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Abstract

With the increasedinterestin networkof workstations
for parallel and high performancecomputingit is neces-
saryto reexaminethe useof procesamigration algorithms,
to improvethe oveall utilization of the systemto achieve
high performanceand to allow flexible use of idle work-
stations. Currently, almostall programmingenvironments
for parallel systemglo not useprocessmigration for task
assignmentsinstead,a static processassignmenis used,
with sub optimal performance,especiallywhen several
users execute multiple processessimultaneously This
paper highlights the advantagesof a processmigration
schemefor betterutilizationsof thecomputingesoucesas
well asto gain substantiaspeedups the executionof par-
allel and multi-taskingapplications. We executedseveral
CPUandcommunicatiooundbentimarksunderPVM, a
popular programmingervironmentfor parallel computing
that usesstatic processassignment. Thesebentimarks
were executedunderthe MOSIX multicomputeropeiating
system,with and without its preemptiveprocessmigra-
tion scheme The resultsof thesebendimarks prove the
advantageof using preemptiveprocessmigrations. The
paperbeginswith an overviav of MOSIX,a multicomputer
enhancementf UNIX that supportstranspaent process
migration for load-balancing,and PVM. We then present
the performanceof the executionsof the bendimarks. Our
resultsshowthat in somecasesthe improvementsn the
performanceof PVM with the MOSIX processmigration
canread tensor evenhundedsof percents.
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1 Intr oduction

With the increasednterestin Network of Workstations
(NOW) as an alternatve to Massve Parallel Processors
(MPP)for high performanceandgeneralpurposecomput-
ing [1], it is necessaryo reexamine the use of dynamic
procesamigrationto improve the overall utilization of the
NOW andto allow flexible useof idle workstationsin tra-
ditional MPPs processnigrationmechanismsverenotde-
velopeddueto their compleity andbecausén mary cases
the whole machinewas usedto run one applicationat a
time. The operatingsystemsf mary MPPssupportstatic,
singleprocesallocationto eachnode a simpleschemehat
is easyto implementandusebut mayresultin poor perfor
mance.

In a NOW system wheremary usersneedto sharethe
resourcesthe performancef executingmultiple processes
can significantly be improved by processmigrations, for
initial distribution of the processedo redistritutethe pro-
cessesvhenthe systembecomesinbalancedr evento re-
lieve a workstationwhenits ownerwishesso. Onemecha-
nismthatcanperformall thesetaskss apreemptve process
migration,which combinedwith load balancingcanmax-
imize the overall performancerespondto resourceavail-
ability andachieve high deggreeof overall utilization of the
NOW resources.

In spiteof the advantage®f processnigrationandload
balancingthereareonly few systemghatsupportheseser
vices[2, 7, 9]. Themainreasonis thefactthatmostparal-
lel programmingernvironmentsareimplementedabove the
operatingsystemsandaregearedo supportheterogeneous
configurations.For example,p4 [5], is alibrary of macros
androutinesfor programminga wide rangeof parallelma-
chinesjncludingshared-memorgndmessag@assingys-
tems. In p4, processallocationis pre-scheduledysing a
configuratiorfile thatspecifieghe pool of hosts,the name
of anobjectfile to beexecuted andthenumberof instances
to start,on a permachinebasis.Dynamicproces<reation
is limited to processspavning in the local hostby a pre-
assignegharentprocess.

This paperpresentghe performanceof executing ses-



eralbenchmarksisingPVM, with its staticprocessassign-
mentvs. PVM with the MOSIX preemptve processmigra-
tion [2]. PVM [8] is a popularprogrammingenvironment
whichletsusersexploit collectionsof networkeccomputers
andparallelcomputerslts mainadwantagesrethe support
of heterogeneousetworksandmachinesgynamicprocess
andvirtual machinenanagemengndasimpleandefficient
userinterfacelibrary. The maindisadwantageof PVM are
its staticassignmenbf tasksto hosts,which resultsin its
inability to respondto variationsin the load of the hosts,
andits assumptiorthatall the workstationsareof the same
speedWhile staticassignmentnaybeacceptabléin MPPs,
wherethe nodeshave the samespeedand eachnode ex-
ecutesonetask,it is unacceptablen a NOW ernvironment,
wheretheresourcearesharedy mary userstheexecution
timesof the tasksarenot known a priori, andthe machine
configurationmay change.In thesecasesa staticassign-
mentpolicy mightleadto a considerablelegradationin the
overall systemutilization.

