional DecompositionDomain Decomposition

Parallel Programming Models

Data ParallelMessage Passing

Programming Paradigms/Environment

Shared MemoryDistributed Memory

10

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 19

Small important digression

When writing a parallel code, regardless
of the architecture, programming model
and paradigm, be always aware of

• Load Balancing

• Minimizing Communication

• Overlapping Communication and Computation

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 20

Load Balancing

Equally divide the work among the
available resource: processors,
memory, network bandwidth, I/O, ...

This is usually a simple task for the
problem decomposition model

It is a difficult task for the functional
decomposition model

11

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 21

Minimizing Communication

When possible reduce the communication
events:

Group lots of small communications into
large one.

Eliminate synchronizations as much as
possible. Each synchronization level off
the performance to that of the slowest
process.

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 22

Overlap Communication and
Computation

When possible code your program in such
a way that processes continue to do
useful work while communicating.

This is usually a non trivial task and is
afforded in the very last phase of
parallelization.

If you succeed, you have done. Benefits
are enormous.

12

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 23

MPI programming model
on Linux Cluster

Carlo Cavazzoni
(High Performance Computing Group)

CINECA

January 31 - February 15
2002

ICTP - Linux Cluster School MPI programming model - 24

INTRODUCTION: What is MPI?

MPI: Message Passing Interface

What is a message?

DATA

MPI allows data to be passed between
processes

13

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 25

What is MPI?

MPI is standard defined in a set of documents compiled by

a consortium of organizations: http://www.mpi-forum.org/

In particular the MPI documents define the APIs (application

interfaces) for C, C++ and FORTRAN.

The actual implementation of the standard is demanded to
the software developers of the different systems

In all systems MPI has been implemented as a library of
subroutines over the network drivers and primitives

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 26

Domain decomposition and MPI

MPI is particularly suited for a Domain
decomposition approach, where there is
a single program flow.

Parallel computation consist of a number of processes,
each working on some local data. Each process has
purely local variables (no access to remote memory).

Sharing of data takes place by message passing, by
explicitly sending and receiving data between processes

14

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 27

Goals of the MPI standard

MPI’s prime goals are:
• To provide source-code portability
• To allow efficient implementation

MPI also offers:
• A great deal of functionality
• Support for heterogeneous parallel

architectures

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 28

Basic Features of MPI Programs

An MPI program consists of multiple instances of a serial
program that communicate by library call.

Calls may be roughly divided into four classes:

1. Calls used to initialize, manage, and terminate
communications

2. Calls used to communicate between pairs of
processors. (Pair communication)

3. Calls used to communicate among groups of
processors. (Collective communication)

4. Calls to create data types.

15

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 29

A First Program: Hello World!

Fortran

PROGRAM hello

INCLUDE ‘mpif.h‘
INTEGER err

CALL MPI_INIT(err)
PRINT *, “hello world!”
CALL MPI_FINALIZE(err)

END

C

#include <stdio.h>
#include <mpi.h>

void main (int argc, char * argv[])
{
int err;

err = MPI_Init(&argc, &argv);
printf(“Hello world!\n”);
err = MPI_Finalize();

}

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 30

Compiling and Running MPI Programs

Compiling (NO STANDARD):
• specify the appropriate include directory

(i.e. -I/mpidir/include)
• Specify the mpi library

(i.e. -L/mpidir/lib -lmpi)
• Sometimes you may have MPI compiler wrappers that

do this job for you. (i.e. mpif77)

Running (NO STANDARD):
• mpirun command (i.e. mpirun –np 4 myprog.x)
• Other similar command (i.e. mpiexec –n 4 myprog.x)

16

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 31

Basic Structures of MPI Programs

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 32

§ Header files

§ MPI Communicator

§ MPI Function format

§ Communicator Size and Process Rank

§ Initializing and Exiting MPI

17

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 33

Header files

All Subprogram that contains calls to MPI
subroutine must include the MPI header file

C:
#include<mpi.h>

Fortran:
include ‘mpif.h’

The header file contains definitions of MPI constants, MPI
types and functions

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 34

MPI Communicator

The Communicator is a variable identifying a group of
processes that are allowed to communicate with each
other.

There is a default communicator (automatically defined):

MPI_COMM_WORLD

identify the group of all processes.

Ø All MPI communication subroutines have a communicator
argument.
Ø The Programmer could define many communicator at the
same time

18

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 35

MPI function format

C:

Error = MPI_Xxxxx(parameter,...);
MPI_Xxxxx(parameter,...);

Fortran:

CALL MPI_XXXXX(parameter, IERROR)

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 36

Communicator Size and Process Rank
How many processors are associated with a communicator?
C:

MPI_Comm_size(MPI_Comm comm, int *size)
Fortran:

INTEGER COMM, SIZE, IERR
CALL MPI_COMM_SIZE(COMM, SIZE, IERR)

OUTPUT: SIZE

What is the ID of a processor in a group?
C:

MPI_Comm_rank(MPI_Comm comm, int *rank)
Fortran:

INTEGER COMM, RANK, IERR
CALL MPI_COMM_RANK(COMM, RANK, IERR)

OUTPUT: RANK

19

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 37

Communicator Size and Process Rank, cont.

