Parallel Programming

An overview

Carlo Cavazzoni
(High Performance Computing Group)

CINECA
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 1
2002 Linux Cluster School

Why parallel programming?

e Solve larger problems
e Run memory demanding codes
= Solve problems with greater speed

Why on Linux clusters?

e Solve Challenging problems with low
cost hardware.
e Your computer facility fit in your lab.

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 2
2002 Linux Cluster School

{% z‘a?u:""‘-‘-‘-’!\

Modern Parallel Architectures

Two basic architectural scheme:
Distributed Memory
Shared Memory

Now most computers have a mixed
architecture

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 3

CPU

node

node

CPU

node

CPU

node
node

CPU

January 31 - February 15
2002

MPI1 programming model, ICTP -
Linux Cluster School

MPI programming model - 4

Most Common Networks
switched Cube, hypercube, n-cube
Pttty E ¥
switch | '
Torus in 1,2,..., N Dim Fat Tree
K Y u>
> iy i3 1) A1)
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 5
2002 Linux Cluster School

Shared Memory

memory
$
EX

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 6
2002 Linux Cluster School

Real Shared

Memory banks

System Bus

CPU

January 31 - February 15

2002

CPU

|c§u|

|c§u|

MPI programming model, ICTP -
Linux Cluster School

CPU

MPI programming model - 7

Virtual Shared

Network

1L

£ HUB HUB HUB HUB £ HUB HlE

o o o o (] o

- - - - - -

| cpu | | cpu | | cpu | lcpu | ||[cpu | |[|[cPu |
node node node node node node

January 31 - February 15

2002

MPI1 programming model, ICTP -

Linux Cluster School

MPI programming model - 8

|CPU ||CPU |

ETHETE node [cru |[cru]

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 9
2002 Linux Cluster School

Logical Machine Organization

The logical organization, seen by the
programmer, could be different from
the hardware architecture.

Its quite easy to logically partition a
Shared Memory computer to reproduce
a Distributed memory Computers.

The opposite is not true.

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 10
2002 Linux Cluster School

i

memory

...:;:}%\

A

Parallel Programming Paradigms

The two architectures determine two basic
scheme for parallel programming

Message Passing (distributed memory)
all processes could directly access only their local

Data Parallel (shared memory)
Single memory view, all processes (usually threads)
could directly access the whole memory

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 11
2002 Linux Cluster School

Parallel Programming Paradigms, cont.

Programming Environments

Message Passing

Data Parallel

Standard compilers

Ad hoc compilers

Communication Libraries

Source code Directive

Ad hoc commands to run the
program

Standard Unix shell to run
the program

Standards: MPI, PVM

Standards: OpenMP, HPF

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 12
2002 Linux Cluster School

Parallel Programming Paradigms, cont.

Its easy to adopt a Message Passing scheme in a Sheared
Memory computers (unix process have their private memory).

Its less easy to follow a Data Parallel scheme in a
Distributed Memory computer (emulation of shared memory)

Its relatively easy to design a program using the message
passing scheme and implementing the code in a Data
Parallel programming environments (using OpenMP or HPF)

Its not easy to design a program using the Data Parallel
scheme and implementing the code in a Message Passing
environment (with some efforts on the T3E, shmem lib)

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 13
2002 Linux Cluster School

Architectures vs. Paradigms

Clusters of Shared Memory Nodes

Distributed Memory
Computers

Message Passing

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 14
2002 Linux Cluster School

Parallel programming Models

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 15
2002 Linux Cluster School

again)y tWoO basic models models

Domain decomposition

Data are divided into pieces of approximately the same
size and mapped to different processors. Each
processors work only on its local data. The resulting
code has a single flow.

Functional decomposition

The problem is decompose into a large number of smaller
tasks and then the tasks are assigned to processors as
they become available, Client-Server / Master-Slave
paradigm.

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 16
2002 Linux Cluster School

Model

Domain
decomposition

Functional
decomposition

Programming Flint
Paradigms Taxonomy

Message Passing Single Program

MPI1, PVYM Multiple Data
(SPMD)

Data Parallel

HPF

Data Parallel Multiple Program

OpenMP Single Data
(MPSD)

Message Passing Multiple Program

MPI1, PVYM Multiple Data
(MPMD)

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 17

Two basic

Architectures

Distributed Memory

Shared Memory

Programming Paradigms/Environment

Message Passing

Data Parallel

Parallel Programming Models

Domain Decomposition

Functional Decomposition

January 31 - February 15
2002

MPI1 programming model, ICTP -
Linux Cluster School

MPI programming model - 18

Small important digression

When writing a parallel code, regardless
of the architecture, programming model
and paradigm, be always aware of

e Load Balancing
e Minimizing Communication

e Overlapping Communication and Computation

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 19
2002 Linux Cluster School

Load Balancing

Equally divide the work among the
available resource: processors,
memory, network bandwidth, 1/0, ...

This is usually a simple task for the
problem decomposition model

It is a difficult task for the functional
decomposition model

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 20
2002 Linux Cluster School

Minimizing Communication

When possible reduce the communication
events:

Group lots of small communications into
large one.

Eliminate synchronizations as much as
possible. Each synchronization level off
the performance to that of the slowest
process.

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 21
2002 Linux Cluster School

Overlap Communication and
Computation

When possible code your program in such
a way that processes continue to do
useful work while communicating.

This is usually a non trivial task and is
afforded in the very last phase of
parallelization.

If you succeed, you have done. Benefits
are enormous.

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 22
2002 Linux Cluster School

MPI programming model
on Linux Cluster

Carlo Cavazzoni
(High Performance Computing Group)

CINECA
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 23
2002 Linux Cluster School

INTRODUCTION: What is MPI?

MPI: Message Passing Interface
What is a message?
DATA

MPI allows data to be passed between
processes

January 31 - February 15 ICTP - Linux Cluster School MPI programming model - 24
2002

What is MPI?

MPI is standard defined in a set of documents compiled by

a consortium of organizations: http://www.mpi-forum.org/

In particular the MPI documents define the APIs (application
interfaces) for C, C++ and FORTRAN.

The actual implementation of the standard is demanded to
the software developers of the different systems

In all systems MPI has been implemented as a library of
subroutines over the network drivers and primitives

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 25
2002 Linux Cluster School

Domain decomposition and MPI

MPI is particularly suited for a Domain
decomposition approach, where there is
a single program flow.

Parallel computation consist of a number of processes,
each working on some local data. Each process has
purely local variables (no access to remote memory).

Sharing of data takes place by message passing, by
explicitly sending and receiving data between processes

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 26
2002 Linux Cluster School

2002

G

Goals of the MPI standard

MPI’s prime goals are:
e To provide source-code portability
» To allow efficient implementation

MPI also offers:

= A great deal of functionality

e Support for heterogeneous parallel
architectures

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 27

Linux Cluster School

2002

1.

2.

éi& G

Basic Features of MPI Programs

An MPI program consists of multiple instances of a serial

program that communicate by library call.

Calls may be roughly divided into four classes:

Calls used to initialize, manage, and terminate
communications

Calls used to communicate between pairs of
processors. (Pair communication)

Calls used to communicate among groups of
processors. (Collective communication)

Calls to create data types.

