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An Opportunity Cost Approach for Job Assignment and
Reassignment in a Scalable Computing Cluster

Yair Amir, Baruch Awerbuch, Amnon Barak, R. Sean Borgstrom and Arie Keren12

Abstract
A new method is presented for job assignment to and reassignment between machines in a computing

cluster. Our method is based on a theoretical framework that has been experimentally tested and shown
to be useful in practice. This "opportunity cost" method converts the usage of several heterogeneous
resources in a machine to a single homogeneous "cost." Assignment and reassignment is then performed
based on that cost. This is in contrast to previous methods for job assignment and reassignment, which
treat each resource as an independent entity with its own constraints. These previous methods were
intrinsically ad hoc, as there was no clean way to balance one resource against another.

1. Introduction

The more powerful a cluster of workstations is, the more important it is to use its
resources wisely. A poor job assignment strategy can result in heavily unbalanced loads
and thrashing machines, which cripples the cluster's computational power. Resources
can be used more efficiently if the cluster can migrate jobs - moving them transparently
from one machine to another. However, even systems that can reassign jobs can still
benefit from a carefully-chosen assignment strategy.

Job migration is attractive because the arrival rate and resource demands of incoming
jobs are unpredictable. In the face of this unpredictability, jobs will sometimes be
assigned to a non-optimal machine, and migration gives the system a second (or third,
etc.) chance to fix such a mistake. It is intuitively clear that the ability to migrate jobs
could lead to better performance - that is, faster completion times for the average job.
Unless it is known where a job should be at any given time, however, the reassignment
strategy could also make mistakes. The Mosix [BGW93, BL97] kernel enhancements to
the BSD/OS Unix-like operating system [Bsdi], for example, allow this kind of
transparent job migration.

Determining the optimal location for a job is a complicated problem. The most
important complication is that the resources available on a cluster of workstations are
heterogeneous. In effect, the costs for memory, CPU, process communication and so
forth are incomparable. They are not even measured in the same units: communication
resources are measured in terms of bandwidth, memory in terms of space, and CPU in
terms of cycles. The natural greedy strategy, balancing the resources across all of the
machines, is not even well defined.
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The Johns Hopkins University, Baltimore MD 21218 (yairamir, baruch, rsean@cs.jhu.edu).
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In this paper, we present a new job assignment strategy based on "economic"
principles and competitive analysis. This strategy enables us to manage heterogeneous
resources in a near-optimal fashion. The key idea of this strategy is to convert the total
usage of several heterogeneous resources, such as memory and CPU, into a single
homogeneous "cost." Jobs are then assigned to the machine where they have the lowest
cost.

This economic strategy provides a unified algorithmic framework for allocation of
computation, communication, memory and I/O resources. It allows the development of
near-optimal online algorithms for allocating and sharing these resources.

Our strategy guarantees near-optimal end-to-end performance for the overall system
on each single instance of job generation and resource availability. This is
accomplished using online algorithms that know nothing about the future, assume no
correlation between past and future, and are only aware of the state. In spite of this, one
can rigorously prove that their performance will always be comparable to that of the
optimal prescient strategy.

This work shows that the unified opportunity cost approach offers good performance
in practice. First, we performed tests using a simulated cluster and a "typical" series of
incoming jobs. Our method, with and without reassignments, was compared against the
methods of PVM, a dominant static job assignment strategy, and Mo six, one of the
more successful system that support transparent process migration. Each method was
given an identical stream of jobs. Over 3,000 executions of this Java-based simulation
were performed, each representing at least 10,000 simulated seconds. When no
reassignments were allowed, our method was shown to be a dramatic improvement
over PVM. When reassignments were allowed, our method was substantially better
than that of the highly tuned, but ad hoc, Mosix strategy.

A second series of tests was performed on a real system, to validate this simulation.
The real system was built with BSD/OS machines with a collection of Pentium 133,
Pentium Pro 200 and Pentium II machines with different memory capacity, connected
by Fast Ethernet. The physical cluster and the simulated cluster were slightly different,
but the proportional performance of the various strategies was very close to that given
by the Java simulation. This indicates that the simulation appropriately reflects events
on a real system

In Section 2, we will discuss the model we used and our assumptions. In Sections 3
and 4, we will describe our algorithm and the theoretical guarantees that come with it.
In Section 5, we will show our experimental evidence that this strategy is useful in
practice. Section 6 concludes the paper. For additional information about this research,
consult http://www.ends, ihu. edit/project s/metacomput ing.

2. The Model

The goal of this work is to improve performance in a cluster of n machines, where
machine / has a CPU resource of speed rc(i) and a memory resource of size rm(i). We



will abstract out all other resources associated with a machine, although our framework
can be extended to handle additional resources.

There is a sequence of arriving jobs that must be assigned to these machines. Each job
is defined by three parameters:

• Its arrival time, a(j),

• The number of CPU seconds it requires, t(j), and

• The amount of memory it requires, m(j).

We assume that m(j) is known when a job arrives, but t(j) is not. A job must be
assigned to a machine immediately upon its arrival, and may or may not be able to
move to another machine later.

Let J(t,i) be the set of jobs in machine i at time t. Then the CPU load and the memory
load of machine / at time t are defined by:

lc(t,i) = \J(t,i)\,

and

lm(t,i) = ^m(j) respectively.

We will assume that when a machine runs out of main memory, it is slowed down by
a multiplicative factor of x, due to disk paging. The effective CPU load of machine i at
time r, L(t,i), is therefore:

t,i) = \J(t,i)\ if

and lc(t,i) *T if

For simplicity, we will also assume that all machines schedule jobs fairly. That is, at
time ty each job on machine i will receive 1/L(t,i) of the CPU resource. A job's
completion time, c(j), therefore satisfies the following equation:

I = t(j), where / is the machine the job is on at any given time.
i)

The slowdown of a job is equal to

Our goal in this paper is to develop a method for job assignment and/or reassignment
that will minimize the average slowdown over all jobs.

3. Theoretical Background

We will evaluate the effectiveness of our (online) algorithms by their competitive
ratio, measured against the performance of an optimal offline algorithm. An online
algorithm ALG is c-competitive if for any input sequence /, ALG(/) < c OPT(/) + a,
where OPT is the optimal offline algorithm and a is a constant.