P0 P1 P2 P3 P4 P5 P6 P7

RANK = 2

SIZE = 8

Size is the number of processors associated to the communicator

rank is the index of the process within a group associated to a
communicator (rank = 0,1,...,N-1). The rank is used to identify
the source and destination process in a communication

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 38

Initializing and Exiting MPI
Initializing the MPI environment
C:

int MPI_Init(int *argc, char ***argv);
Fortran:

INTEGER IERR
CALL MPI_INIT(IERR)

Finalizing MPI environment
C:

int MPI_Finalize()
Fortran:

INTEGER IERR
CALL MPI_FINALIZE(IERR)

This two subprograms should be called by all process, and no
other MPI calls are allowed before mpi_init and after
mpi_finalize

20

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 39

A Template for Fortran MPI programs
PROGRAM template

INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

!!! INSERT YOUR PARALLEL CODE HERE !!!

CALL MPI_FINALIZE(ierr)

END

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 40

A Template for C MPI programs
#include <stdio.h>
#include <mpi.h>

void main (int argc, char * argv[])
{
int err, nproc, myid;

err = MPI_Init(&argc, &argv);
err = MPI_Comm_size(MPI_COMM_WORLD, &nproc);
err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);

/*** INSERT YOUR PARALLEL CODE HERE ***/

err = MPI_Finalize();
}

21

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 41

Point to Point Communication

Let process A send a message to process B

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 42

Point to Point Communication

• Is the fundamental communication
facility provided by MPI library

• Is conceptually simple: A send a
message to B, B receive the message
from A. It is less simple in practice.

• Communication take places within a
communicator

• Source and Destination are identified by
their rank in the communicator

22

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 43

The Message
• A message is an array of elements of some

particular MPI data type
• MPI Data types

• Basic types
• Derived types

• Derived type can be build up from basic types
• C types are different from Fortran types
• Messages are identified by their envelopes,

• a message could be received only if the receiver specify
the correct envelope

envelope body
source destination communicator tag buffer datatypecount

Message Structure

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 44

Fortran - MPI Basic Datatypes

DOUBLE COMPLEXMPI_DOUBLE_COMPLEX

MPI_PACKED
MPI_BYTE

CHARACTER(1)MPI_CHARACTER

LOGICALMPI_LOGICAL

COMPLEXMPI_COMPLEX

DOUBLE PRECISIONMPI_DOUBLE_PRECISION

REALMPI_REAL

INTEGERMPI_INTEGER
Fortran Data typeMPI Data type

23

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 45

C - MPI Basic Datatypes

MPI_PACKED

MPI_BYTE

long doubleMPI_LONG_DOUBLE
doubleMPI_DOUBLE

floatMPI_FLOAT

unsigned long intMPI_UNSIGNED_LONG
unsigned intMPI_UNSIGNED

unsigned short intMPI_UNSIGNED_SHORT

unsigned charMPI_UNSIGNED_CHAR
Signed log intMPI_LONG

signed intMPI_INT

signed short intMPI_SHORT
signed charMPI_CHAR

C Data typeMPI Data type

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 46

Definitions (Blocking and non-Blocking)
• “Completion” of the communication means

that memory locations used in the message
transfer can be safely accessed
• Send: variable sent can be reused after completion
• Receive: variable received can now be used

• MPI communication modes differ in what
conditions are needed for completion

• Communication modes can be blocking or
non-blocking
• Blocking: return from routine implies completion
• Non-blocking: routine returns immediately, user

must test for completion

24

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 47

Communication Modes and MPI
Subroutines

MPI_IRSENDMPI_RSENDAlways completes,
irrespective of whether the
receive has completed

Ready send

MPI_IBSENDMPI_BSENDAlways completes,
irrespective of receiver

Buffered send

MPI_ISSENDMPI_SSENDOnly completes when the
receive has completed

Synchronous
send

MPI_IRECVMPI_RECVCompletes when a
message has arrived

receive

MPI_ISENDMPI_SENDMessage sent (receive
state unknown)

Standard send

Non-blocking
subroutine

Blocking
subroutine

Completion
Condition

Mode

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 48

Standard Send and Receive
basic blocking point-to-point communication routine in MPI.