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 28

Linux Cluster School

i

k"\?’\

A First Program: Hello World!

Fortran C
PROGRAM hel | o #i ncl ude <stdio. h>
#i ncl ude <npi . h>
I NCLUDE ‘npi f . h'
I NTECER err void main (int argc, char * argv[])
{
CALL MPI _INIT(err) int err;
PRINT *, “hello world!”
CALL MPI _FI NALI ZE(err) err = MPl _Init(&rgc, &argv);
printf(“Hello world!\n");
END err = MPl _Finalize();
}
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 29
2002 Linux Cluster School

Compiling and Running MPI Programs

Compiling (NO STANDARD):
e specify the appropriate include directory
(i.e. -I/mpidir/include)
e Specify the mpi library
(i.e. -L/mpidir/lib -Impi)
e Sometimes you may have MPI compiler wrappers that
do this job for you. (i.e. mpif77)

Running (NO STANDARD):

e mpirun command (i.e. mpirun —np 4 myprog.x)
e Other similar command (i.e. mpiexec —n 4 myprog.x)

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 30
2002 Linux Cluster School

Basic Structures of MPI Programs

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 31

2002

Linux Cluster School

Header files

MPI Communicator
MPI Function format
Communicator Size and Process Rank

Initializing and Exiting MPI

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 32

2002

Linux Cluster School

i

k"\?’\

Header files

All Subprogram that contains calls to MPI
subroutine must include the MPI header file

C:
#i ncl ude<npi . h>

Fortran:
i nclude ‘ nmpif.h

The header file contains definitions of MPI constants, MPI
types and functions

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 33
2002 Linux Cluster School

MPI Communicator

The Communicator is a variable identifying a group of
processes that are allowed to communicate with each
other.

There is a default communicator (automatically defined):

MPI_COMM_WORLD

identify the group of all processes.

» All MPI communication subroutines have a communicator
argument.
» The Programmer could define many communicator at the
same time

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 34
2002 Linux Cluster School

MPI function format

C:
Error = MPI _Xxxxx(paraneter,...);
MPI _Xxxxx(parameter,...);
Fortran:

CALL MPI _XXXXX(par anet er, | ERROR)

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 35
2002 Linux Cluster School

Communicator Size and Process Rank

How many processors are associated with a communicator?
C:

MPI _Conm_si ze(MPI _Comm conm int *size)
Fortran:

I NTEGER COW SI ZE, |ERR

CALL MPI _COW S| ZE(COW SIZE, |ERR)

QUTPUT: SI ZE

What is the ID of a processor in a group?
C:

MPI _Conm r ank(MPl _Comm conm int *rank)
Fortran:

| NTEGER COMWM RANK, |ERR

CALL MPI _COMM RANK(COWM RANK, | ERR)

QUTPUT: RANK

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 36
2002 Linux Cluster School

Communicator Size and Process Rank, cont.

SIZE = 8
N

N

Po] [Pu] [Pa) [Ps] [Pe] [Ps] [P] [P]

RANK = 2

Si ze is the number of processors associated to the communicator

rank is the index of the process within a group associated to a
communicator (rank = 0,1,...,N-1). The rank is used to identify

the source and destination process in a communication

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 37

2002 Linux Cluster School

. ik
Initializing and Exiting MPI

Initializing the MPI environment
C:

int MPl _Init(int *argc, char ***argv);
Fortran:

| NTEGER | ERR

CALL MPI _I NI T(1 ERR)

Finalizing MPI environment
C:
int MPl_Finalize()
Fortran:
I NTEGER | ERR
CALL MPI _FI NALI ZE(| ERR)

This two subprograms should be called by all process, and no

other MPI calls are allowed before npi _i nit and after

mpi _finalize

MPI programming model - 38

January 31 - February 15 MPI1 programming model, ICTP -
2002 Linux Cluster School

{oreaw pa Inlesparvenimria

i

A Template for Fortran MPI programs

PROGRAM t enpl at e

I NCLUDE ‘ npif.h
I NTEGER ierr, nyid,

CALL MPI _INIT(ierr)

CALL MPI _COWM SI ZE(MPI _COWMM WORLD, npr oc,
CALL MPI _COMM RANK(MPI _COMM WORLD, nyi d,

nproc

ierr)
ierr)

I NSERT YOUR PARALLEL CODE HERE !'!!

CALL MPI _FI NALI ZE(i err)

END

January 31 - February 15
2002

MPI programming model, ICTP -

MPI programming model - 39
Linux Cluster School

a Inlsrpane

A Template for C MPI programs

#i ncl ude <stdi o. h>
#i ncl ude <npi . h>

void main (int argc,

{

char * argv[])

int err, nproc, nyid;

err = MPl_Init(&rgc, &argv);

err = MPl _Conm si ze(MPI _COW WORLD, &nproc);

err = MPl_Comm rank(MPI _COVM WORLD, &nyid) ;

[*** | NSERT YOUR PARALLEL CODE HERE ***/

err = MPl _Finalize();
}
January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 40
2002 Linux Cluster School

Point to Point Communication

Let process A send a message to process B

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 41
2002 Linux Cluster School

Point to Point Communication

e Is the fundamental communication
facility provided by MPI library

e Is conceptually simple: A send a
message to B, B receive the message
from A. It is less simple in practice.

e Communication take places within a
communicator

e Source and Destination are identified by
their rank in the communicator

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 42
2002 Linux Cluster School

3

The Message
A message is an array of elements of some

particular MPI data type

MPI Data types
= Basic types
» Derived types

Derived type can be build up from basic types
C types are different from Fortran types
Messages are identified by their envelopes,

* a message could be received only if the receiver specify

the correct envelope

Message Structure

envelope

body

source | destination | communicator | tag

buffer | count |datatype

January 31 - February 15

MPI programming model, ICTP -

MPI programming model - 43

2002 Linux Cluster School

Fortran - MPI Basic Datatypes

MPI1 Data type Fortran Data type
VPl _I NTEGER | NTEGER

MPI _REAL REAL

MPI _DOUBLE_PRECI SI ON DOUBLE PREC!I SI ON
VPl _COMPLEX COVPLEX

MPI _DOUBLE_COWPLEX DOUBLE COVPLEX

MPI _LOG CAL LOG CAL

MPl _CHARACTER CHARACTER(1)

MPI _PACKED

MPI _BYTE

January 31 - February 15

MPI1 programming model, ICTP -

MPI programming model - 44

2002 Linux Cluster School

e

C - MPI Basic Datatypes

MPI Data type

C Data type

MPI _CHAR si gned char

MPI _SHORT signed short int
MPI _I NT si gned int

MPI _LONG Signed | og int

MPI _UNSI GNED_CHAR

unsi gned char

MPI _UNSI GNED_SHORT

unsi gned short int

MPI _UNSI GNED unsi gned int

MPI _UNSI GNED_LONG unsi gned | ong int
MPI _FLOAT fl oat

MPI _DOUBLE doubl e

MPI _LONG_DOUBLE I ong doubl e

MPl _BYTE

MPl _PACKED

January 31 - February 15
2002

MPI programming model, ICTP -
Linux Cluster School

MPI programming model - 45

k]