In orderto highlightthepotentialspeedugains(loss)of
PVM, we executedseveralbenchmarksinderPVM andthe
MOSIX operatingsystemMOSIX [3, 2] isanenhancement
of UNIX thatprovidesresourcgmemory communication)
sharingand even work distribution in a NOW, by sup-
porting a preemptve procesamigrationand dynamicload-
balancing.The MOSIX enhancementareimplementedat
theoperatingsysterkernel,withoutchanginghe UNIX in-
terface,andthey arecompletelytransparento the applica-
tion level. ExecutionsunderPVM, with its staticallocation,
in a configurationwith hostsof differentspeedsesultedn
alow utilization of the NOW, andspeedupsf tens,or even
hundredsof percents,oncea processmigrationis imple-
mented.

Recently a groupat OGI developedMPVM [6], a pro-
cessmigration mechanismfor PVM. Unlike the MOSIX
implementatiorwhich is doneat the operatingsystemker-
nel, MPVM is implementedht the userlevel, with its obvi-
ous limitations, e.g. relatively high migration costs. For
example, processmigrationin MOSIX includesonly the
“dirty-pages” while in MPVM the entire virtual address
spaceof the processs transfered. Another advantageof
the MOSIX approachis its transparenprocesamigration,
which makeswork distribution easierand achievze high
overall utilization. NeverthelessMPVM is an interesting
developmentand we hopeto compareits performanceo
thatof MOSIX.

This paperis organizedas follows: the next section
presentan overview of MOSIX andits uniqueproperties.
Section3 gives an overviewv of PVM. Section4 presents
theperformancef severalbenchmarkef CPUboundpro-
cessesinderMOSIX, PVM andPVM with theMOSIX pro-
cesgmigration.Section5 presentshe performancef com-
municationboundprocessesOur conclusionsaregivenin
Section6.

2 The MOSIX Multicomputer System

MOSIX is an enhancementof UNIX that allows
distributed-memorymulticomputers,including LAN con-
nectedNetwork of Workstationg NOW), to sharetheir re-
sourcesby supportingpreemptve processmigration and
dynamicload balancingamonghomogeneousubsetsof
nodes.Thesemechanismsespondo variationsin the load
of theworkstationdy migratingprocessefrom onework-
stationto anotherpreemptvely, atary stageof thelife cy-
cle of aprocessThegranularityof thework distributionin
MOSIX is the UNIX process.Userscanbenefitfrom the
MOSIX executionervironmentby initiating multiple pro-
cessese.g. for parallelexecution. Alternatively, MOSIX
supportsan efficient multi-user time-sharingexecutionen-
vironment.

The NOW MOSIX is designedo run on configurations
thatinclude several nodes,i.e. personalorkstationsfile
seners and CPU seners, that are connectedby LANS,
sharedbuses,or fast interconnectiometworks. In these
configurationseachnodeis anindependentomputerwith
its own local memory communicatiorand /O devices. A
low-end configurationmay includefew personalworksta-
tions that are connectedoy Ethernet. A larger configura-
tion may include additionalfile and/or CPU seners that
areconnectedy ATM. A high-endconfigurationmay in-
clude a large numberof nodesthat are interconnectedy
a high performancescalable switchinterconnecthatpro-
videslow lateny andhigh bandwidthcommunicatione.g.
Myrinet [4].