3.7 Introduction and Definitions

The theoretical part of this paper will focus on how to minimize the maximum usage
of the various resources on a system - in other words, the best way to balance a
system's load. One algorithm for doing so, described in [AAF96], proves useful in
practice even when our goal is to minimize the average slowdown instead, which
corresponds to minimizing the sum of the squares of the loads.

In preparation for a discussion of this algorithm, ASSIGN-U, we will examine this
minimization problem with three different machine models and two different kinds of
jobs. The three machine models are:

1. Identical Machines. All of the machines are identical, and the speed of a job on a
given machine is determined only by the machine's load.

2. Related Machines. The machines are identical except that some of them have
different speeds - in the model above, they have different rc values, and the
memory associated with these machines is ignored.

3. Unrelated Machines. Many different factors can influence the effective load of the
machine and the completion times of jobs running there. These factors are known.

The two possible kinds of jobs are:

1. Permanent Jobs. Once a job is on a machine, it will remain there forever.

2. Temporary Jobs. Jobs leave the system when they have received a certain amount
of CPU time.

We will also examine a related problem, called the online routing problem

3.2 Identical and Related Machines

For now, we will assume that no reassignments are possible, and that the only
resource is CPU time. Our goal, therefore, is to minimize the maximum CPU load.

When the machines are identical, and no other resources are relevant, the greedy
algorithm performs well. This algorithm for job assignment assigns the next job to the
machine with the minimum current CPU load. If the machines are identical, and no
other resources are relevant, the greedy algorithm has a competitive ratio of 2 - 1/n (see
[BFKV92]).

When the machines are related, the jobs are permanent, and no other resources are
relevant, the ASSIGN-R algorithm by Aspnes et al [AAFPW93] is effective. Define OPT
to be the load of the optimal offline algorithm; an approximation to OPT is given in
[AAFPW93]. This algorithm assigns each arriving job to the slowest machine with a
resulting load below 2 * OPT. If OPT is known, this algorithm has a competitive ratio
of 2. A doubling technique can be used to approximate OPT. If this is necessary, the
algorithm has a competitive ratio of 8.

For unrelated machines and temporary jobs, without job reassignment, there is no
known algorithm with a competitive ratio better than n.



3.3 Unrelated Machines

ASSIGN-U is an algorithm for unrelated machines and permanent job assignments,
based on an exponential function for the 'cost' of a machine with a given load. This
algorithm then assigns each job to a machine to minimize the total cost of all of the
machines in the cluster. More precisely, let:

• a be a constant, 1 < a < 2,
• U(j) be the load of machine / before assigning job j , and
• pi(j) be the load joby will add to machine /.

The online algorithm will assign j to the machine / that minimizes the marginal cost

This algorithm is O(log n) competitive for unrelated machines and permanent jobs.
The work presented in [AAPW94] extends this algorithm and competitive ratio to
temporary jobs, using up to O(log n) reassignments per job. A reassignment moves a
job from its previously assigned machine to a new machine. In the presence of
reassignments, let

• hi(j) be the load of machine / just before/ was last assigned to i.

When any job is terminated, the algorithm of [AAPW94] checks a 'stability
condition' for each job j and each machine M. This stability condition, with i denoting
the machine on which j currently resides, is:

a a a a)
If this stability condition is not satisfied by some job j , the algorithm reassigns j to

machine M that minimizes HM(j).

3A Online routing of virtual circuits

The ASSIGN-U algorithm above minimizes the maximum usage of a single resource.
In order to extend this algorithm to several resources, we examine the related online
routing of virtual circuits problem. The reason this problem is applicable will be
discussed shortly. In this problem, we are given:

• A graph G(V,E), with a capacity u(e) on each edge e,

• A maximum load mx, and

• A sequence of independent requests (Sjf tjt p:E—>[0,mx\) arriving at arbitrary times.
Sj and tj are the source and destination nodes, and p(j) is the required bandwidth.
A request that is assigned to some path P from a source to a destination increases
the load le on each edge e e P by the amount pe(j) = p(j)/u(e).

Our goal is to minimize the maximum link congestion, which is the ratio between the
bandwidth allocated on a link and its capacity.

Minimizing the maximum usage of CPU and memory, where memory usage is
measured in the fraction of memory consumed, can be reduced to the online routine



problem. This reduction works as follows: create two nodes, {s, t) and n non-
overlapping two-edge paths from s to t. Machine / is represented by on e of these paths,
with a memory edge with capacity rm(i) and a CPU edge with capacity rc(i). Each job 7
is a request with s as the source, t as the sink, and p a function that maps memory edges
to the memory requirements of the job and CPU edges to 1. The maximum link
congestion is the larger of the maximum CPU load and the maximum memory
(over)usage.

ASSIGN-U is extended in [AAFPW93] to address the online routing problem. The
algorithm computes the marginal cost for each possible path P from Sj to tj as follows:

and assigns request j to a path P that yields a minimum marginal cost.

This algorithm is O(log n) competitive [AAFPW93]. By reduction, it produces an
algorithm for managing heterogeneous resources that is O(log n) competitive in its
maximum usage of each resource.

4. From Theory to Practice

For each machine in a cluster of n machines, with resources rj ... r*, we define that
machine's cost to be:

k

^ / (n , utilization of r{)
/=i

where/is some function. In practice, using ASSIGN-U, we will choose/so that this sum
is equal to:

, utilized r.

X ^ max usage of r.

The marginal cost of assigning a job to a given machine is the amount by which this
sum increases when the job is assigned there. An "opportunity cost" approach to
resource allocation assigns jobs to machines in a way that minimizes this marginal cost.
ASSIGN-U uses an opportunity cost approach.

In this paper, we are interested in only two resources, CPU and memory, and we will
ignore other considerations. Hence, the above theory implies that given logarithmically
more memory than an optimal offline algorithm, ASSIGN-U will achieve a maximum
slowdown within O(log n) of the optimal algorithm's maximum slowdown.