Definitions (Blocking and non-Blocking)

e “Completion” of the communication means
that memory locations used in the message

transfer can be safely accessed
e Send: variable sent can be reused after completion
* Receive: variable received can now be used

e MPI communication modes differ in what
conditions are needed for completion

e Communication modes can be blocking or
non-blocking
e Blocking: return from routine implies completion
e Non-blocking: routine returns immediately, user
must test for completion

January 31 - February 15
2002

MPI1 programming model, ICTP -
Linux Cluster School

MPI programming model - 46

. Lo
Communication Modes and MPI

Subroutines
Mode Completion Blocking Non-blocking
Condition subroutine | subroutine
Standard send | Message sent (receive MPI _SEND VPl _| SEND
state unknown)
receive Completes when a WPl _RECV WPl _I RECV
message has arrived
Synchronous | Only completes when the MPI _SSEND | MPI _I SSEND
send receive has completed
Buffered send |Always completes, VPl _BSEND | MPI _| BSEND
irrespective of receiver
Ready send Always completes, VPl _RSEND | MPI _| RSEND
irrespective of whether the
receive has completed
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 47
2002 Linux Cluster School

it

Standard Send and Receive

basic blocking point-to-point communication routine in MPI.

Fortran:

MPI _SEND(buf, count, type, dest, tag, comm ierr)

MPI _RECV(buf, count, type, dest, tag, comm status, ierr)
AN RN /

Vo 7
Message body Message envelope

Buf array of type type see table.

Count (I NTEGER) number of element of buf to be sent

Type (I NTEGER) MPI type of buf

Dest (I NTEGER) rank of the destination process

Tag (I NTEGER) number identifying the message

Comm (I NTEGER) communicator of the sender and receiver

Status (I NTEGER) array of size MPI _STATUS_SI ZE containing
communication status information

lerr (I NTEGER) error code (if i err=0 no error occurs)

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 48
2002 Linux Cluster School

B
Standard Send and Receive

C:
int MPI _Send(void *buf, int count, MPI_Datatype
type, int dest, int tag, MPI_Conm com);

int MPI _Recv (void *buf, int count, MPI_Datatype
type, int dest, int tag, MPI_Conm comm
MPI _Status *status);

Both in Fortran and C MPI _RECV accept
wildcard for source (MPI _ANYSOURCE) and tag
(MPI _ANYTAG)

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 49
2002 Linux Cluster School

Sending and Receiving, an example

PROGRAM send_r ecv

I NCLUDE * npi f. h

INTEGER i err, myid, nproc

| NTEGER st at us(MPI _STATUS_SI ZE)
REAL A(2)

CALL MPI_INIT(ierr)
CALL MPI _COWM SI ZE(MPI _COVMM WORLD, nproc, ierr)
CALL MPI _COWM _RANK(MPI _COMM WORLD, nyid, ierr)

IF(myid .EQ 0) THEN
A(1) = 3.0
A(2) =5.0
CALL MPI _SEND(A, 2, MPI_REAL, 1, 10, MPI_COWMM WORLD, ierr)
ELSE IF(nmyid .EQ 1) THEN
CALL MPI _RECV(A, 2, MPI_REAL, 0, 10, MPI_COVM WORLD, status, ierr)
WRITE(6,*) nyid,’': a(l)=",a(l),’ a(2)=",a(2)
END | F

CALL MPI _FI NALI ZE(i err)
END

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 50
2002 Linux Cluster School

Sending and Receiving, an example

#i ncl ude <stdio. h>
#i ncl ude <npi . h>

void main (int argc, char * argv[])

int err, nproc, nyid;
MPI _St atus status;
float a[2];

err = MPlI_Init(&rgc, &argv);
err = MPI _Comm si ze(MPI _COMM WORLD, &nproc);
err = MPI_Comm_rank(MPI _COMM WORLD, &nmyid);

if(nyid ==0) {
a[0] =3.0, a[1] = 5.0;
MPI _Send(a, 2, MPI_FLOAT, 1, 10, MPI_COVM WORLD);
} elseif(nyid ==1) {
MPI _Recv(a, 2, MPI_FLOAT, 0, 10, MPI_COWM WORLD, &status);
printf ("%l: a[0]=% a[1]=%\n", nyid, a[0], a[1]);
}

err = MPl _Finalize();

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 51
2002 Linux Cluster School

i

Again about completion

Standard MPI_RECV and MPI_SEND block the calling
process until completion.

For MPI_RECV completion: the message is arrived and the
process could proceed using the received data.

For MPI_SEND completion: the process could proceed and
data could be overwritten without interfering with the
message. But this does not mean that the message has
already been sent. In many MPI implementation,
depending on the message size, sending data are
copied to MPI internal buffers.

If the message is not buffered a call to MPI_SEND
implies a process synchronization, on the contrary
this is not true if the message is buffered.

Don’t make any assumptions (implementation dependent)

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 52
2002 Linux Cluster School

{oreaw pa Inlesparvenimria

5
DEADLOCK

Deadlock occurs when 2 (or more) processes are
blocked and each is waiting for the other to make
progress.

0]

compute compute

Proceed
if 1 has taken
action B

Proceed

if O has taken
action A

Action A Action B

terminate terminate

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 53
2002 Linux Cluster School

Simple DEADLOCK

PROGRAM deadl ock

I NCLUDE * npi f. h*

I NTEGER ierr, nyid, nproc

I NTEGER st at us(MPI _STATUS_SI ZE)
REAL A(2), B(2)

CALL MPI _INIT(ierr)
CALL MPI_COWM SI ZE(MPI _COMM WORLD, nproc, ierr)
CALL MPI _COWVM_RANK(MPI _COMM WORLD, nyid, ierr)

IF(nyid .EQ 0) THEN
a(l) = 2.0
a(2) = 4.0
CALL MPI _RECV(b, 2, MPI_REAL, 1, 11, MPI_COWMM WORLD, status, ierr)
CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI _COWM WORLD, ierr)
ELSE IF(nyid .EQ 1) THEN
a(l) = 3.0
a(2) = 5.0
CALL MPI _RECV(b, 2, MPI_REAL, 0, 10, MPI_COVM WORLD, status, ierr)
CALL MPI _SEND(a, 2, MPI_REAL, 0, 11, MPI_COWMM WORLD, ierr)
END | F

WRI TE(6,*) nyid, ': a(l)=", a(l), ' a(2)=", a(2)
CALL MPI _FI NALI ZE(i err)
END
January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 54

2002 Linux Cluster School

{oreaw pa Inlesparvenimria

i

Avoiding DEADLOCK

Proceed
if 1 has taken
action B

Action A

1

compute

A

A

(terminate)