In MOSIX, eachuserinteractwith themulticomputewia
theusers “home” workstation.The systemimagemodelis
aNOW, in which all the users processeseento runatthe
homeworkstation.All the processesf eachuserhave the
executionervironmentof the users workstation.Processes
that migrateto other (remote)workstationsuse local re-
sourcewvheneer possible put interactwith theusers envi-
ronmenthroughtheusersworkstation.As longastheload
of theusersworkstationis light, all theusers processeare
confinedto theusersworkstation.Whenthisloadincreases
above a certainthresholdlevel, e.g. the load createdby
oneCPU boundprocessthe processnigrationmechanism
(transparently)migratessomeprocesseso otherworksta-
tionsor to the CPUseners.

2.1 The Unique Propertiesof MOSIX

The MOSIX enhancementsare implementedin the
UNIX kernel,without changingits interface,andthey are
completelftransparento theapplicationevel, e.g. MOSIX
usesstandard\NFS.Its mainuniquepropertiesare:

e Network transparency- for all crossmachineopera-
tions,i.e. for networkrelatedoperationsthe interac-



tive userandthe applicationlevel programsare pro-
vided with a virtual machinethat looks like a single
machine.

Preemptiveprocesamigration - thatcanmigrateary
users processtransparentlyat ary time, to ary avail-
ablenode.The mainrequirementor a processmigra-
tion is transpareng thatis, the functionalaspectof
the systems behaior shouldnot be alteredasa result
of migratingaprocessAchieving thistransparengcre-
quiresthatthe systemis ableto locatethe processand
thatthe processs unawvareof the fact thatit hasbeen
movedfrom onenodeto anotherIn MOSIX thesewo
requirementareachiezedby maintainingin theusers
(home)workstation,a structure calledthe deputy[3],
thatrepresentshe processandinteractswith its ernvi-
ronment. We notethatthe conceptof the deputyof a
procesds basedon the obserationthatonly the sys-
tem contet of a procesds site dependent.The mi-
gration itself involvesthe creationof a new process
structureat the remotesite, followed by a copy of the
procespagetableandthe“dirty” pages.After a mi-
grationthereare no residualdependenciestherthan
atthe homeworkstation.The procesgsesumests exe-
cutionin the new site by few pagefaults,which bring
thenecessarpartsof the programto thatsite[3].

Dynamic load balancing - that initiates processami-
grationsin orderto balancethe loads of the NOW.
The algorithmsrespondto variationsin the loads of
thenodestheruntimecharacteristicsf the processes,
the numberof workstationsandtheir speeds.In gen-
eral,load-balancings accomplishedby continuousat-
temptsto reducetheload differencedetweerpairsof
nodes,and by dynamicallymigratingprocessefrom
nodeswith a higherloadto nodeswith a lower load.
Thepolicy is symmetricaenddecentralized,e.,all of
thenodesexecutethe samealgorithms,andthereduc-
tion of theloaddifferencess performedndependently
by ary pair of nodes.

Memory sharing - by memorydepletionprevention
algorithmsthat aregearedo placethe maximalnum-
berof processes themainmemoryof theNOW, even
if this implies an uneven load distribution amongthe
nodes. The rationalbehindthis policy is to delayas
much as possibleswappingout of pagesor a whole
processuntil the entire, networkwide main memory
is used. The algorithmsof the policy are activated
when the amountof a workstations free memoryis
decreasedbellow a certainthresholdvalue. The de-
cisionsof which procesgo migrateandwhereto mi-
grateit arebasedon knowledgeaboutthe amountof
free memoryin othernodesthatis circulatedamong
the workstations. Thesedecisionsare gearedo opti-

mizethe migrationoverhead.

o Efficient kernel communication - that was specifi-
cally developedto reducethe overheadof the inter-
nal kernelcommunicationse.g. betweerthe process
and its homesite, when it is executingin a remote
site. The new protocolwas specificallydesignedor
alocally distributedsystem.As such,it doesnot sup-
portgeneraiinter-networkingissuesg.g. routing,and
it assumes reliable media. The resultis a fast, re-
liable datagranprotocolwith low startuplateny and
high throughput.The protocolappliesa “look ahead”
packetacknavledgementschemeand run-time fine
tuning in orderto achieve nearoptimal utilization of
the networkmediaand the correspondingystemre-
sources.