This does not guarantee that an algorithm based on ASSIGN-U will be competitive in
its average slowdown over all processes. It also does not guarantee that such an
algorithm will improve over existing techniques. Our next step was to verify that such
an algorithm does, in fact, improve over existing techniques in practice.

The memory resource easily translates into ASSIGN-U's resource model. The cost for
a certain amount of memory usage on a machine is nu

9 where u is the proportional
memory utilization (used memory / total memory.) For the CPU resource, we must
know the maximum possible load. Drawing on the theory, we will assume that L, the



smallest integer power of two greater than the largest load we have seen at any given
time, is the maximum possible load. This assumption, while inaccurate, does not
change the competitive ratio of ASSIGN-U.

The cost for a given machine's CPU and memory load, using our method, is:

used memory CPU load
total memory . j

n y +n L

In general, we will assign or reassign jobs so as to minimize the sum of the costs of
all the machines in the cluster.

To examine the behavior of this "opportunity cost" approach, we evaluated four
different methods for job assignment:

1. PVM. PVM (for "Parallel Virtual Machine") is a very popular metacomputing
system for systems without preemptive process migration. Unless the user of the
system specifically intervenes, PVM assigns jobs to machines using a strict Round-
Robin strategy. It does not reassign jobs once they begin execution.

2. Enhanced PVM. Enhanced PVM is an opportunity cost-based strategy that assigns
each job to the machine where the job has the smallest marginal cost. As with
PVM, initial assignments are permanent.

3. Mosix. The Mosix kernel enhancements to BSD/OS allow the system to migrate
processes from one machine to another without interrupting their work. Mosix uses
an improved load-balancing strategy that also endeavors to keep some memory free
on all machines. Mosix is not omniscient; when the system is exchanging process
information in preparation for possible process reassignment, each machine is only
in contact with a limited selection of other machines.

4. Enhanced Mosix. Enhanced Mosix is an opportunity cost-based strategy intended
for use on systems (such as Mosix clusters) that can preemptively migrate
processes. It assigns or reassigns jobs to minimize the sum of the costs of all of the
machines. Enhanced Mosix has the same limits on its knowledge as unenhanced
Mosix.

5. Experimental Results

Our first test of the ASSIGN-U algorithm was a Java simulation of the four job
(re)assignment methods above. Our assumptions were as follows:

1. The cluster contains six machines, with the following properties:

! W ot these :M^«cihinc î:; Installed JViemorv
Pentium Pro
Pentium
Laptop w/ Ethernet

3
2
1

200 MHz.
133 MHz.
90 MHz.

64 MB of RAM
32 MB of RAM
24 MB of RAM.

Table 1: Machines in the simulated cluster.

If a machine's type is not specified, in the remainder of this paper, it can be assumed
to be one of the Pentium Pros. This cluster corresponds to a real-world cluster of



machines at the Center for Networking and Distributed Systems at the Johns Hopkins
University.

2. For each incoming job, let r and m be independently-generated random numbers
between 0 and 1. A typical process will require 21 r seconds of CPU time and (l/m)%
of a Pentium Pro's memory. (The distribution is based on the observations of real-life
processes described in [HD96].) Approximately 95% of all jobs are single-process
jobs matching this profile; because this is a metacomputing system, 5% of all jobs are
assumed to be large parallel jobs utilizing the metacomputer's power. These jobs
contain between 1 and 20 identical processes requiring 20/r seconds of CPU time and
(l/m)% of a Pentium Pro's memory. To make the simulation finite, it is assumed that
no process requires more than 100% of a Pentium Pro's memory, no process from a
single-process job requires more than 1,000 seconds of CPU time, and no process
from a large parallel job requires more than 10,000 seconds of CPU time.

3. Jobs arrive at random times during the first 1,000 simulated seconds. Approximately
one job arrives every 10 seconds. We observed that for every one of the four
methods, there were simulation instances where the system was overloaded,
underloaded, and normally loaded, and instances where the system transitioned from
any one of these states to any other.

4. When a machine's memory usage is greater than its memory capacity, that machine is
assumed to be thrashing. This slows the machine down by a factor T, which we
approximated with a constant factor equal to 10. That is, in the simulation, every job
required 10 times as long on a thrashing machine as it would require on a machine
with free memory.

In each execution of the simulation, all four methods were provided with an identical
scenario, where the same jobs arrived at the same rate.

5.1 Java Simulation Results
Each execution returned the average slowdown over all jobs in that execution, as well

as some information about the scenario itself. These results were evaluated in two
different ways:

• An important concern is the overall slowdown experienced using each of the four
methods. The average slowdown by execution is an unweighted average of all of the
simulation results, regardless of the number of jobs in each execution. The average
slowdown by job is the average slowdown over all of the jobs in all of the
executions of the simulation. These results, incorporating 3000 executions, are
given in Table 2.

• The behavior of Enhanced PVM and Enhanced Mo six is different in lightly-loaded
and heavily-loaded scenarios. This behavior is illustrated in Figures 1 to 4, detailing
the first 1000 executions of the simulation.

(average by execution)
(average by job)

\mmmmmm
14.3338
15.4044

EtthancedFMI
9.79463
10.7007

8.55676
9.4208

7.47886
8.20262

Table 2: Average slowdown in the Java simulation for the different methods.



m

• V

* *

li
il
l

*

20 30 40 50 60 70

PVM

. Simulation Results

— Equality Line

Figure 1: PVM vs. Enhanced PVM
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Each point in the figures represents a single execution of the simulation for the two
methods named. In Figure 1, the X axis is the average slowdown for PVM, and the Y
axis is the average slowdown for enhanced PVM. Similarly, in Figure 2, the X axis is
the average slowdown for Mosix, and the Y axis is the average slowdown for enhanced
Mosix. The light line is defined by 'x = y\ Above this line, the un-enhanced algorithm
does better than the enhanced algorithm. Below this line, the enhanced algorithm does
better than the un-enhanced algorithm

Enhanced PVM, as Table 2 has already shown, does significantly better than straight
PVM in almost every circumstance. More interesting, however, is the behavior of
enhanced Mosix when compared to Mosix. The larger Mosix's average slowdown was
on a given execution, the more improvement our enhancement gave. Intuitively, when
an execution was hard for all four models, Enhanced Mosix did much better than
unenhanced Mosix. If a given execution was relatively easy, and the system was not
heavily loaded, the enhancement had less of a positive effect.