January 31 - February 15
2002

Action B

terminate

Proceed
if O has taken
action A

MPI programming model, ICTP -

Linux Cluster School

MPI programming model - 55

Avoiding DEADLOCK

PROGRAM avoi d_I ock
I NCLUDE * npi f. h

i

I NTEGER ierr, nyid, nproc
I NTEGER st at us(MPI _STATUS_SI ZE)
REAL A(2), B(2)
CALL MPI _INIT(ierr)
CALL MPI _COWM SI ZE(MPl _COVMM WORLD, nproc, ierr)
CALL MPI _COWM RANK(MPI _COVM WORLD, nyid, ierr)
IF(nyid .EQ 0) THEN
a(l) = 2.0
a(2) = 4.0
CALL MPI _RECV(b, 2, MPI_REAL, 1, 11, MPI_COWMM WORLD, status, ierr)
CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COVM WORLD, ierr)
ELSE IF(nyid .EQ 1) THEN
a(l) = 3.0
a(2) = 5.0
CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI _COVM WORLD, ierr)
CALL MPI _RECV(b, 2, MPI_REAL, 0, 10, MPI_COWMM WORLD, status, ierr)
END I F
WRI TE(6, *) nyi d, a(1)=", a(1), a(2)=", a(2)

CALL MPI _FI NALI ZE(i err)
END

January 31 - February 15
2002

MPI1 programming model, ICTP -

Linux Cluster School

MPI programming model - 56

L
DEADLOCK: the most common error

PROGRAM error _| ock

I NCLUDE * npi f. h'

I NTEGER i err, nyid, nproc

I NTEGER st at us(MPI _STATUS_SI ZE)
REAL A(2), B(2)

CALL MPI _INIT(ierr)
CALL MPI_COWM S| ZE(MPI _COVMM WORLD, nproc, ierr)
CALL MPI _COVM RANK(MPI _COMM WORLD, nyid, ierr)
IF(nyid .EQ 0) THEN

a(1) = 2.0

a(2) = 4.0

CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COVM WORLD, ierr)

CALL MPI _RECV(b, 2, MPI_REAL, 1, 11, MPI_COVM WORLD, status, ierr)
ELSE IF(myid .EQ 1) THEN

a(1) = 3.0

a(2) = 5.0

CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COVM WORLD, ierr)

CALL MPI _RECV(b, 2, MPI_REAL, 0, 10, MPI _COVMM WORLD, status, ierr)
END I F

WRI TE(6, *) nyid, ': a(l)=", a(l), ' a(2)=", a(2)

CALL MPI _FI NALI ZE(i err)

END
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 57
2002 Linux Cluster School

Non-Blocking Send and Receive

Non-Blocking communications allows the
separation between the initiation of the
communication and the completion.

Advantages: between the initiation and
completion the program could do other
useful computation (latency hiding).

Disadvantages: the programmer has to
insert code to check for completion.

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 58
2002 Linux Cluster School

Non-Blocking Send and Receive

Fortran:
MPI _| SEND(buf, count, type, dest, tag, conm req, ierr)
MPl _| RECV(buf, count, type, dest, tag, comm req, ierr)

buf array of type type see table.

count (I NTEGER) number of element of buf to be sent

type (I NTEGER) MPI type of buf

dest (I NTEGER) rank of the destination process

tag (I NTEGER) number identifying the message

comm (I NTEGER) communicator of the sender and receiver

req (I NTEGER) output, identifier of the communications handle
ierr (I NTEGER) output, error code (ifi err=0 no error occurs)

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 59
2002 Linux Cluster School

Non-Blocking Send and Receive

C:

int MPI_Isend(void *buf, int count,
MPI _Dat at ype type, int dest, int tag,
MPI _Comm comm MPlI _Request *req);

int MPl Irecv (void *buf, int count,
MPI _Dat at ype type, int dest, int tag,
MPI _Comm comm MPlI _Request *req);

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 60
2002 Linux Cluster School

Waiting and Testing for Completion

Fortran:)
MPI _WAI T(req, status, ierr)

A call to this subroutine cause the code to wait until the
communication pointed by req is complete.

req (I NTEGER) input/output, identifier associated to a
communications event (initiated by MPI _| SEND or MPI _| RECV).

Status (I NTEGER) array of size MPl _STATUS_SI ZE, if req was
associated to a call to MPl _I RECV, st at us contains informations
on the received message, otherwise st at us could contain an
error code.

ierr (I NTEGER) output, error code (if i err=0 no error occours).

C:
int MPI _Wait(MPl _Request *req, MPI_Status *status);

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 61
2002 Linux Cluster School

it

Waiting and Testing for Completion

Fortran:)
MPl _TEST(req, flag, status, ierr)

A call to this subroutine sets fl ag to . true. if the communication
pointed by req is complete, sets fl ag to . f al se. otherwise.

req (I NTEGER) input/output, identifier associated to a
communications event (initiated by MPI _| SEND or MPI _| RECV).

Flag (LOd CAL) output, .true. if communication req has completed
. fal se. otherwise

Status (I NTEGER) array of size MPl _STATUS_SI ZE, if req was
associated to a call to MPl _I RECV, st at us contains informations on
the received message, otherwise st at us could contain an error code.

ierr (I NTEGER) output, error code (ifi err=0 no error occours).

C:
int MPl_Wit(MPl_Request *req, int *flag, MPl_Status *status);

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 62
2002 Linux Cluster School

Send and Receive, the easy way.

The easiest way to send and receive data without
warring about deadlocks

Sender side

Fortran: — " —

CALL MPI _SENDRECV(sndbuf, snd_size, snd_type, destid, ip,
rcvbuf, rcv_size, rcv_type, sourid, ip, comm status, ierr)
— e

el
Receiver side

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 63
2002 Linux Cluster School

i

Send and Receive, the easy way.

PROGRAM send_r ecv
I NCLUDE * npi f. h
INTEGER ierr, nyid, nproc
| NTEGER st at us(MPI _STATUS_SI ZE)
REAL A(2), B(2)
CALL MPI_INIT(ierr)
CALL MPI _COWM SI ZE(MPI _COMM WORLD, nproc, ierr)
CALL MPI _COMM_RANK(MPI _COMM WORLD, mnyid, ierr)
IF(nyid .EQ 0) THEN
a(1) 2.0
a(2) 4.0
CALL MPI _SENDRECV(a, 2, MPI_REAL, 1, 10, b, 2, MPI_REAL, 1, 11,
MPI _COW WORLD, status, ierr)
ELSE IF(nyid .EQ 1) THEN
a(1) 3.0
a(2) 5.0
CALL MPI _SENDRECV(a, 2, MPI_REAL, 0, 11, b, 2, MPI_REAL, 0, 10,
MPI _COW WORLD, status, ierr)

END | F

WRITE(6,*) nyid ': b(1)=", b(1), ' b(2)=", b(2)

CALL MPI _FI NALI ZE(i err)

END

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 64

2002 Linux Cluster School

Lab 1: My First MPI program

Implement and test the code:

1. Implements the Template MPI program
2. Compile

3. Run

4. Insert some code in the template

(printout rank and size)

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 65
2002 Linux Cluster School

Lab 1: DEADLOCKS

Implement and test the code:

1. The Deadlock program
2. The Avoid Deadlock program
3. The Deadlock program with non-blocking
VPl _| SEND, MPI _I RECV, MPI _WAI T and MPI _TEST
4. The Most common error program with MPl _SEND,