e Probabilistic information disseminationalgorithms
- thataregearedo provide eachworkstationwith suf-
ficient knowledge aboutavailable resourcesn other
workstations,without polling or further reliance on
remoteinformation. The informationgatheringalgo-
rithms measurehe amountf the availableresources
at eachworkstation using suitable resourceindices,
which reflectsthe availability of thelocal resourceso
possibleincomingprocessefrom otherworkstations.
The resourceindicesof eachworkstationare sentat
regularintervalsto arandomlychosersubsebf work-
stations,by the informationdisseminatioralgorithm.
The recever algorithmmaintainsa small buffer (win-
dow), with the valuesof the mostrecentlyarrivedin-
dex valuesandatthe sametime it flushsoutolderval-
ues.We notethatthe useof randomworkstationID is
dueto scalingconsiderationsfor even distribution of
theinformationamongthe participatingworkstations,
to supporta dynamicconfigurationandto overcome
partial (workstationsY¥ailures.

¢ Decentralizedcontrol - eachworkstatiormakesall its
own control decisiondndependentlyandthereare no
masterslave relationshipdetweertheworkstations.

e Autonomy - eachworkstationis capableof operating
asanindependensystem.This propertyallows a dy-
namic configuration,whereworkstationsmay join or
leave the networkwith minimal disruptions.

Themostnoticeablepropertieof executingapplications
on MOSIX areits networktranspareng the symmetryand
flexibility of its configuration,andits preemptve process
migration. The combinedeffect of thesepropertiess that
applicationprogramsdo not needto know the currentstate
of the systemconfiguration. This is mostuseful for time-
sharingandparallelprocessingystemsUsersneednotre-
compile their applicationsdue to nodeor communication



failures,nor beconcernedbouttheloadof thevariouspro-
cessors. Parallel applicationscan simply be executedby
creatingmary processegustlike a single-machinsystem.

3 PVM

This sectionpresentsan overview of the Parallel Vir-
tual Machine(PVM) [8]. PVM is an integral framavork
thatenablesa collectionof heterogeneousomputerdo be
usedas a coherentand flexible concurrentcomputational
resource.The supportedarchitecturesnclude shared-and
distributed-memorymultiprocessorsyector supercomput-
ers, specialpurposecomputers,and workstationsthat are
interconnectedby a variety of networks. Below is a brief
descriptionof someaspect®f PVM.

3.1 Heterogeneity

PVM supportsheterogeneityat three levels: applica-
tions, machinesand networks. At the applicationlevel,
subtaskscan exploit the architecturebestsuitedfor them.
At themachindevel, computerawith differentdataformats
are supported,ncluding serial, vector and parallel archi-
tectures. The virtual machinecan be interconnectediia
different networks, at the networklevel. Under PVM, a
userdefinedcollection of computationaresourcesan be
dynamicallyconfiguredto appearasonelarge distributed-
memorycomputeycalled“virtual machine”

3.2 Computing Model

PVM supportastraightforwardnessagpassingnodel.
Usingdedicatedools, onecanautomaticallystartup tasks
on the virtual machine. A task, in this contet, is a unit
of computation,analogougo a UNIX process. PVM al-
lows the tasksto communicateand synchronizewith each
other By sendingandreceving messagesnultiple tasksof
anapplicationcancooperateo solve a problemin parallel.
Themodelassumethatary taskcansendamessag#o ary
otherPVM task,with no limit on the sizeor amountof the
messages.

3.3 Implementation

PVM is composedof two parts. The first is the li-
brary of PVM interfaceroutines. Theseroutinesprovide
a setof primitivesto perform invocationand termination
of tasks,messagéransmissiorandreceptionsynchroniza-
tion, broadcastanutualexclusionandsharednemory Ap-
plication programsmustbe linked with this library to use
PVM. Thesecondartconsistof supportingsoftware that
is executedon all the computersthat makeup the virtual
machine,called “daemon”. Thesedaemonsnterconnect

with eachotherthroughthe network. Eachdaemonis re-
sponsibldor all theapplicationcomponentprocessesxe-
cutingon its host. Thus,controlis completelydistributed,
exceptone masterdaemon. Two crucial topicsrise when
discussingmplementatiorissues:inter-processsommuni-
cations(IPC) and processcontrol. Thesetopics are dis-
cussedelow.