This can be explained as follows. When a machine becomes heavily loaded or starts
thrashing, it does not just affect the completion time for jobs already submitted to the
system If the machine does not become unloaded before the next set of large jobs is
submitted to the system, it is effectively unavailable to them, increasing the load on all
other machines. If many machines start thrashing or become heavily loaded, this effect
will build on itself. Every incoming job will take up system resources for a much longer
span of time, increasing the slowdown experienced by jobs that arrive while it
computes. Because of this pyramid effect, a 'wise' initial assignment of jobs and
careful re-balancing can result (in the extreme cases) in a significant improvement over
standard Mosix, as shown in some of the executions in Figure 2.

' Simulation Results

Equality Line

40

MOSIX

Figure 3: Mosix vs. Enhanced PVM.
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It is particularly interesting to note that, as seen in Table 2 and Figure 3, the enhanced
PVM method, which makes no reassignments at all, manages to achieve respectable
(though inferior) performance compared to Mo six. This emphasizes the power of the
opportunity cost approach: its performance on a normal system is not overwhelmed by
the performance of a much superior system that can correct initial assignment mistakes.

The importance of migration is demonstrated by Figure 4. Even when using the
opportunity cost algorithm, it is still very useful to have the migration ability in the
system. In fact, Enhanced Mosix outperform Enhanced PVM in all of the cases,
sometimes considerably.

Simulation Results

Equality Line

30 40 50

Enhanced PVM

Figure 4: Enhanced PVM vs. Enhanced Mosix

5.2 Real System Executions
Our algorithms were also tested on a real cluster. The same model for incoming jobs

was used, and jobs were assigned using the PVM, Enhanced PVM, and Mosix
strategies. Enhanced Mosix has not yet been implemented on a real system The results
are as follows:

Slowdown for >;*
(average by execution)
(average by job)

F\
29
33

mmmmmm.98788
.31620

Enhanced PVM
16.29643
16.76646

13.
14.

67707 |
00990

Table 3: Average slowdown in the real cluster for 3 (re)assignment methods.

These initial results imply that the real-life thrashing constant, the smaller cluster, and
various miscellaneous factors increased the average slowdown, which indicates that we
were too conservative in picking the parameters for the simulation. Nevertheless, the

11



results do not substantially change the relative values. In fact, the Enhanced methods
proved to be even better in real-life, compared to their original versions, than what our
Java simulation has predicted. We consider that as a validation of our initial Java
simulations and as a strong confirmation for the merit of our opportunity cost approach.

(average by execution)
(average by job)
Slowdown iii Simulation lor »;>
(average by execution)
(average by job)

2.19257
2.37804

1.67514
1.63515

1.20416
1.20946

1.14467
1.13585

1.84015
1.98707

1.46346
1.43957

Table 4: Average relative slowdowns for 3 job (re)assignment methods.

6. Conclusions

The opportunity cost approach is a universal framework for efficient allocation of
heterogeneous resources. The theoretical guarantees are weak: one can only prove a
logarithmic bound on the gap between the algorithm and the optimum offline schedule.
However, the optimum offline schedule is not really an option; in reality, our algorithm
competes with naive online heuristics.

In practice, this approach yields simple algorithms that significantly outperform
widely used and carefully optimized methods. We conclude that the theoretical
guarantees of logarithmic optimality is a good indication that the algorithm will work
well in practice.
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Abstract 1 Introduction

With the increased interest in network of workstations
for parallel and high performance computing it is neces-
sary to reexamine the use of process migration algorithms,
to improve the overall utilization of the system, to achieve
high performance and to allow flexible use of idle work-
stations. Currently, almost all programming environments
for parallel systems do not use process migration for task
assignments. Instead, a static process assignment is used,
with sub optimal performance, especially when several
users execute multiple processes simultaneously. This
paper highlights the advantages of a process migration
scheme for better utilizations of the computing resources as
well as to gain substantial speedups in the execution of par-
allel and multi-tasking applications. We executed several
CPU and communication bound benchmarks under PVM, a
popular programming environment for parallel computing
that uses static process assignment. These benchmarks
were executed under the MOSIX multicomputer operating
system, with and without its preemptive process migra-
tion scheme. The results of these benchmarks prove the
advantages of using preemptive process migrations. The
paper begins with an overview of MOSIX, a multicomputer
enhancement of UNIX that supports transparent process
migration for load-balancing, and PVM. We then present
the performance of the executions of the benchmarks. Our
results show that in some cases the improvements in the
performance of PVM with the MOSIX process migration
can reach tens or even hundreds ofpercents.

Key words: Distributed systems, dynamic load-balancing,
high performance systems, preemptive process migration.
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With the increased interest in Network of Workstations
(NOW) as an alternative to Massive Parallel Processors
(MPP) for high performance and general purpose comput-
ing [1], it is necessary to reexamine the use of dynamic
process migration to improve the overall utilization of the
NOW and to allow flexible use of idle workstations. In tra-
ditional MPPs, process migration mechanisms were not de-
veloped due to their complexity and because in many cases
the whole machine was used to run one application at a
time. The operating systems of many MPPs supports static,
single process allocation to each node, a simple scheme that
is easy to implement and use but may result in poor perfor-
mance.

In a NOW system, where many users need to share the
resources, the performance of executing multiple processes
can significantly be improved by process migrations, for
initial distribution of the processes, to redistribute the pro-
cesses when the system becomes unbalanced or even to re-
lieve a workstation when its owner wishes so. One mecha-
nism that can perform all these tasks is a preemptive process
migration, which combined with load balancing can max-
imize the overall performance, respond to resource avail-
ability and achieve high degree of overall utilization of the
NOW resources.