Fortran:
MPI_SEND(buf, count, type, dest, tag, comm, ierr)
MPI_RECV(buf, count, type, dest, tag, comm, status, ierr)

Buf array of type type see table.
Count (INTEGER) number of element of buf to be sent
Type (INTEGER) MPI type of buf
Dest (INTEGER) rank of the destination process
Tag (INTEGER) number identifying the message
Comm (INTEGER) communicator of the sender and receiver
Status (INTEGER) array of size MPI_STATUS_SIZE containing

communication status information
Ierr (INTEGER) error code (if ierr=0 no error occurs)

Message body Message envelope

25

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 49

Standard Send and Receive

C:
int MPI_Send(void *buf, int count, MPI_Datatype

type, int dest, int tag, MPI_Comm comm);

int MPI_Recv (void *buf, int count, MPI_Datatype
type, int dest, int tag, MPI_Comm comm,
MPI_Status *status);

Both in Fortran and C MPI_RECV accept
wildcard for source (MPI_ANYSOURCE) and tag
(MPI_ANYTAG)

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 50

Sending and Receiving, an example
PROGRAM send_recv

INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN
A(1) = 3.0
A(2) = 5.0
CALL MPI_SEND(A, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN
CALL MPI_RECV(A, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)
WRITE(6,*) myid,’: a(1)=’,a(1),’ a(2)=’,a(2)

END IF

CALL MPI_FINALIZE(ierr)
END

26

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 51

Sending and Receiving, an example
#include <stdio.h>
#include <mpi.h>

void main (int argc, char * argv[])
{

int err, nproc, myid;
MPI_Status status;
float a[2];

err = MPI_Init(&argc, &argv);
err = MPI_Comm_size(MPI_COMM_WORLD, &nproc);
err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if(myid == 0) {
a[0] = 3.0, a[1] = 5.0;
MPI_Send(a, 2, MPI_FLOAT, 1, 10, MPI_COMM_WORLD);

} else if(myid == 1) {
MPI_Recv(a, 2, MPI_FLOAT, 0, 10, MPI_COMM_WORLD, &status);
printf(”%d: a[0]=%f a[1]=%f\n”, myid, a[0], a[1]);

}

err = MPI_Finalize();
}

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 52

Again about completion
Standard MPI_RECV and MPI_SEND block the calling

process until completion.
For MPI_RECV completion: the message is arrived and the

process could proceed using the received data.
For MPI_SEND completion: the process could proceed and

data could be overwritten without interfering with the
message. But this does not mean that the message has
already been sent. In many MPI implementation,
depending on the message size, sending data are
copied to MPI internal buffers.

If the message is not buffered a call to MPI_SEND
implies a process synchronization, on the contrary
this is not true if the message is buffered.

Don’t make any assumptions (implementation dependent)

27

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 53

DEADLOCK
Deadlock occurs when 2 (or more) processes are

blocked and each is waiting for the other to make
progress.

0

terminate

Action A

Proceed
if 1 has taken

action B

1init init

compute compute

Action B

terminate

Proceed
if 0 has taken

action A

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 54

Simple DEADLOCK
PROGRAM deadlock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN
a(1) = 2.0
a(2) = 4.0
CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)
CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN
a(1) = 3.0
a(2) = 5.0
CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)
CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)

END IF
WRITE(6,*) myid, ’: a(1)=’, a(1), ’ a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END

28

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 55

initinit

computecompute

Avoiding DEADLOCK

terminateterminate

0 1

Action B
Proceed

if 1 has taken
action B

Proceed
if 0 has taken

action A
Action A

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 56

Avoiding DEADLOCK
PROGRAM avoid_lock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN
a(1) = 2.0
a(2) = 4.0
CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)
CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN
a(1) = 3.0
a(2) = 5.0
CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)
CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

END IF
WRITE(6,*) myid, ’: a(1)=’, a(1), ’ a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END

29

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 57

DEADLOCK: the most common error
PROGRAM error_lock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
IF(myid .EQ. 0) THEN

a(1) = 2.0
a(2) = 4.0
CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)
CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)

ELSE IF(myid .EQ. 1) THEN
a(1) = 3.0
a(2) = 5.0
CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)
CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

END IF
WRITE(6,*) myid, ’: a(1)=’, a(1), ’ a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 58

Non-Blocking Send and Receive
Non-Blocking communications allows the

separation between the initiation of the
communication and the completion.

Advantages: between the initiation and
completion the program could do other
useful computation (latency hiding).

Disadvantages: the programmer has to
insert code to check for completion.

30

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 59

Non-Blocking Send and Receive

Fortran:
MPI_ISEND(buf, count, type, dest, tag, comm, req, ierr)
MPI_IRECV(buf, count, type, dest, tag, comm, req, ierr)

buf array of type type see table.
count (INTEGER) number of element of buf to be sent
type (INTEGER) MPI type of buf
dest (INTEGER) rank of the destination process
tag (INTEGER) number identifying the message
comm (INTEGER) communicator of the sender and receiver
req (INTEGER) output, identifier of the communications handle
ierr (INTEGER) output, error code (if ierr=0 no error occurs)

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 60

Non-Blocking Send and Receive

C:

int MPI_Isend(void *buf, int count,
MPI_Datatype type, int dest, int tag,
MPI_Comm comm, MPI_Request *req);

int MPI_Irecv (void *buf, int count,
MPI_Datatype type, int dest, int tag,
MPI_Comm comm, MPI_Request *req);

31

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 61

Waiting and Testing for Completion
Fortran:
MPI_WAIT(req, status, ierr)

A call to this subroutine cause the code to wait until the
communication pointed by req is complete.

req (INTEGER) input/output, identifier associated to a
communications event (initiated by MPI_ISEND or MPI_IRECV).