MPI _RECV and arrays of increasing size

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 66
2002 Linux Cluster School

LAB 2: Reduction and Binary Tree

Reduction: sum up the partial results of
different process (maybe the most common

parallel operation required in a parallel program)

Po Py
a

I:)n-l

an

A=a,+a,+..+a,

January 31 - February 15 MPI programming model, ICTP -
2002 Linux Cluster School

MPI programming model - 67

L A=A+a,
P a2
| A=A+a,
Pn—l an
— . [p,
. : L A=A+a,
This algorithm
complete in N steps P
b P O™~ |A=a,+a,+..+a,

January 31 - February 15 MPI1 programming model, ICTP -
2002 Linux Cluster School

MPI programming model - 68

. L
LAB 2: Binary Tree - |
|Po| |P1| |P2| |P3| |P4| P5| |p6| |P7|
N N N N
a,+a, \a:+64 l as+a, \afag l

a,+a,+a,+a, as+ag+a,+ag

This algorithm aratartatacta e a,
complete in log,N steps

E«H

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 69
2002 Linux Cluster School

Lab 2: Binary Tree - |

As an hint observe that:

Sender Receiver
Step 1 MOD(nyi d, 2) =0 MOD(nyi d, 2) =1
Step 2 MOD(nyi d, 4) =1 MOD(nyi d, 4) =3
Step 3 MOD(nyi d, 8) =3 MOD(nyi d, 8) =7
é.tepn MOD(nyi d, 2**n) = MOD(nyi d, 2**n) =
2**(n-1) -1 2**n-1

nyi d: processor index

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 70
2002 Linux Cluster School

Lab 2: Binary Tree - Il

Pl [P

] [Ps

a,+a,+a+a,+agtagsta, +a,
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 71
2002 Linux Cluster School

Lab 2: Binary Tree - Il

As an hint observe that:

Sender Receiver
Step 1 MOD(nyi d, 2) / 1=0 MOD(nyi d, 2)/ 1=1
Step 2 MOD(nyi d, 4) / 2=0 MOD(nyi d, 4) / 2=1
Step 3 MOD(nyi d, 8)/4=0 MOD(nyi d, 8)/4=1
éiep n MOD(nyi d, 2**n) / MOD(nyi d, 2**n) /

2**(n-1) =0 2**(n-1) =1

nyi d: processor index

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 72
2002 Linux Cluster School

Lab 2: Parallel Sum

Implement the parallel sum:

1. Using Simple strategy

2. Binary tree |

3. Binary tree Il

Use only MPI _SEND and MPI _RECV

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 73

2002

Linux Cluster School

Collective Communications

The power of MPI

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 74

2002

Linux Cluster School

A {% z‘a?u:""‘-‘-‘-’!\

Collective Communications

-Communications involving a group of process
-Called by all processes in a communicator

Barrier Synchronization
Broadcast

Gather/Scatter

Reduction (sum, max, prod, ...)

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 75
2002 Linux Cluster School

Characteristics

e Collective communication will not interfere with point-
to-point communication and vice-versa

« All processes must call the collective routine

e No non-blocking collective communication

- No tags

< Receive buffers must be exactly the right size

Safest communication mode

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 76
2002 Linux Cluster School

{% z‘a?u:""‘-‘-‘-’!\

MPI1_Barrier

Stop processes until all processes within a
communicator reach the barrier

Fortran:
CALL MPI _BARRI ER(conm ierr)

C:
int MPI _Barrier(MI _Comm conm

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 77
2002 Linux Cluster School

Barrier
4 t, L
Py P2
l | | ! Po Py P Py Py

ALL barrier M barrier

P, P, P, Py P,

[

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 78
2002 Linux Cluster School

Broadcast (MPI_BCAST)

One-to-all communication: same data sent from
root process to all others in the communicator

Fortran:
| NTEGER count, type, root, comm ierr

CALL WPl _BCAST(buf, count, type, root, comm ierr)
Buf array of type type

C:
int MPI _Bcast(void *buf, int count, MPI_Datatype
datatypemint root, MPI_Conmm conm

All processes must specify same root, rank and conm

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 79
2002 Linux Cluster School

Broadcast

PROGRAM br oad_cast
I NCLUDE ' npi f . h'
INTEGER i err, nyid, nproc, root
I NTEGER st at us(MPI _STATUS_SI ZE)
REAL A(2)
CALL MPI _INIT(i err)
CALL MPI _COWM SI ZE(MPI _COMM WORLD, nproc, ierr)
CALL MPI_COVM RANK(MPI _COVMM WORLD, nyid, ierr) a,
root =0
IF(myid .EQ 0) THEN
a(l) =20 a,
a(2) = 4.0 2
END I F
CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COVMM WORLD, ierr) a,
WRI TE(6,*) nyid, ': a(l)=", a(l), "a(2)=", a(2)
CALL NPl _FI NALI ZE(i err)
END 3

a;

E

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 80
2002 Linux Cluster School

MPI_Scatter

One-to-all communication: different data sent from
root process to all others in the communicator

sender receiver

; A N
Fortran: Ve ~ ~
CALL MPI _SCATTER(sndbuf, sndcount, sndtype, rcvbuf, rcvcount,

rcvtype, root, comm ierr)

Arguments definition are like other MPI subroutine

= sndcount is the number of elements sent to each process, not
the size of sndbuf , that should be sndcount times the number of
process in the communicator

= The sender arguments are significant only at root

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 81
2002 Linux Cluster School

MPI1_Gather

One-to-all communication: different data collected
by the root process, from all others processes in
the communicator. Is the opposite of Scatter

sender receiver
A AN

Fortran: Ve ~N ~
CALL MPI _GATHER(sndbuf, sndcount, sndtype, rcvbuf, rcvcount,
rcvtype, root, comm ierr)

= Arguments definition are like other MPI subroutine

= rcvcount is the number of elements collected from each process,
not the size of rcvbuf , that should be r cvcount times the number
of process in the communicator

= The receiver arguments are significant only at root

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 82
2002 Linux Cluster School

{oreaw pa Inlesparvenimria

i

Scatter

sndbuf

- |
N

P; la,

Py a P, a P, a,

rcvbuf rcvbuf r cvbuf r cvbuf

January 31 - February 15
2002

Scatter/Gather

Gather

rcvbuf

rcvbuf

rcvbuf

Poa | |P, a

MPI programming model, ICTP -
Linux Cluster School

sndbuf

MPI programming model - 83

i

scatter

Scatter/Gather examples

gat her

PROGRAM scat t er
I NCLUDE * npi . b

INTEGER ierr, nyid, nproc, nsnd, |, root
I NTEGER st at us(MPI _STATUS_SI ZE)
REAL A(16), B(2)

CALL MPI _INT(ierr)

CALL MPI_COW S| ZE(MPI _COMM WORLD, nproc, ierr)
CALL MPI_COWM RANK(MPI _COMM WORLD, nyid, ierr)
root =0
IF(nyid .eq. root) THEN

DOi =1, 16

a(i) = REAL(i)