3.3.1 Inter ProcessCommunications

In PVM differentdaemonsommunicatevia the network.
PVM assumesxistenceof only unreliable,unsequenced,
point-to-pont data transferfacilities. Therefore,the re-
quiredreliability aswell asadditionaloperationdike broad-
casts,are built into PVM , above the UDP protocol. For
IPC, the datais routedvia the daemonse.g.,whentaskA
invokesa sendoperationthedatais transferredo the local
daemonwhich decodeghe destinationrhostandtransfers
the datato the destinationrdaemon. This daemondecodes
thedestinatiortaskanddeliversthedata.This protocoluses
3 datatransferspf which oneis acrosghe network. Alter-
natively, a direct-routingpolicy canbe chosen(depending
on availableresources)In this policy, after the first com-
municationinstancebetweerntwo tasks,the routing datais
locally cachedatthetask).Subsequertallsareperformed
directly accordingto this information. This way, the num-
ber of datatransfersis reducedto only one, over the net-
work. Additional overheadsare incurredby acknavledg-
mentschemesindpacking/unpackingperations.

3.3.2 ProcesControl

Procesgontrol includesthe policiesand meansby which
PVM manageghe assignmenbf tasksto processorand
controlstheir executions. In PVM, the computationare-
sourcesmay be accessedvy tasks using four different
policies: (a) a transparentmode policy, in which sub-
tasksareautomaticallyassignedo availablenodes;(b) the
architecture-dependemntode,in which theassignmenpol-
icy of PVM is subjectto a specificarchitectureconstraints;
(c) the machine-specifienode, in which a particularma-
chinemay be specified;and(d) a users definedpolicy that
canbe“hooked”to PVM. Notethatthislastpolicy requires
agoodknowledgeof the PVM internals.

Thedefaultpolicy usedby PVM is thetransparentode
policy. In this case,when a taskinitiation requestis in-
voked,thelocal daemordetermines candidatepool of tar-
get nodes(amongthe nodesof the virtual machine),and
selectghe next nodefrom this pool in a round-robinman-
ner. Themainimplicationsof this policy aretheinability of
PVM to distinguishbetweemrmachinesf differentspeeds,
andthefactthatPVM ignorestheloadvariationsamongthe
differentnodes.



No.of | Optimal | MOSIX | PVM | PVM Slow- | PVM on
Processes Time Time Time down (%) | MOSIX
1 300 301.91 | 301.83 0.0 304.54
2 300 302.92 | 303.78 0.3 304.70
4 300 304.57 | 305.60 0.3 306.59
8 300 305.73 | 308.57 0.9 301.88
16 300 310.83 | 317.12 2.0 303.40
17 450 456.91 | 604.36 32.3 452.84
20 450 462.07 | 602.40 30.4 454.07
24 450 471.87 | 603.25 27.8 454.67
25 525 533.15 | 603.83 13.3 530.15
27 525 549.07 | 603.86 10.0 559.81
31 563 574.03 | 604.63 5.3 595.17
32 600 603.17 | 603.14 0.0 604.64
33 700 705.93 | 906.31 28.4 707.39
36 700 715.35 | 905.27 26.5 708.41
38 750 759.90 | 905.34 19.1 755.53
40 750 767.67 | 905.39 17.9 771.71
43 833 833.33 | 908.96 9.1 839.61
47 883 901.81 | 907.79 0.7 893.65
48 900 916.11 | 908.51 -0.8 907.71

Table 1. Optimal vs. MOSIX vs. PVM vs.