Status (INTEGER) array of size MPI_STATUS_SIZE, if req was
associated to a call to MPI_IRECV, status contains informations
on the received message, otherwise status could contain an
error code.

ierr (INTEGER) output, error code (if ierr=0 no error occours).

C:
int MPI_Wait(MPI_Request *req, MPI_Status *status);

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 62

Waiting and Testing for Completion
Fortran:
MPI_TEST(req, flag, status, ierr)

A call to this subroutine sets flag to .true. if the communication
pointed by req is complete, sets flag to .false. otherwise.

req (INTEGER) input/output, identifier associated to a
communications event (initiated by MPI_ISEND or MPI_IRECV).

Flag (LOGICAL) output, .true. if communication req has completed
.false. otherwise

Status (INTEGER) array of size MPI_STATUS_SIZE, if req was
associated to a call to MPI_IRECV, status contains informations on
the received message, otherwise status could contain an error code.

ierr (INTEGER) output, error code (if ierr=0 no error occours).

C:
int MPI_Wait(MPI_Request *req, int *flag, MPI_Status *status);

32

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 63

Send and Receive, the easy way.

The easiest way to send and receive data without
warring about deadlocks

Fortran:
CALL MPI_SENDRECV(sndbuf, snd_size, snd_type, destid, ip,
rcvbuf, rcv_size, rcv_type, sourid, ip, comm, status, ierr)

Sender side

Receiver side

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 64

Send and Receive, the easy way.
PROGRAM send_recv
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
IF(myid .EQ. 0) THEN

a(1) = 2.0
a(2) = 4.0
CALL MPI_SENDRECV(a, 2, MPI_REAL, 1, 10, b, 2, MPI_REAL, 1, 11,
MPI_COMM_WORLD, status, ierr)

ELSE IF(myid .EQ. 1) THEN
a(1) = 3.0
a(2) = 5.0
CALL MPI_SENDRECV(a, 2, MPI_REAL, 0, 11, b, 2, MPI_REAL, 0, 10,
MPI_COMM_WORLD, status, ierr)

END IF
WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)
CALL MPI_FINALIZE(ierr)
END

33

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 65

Lab 1: My First MPI program

Implement and test the code:

1. Implements the Template MPI program

2. Compile

3. Run

4. Insert some code in the template

(printout rank and size)

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 66

Lab 1: DEADLOCKS

Implement and test the code:

1. The Deadlock program

2. The Avoid Deadlock program

3. The Deadlock program with non-blocking

MPI_ISEND, MPI_IRECV, MPI_WAIT and MPI_TEST

4. The Most common error program with MPI_SEND,

MPI_RECV and arrays of increasing size

34

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 67

LAB 2: Reduction and Binary Tree

Reduction: sum up the partial results of
different process (maybe the most common

parallel operation required in a parallel program)

a1 a2 an

A=a1+a2+…+an

P0 P1 Pn-1…

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 68

LAB 2: A Simple strategy
a1

a2

an

A=A+a1

P0

P1

Pn-1

…

P0

P0

P0

A=A+a2

A=A+an

P0 A=a1+a2+…+an

This algorithm
complete in n steps

35

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 69

LAB 2: Binary Tree - I
P0 P1 P2 P3 P4 P5 P6 P7

P1 P3 P5 P7

P3 P7

P7

This algorithm
complete in log2n steps

a1 a2 a3 a4 a5 a6 a7 a8

a1+a2 a3+a4 a5+a6 a7+a8

a1+a2+a3+a4 a5+a6+a7+a8

a1+a2+a3+a4+a5+a6+a7+a8

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 70

Lab 2: Binary Tree - I

As an hint observe that:

Sender Receiver
Step 1 MOD(myid,2)=0 MOD(myid,2)=1
Step 2 MOD(myid,4)=1 MOD(myid,4)=3
Step 3 MOD(myid,8)=3 MOD(myid,8)=7
…
Step n MOD(myid,2**n)= MOD(myid,2**n)=

2**(n-1)-1 2**n-1

myid: processor index

36

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 71

Lab 2: Binary Tree - II
P5 P6 P7

P1 P3 P5 P7

P3 P7

P7

a1 a2 a3 a4 a5 a6 a7 a8

a1+a2 a3+a4 a5+a6 a7+a8

a1+a2+a3+a4 a5+a6+a7+a8

a1+a2+a3+a4+a5+a6+a7+a8

P0 P2 P4 P6

P1 P5P0 P2 P4 P6

P3P1 P5P0 P2 P4 P6

P0 P1 P2 P3 P4

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 72

Lab 2: Binary Tree - II

As an hint observe that:

Sender Receiver
Step 1 MOD(myid,2)/1=0 MOD(myid,2)/1=1
Step 2 MOD(myid,4)/2=0 MOD(myid,4)/2=1
Step 3 MOD(myid,8)/4=0 MOD(myid,8)/4=1
…
Step n MOD(myid,2**n)/ MOD(myid,2**n)/