In spite of the advantages of process migration and load
balancing, there are only few systems that support these ser-
vices [2, 7, 9]. The main reason is the fact that most paral-
lel programming environments are implemented above the
operating systems and are geared to support heterogeneous
configurations. For example, p4 [5], is a library of macros
and routines for programming a wide range of parallel ma-
chines, including shared-memory and message passing sys-
tems. In p4, process allocation is pre-scheduled, using a
configuration file that specifies the pool of hosts, the name
of an object file to be executed, and the number of instances
to start, on a per-machine basis. Dynamic process creation
is limited to process spawning in the local host by a pre-
assigned parent process.

This paper presents the performance of executing sev-



eral benchmarks using PVM, with its static process assign-
ment vs. PVM with the MOSIX preemptive process migra-
tion [2]. PVM [8] is a popular programming environment
which lets users exploit collections of networked computers
and parallel computers. Its main advantages are the support
of heterogeneous networks and machines, dynamic process
and virtual machine management, and a simple and efficient
user interface library. The main disadvantages of PVM are
its static assignment of tasks to hosts, which results in its
inability to respond to variations in the load of the hosts,
and its assumption that all the workstations are of the same
speed. While static assignment may be acceptable in MPPs,
where the nodes have the same speed and each node ex-
ecutes one task, it is unacceptable in a NOW environment,
where the resources are shared by many users, the execution
times of the tasks are not known a priori, and the machine
configuration may change. In these cases, a static assign-
ment policy might lead to a considerable degradation in the
overall system utilization.

In order to highlight the potential speedup gains (loss) of
PVM, we executed several benchmarks under PVM and the
MOSIX operating system. MOSIX [3,2] is an enhancement
of UNIX that provides resource (memory, communication)
sharing and even work distribution in a NOW, by sup-
porting a preemptive process migration and dynamic load-
balancing. The MOSIX enhancements are implemented at
the operating system kernel, without changing the UNIX in-
terface, and they are completely transparent to the applica-
tion level. Executions under PVM, with its static allocation,
in a configuration with hosts of different speeds resulted in
a low utilization of the NOW, and speedups of tens, or even
hundreds of percents, once a process migration is imple-
mented.

Recently, a group at OGI developed MPVM [6], a pro-
cess migration mechanism for PVM. Unlike the MOSIX
implementation which is done at the operating system ker-
nel, MPVM is implemented at the user-level, with its obvi-
ous limitations, e.g. relatively high migration costs. For
example, process migration in MOSIX includes only the
"dirty-pages" while in MPVM the entire virtual address
space of the process is transfered. Another advantage of
the MOSIX approach is its transparent process migration,
which makes work distribution easier and achieve high
overall utilization. Nevertheless, MPVM is an interesting
development and we hope to compare its performance to
that of MOSIX.

This paper is organized as follows: the next section
presents an overview of MOSIX and its unique properties.
Section 3 gives an overview of PVM. Section 4 presents
the performance of several benchmarks of CPU bound pro-
cesses under MOSIX, PVM and PVM with the MOSIX pro-
cess migration. Section 5 presents the performance of com-
munication bound processes. Our conclusions are given in
Section 6.

2 The MOSIX Multicomputer System

MOSIX is an enhancement of UNIX that allows
distributed-memory multicomputers, including LAN con-
nected Network of Workstations (NOW), to share their re-
sources by supporting preemptive process migration and
dynamic load balancing among homogeneous subsets of
nodes. These mechanisms respond to variations in the load
of the workstations by migrating processes from one work-
station to another, preemptively, at any stage of the life cy-
cle of a process. The granularity of the work distribution in
MOSIX is the UNIX process. Users can benefit from the
MOSIX execution environment by initiating multiple pro-
cesses, e.g. for parallel execution. Alternatively, MOSIX
supports an efficient multi-user, time-sharing execution en-
vironment.

The NOW MOSIX is designed to run on configurations
that include several nodes, i.e. personal workstations, file
servers and CPU servers, that are connected by LANs,
shared buses, or fast interconnection networks. In these
configurations each node is an independent computer, with
its own local memory, communication and I/O devices. A
low-end configuration may include few personal worksta-
tions that are connected by Ethernet. A larger configura-
tion may include additional file and/or CPU servers that
are connected by ATM. A high-end configuration may in-
clude a large number of nodes that are interconnected by
a high performance, scalable, switch interconnect that pro-
vides low latency and high bandwidth communication, e.g.
Myrinet [4].

In MOSIX, each user interact with the multicomputer via
the user's "home" workstation. The system image model is
a NOW, in which all the user's processes seem to run at the
home workstation. All the processes of each user have the
execution environment of the user's workstation. Processes
that migrate to other (remote) workstations use local re-
sources whenever possible, but interact with the user's envi-
ronment through the user's workstation. As long as the load
of the user's workstation is light, all the user's processes are
confined to the user's workstation. When this load increases
above a certain threshold level, e.g. the load created by
one CPU bound process, the process migration mechanism
(transparently) migrates some processes to other worksta-
tions or to the CPU servers.

2.1 The Unique Properties of MOSIX

The MOSIX enhancements are implemented in the
UNIX kernel, without changing its interface, and they are
completely transparent to the application level, e.g. MOSIX
uses standard NFS. Its main unique properties are:

• Network transparency - for all cross machine opera-
tions, i.e. for network related operations, the interac-



tive user and the application level programs are pro-
vided with a virtual machine that looks like a single
machine.

Preemptive process migration - that can migrate any
user's process, transparently, at any time, to any avail-
able node. The main requirement for a process migra-
tion is transparency, that is, the functional aspects of
the system's behavior should not be altered as a result
of migrating a process. Achieving this transparency re-
quires that the system is able to locate the process and
that the process is unaware of the fact that it has been
moved from one node to another. In MOSIX these two
requirements are achieved by maintaining in the user's
(home) workstation, a structure, called the deputy [3],
that represents the process and interacts with its envi-
ronment. We note that the concept of the deputy of a
process is based on the observation that only the sys-
tem context of a process is site dependent. The mi-
gration itself involves the creation of a new process
structure at the remote site, followed by a copy of the
process page table and the "dirty" pages. After a mi-
gration there are no residual dependencies other than
at the home workstation. The process resumes its exe-
cution in the new site by few page faults, which bring
the necessary parts of the program to that site [3].