END DO
END I F
nsnd = 2
CALL MPI_SCATTER(a, nsnd, MPI_REAL, b, nsnd,
& WPl _REAL, root, MPI_COMMWRLD, ierr)

WRITE(6,*) nyid, ': b(1)=, b(1), 'b(2)=, b(2)
CALL MPI_FI NALI ZE(i err)
END

PROGRAM gat her
| NCLUDE ' npi f . b

INTEGER ierr, nyid, nproc, nsnd,
I NTEGER st at us(MPI _STATUS_SI ZE)
REAL A(16), B(2)

CALL MPI _INIT(ierr)

root =0
b(1) = REAL(nyid)
b(2) = REAL(nyid)
nsnd =
CALL MPI_GATHER(b,
& MPI_REAL, root MPI_COWM WRLD,
IF(nyid .eq. root) THEN
DO i =1, (nsnd*nproc)
VR TE(6,*) nyid, ': a(i)=",
END DO
END | F
CALL MPI_FI NALI ZE(ierr)
END

I, root

CALL MPI_COW SI ZE(MPI _OOWM WORLD, npr oc,
CALL NPl _COMM RANK(MPI _COVM WORLD, nyi d,

nsnd, MPI _REAL, a, nsnd,

ierr)

ierr)
ierr)

January 31 - February 15
2002

MPI1 programming model, ICTP -
Linux Cluster School

MPI programming model - 84

o
MPI1_Alltoall

sender receiver
Fortran: A N

r N N
CALL MPI _ALLTOALL(sndbuf, sndcount, sndtype, rcvbuf, rcvcount, rcvtype,
comm, ierr)

|PO a, a, a; a, | e || & § ch |

P b, b, b, |8 | a, b, ¢ d | “—
"5 | 0 1 2 3 4 2 2 2 2 5
o] o]
o >
c o
2 | PO c, C, c; jep | a; by c; d; | —
| Po d, d, d, d, | a, |b, ¢, d, |
Very useful to implement data transposition
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 85
2002 Linux Cluster School

Reduction

The reduction operation allow to:

e Collect data from each process

» Reduce the data to a single value

e Store the result on the root processes
e Store the result on all processes

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 86
2002 Linux Cluster School

. i
Reduce, Parallel Sum

S,=a,+a,+asta,

S,=b,+b,+b,+b,

Pa [&]5]

Reduction function works with arrays

other operation: product, min, max, and,
Internally is usually implemented with a
binary tree

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 87
2002 Linux Cluster School

MPI1_REDUCE and MPI_ALLREDUCE

Fortran:
MPI _REDUCE(snd_buf, rcv_buf, count, type, op, root, conm
ierr)

snd_buf input array of type type containing local values.
rcv_buf output array of type t ype containing global results

count (I NTEGER) number of element of snd_buf and rcv_buf

type (I NTEGER) MPI type of snd_buf and rcv_buf

op (I NTEGER) parallel operation to be performed

r oot (I NTEGER) MPI id of the process storing the result

comm (I NTEGER) communicator of processes involved in the operation
ierr (I NTEGER) output, error code (ifi err=0 no error occours)

MPl _ALLREDUCE(snd_buf, rcv_buf, count, type, op, comm ierr)

The argument r oot is missing, the result is stored to all processes.

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 88
2002 Linux Cluster School

Predefined Reduction Operations

MPI op Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location

MPI1_MINLOC Minimum and location
January 31 - February 15 MPI programming model, 1CTP - MPI programming model - 89
2002 Linux Cluster School

i

Reduce, cont.

int MPl _Reduce(void * snd_buf, void * rcv_buf, int count,
MPI _Datatype type, MPI_Op op, int root, MPl_Comm comm)

int MPl _Allreduce(void * snd_buf, void * rcv_buf, int count,
MPI _Datatype type, MPI_Op op, MPlI_Conm conm)

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 90

2002 Linux Cluster School

Reduce, example

PROGRAM r educe

I NCLUDE ' npi f. h'

I NTEGER ierr, nyid, nproc, root

I NTEGER st at us(MPI _STATUS_SI ZE)

REAL A(2), res(2)

CALL MPI_INIT(ierr)

CALL MPI _COW SI ZE(MPI _COW WORLD, nproc, ierr)
CALL NPl _COVM RANK(MPI _COMM WORLD, nyid, ierr)

root =0
a(l) =20
a(2) = 4.0

CALL MPI _REDUCE(a, res, 2, MPI_REAL, MPI_SUM root,
& MPI_COW WORLD, ierr)
IF(nyid .EQ 0) THEN

WRITE(6,*) nyid, ': res(1)=", res(1l), 'res(2)=", res(2)
END I F
CALL MPI _FI NALI ZE(ierr)
END
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 91
2002 Linux Cluster School

il

P 1 s a3, As3 Ag4 Ass A6 a7 Asg 13 A3 833 Qa3 As3 863 azs Ags
ay |ap |as |aw | as | as | 2 | as Ay | 324 | Qa4 | Qsa | s | Bes | @74 | e
P 2| @1 | @2 | sz | @ss | Ass | Bse | As7 | Ass Q5 | A | 835 | Qs | 55 | Qs | A7s | Ags
A | Q2 | Az | Qes | A6s | Bes | A7 | Aes Q16 | A6 | Q36 | Qs | A6 | Qes | A7 | Qs
PS arn az azs A7y azs azs a7 azg a7 8z7 g7 Au7 8s7 g7 arn g7
Ag; | Qg2 | Qg3 | Asa | Ass | Ase | A7 | Ass Qg | Qs | A3z | Qus | Ass | Aee | A7z | Qe

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 92
2002 Linux Cluster School

i

Lab3: Step 1, communicate blocks

/\t

PO all a12 al3 a14 alS alG al7 alB all a12 a31 a32 a51 A52 a71 a72
aZl a22 aZ3 a24 aZS aZG a27 aZB a21 a22 a41 a42 aGl a62 aBl aBZ
—
Pl Ay | A || Qs J 8o | Qs | Qo7 | Qs
An | /] @ | | s | s | 27 | Qs]
P2 a51 a52 a, 54 a55 a56 a57 aSB /
aGl a62 a63 a64 a65 a66 /aﬁ?/ aGB
P3 a71 a72 a74 a75 a75 a77 a78
Qg | As2/] Az | Aas | Aes | Ass | As7 | Ass
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 93
2002 Linux Cluster School

i

Py -

\¥

B \
PZ
PS

January 31 - February 15

2002

MPI1 programming model, ICTP -
Linux Cluster School

MPI programming model - 94

{% z‘a?u:""‘-‘-‘-’!\

Lab 3: Matrix transposition

Implement the Transposition algorithm
Using:

1. Multiple gather or scatter operation

2. A single alltoall communication

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 95
2002 Linux Cluster School

e

Lab 4: Parallel Matrix Multiplication

Write a subprogram implementing matrix multiplication

C=AB —— c;= Scaiby
A, B and C being NxN matrixes distributed by row

acCross processes

e Elolele]
all alz al3 al4
ool . EElal]
83 | Az | 8 | Qs

o Elelel=]
. lelel=]

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 96
2002 Linux Cluster School