2**(n-1)=0 2**(n-1)=1

myid: processor index

37

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 73

Lab 2: Parallel Sum

Implement the parallel sum:

1. Using Simple strategy

2. Binary tree I

3. Binary tree II

Use only MPI_SEND and MPI_RECV

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 74

Collective Communications

The power of MPI

38

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 75

Collective Communications

• Barrier Synchronization
• Broadcast
• Gather/Scatter
• Reduction (sum, max, prod, …)

-Communications involving a group of process
-Called by all processes in a communicator

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 76

Characteristics

• Collective communication will not interfere with point-
to-point communication and vice-versa

• All processes must call the collective routine
• No non-blocking collective communication
• No tags
• Receive buffers must be exactly the right size

Safest communication mode

39

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 77

MPI_Barrier

Stop processes until all processes within a
communicator reach the barrier

Fortran:
CALL MPI_BARRIER(comm, ierr)

C:
int MPI_Barrier(MPI_Comm comm)

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 78

Barrier

P0 P1 P2 P3 P4

P0 P1 P2 P3 P4

P0

P1

P2

P3

P4

t1 t2 t3

barrier barrier

40

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 79

Broadcast (MPI_BCAST)

One-to-all communication: same data sent from
root process to all others in the communicator

Fortran:
INTEGER count, type, root, comm, ierr
CALL MPI_BCAST(buf, count, type, root, comm, ierr)
Buf array of type type

C:
int MPI_Bcast(void *buf, int count, MPI_Datatype

datatypem int root, MPI_Comm comm)

All processes must specify same root, rank and comm

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 80

Broadcast

P0
P1

P2

P3

a1

P0

a1

a1

a1

PROGRAM broad_cast
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
IF(myid .EQ. 0) THEN

a(1) = 2.0
a(2) = 4.0

END IF
CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COMM_WORLD, ierr)
WRITE(6,*) myid, ': a(1)=', a(1), 'a(2)=', a(2)
CALL MPI_FINALIZE(ierr)
END

41

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 81

MPI_Scatter

One-to-all communication: different data sent from
root process to all others in the communicator

Fortran:
CALL MPI_SCATTER(sndbuf, sndcount, sndtype, rcvbuf, rcvcount,

rcvtype, root, comm, ierr)

• Arguments definition are like other MPI subroutine
• sndcount is the number of elements sent to each process, not

the size of sndbuf, that should be sndcount times the number of
process in the communicator

• The sender arguments are significant only at root

sender receiver

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 82

MPI_Gather

One-to-all communication: different data collected
by the root process, from all others processes in
the communicator. Is the opposite of Scatter

Fortran:
CALL MPI_GATHER(sndbuf, sndcount, sndtype, rcvbuf, rcvcount,

rcvtype, root, comm, ierr)

• Arguments definition are like other MPI subroutine
• rcvcount is the number of elements collected from each process,

not the size of rcvbuf, that should be rcvcount times the number
of process in the communicator

• The receiver arguments are significant only at root

sender receiver

42

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 83

Scatter/Gather

Scatter

P0

sndbuf

P0 a1

rcvbuf

P1 a2

rcvbuf

P2 a3

rcvbuf

P3 a4

rcvbuf

P1 P2 P3P0 a1 a2 a3 a4

rcvbuf rcvbuf rcvbuf rcvbuf

Gather

P0 a2 a3a1 a4

sndbuf

a4a3a1 a2

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 84

Scatter/Gather examples

PROGRAM scatter
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, nsnd, I, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(16), B(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
IF(myid .eq. root) THEN
DO i = 1, 16
a(i) = REAL(i)

END DO
END IF
nsnd = 2
CALL MPI_SCATTER(a, nsnd, MPI_REAL, b, nsnd,
& MPI_REAL, root, MPI_COMM_WORLD, ierr)
WRITE(6,*) myid, ': b(1)=', b(1), 'b(2)=', b(2)
CALL MPI_FINALIZE(ierr)
END

PROGRAM gather
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, nsnd, I, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(16), B(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
b(1) = REAL(myid)
b(2) = REAL(myid)
nsnd = 2
CALL MPI_GATHER(b, nsnd, MPI_REAL, a, nsnd,
& MPI_REAL, root MPI_COMM_WORLD, ierr)
IF(myid .eq. root) THEN
DO i = 1, (nsnd*nproc)
WRITE(6,*) myid, ': a(i)=', a(i)

END DO
END IF
CALL MPI_FINALIZE(ierr)
END

scatter gather

43

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 85

MPI_Alltoall

P0

P0

P0

P0

P0

P0

P0

P0

a4

b4

c4

d4 a4 b4 c4 d4

a3

b3

c3

d3

a3 b3 c3 d3

a2

b2

c2

d2

a2 b2 c2 d2

a1

b1

c1

d1

a1 b1 c1 d1

Fortran:
CALL MPI_ALLTOALL(sndbuf, sndcount, sndtype, rcvbuf, rcvcount, rcvtype,
comm, ierr)

sender receiver

Very useful to implement data transposition

rc
vb

uf

sn
db

uf

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 86

Reduction

The reduction operation allow to:
• Collect data from each process
• Reduce the data to a single value
• Store the result on the root processes
• Store the result on all processes

44

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 87

Reduce, Parallel Sum

P0

P1

P2

P3

P0 a1

a2

a3

a4

Sa=a1+a2+a3+a4

Sa

Reduction function works with arrays

other operation: product, min, max, and, ….