Dynamic load balancing - that initiates process mi-
grations in order to balance the loads of the NOW.
The algorithms respond to variations in the loads of
the nodes, the runtime characteristics of the processes,
the number of workstations and their speeds. In gen-
eral, load-balancing is accomplished by continuous at-
tempts to reduce the load differences between pairs of
nodes, and by dynamically migrating processes from
nodes with a higher load to nodes with a lower load.
The policy is symmetrical and decentralized, i.e., all of
the nodes execute the same algorithms, and the reduc-
tion of the load differences is performed independently
by any pair of nodes.

Memory sharing - by memory depletion prevention
algorithms that are geared to place the maximal num-
ber of processes in the main memory of the NOW, even
if this implies an uneven load distribution among the
nodes. The rational behind this policy is to delay as
much as possible swapping out of pages or a whole
process, until the entire, network wide main memory
is used. The algorithms of the policy are activated
when the amount of a workstation's free memory is
decreased bellow a certain threshold value. The de-
cisions of which process to migrate and where to mi-
grate it are based on knowledge about the amount of
free memory in other nodes that is circulated among
the workstations. These decisions are geared to opti-

mize the migration overhead.

• Efficient kernel communication - that was specifi-
cally developed to reduce the overhead of the inter-
nal kernel communications, e.g. between the process
and its home site, when it is executing in a remote
site. The new protocol was specifically designed for
a locally distributed system. As such, it does not sup-
port general inter-networking issues, e.g. routing, and
it assumes a reliable media. The result is a fast, re-
liable datagram protocol with low startup latency and
high throughput. The protocol applies a "look ahead"
packet acknowledgement scheme and run-time fine
tuning in order to achieve near optimal utilization of
the network media and the corresponding system re-
sources.

• Probabilistic information dissemination algorithms
- that are geared to provide each workstation with suf-
ficient knowledge about available resources in other
workstations, without polling or further reliance on
remote information. The information gathering algo-
rithms measure the amounts of the available resources
at each workstation using suitable resource indices,
which reflects the availability of the local resources to
possible incoming processes from other workstations.
The resource indices of each workstation are sent at
regular intervals to a randomly chosen subset of work-
stations, by the information dissemination algorithm.
The receiver algorithm maintains a small buffer (win-
dow), with the values of the most recently arrived in-
dex values and at the same time it flushs out older val-
ues. We note that the use of random workstation ID is
due to scaling considerations, for even distribution of
the information among the participating workstations,
to support a dynamic configuration and to overcome
partial (workstations) failures.

• Decentralized control - each workstation makes all its
own control decisions independently and there are no
master-slave relationships between the workstations.

• Autonomy - each workstation is capable of operating
as an independent system. This property allows a dy-
namic configuration, where workstations may join or
leave the network with minimal disruptions.

The most noticeable properties of executing applications
on MOSIX are its network transparency, the symmetry and
flexibility of its configuration, and its preemptive process
migration. The combined effect of these properties is that
application programs do not need to know the current state
of the system configuration. This is most useful for time-
sharing and parallel processing systems. Users need not re-
compile their applications due to node or communication



failures, nor be concerned about the load of the various pro-
cessors. Parallel applications can simply be executed by
creating many processes, just like a single-machine system.

3 PVM

This section presents an overview of the Parallel Vir-
tual Machine (PVM) [8]. PVM is an integral framework
that enables a collection of heterogeneous computers to be
used as a coherent and flexible concurrent computational
resource. The supported architectures include shared- and
distributed-memory multiprocessors, vector supercomput-
ers, special purpose computers, and workstations that are
interconnected by a variety of networks. Below is a brief
description of some aspects of PVM.

3.1 Heterogeneity

PVM supports heterogeneity at three levels: applica-
tions, machines and networks. At the application level,
subtasks can exploit the architecture best suited for them.
At the machine level, computers with different data formats
are supported, including serial, vector and parallel archi-
tectures. The virtual machine can be interconnected via
different networks, at the network level. Under PVM, a
user-defined collection of computational resources can be
dynamically configured to appear as one large distributed-
memory computer, called "virtual machine"

3.2 Computing Model

PVM supports a straightforward message passing model.
Using dedicated tools, one can automatically start up tasks
on the virtual machine. A task, in this context, is a unit
of computation, analogous to a UNIX process. PVM al-
lows the tasks to communicate and synchronize with each
other. By sending and receiving messages, multiple tasks of
an application can cooperate to solve a problem in parallel.
The model assumes that any task can send a message to any
other PVM task, with no limit on the size or amount of the
messages.

3.3 Implementation

PVM is composed of two parts. The first is the li-
brary of PVM interface routines. These routines provide
a set of primitives to perform invocation and termination
of tasks, message transmission and reception, synchroniza-
tion, broadcasts, mutual exclusion and shared memory. Ap-
plication programs must be linked with this library to use
PVM. The second part consists of supporting software, that
is executed on all the computers, that make up the virtual
machine, called "daemon". These daemons interconnect

with each other through the network. Each daemon is re-
sponsible for all the application components processes exe-
cuting on its host. Thus, control is completely distributed,
except one master daemon. Two crucial topics rise when
discussing implementation issues: inter-process communi-
cations (IPC) and process control. These topics are dis-
cussed below.

3.3.1 Inter Process Communications

In PVM different daemons communicate via the network.
PVM assumes existence of only unreliable, unsequenced,
point-to-point data transfer facilities. Therefore, the re-
quired reliability as well as additional operations like broad-
casts, are built into PVM , above the UDP protocol. For
IPC, the data is routed via the daemons, e.g., when task A
invokes a send operation, the data is transferred to the local
daemon, which decodes the destination host and transfers
the data to the destination daemon. This daemon decodes
the destination task and delivers the data. This protocol uses
3 data transfers, of which one is across the network. Alter-
natively, a direct-routing policy can be chosen (depending
on available resources). In this policy, after the first com-
munication instance between two tasks, the routing data is
locally cached (at the task). Subsequent calls are performed
directly according to this information. This way, the num-
ber of data transfers is reduced to only one, over the net-
work. Additional overheads are incurred by acknowledg-
ment schemes and packing/unpacking operations.