8y |32 | 8 | A

Lab 4: Parallel Matrix Multiplication
C = A B

| I:)O | | PO | ay I ap I a3 I Ay | | PO | b11 I b12 I b13 I b14 | |
Pl P]_ | Ay I Az I 2PEY I Ag | P]_ | b21 I b22 I bza I b24 |
P2 P2 | gy I Az I Agz I Agq | P2 | by I b, I bas I b, |
P3 P3 | an I A I A3 I Ay | P3 | b41 I b42 I b43 I b44 |

cll = |a11 || bll | + | a12 || b21 | + | a13 || b31 |+| a14 I bAl |
January 31 - February 15 MPI programming model, ICTP - MPI programming model - 97
2002 Linux Cluster School

Lab 4: Parallel Matrix Multiplication

AN A 2 N\
Po [c, = auA by, _|_ ap /| b,, \ a | _|_ aull b41|\

———
Py = e b e b] 4
P2 = |a31 by, +|azz ” b,y | +|333 ” by -1|-|aa " by |

%

I O Y I O
V4 4 4

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model - 98
2002 Linux Cluster School

zé k"\?’\

Lab 4: Step 1, alltoall

Perform an All gather, of the first column of
slements or blocks

P0 1 P0 | by, " b,y I bgy I b,y |
Pl 1 Pl | by " by I by, I b,y |
P2 1 P2 | bu " b21 I b31 I b41 |
P3 P3 | by, " b,y I bgy I b,y |

January 31 - February 15 MPI programming model, ICTP - MPI programming model - 99
2002 Linux Cluster School

Lab 4: Step 2, local work

Each processor calculate the first elements
or blocks of the matrix C

PO Cuy = | g || by, | -+ | g || by | -+ | a3 || b3y |+| v I b,y |
Pl = b b b. b
Co1 - Az 11 -+ | 22 21 -+ | @z a1 | 4| @2a a1
P2 = b b b. b
Cay - Az 11 -+ | 3= 21 -+ | Qs a1 || @aa a1
P3 = b b b. b
Ca1 - Ay 11 -+ | 22 21 -+ | Qs a1 | 4| @aa a1
January 31 - February 15 MPI1 programming model, ICTP - MPI programming model -

2002 Linux Cluster School 100

Lab 4: Step 3, local work

Repeat Step 1 and Step 2 for each column elements
or blocks of matrix C, until matrix C is complete

January 31 - February 15 MPI programming model, ICTP - MPI programming model -
2002 Linux Cluster School 101

; i
Lab 2: solution

PROGRAM si npl e_r educe

I NCLUDE ‘npi f. h*

I NTEGER ierr, nyid, nproc, i

I NTEGER st at us(MPI _STATUS_SI ZE)
REAL a, ra, sunp

CALL MPI_INIT(ierr)
CALL MPI _COWMM SI ZE(MPI _COMM WORLD, nproc, ierr)
CALL MPI _COWMM_RANK(MPI _COVWM WORLD, nyid, ierr)
DO i = 1, nproc

IF(nyid .EQ i-1) a=REAL(i)
END DO

IF(myid .EQ 0) sunmp = a

DO i = 2, nproc
IF(nyid .EQ 0) THEN
CALL MPI _RECV(ra, 1, MPI_REAL, i-1, i, MPI_COMM WORLD, status, ierr)
sunp = sunp + ra
ELSE IF(nyid .EQ i-1) THEN
CALL MPI_SENDX(a, 1, MPI_REAL, 0, i, MPI_COW WORLD, ierr)
END | F
END DO
IF(myid .EQ 0) WRITE(6,*) nyid, ': sum=", sunp
CALL MPI_FI NALI ZE(ierr)
END
January 31 - February 15 MPI1 programming model, ICTP - MPI programming model -

2002 Linux Cluster School 102

{oreaw pa Inlesparvenimria

L
Lab 2: solution

PROGRAM bi nary_r educel

I NCLUDE ' npi f. h'

INTEGER ierr, nyid, nproc, i, inm in2, in2m n
| NTEGER st at us(MPI _STATUS S ZE)

REAL a, ra, sunp

CALL MPI _INT(ierr)
CALL MPI_COWM SI ZE(MPI _COMM WORLD, nproc, ierr)
CALL MPI _COMM RANK(MPI _COMM WORLD, nyid, ierr)
DOi =1, nproc

IF(nyid .EQ i-1) a = REAL(i)

END DO
sunp = a
i =1
10 IF(i .GE nproc) GO TO 20
in2 =i *2
IF(MDX(nyid,in2) .EQ (i-1)) THEN
CALL MPI _SEND(sunp, 1, MPI_REAL, nyid+i, i, MPl_COWM WORLD,
& ierr)
ELSE | F(MD(nyid,in2) .EQ (in2-1)) THEN
CALL MPI_RECV(ra, 1, MPI_REAL, nyid-i, i, MPI_OOMM WRLD,
& status, ierr)
sunp = sunp + ra
END | F
i =i *2
@0 TO 10
20 QONTI NUE
IF(nyid .EQ nproc-1) WRITE(6,*) nyid, ': sum=", sunp
CALL MPI _FINALI ZE(i err)
END
January 31 - February 15 MPI programming model, ICTP -

2002

Linux Cluster School

MPI programming model -
103

PROGRAM bi nary_r educe2
I NCLUDE ' npi f . b
INTEGER ierr, nyid, nproc, i, in2
| NTEGER st at us(MPI _STATUS_SI ZE)
REAL a, ra, sunp
CALL MPI _INT(ierr)
CALL MPI_OOWM SI ZE(MPI _OOMWM WIRLD, nproc, ierr)
CALL MPI_OOMM RANK(MPI _OOMM WORLD, nyid, ierr)
DOi =1, nproc
IF(nyid .EQ i-1) a=REAL(i)

END DO
sunp = a
i =1
10 IF(i .GE nproc) GO TO 20
in2 =i * 2
F(MD(nyid,in2)/i .EQ 0) THEN
CALL MPIl _SEND(sunp, 1, MPI_REAL, nyid+i, i, MPl_COWM WORLD,
& ierr)
CALL MPI_RECV(ra, 1, MPI_REAL, nyid+, i, MPI_OOMM WRLD,
& status, ierr)
sunp = sunp + ra
ELSE |F(MO(nyid,in2)/i .EQ 1) THEN
CALL MPI_RECV(ra, 1, MPI_REAL, nyid-i, i, MPI_OOMM WRLD,
& status, ierr)
CALL MPI_SEND(sunp, 1, MPI_REAL, nyid-i, i, MPl_COWM WORLD,
& ierr)
sunp = sunp + ra
END I F
i =i *2
G0 TO 10
20 CONTI NUE
WRITE(6,*) nyid, ': sum="', sunp
CALL MPI _FI NALI ZE(i err)
END
January 31 - February 15 MPI1 programming model, ICTP -

2002

Linux Cluster School

Lab 2: solution

MPI programming model -
104

MPI1 advanced Topics

January 31 - February 15 MPI programming model, ICTP - MPI programming model -
2002 Linux Cluster School 105