4 Performanceof CPU-bound Processes

In thissectionwe compareheperformancef theexecu-
tion of setsof identical CPU-boundprocessesinderPVM,
with and without processmigration, in orderto highlight
theadwantage®f theMOSIX preemptve processnigration
mechanismandits load balancingscheme.Sereral bench-
markswere executed,rangingfrom pure CPU-boundpro-
cessedn an idle system,to a systemwith a background
load. We notethatin the measurementgrocesamigration
is performedonly whenthe differencebetweertheloadsof
two nodeds above theloadcreatedoy oneCPUboundpro-
cess.This policy differs from the time-slicingpolicy com-
monly usedby shared-memorynulticomputers.

Theexecutionplatformfor all thebenchmarkss aNOW
configurationwith 16identical,Pentium-9asedvorksta-
tionsthatwereconnectedby an Ethernet_ AN.

4.1 CPU-BoundProcesses

Thefirstbenchmarlks intendedo show theefficiengy of
the MOSIX load balancingalgorithms. We executeda set
of identical CPU-boundprocessesachrequiring300 sec-
onds,andmeasuredhetotal executiontimesunderMOSIX
(with its preemptve procesanigration),followed by mea-
surement®f thetotal executiontimesunderPVM (without
processnmigration), and then the executiontimes of these
processeanderPVM with the MOSIX processnigration.

Table1l summarizesheresultsof thesebenchmarksall

PVM on MOSIX execution times (Sec.)

executiontimesarein seconds).In thetable,the first col-

umnliststhe numberof processesThesecondcolumnlists

thetheoreticalexecutiontimesof theseprocessesisingthe
optimalassignmenalgorithmwith preemptve processani-

grationandno communicatioroverhead Columnthreelists

the measuredexecutiontimes of the processesising the
MOSIX load balancingalgorithm. Columnfour lists the
executiontimesof the sameprocesseanderPVM andcol-

umn five givesthe PVM slowdown, i.e. the ratio between
columnfour andcolumnthree. Columnsix lists the corre-
spondingexecutiontimesof theprocesseanderPVM with

theMOSIX loadbalancing.

By comparingcolumns2 and3 of Tablel, it followsthat
the averageslow-down ratio of the MOSIX policy vs. the
optimal executionalgorithmis only 1.95% (considerthat
MOSIX imposesa minimal resideng periodof 1 Sec. for
eachnew processheforeit canbe migrated). Anotherre-
sultis thatthe executiontimesof PVM (forth column)can
be significantlyslowerthanPVM underMOSIX (sixth col-
umn). Obsenre that the initial allocationof PVM reduces
the resideng timesimposedby MOSIX, asshawvn in col-
umnsix.

Figurel depictgheresultsof Tablel. Comparisorof the
measuredesultsshavs thattheaverageslowdown of PVM
vs. MOSIX is over 15%,whenexecutingmorethan16 pro-
cesses.This slowdown can becomevery significant,e.g.
32% for 17 processesind 28% for 33 processesin con-
trast, the measurementshowv that PVM with the MOSIX
processmigrationis slightly betterthanMOSIX itself, due



to theresidenyg periodthatis imposedoy MOSIX.
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Figure 1. MOSIX, PVM and PVM on MOSIX ex-
ecution times

As indicatedearlier onedravbackof PVM is its inabil-
ity to distinguishbetweemmachinef differentspeedsTo
demonstratehis point, we executedthe above setof pro-
cesse®n a clusterof Pentium-90andseveral (threetimes
slower) i486/DX66 basedworkstations.The resultsof this
testshav thatPVM was336%slowerthanMOSIX.

4.2 CPU-Bound Processesvith Random Execu-
tion Times

The secondbenchmarlcompareghe executiontimesof
a setof CPU-boundprocesseshat were executedfor ran-
domdurationsjn therange0 — 600secondsyinderMOSIX
and PVM. Theseprocesseseflect parallel programswith
unpredictablexecutiontimes, e.g. dueto recursion,dif-
ferentamountof processingetc.,which aredifficult to pre-
scheduleln eachtest,all theprocessestartedheexecution
simultaneouslhyandthe completiontime of thelastprocess
wasrecorded. In orderto obtain accuratemeasurements,

PVM o
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Figure 2. MOSIX vs. PVM random execution
times

eachtestwasexecutedive times,with differentrandomex-
ecutiontimes. We notethatthe samesequenc®f random
executiontimeswereusedin the MOSIX andthe PVM ex-
ecutions.