3.3.2 Process Control

Process control includes the policies and means by which
PVM manages the assignment of tasks to processors and
controls their executions. In PVM, the computational re-
sources may be accessed by tasks using four different
policies: (a) a transparent mode policy, in which sub-
tasks are automatically assigned to available nodes; (b) the
architecture-dependent mode, in which the assignment pol-
icy of PVM is subject to a specific architecture constraints;
(c) the machine-specific mode, in which a particular ma-
chine may be specified; and (d) a user's defined policy that
can be "hooked" to PVM. Note that this last policy requires
a good knowledge of the PVM internals.

The default policy used by PVM is the transparent mode
policy. In this case, when a task initiation request is in-
voked, the local daemon determines a candidate pool of tar-
get nodes (among the nodes of the virtual machine), and
selects the next node from this pool in a round-robin man-
ner. The main implications of this policy are the inability of
PVM to distinguish between machines of different speeds,
and the fact that PVM ignores the load variations among the
different nodes.



No. of
Processes

1
2
4
8
16
17
20
24
25
27
31
32
33
36
38
40
43
47
48

Optimal
Time
300
300
300
300
300
450
450
450
525
525
563
600
700
700
750
750
833
883
900

MOSIX
Time

301.91
302.92
304.57
305.73
310.83
456.91
462.07
471.87
533.15
549.07
574.03
603.17
705.93
715.35
759.90
767.67
833.33
901.81
916.11

PVM
Time

301.83
303.78
305.60
308.57
317.12
604.36
602.40
603.25
603.83
603.86
604.63
603.14
906.31
905.27
905.34
905.39
908.96
907.79
908.51

PVM Slow-
down (%)

0.0
0.3
0.3
0.9
2.0

32.3
30.4
27.8
13.3
10.0
5.3
0.0

28.4
26.5
19.1
17.9
9.1
0.7
-0.8

PVM on
MOSIX
304.54
304.70
306.59
301.88
303.40
452.84
454.07
454.67
530.15
559.81
595.17
604.64
707.39
708.41
755.53
771.71
839.61
893.65
907.71

Table 1. Optimal vs. MOSIX vs. PVM vs. PVM on MOSIX execution times (Sec.)

4 Performance of CPU-bound Processes

In this section we compare the performance of the execu-
tion of sets of identical CPU-bound processes under PVM,
with and without process migration, in order to highlight
the advantages of the MOSIX preemptive process migration
mechanism and its load balancing scheme. Several bench-
marks were executed, ranging from pure CPU-bound pro-
cesses in an idle system, to a system with a background
load. We note that in the measurements, process migration
is performed only when the difference between the loads of
two nodes is above the load created by one CPU bound pro-
cess. This policy differs from the time-slicing policy com-
monly used by shared-memory multicomputers.

The execution platform for all the benchmarks is a NOW
configuration, with 16 identical, Pentium-90 based worksta-
tions that were connected by an Ethernet LAN.

4.1 CPU-Bound Processes

The first benchmark is intended to show the efficiency of
the MOSIX load balancing algorithms. We executed a set
of identical CPU-bound processes, each requiring 300 sec-
onds, and measured the total execution times under MOSIX
(with its preemptive process migration), followed by mea-
surements of the total execution times under PVM (without
process migration), and then the execution times of these
processes under PVM with the MOSIX process migration.

Table 1 summarizes the results of these benchmarks (all

execution times are in seconds). In the table, the first col-
umn lists the number of processes. The second column lists
the theoretical execution times of these processes using the
optimal assignment algorithm with preemptive process mi-
gration and no communication overhead. Column three lists
the measured execution times of the processes using the
MOSIX load balancing algorithm. Column four lists the
execution times of the same processes under PVM and col-
umn five gives the PVM slowdown, i.e. the ratio between
column four and column three. Column six lists the corre-
sponding execution times of the processes under PVM with
the MOSIX load balancing.

By comparing columns 2 and 3 of Table 1, it follows that
the average slow-down ratio of the MOSIX policy vs. the
optimal execution algorithm is only 1.95% (consider that
MOSIX imposes a minimal residency period of 1 Sec. for
each new process before it can be migrated). Another re-
sult is that the execution times of PVM (forth column) can
be significantly slower than PVM under MOSIX (sixth col-
umn). Observe that the initial allocation of PVM reduces
the residency times imposed by MOSIX, as shown in col-
umn six.

Figure 1 depicts the results of Table 1. Comparison of the
measured results shows that the average slowdown of PVM
vs. MOSIX is over 15%, when executing more than 16 pro-
cesses. This slowdown can become very significant, e.g.
32% for 17 processes and 28% for 33 processes. In con-
trast, the measurements show that PVM with the MOSIX
process migration is slightly better than MOSIX itself, due



to the residency period that is imposed by MOSIX.
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Figure 1. MOSIX, PVM and PVM on MOSIX ex-
ecution times

As indicated earlier, one drawback of PVM is its inabil-
ity to distinguish between machines of different speeds. To
demonstrate this point, we executed the above set of pro-
cesses on a cluster of Pentium-90 and several (three times
slower) i486/DX66 based workstations. The results of this
test show that PVM was 336% slower than MOSIX.

4.2 CPU-Bound Processes with Random Execu-
tion Times

The second benchmark compares the execution times of
a set of CPU-bound processes that were executed for ran-
dom durations, in the range 0 - 600 seconds, under MOSIX
and PVM. These processes reflect parallel programs with
unpredictable execution times, e.g. due to recursion, dif-
ferent amount of processing, etc., which are difficult to pre-
schedule. In each test, all the processes started the execution
simultaneously and the completion time of the last process
was recorded. In order to obtain accurate measurements,
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Figure 2. MOSIX vs. PVM random execution
times

each test was executed five times, with different random ex-
ecution times. We note that the same sequence of random
execution times were used in the MOSIX and the PVM ex-
ecutions.

The results of this benchmark are presented in Figure 2,
From the corresponding measurements it follows that the
average slowdown of PVM vs. MOSIX is over 52%, with
an averaged standard deviation of 13.9%. This slowdown
reached as much as 75% for 36 processes, and over 600%
when the above benchmark was executed on a cluster of
Pentium-90 and i486/DX66 based workstations.