MPI Virtual Topologies

Convenient process naming

Naming scheme to fit the communication pattern

Simplifies writing of code

Can allow MPI to optimize communications

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model -
2002 Linux Cluster School 106

Use Virtual Topologies

e Create new communicators
e Compute the processes coordinates

= Mapping functions

January 31 - February 15 MPI programming model, ICTP - MPI programming model -
2002 Linux Cluster School 107

Virtual Topology an Example
2D Torus

MPI index

Topology
coordinates

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model -
2002 Linux Cluster School 108

G

Topology types

» Cartesian topologies

» Each process is connected to its neighbors in a
virtual grid
» Boundaries can be cyclic

» Processes can be identified by Cartesian
coordinates

« Graph topologies
» General graphs
» Will not be covered here

January 31 - February 15 MPI programming model, ICTP -

MPI programming model -
2002

Linux Cluster School 109

éi& G

Creating a Cartesian Virtual Topology

C:
int MPl _Cart_create (MPI_Conm commold, int ndins, int

*dinms, int *periods, int reorder, MI_Conmm
*conm cart)

Fortran:

| NTEGER COVWM OLD, NDI MS, DI MS(*), COWM CART, | ERROR

LOG CAL PERI ODS(*), REORDER

CALL MPI _CART_CREATE(COWVM OLD, NDI MS, DI M5, PERI CDS,
RECRDER, COWM CART, | ERROR)

January 31 - February 15 MPI1 programming model, ICTP -

MPI programming model -
2002

Linux Cluster School 110

comm ol d
Ndi s

peri ods

reor der

comm cart

January 31 - February 15
2002

Arguments

(input) existing communicator
(input) number of dimensions
(input) logical array indicating

whether a dimension is cyclic
(If TRUE, cyclic boundary conditions)

(input) logical
(If FALSE, rank preserved)
(If TRUE, possible rank reordering)

(output) new cartesian communicator

MPI programming model, ICTP - MPI programming model -

Linux Cluster School

111

C

Fortran:

January 31 - February 15
2002

int MPI_Cart_rank (MPlI_Comm comm init *coords,
i nt *rank)

| NTEGER COVM COORDS(*) , RANK, | ERROR
CALL MPI _CART_RANK(COMM, COORDS, RANK, | ERROR)

Mapping process grid coordinates to ranks

MPI1 programming model, ICTP - MPI programming model -

Linux Cluster School

112

Mapping ranks to process grid coordinates

C
int MPI _Cart_coords (MPlI_Comm conm int rank, int
maxdi ms, int *coords)

Fortran:
| NTEGER COVM RANK, MAXDI MS, COORDS(*) , | ERROR
CALL MPI _CART_COORDS(COVM RANK, MAXDI MS, COORDS, | ERROR)

January 31 - February 15 MPI programming model, ICTP - MPI programming model -
2002 Linux Cluster School 113

_ i
Virtual Topology example

#i ncl ude<npi . h>
/* Run with 12 processes */
void nain(int argc, char *argv[]) {
int rank;
MPI _Comm vu;
int dinj2], period[2],reorder;
int coord[2],id;
MPI _Init(&argc, &argv);
MPI _Conm_r ank(MPI _COMM WORLD, &r ank) ;
di n{ 0] =4; dinfj1]=3;
period[0] =TRUE; peri od[1] =FALSE;
reor der=TRUE;
MPI _Cart _creat e(MPl _COVMM WORLD, 2, di m peri od, reor der, &u);
i f(rank==5){
MPI _Cart _coords(vu, rank, 2, coord);
printf ("P:% My coordinates are % %\ n",rank, coord[0], coord[1]);

if(rank==0) {
coord[0] =3; coord[1] =1;
MPI _Cart _rank(vu,coord,&id);
printf ("The processor at position (%, %l) has rank %\ n", coord[O0],coord[1],id);

MPI _Finalize();

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model -
2002 Linux Cluster School 114

&

Virtual Topology example
PROGRAM Car t esi an
C Run with 12 processes
| NCLUDE ' npi f. h'
| NTEGER err, rank, size
integer vu,dim(2), coord(2),id
| ogi cal period(2),reorder
CALL MPI _I NI T(err)
CALL MPI _COWM RANK(MPI _COVM WORLD, r ank, err)
CALL MPI _COWM_SI ZE(MPI _COVWM WORLD, si ze, err)
din(1)=4
di m(2)=3
period(1)=.true.
period(2)=.false.
reorder=.true.
cal | MPI _CART_CREATE(MPI _COW WORLD, 2, di m peri od, reorder,vu, err)
if(rank.eq.5) then
call MPI _CART_COORDS(vu, rank, 2, coord, err)
print*,"P:' rank,' ny coordinates are',coord
end if
if(rank.eq.0) then
coord(1)=3
coord(2)=1
call MPI _CART_RANK(vu, coord,id,err)
print*,'P:' ,rank,' processor at position',coord,' is',id
end if
CALL MPI _FI NALI ZE(err)
END

January 31 - February 15 MPI programming model, ICTP - MPI programming model -
2002 Linux Cluster School 115

B
Computing ranks of neighboring
processes

C

int MPI_Cart_shift (MPI_Comm conmm int direction, int
di sp, int *rank_source, int *rank_dest)

Fortran:

I NTEGER COMM DI RECTI ON, DI SP, RANK_SOURCE, RANK DEST
| NTEGER | ERR

CALL MPI _CART_SHI FT(COW DI RECTI ON, DI SP, RANK_SOURCE,
RANK_DEST, | ERR)

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model -
2002 Linux Cluster School 116

Arguments

direction dimension in which the shift should be made
di sp length of the shift in processor coordinates
(+or-)

rank_source where calling process should receive a message
from during the shift

rank_dest where calling process should send a message
to during the shift

Does not actually shift data: returns the correct ranks for a
shift which can be used in subsequent communication calls

If shift off of the topology, MPI_Proc_null is returned

January 31 - February 15 MPI programming model, ICTP - MPI programming model -
2002 Linux Cluster School 117

Cartesian Partitioning

Often we want to do an operation on only part of
an existing Cartesian topology

Cut a grid up into ‘slices’
A new communicator is produced for each slice

Each slice can then perform its own collective
communications

MPI_Cart_sub and MPI_CART_SUB generate new
communicators for the slice

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model -
2002 Linux Cluster School 118

MPI1_Cart_sub

C:
int MPl _Cart_sub (MPI _Comm conmm int *remain_dins,
MPI _Conm * newcomm)

Fortran:

| NTEGER COMM NEWCOWM | ERROR
LOG CAL REMAI N_Di MS(*)

CALL MPl _CART SUB(COVM REMAI N_Di MBS, NEWCOMM | ERROR)

If coomis a 2x3x4 grid and r ermai n_di ns={ TRUE, FALSE, TRUE} ,
then three new communicators are created each being a 2x4 grid

Calling processor receives back only the new communicator it is in

January 31 - February 15 MPI programming model, ICTP - MPI programming model -
2002 Linux Cluster School 119

MPI on the web

http://www.ncsa.uiuc.edu/UserInfo/Training/

January 31 - February 15 MPI1 programming model, ICTP - MPI programming model -
2002 Linux Cluster School 120