Internally is usually implemented with a
binary tree

b1

b2

b3

b4

Sb=b1+b2+b3+b4

Sb

P2 Sa Sb

P3 Sa Sb

P1 Sa Sb

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 88

MPI_REDUCE and MPI_ALLREDUCE

Fortran:
MPI_REDUCE(snd_buf, rcv_buf, count, type, op, root, comm,

ierr)

snd_buf input array of type type containing local values.
rcv_buf output array of type type containing global results
count (INTEGER) number of element of snd_buf and rcv_buf
type (INTEGER) MPI type of snd_buf and rcv_buf
op (INTEGER) parallel operation to be performed
root (INTEGER) MPI id of the process storing the result
comm (INTEGER) communicator of processes involved in the operation
ierr (INTEGER) output, error code (if ierr=0 no error occours)

MPI_ALLREDUCE(snd_buf, rcv_buf, count, type, op, comm, ierr)

The argument root is missing, the result is stored to all processes.

45

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 89

Predefined Reduction Operations

Minimum and locationMPI_MINLOC

Maximum and locationMPI_MAXLOC
Bitwise exclusive ORMPI_BXOR

Logical exclusive ORMPI_LXOR

Bitwise ORMPI_BOR
Logical ORMPI_LOR

Bitwise ANDMPI_BAND

Logical ANDMPI_LAND
ProductMPI_PROD

SumMPI_SUM

MinimumMPI_MIN
MaximumMPI_MAX

FunctionMPI op

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 90

Reduce, cont.

C:
int MPI_Reduce(void * snd_buf, void * rcv_buf, int count,

MPI_Datatype type, MPI_Op op, int root, MPI_Comm comm)

int MPI_Allreduce(void * snd_buf, void * rcv_buf, int count,
MPI_Datatype type, MPI_Op op, MPI_Comm comm)

46

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 91

Reduce, example
PROGRAM reduce
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), res(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
a(1) = 2.0
a(2) = 4.0
CALL MPI_REDUCE(a, res, 2, MPI_REAL, MPI_SUM, root,

& MPI_COMM_WORLD, ierr)
IF(myid .EQ. 0) THEN

WRITE(6,*) myid, ': res(1)=', res(1), 'res(2)=', res(2)
END IF
CALL MPI_FINALIZE(ierr)
END

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 92

Lab 3, Matrix transposition, elements distribution

P1

P2

P3

P0 a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

a11

a12

a13

a14

a15

a16

a17

a18

a21

a22

a23

a24

a25

a26

a27

a28

a31

a32

a33

a34

a35

a36

a37

a38

a41

a42

a43

a44

a45

a46

a47

a48

a51

a52

a53

a54

a55

a56

a57

a58

a61

a62

a63

a64

a65

a66

a67

a68

a71

a72

a73

a74

a75

a76

a77

a78

a81

a82

a83

a84

a85

a86

a87

a88

A At

47

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 93

Lab3: Step 1, communicate blocks

P1

P2

P3

P0 a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

A At

a11 a12

a21 a22

a31 a32

a41 a42

a51 A52

a61 a62

a71 a72

a81 a82

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 94

Lab 3: Step 2, transpose each blocks

P1

P2

P3

P0 a11

a12

a21

a22

a31

a32

a41

a42

a51

A52

a61

a62

a71

a72

a81

a82

At

a11 a12

a21 a22

a31 a32

a41 a42

a51 A52

a61 a62

a71 a72

a81 a82

At

48

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 95

Lab 3: Matrix transposition

Implement the Transposition algorithm
Using:

1. Multiple gather or scatter operation

2. A single alltoall communication

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 96

Lab 4: Parallel Matrix Multiplication

C = A B cij = Σk aikbkj

P1

P2

P3

P0
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

A, B and C being NxN matrixes distributed by row
across processes

Write a subprogram implementing matrix multiplication

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

49

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 97

Lab 4: Parallel Matrix Multiplication

P1

P2

P3

P0 c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

P1

P2

P3

P0 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

P1

P2

P3

P0 b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

C = A B

c11 = a11 a12 a13 a14b11 b21 b31 b41+ + +

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 98

Lab 4: Parallel Matrix Multiplication

P1

P2

P3

P0 c11 = a11 a12 a13 a14+ + +

c21 a21 a22 a23 a24= + + +

c31

c41

a31 a32 a33 a34

a41 a42 a43 a44

= + + +

= + + +

b11

b11

b11

b11

b21

b21

b21

b21

b31

b31

b31

b31

b41

b41

b41

b41

50

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 99

Lab 4: Step 1, alltoall

P1

P2

P3

P0 b11

b21

b31

b41

P1

P2

P3

P0 b11 b21 b31 b41

b11 b21 b31 b41

b11 b21 b31 b41

b11 b21 b31 b41

Perform an All gather, of the first column of
slements or blocks

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
100

Lab 4: Step 2, local work

P1

P2

P3

P0 c11 = a11 a12 a13 a14b11 b21 b31 b41+ + +

c21 a21 a22 a23 a24= b11 b21 b31 b41+ + +

c31

c41

a31 a32 a33 a34

a41 a42 a43 a44

= b11 b21 b31 b41+ + +

= b11 b21 b31 b41+ + +

Each processor calculate the first elements
or blocks of the matrix C

51

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
101

Lab 4: Step 3, local work

Repeat Step 1 and Step 2 for each column elements
or blocks of matrix C, until matrix C is complete

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
102

Lab 2: solution
PROGRAM simple_reduce
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc, i
INTEGER status(MPI_STATUS_SIZE)
REAL a, ra, sump

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
DO i = 1, nproc

IF(myid .EQ. i-1) a = REAL(i)
END DO
IF(myid .EQ. 0) sump = a
DO i = 2, nproc

IF(myid .EQ. 0) THEN
CALL MPI_RECV(ra, 1, MPI_REAL, i-1, i, MPI_COMM_WORLD, status, ierr)
sump = sump + ra

ELSE IF(myid .EQ. i-1) THEN
CALL MPI_SEND(a, 1, MPI_REAL, 0, i, MPI_COMM_WORLD, ierr)

END IF
END DO

IF(myid .EQ. 0) WRITE(6,*) myid, ’: sum = ’, sump
CALL MPI_FINALIZE(ierr)
END

52

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
103

PROGRAM binary_reduce1
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, i, inm, in2, in2m, n
INTEGER status(MPI_STATUS_SIZE)
REAL a, ra, sump

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
DO i = 1, nproc
IF(myid .EQ. i-1) a = REAL(i)

END DO

sump = a
i = 1

10 IF(i .GE. nproc) GO TO 20
in2 = i * 2
IF(MOD(myid,in2) .EQ. (i-1)) THEN
CALL MPI_SEND(sump, 1, MPI_REAL, myid+i, i, MPI_COMM_WORLD,

& ierr)
ELSE IF(MOD(myid,in2) .EQ. (in2-1)) THEN
CALL MPI_RECV(ra, 1, MPI_REAL, myid-i, i, MPI_COMM_WORLD,

& status, ierr)
sump = sump + ra

END IF
i = i * 2
GO TO 10

20 CONTINUE

IF(myid .EQ. nproc-1) WRITE(6,*) myid, ': sum = ', sump
CALL MPI_FINALIZE(ierr)
END

Lab 2: solution

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
104

PROGRAM binary_reduce2
INCLUDE 'mpif.h'
INTEGER ierr, myid, nproc, i, in2
INTEGER status(MPI_STATUS_SIZE)
REAL a, ra, sump
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
DO i = 1, nproc
IF(myid .EQ. i-1) a = REAL(i)

END DO
sump = a
i = 1

10 IF(i .GE. nproc) GO TO 20
in2 = i * 2
IF(MOD(myid,in2)/i .EQ. 0) THEN
CALL MPI_SEND(sump, 1, MPI_REAL, myid+i, i, MPI_COMM_WORLD,

& ierr)
CALL MPI_RECV(ra, 1, MPI_REAL, myid+i, i, MPI_COMM_WORLD,

& status, ierr)
sump = sump + ra

ELSE IF(MOD(myid,in2)/i .EQ. 1) THEN
CALL MPI_RECV(ra, 1, MPI_REAL, myid-i, i, MPI_COMM_WORLD,

& status, ierr)
CALL MPI_SEND(sump, 1, MPI_REAL, myid-i, i, MPI_COMM_WORLD,

& ierr)
sump = sump + ra

END IF
i = i * 2
GO TO 10

20 CONTINUE
WRITE(6,*) myid, ': sum = ', sump
CALL MPI_FINALIZE(ierr)
END

Lab 2: solution

53

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
105

MPI advanced Topics

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
106

MPI Virtual Topologies

• Convenient process naming

• Naming scheme to fit the communication pattern

• Simplifies writing of code

• Can allow MPI to optimize communications

54

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
107

Use Virtual Topologies

• Create new communicators

• Compute the processes coordinates

• Mapping functions

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
108

Virtual Topology an Example
2D Torus

0
(0,0)

3
(1,0)

6
(2,0)

9
(3,0)

1
(0,1)

4
(1,1)

7
(2,1)

10
(3,1)

2
(0,2)

5
(1,2)

8
(2,2)

12
(3,2)