4.3 CPU-bound Processes with a Background
Load

The third benchmark compares the execution times of a
set of identical CPU-bound processes under MOSIX and
PVM, in a system with a background load. This addi-
tional load reflects processes of other users in a typical time-
sharing computing environment.
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Figure 3. MOSIX vs. PVM with background
load execution times

The specific background load consisted of 8 additional
CPU-bound processes that were executed in cycles, where
each cycle included an execution period followed by an idle
(suspended) period. The background processes were exe-
cuted independently, throughout the execution time of the
benchmark, and the durations of the execution and suspen-
sion periods were random variables, in the range of 0 to 30
seconds. In order to get accurate measurements, each test
was executed five times.

The results of this benchmark are presented in Figure 3.
Comparison of the corresponding measured results shows
that the average slowdown of PVM vs. MOSIX is over
35%, with as much as 62% slowdown, in the measured
range, for 20 processes. From these measurements it fol-
lows that in a multi-user environment, when it is expected
that background processes of other users are running, ex-
ecution of parallel programs under PVM may result in a
significant slowdown vs. the same executions with a pre-
emptive process migration.

5 Communication Bound Processes

This section compares the performance of inter-process
communication operations between a set of processes un-
der PVM and MOSIX. First, we show the overhead of us-
ing the PVM communication layer by comparing the exe-
cution times of a set of identical communication bound pro-
cesses, that were statically assigned to different nodes and
were communicating along a ring topology. We note that
this benchmark did not involve process migration and that
both of the executions under PVM and MOSIX used stan-
dard Internet-domain sockets.

In the benchmark, in each iteration, each process sends
and receives a single message to/from each of its two ad-
jacent processes, then it proceeds with a short CPU-bound
computation. In each test, 60 cycles were executed and the
net communication times, without the computation times,
were measured. Thus each measurement reflects the execu-
tion time of 240 one-way messages by each process.

The results of this benchmark, for message sizes of IK
bytes to 256K bytes, are shown in Table 2. From the ta-
ble it can be seen that the MOSIX communication times are
consistently better than PVM for almost all message sizes.
This is due to the relatively complex protocols used by the
PVM daemons, and the message handing mechanism that
supports heterogeneity. Note that in few cases the PVM
times are better than the MOSIX times. This can be ac-
counted for better synchronization mechanisms of PVM.

No. of
Processes

4
8
12
16

4
8
12
16

1KB Messages
MOSIX

0.77
1.15
1.67
1.58

PVM
4.17
4.59
4.61
5.13

64KB Messages
54.2
79.2
94.4
97.6

34.7
71.6
113.5
172.2

16KB Messages
MOSIX PVM

10.66
18.62
24.95
30.31

256KB
148.8
253.1
297.5
403.3

10.91
20.31
30.65
41.80

Messages
132.5
298.1
507.2
751.5

Table 2. MOSIX vs. PVM communication
bound processes execution times (Sec.)

The next benchmark shows the overhead imposed by the
MOSIX internal migration mechanisms over Unix domain
IPC. In this test we executed a similar (to the above) set of
communicating processes which were created in one ma-
chine and were forced to migrate out to other machines. We
note that due to the use of the home model in MOSIX, pro-
cesses that migrate to remote nodes, perform all their Unix
domain IPC via their home sites. The main implication is
a reduced communication bandwidth and increased latency



due to possible bottlenecks at the home sites. For exam-
ple, the communication time between two processes, one of
which was migrated away from their common home site,
was 10% slower than the communication time between two
processes that did not have a common home site. The above
overhead, of the two processes with the common home site,
reached as much as 50% when both processes were mi-
grated away.

The phenomenon presented in the previous paragraph
may lead to a substantial communication overhead, when
a large number of processes are created in one node, and
later migrate to other nodes. To overcome this potential
bottleneck, our current policy is to spawn communicating
processes using PVM and then to refine the (static) PVM
allocation by the MOSIX preemptive (dynamic) process mi-
gration.

6 Conclusions

In this paper we presented the performance of several
benchmarks that were executed under MOSIX, PVM, and
PVM with the MOSIX preemptive process migration. We
showed that in many executions, the performance of PVM
without the process migration was significantly lower than
its performance with the process migration. We predict
that in a typical multi-user environment, where each user
is executing only a few process, users may loose hundreds
of percents in the performance due to lack of preemptive
process migration mechanisms, as discussed in [10]. We
note that the choice of PVM was based on its popularity.
We predict that the speedup ratios presented here character-
ize many other parallel programming environments that use
static process assignments.

The NOW MOSIX is compatible with BSDI's
BSD/OS [11], which is based on BSD-Lite from the
Computer Systems Research Group at UC Berkeley. The
current implementation has been operational for over 3
years on a cluster of 32 Pentiums and several i486 based
workstations. It is used for research and development of
multicomputer systems and parallel applications. Its unique
mechanisms provide a convenient environment for writing
and executing parallel programs, with minimal burden to
the application programmers.

Currently we are researching the idea of migrateable
sockets to overcome potential bottlenecks of executing a
large number of communicating processes. We are also de-
veloping optimization algorithms for memory sharing, by
using competitive, on-line algorithms to utilize available
remote memory. Another area of research is optimization
of the communication overhead by migrating communicat-
ing processes to common sites, to benefit from fast, shared
memory communication.

After we install the Myrinet LAN [4], we intend to start
several new projects that benefit from its fast communica-

tion speed. One project is to develop a memory server that
can swap portions of a large program to "idle" memory in
remote workstations. This mechanisms could benefit from
our process migration mechanism, that is capable to page
across the network. This project is similar to the network
RAM project described in [1]. Another project is to de-
velop a shared memory mechanism based on network RAM
and process migrations.

Finally, we note that a limited (up to 6 processors) ver-
sion of MOSIX, called MO6, is available on the Internet:
WWW: http://www.cs.huji.ac.il/mosix. MO6 allows users
of BSD/OS to build a low-cost, distributed memory multi-
computer.
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