Theresultsof this benchmarlarepresentedn Figure?2,
From the correspondingneasurements follows that the
averageslovdown of PVM vs. MOSIX is over 52%, with
an averagedstandarddeviation of 13.9%. This slowdown
reachedasmuchas 75% for 36 processesand over 600%
whenthe abore benchmarkwas executedon a cluster of
Pentium-9(andi486/DX66 basedvorkstations.

4.3 CPU-bound Processeswith a Background
Load

Thethird benchmarlcompareghe executiontimesof a
setof identical CPU-boundprocessesinderMOSIX and
PVM, in a systemwith a backgroundlioad. This addi-
tionalloadreflectsprocessesf otherusersn atypicaltime-
sharingcomputingervironment.



T T T T T T T T T T T T
PVM o

MOSIX —+—

°

1200 | B

1100 F H g
1000 F
900 |

800

Time [Sec.]

700

600

500

400

300 b

0 4 8 12 16 20 24 28 32 36 40 44 48

No. of Processes

Figure 3. MOSIX vs.
load execution times

PVM with background

The specificbackgroundoad consistedof 8 additional
CPU-boundprocessethatwereexecutedin cycles,where
eachcycle includedanexecutionperiodfollowedby anidle
(suspendedperiod. The backgroundorocessesvere exe-
cutedindependentlythroughoutthe executiontime of the
benchmarkandthe durationsof the executionandsuspen-
sionperiodswererandomvariablesjn the rangeof 0 to 30
seconds.In orderto getaccuratemeasurementgachtest
wasexecutedfive times.

Theresultsof this benchmarlarepresentedn Figure3.
Comparisorof the correspondingneasuredesultsshavs
that the averageslowdown of PVM vs. MOSIX is over
35%, with as much as 62% slowdown, in the measured
range,for 20 processesFrom thesemeasurements fol-
lows thatin a multi-userenvironment,whenit is expected
that backgroundprocessesf otherusersare running, ex-
ecutionof parallel programsunderPVM may resultin a
significantslowdown vs. the sameexecutionswith a pre-
emptive processnigration.

5 Communication Bound Processes

This sectioncompareghe performanceof inter-process
communicatioroperationsetweena setof processesin-
der PVM andMOSIX. First, we show the overheadof us-
ing the PVM communicationayer by comparingthe exe-
cutiontimesof asetof identicalcommunicatiorboundpro-
cessesthatwerestaticallyassignedo differentnodesand
were communicatingalonga ring topology We note that
this benchmarldid not involve procesamigrationandthat
both of the executionsunderPVM andMOSIX usedstan-
dardInternet-domairsockets.

In the benchmarkjn eachiteration,eachprocessends
andreceves a single messageo/from eachof its two ad-
jacentprocesseghenit proceedith a short CPU-bound
computationIn eachtest,60 cycleswereexecutedandthe
net communicatiortimes, without the computationtimes,
weremeasuredT huseachmeasuremeneflectsthe execu-
tion time of 240one-waymessageby eachprocess.

The resultsof this benchmarkfor messagasizesof 1K
bytesto 256K bytes,are shovn in Table2. From the ta-
bleit canbeseerthatthe MOSIX communicatiortimesare
consistentlybetterthanPVM for almostall messagsizes.
This is dueto therelatively complex protocolsusedby the
PVM daemonsandthe messagéandingmechanisnthat
supportsheterogeneity Note that in few casesthe PVM
times are betterthan the MOSIX times. This can be ac-
countedfor bettersynchronizatioomechanismef PVM.