MPI index

Topology
coordinates

Dim 0

Dim 1

55

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
109

Topology types

• Cartesian topologies
Ø Each process is connected to its neighbors in a

virtual grid
Ø Boundaries can be cyclic
Ø Processes can be identified by Cartesian

coordinates

• Graph topologies
Ø General graphs
Ø Will not be covered here

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
110

Creating a Cartesian Virtual Topology

C:
int MPI_Cart_create (MPI_Comm comm_old, int ndims, int

*dims, int *periods, int reorder, MPI_Comm
*comm_cart)

Fortran:
INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR
LOGICAL PERIODS(*), REORDER
CALL MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS,

REORDER, COMM_CART, IERROR)

56

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
111

Arguments

comm_old (input) existing communicator

Ndims (input) number of dimensions

periods (input) logical array indicating
whether a dimension is cyclic
(If TRUE, cyclic boundary conditions)

reorder (input) logical
(If FALSE, rank preserved)
(If TRUE, possible rank reordering)

comm_cart (output) new cartesian communicator

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
112

Mapping process grid coordinates to ranks

C:
int MPI_Cart_rank (MPI_Comm comm, init *coords,

int *rank)

Fortran:
INTEGER COMM,COORDS(*),RANK,IERROR
CALL MPI_CART_RANK(COMM,COORDS,RANK,IERROR)

57

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
113

Mapping ranks to process grid coordinates

C:
int MPI_Cart_coords (MPI_Comm comm, int rank, int

maxdims, int *coords)

Fortran:
INTEGER COMM,RANK,MAXDIMS,COORDS(*),IERROR
CALL MPI_CART_COORDS(COMM,RANK,MAXDIMS,COORDS,IERROR)

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
114

#include<mpi.h>
/* Run with 12 processes */
void main(int argc, char *argv[]) {

int rank;
MPI_Comm vu;
int dim[2],period[2],reorder;
int coord[2],id;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
dim[0]=4; dim[1]=3;
period[0]=TRUE; period[1]=FALSE;
reorder=TRUE;
MPI_Cart_create(MPI_COMM_WORLD,2,dim,period,reorder,&vu);
if(rank==5){

MPI_Cart_coords(vu,rank,2,coord);
printf("P:%d My coordinates are %d %d\n",rank,coord[0],coord[1]);

}
if(rank==0) {

coord[0]=3; coord[1]=1;
MPI_Cart_rank(vu,coord,&id);
printf("The processor at position (%d, %d) has rank %d\n",coord[0],coord[1],id);

}
MPI_Finalize();

}

Virtual Topology example

58

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
115

PROGRAM Cartesian
C Run with 12 processes

INCLUDE 'mpif.h'
INTEGER err, rank, size
integer vu,dim(2),coord(2),id
logical period(2),reorder

CALL MPI_INIT(err)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rank,err)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,size,err)
dim(1)=4
dim(2)=3
period(1)=.true.
period(2)=.false.
reorder=.true.
call MPI_CART_CREATE(MPI_COMM_WORLD,2,dim,period,reorder,vu,err)
if(rank.eq.5) then

call MPI_CART_COORDS(vu,rank,2,coord,err)
print*,'P:',rank,' my coordinates are',coord

end if
if(rank.eq.0) then

coord(1)=3
coord(2)=1
call MPI_CART_RANK(vu,coord,id,err)
print*,'P:',rank,' processor at position',coord,' is',id

end if
CALL MPI_FINALIZE(err)

END

Virtual Topology example

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
116

Computing ranks of neighboring
processes

C:
int MPI_Cart_shift (MPI_Comm comm, int direction, int

disp, int *rank_source, int *rank_dest)

Fortran:
INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST
INTEGER IERR
CALL MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE,
RANK_DEST, IERR)

59

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
117

Arguments

direction dimension in which the shift should be made
disp length of the shift in processor coordinates

(+ or -)
rank_source where calling process should receive a message

from during the shift
rank_dest where calling process should send a message

to during the shift

Does not actually shift data: returns the correct ranks for a
shift which can be used in subsequent communication calls

If shift off of the topology, MPI_Proc_null is returned

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
118

Cartesian Partitioning

Often we want to do an operation on only part of
an existing Cartesian topology

Cut a grid up into ‘slices’

A new communicator is produced for each slice

Each slice can then perform its own collective
communications

MPI_Cart_sub and MPI_CART_SUB generate new
communicators for the slice

60

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
119

MPI_Cart_sub

C:
int MPI_Cart_sub (MPI_Comm comm, int *remain_dims,
MPI_Comm *newcomm)

Fortran:
INTEGER COMM,NEWCOMM,IERROR
LOGICAL REMAIN_DIMS(*)
CALL MPI_CART_SUB(COMM,REMAIN_DIMS,NEWCOMM,IERROR)

If comm is a 2x3x4 grid and remain_dims={TRUE,FALSE,TRUE},
then three new communicators are created each being a 2x4 grid

Calling processor receives back only the new communicator it is in

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model -
120

MPI on the web

http://oscinfo.osc.edu/training/

http://www.netlib.org/mpi/index.html

http://www-unix.mcs.anl.gov/mpi/learning.html

http://www.ncsa.uiuc.edu/UserInfo/Training/