No. of 1KB Messages| 16KB Messages
Processes MOSIX PVM | MOSIX PVM
4 0.77 417 | 1066 10.91
8 1.15 459 | 1862 20.31
12 1.67 461 | 2495 30.65
16 1.58 513 | 30.31 41.80
64KB Messages 256KB Messages
4 54.2 34.7 | 148.8 1325
8 79.2 71.6 | 253.1 298.1
12 94.4 1135| 2975 507.2
16 97.6 172.2| 403.3 7515

Table 2. MOSIX vs. PVM communication
bound processes execution times (Sec.)

Thenext benchmarlshovsthe overheadmposedby the
MOSIX internalmigrationmechanism®ver Unix domain
IPC. In thistestwe executeda similar (to the above) setof
communicatingprocessesvhich were createdin one ma-
chineandwereforcedto migrateoutto othermachinesWe
notethatdueto theuseof thehomemodelin MOSIX, pro-
cesseshatmigrateto remotenodes performall their Unix
domainlIPC via their homesites. The mainimplicationis
areducedccommunicatiorbandwidthandincreasedateny



dueto possiblebottlenecksat the homesites. For exam-
ple,thecommunicatiorime betweertwo processegneof
which was migratedaway from their commonhomesite,
was10%slower thanthecommunicatiortime betweertwo
processethatdid nothave acommorhomesite. Theabore
overheadpf thetwo processewith thecommonhomesite,
reachedas much as 50% when both processesvere mi-
gratedaway.

The phenomenorpresentedn the previous paragraph
may leadto a substantiacommunicatioroverhead when
a large numberof processesire createdin one node,and
later migrateto other nodes. To overcomethis potential
bottleneck,our currentpolicy is to spavn communicating
processesising PVM andthento refinethe (static) PVM
allocationby theMOSIX preemptve (dynamic)processni-
gration.

6 Conclusions

In this paperwe presentedhe performanceof several
benchmarkshat were executedunderMOSIX, PVM, and
PVM with the MOSIX preemptve procesamigration. We
shavedthatin mary executionsthe performanceof PVM
without the procesanmigrationwassignificantlylower than
its performancewith the processmigration. We predict
thatin a typical multi-userervironment, where eachuser
is executingonly a few processusersmay loosehundreds
of percentdn the performancedueto lack of preemptve
procesamigration mechanismsas discussedn [10]. We
note that the choiceof PVM wasbasedon its popularity
We predictthatthe speedupatiospresentedherecharacter
ize mary otherparallelprogrammingervironmentghatuse
staticprocesassignments.

The NOW MOSIX is compatible with BSDI's
BSD/OS [11], which is basedon BSD-Lite from the
ComputerSystemsResearclGroupat UC Berkelg. The
currentimplementationhas been operationalfor over 3
yearson a clusterof 32 Pentiumsand several i486 based
workstations. It is usedfor researchand developmentof
multicomputesystemsandparallelapplicationslts unique
mechanismgrovide a convenientenvironmentfor writing
and executing parallel programs,with minimal burdento
theapplicationprogrammers.

Currently we are researchinghe idea of migrateable
socketsto overcomepotential bottlenecksof executing a
large numberof communicatingprocessesWe arealsode-
veloping optimizationalgorithmsfor memory sharing,by
using competitive, on-line algorithmsto utilize available
remotememory Anotherareaof researchs optimization
of the communicatioroverheadby migratingcommunicat-
ing processef commonsites,to benefitfrom fast, shared
memorycommunication.

After weinstallthe Myrinet LAN [4], we intendto start
sev/eral new projectsthat benefitfrom its fastcommunica-

tion speed.Oneprojectis to develop a memoryserverthat
canswapportionsof a large programto “idle” memoryin

remoteworkstations.This mechanismgould benefitfrom

our processamigrationmechanismthat is capableto page
acrossthe network. This projectis similar to the network
RAM projectdescribedn [1]. Anotherprojectis to de-
velopasharednemorymechanisnibasedn networkRAM

andprocessnigrations.

Finally, we notethata limited (up to 6 processorsyer
sion of MOSIX, called MOBG, is available on the Internet:
WWW: http://www.cs.huji.ac.il/mosix.MO6 allows users
of BSD/OSto build alow-cost,distributedmemorymulti-
computer
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