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Abstract

With the increasedinterest in networkof workstations
for parallel and high performancecomputingit is neces-
saryto reexaminetheuseof processmigration algorithms,
to improvethe overall utilization of the system,to achieve
high performanceand to allow flexible useof idle work-
stations. Currently, almostall programmingenvironments
for parallel systemsdo not useprocessmigration for task
assignments.Instead,a staticprocessassignmentis used,
with sub optimal performance,especiallywhen several
users execute multiple processessimultaneously. This
paper highlights the advantagesof a processmigration
schemefor betterutilizationsof thecomputingresourcesas
well asto gainsubstantialspeedupsin theexecutionof par-
allel and multi-taskingapplications. We executedseveral
CPUandcommunicationboundbenchmarksunderPVM,a
popular programmingenvironmentfor parallel computing
that usesstatic processassignment. Thesebenchmarks
were executedunderthe MOSIXmulticomputeroperating
system,with and without its preemptiveprocessmigra-
tion scheme. The resultsof thesebenchmarksprove the
advantagesof using preemptiveprocessmigrations. The
paperbeginswith an overview of MOSIX,a multicomputer
enhancementof UNIX that supportstransparent process
migration for load-balancing,and PVM. We then present
theperformanceof theexecutionsof thebenchmarks.Our
resultsshowthat in somecasesthe improvementsin the
performanceof PVM with the MOSIX processmigration
canreach tensor evenhundredsof percents.
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1 Intr oduction

With the increasedinterestin Networkof Workstations
(NOW) as an alternative to Massive Parallel Processors
(MPP) for high performanceandgeneralpurposecomput-
ing [1], it is necessaryto reexamine the use of dynamic
processmigrationto improve the overall utilization of the
NOW andto allow flexible useof idle workstations.In tra-
ditionalMPPs,processmigrationmechanismswerenotde-
velopeddueto their complexity andbecausein many cases
the whole machinewas usedto run one applicationat a
time. Theoperatingsystemsof many MPPssupportsstatic,
singleprocessallocationto eachnode,asimpleschemethat
is easyto implementandusebut mayresultin poorperfor-
mance.

In a NOW system,wheremany usersneedto sharethe
resources,theperformanceof executingmultipleprocesses
can significantly be improved by processmigrations,for
initial distribution of theprocesses,to redistributethepro-
cesseswhenthesystembecomesunbalancedor evento re-
lieve a workstationwhenits ownerwishesso. Onemecha-
nismthatcanperformall thesetasksis apreemptiveprocess
migration,which combinedwith load balancingcanmax-
imize the overall performance,respondto resourceavail-
ability andachieve high degreeof overall utilization of the
NOW resources.

In spiteof theadvantagesof processmigrationandload
balancing,thereareonly few systemsthatsupporttheseser-
vices[2, 7, 9]. Themainreasonis thefact thatmostparal-
lel programmingenvironmentsareimplementedabove the
operatingsystemsandaregearedto supportheterogeneous
configurations.For example,p4 [5], is a library of macros
androutinesfor programminga wide rangeof parallelma-
chines,includingshared-memoryandmessagepassingsys-
tems. In p4, processallocationis pre-scheduled,using a
configurationfile thatspecifiesthepool of hosts,thename
of anobjectfile to beexecuted,andthenumberof instances
to start,on a per-machinebasis.Dynamicprocesscreation
is limited to processspawning in the local hostby a pre-
assignedparentprocess.

This paperpresentsthe performanceof executingsev-



eralbenchmarksusingPVM, with its staticprocessassign-
mentvs. PVM with theMOSIX preemptive processmigra-
tion [2]. PVM [8] is a popularprogrammingenvironment
whichletsusersexploit collectionsof networkedcomputers
andparallelcomputers.Its mainadvantagesarethesupport
of heterogeneousnetworksandmachines,dynamicprocess
andvirtual machinemanagement,andasimpleandefficient
userinterfacelibrary. Themaindisadvantagesof PVM are
its staticassignmentof tasksto hosts,which resultsin its
inability to respondto variationsin the load of the hosts,
andits assumptionthatall theworkstationsareof thesame
speed.While staticassignmentmaybeacceptablein MPPs,
wherethe nodeshave the samespeedand eachnodeex-
ecutesonetask,it is unacceptablein a NOW environment,
wheretheresourcesaresharedby many users,theexecution
timesof the tasksarenot known a priori , andthemachine
configurationmay change.In thesecases,a staticassign-
mentpolicy might leadto a considerabledegradationin the
overall systemutilization.

In orderto highlightthepotentialspeedupgains(loss)of
PVM, weexecutedseveralbenchmarksunderPVM andthe
MOSIX operatingsystem.MOSIX [3, 2] is anenhancement
of UNIX thatprovidesresource(memory, communication)
sharingand even work distribution in a NOW, by sup-
portinga preemptive processmigrationanddynamicload-
balancing.TheMOSIX enhancementsareimplementedat
theoperatingsystemkernel,withoutchangingtheUNIX in-
terface,andthey arecompletelytransparentto theapplica-
tion level. ExecutionsunderPVM, with its staticallocation,
in a configurationwith hostsof differentspeedsresultedin
a low utilizationof theNOW, andspeedupsof tens,or even
hundredsof percents,oncea processmigration is imple-
mented.

Recently, a groupat OGI developedMPVM [6], a pro-
cessmigration mechanismfor PVM. Unlike the MOSIX
implementationwhich is doneat theoperatingsystemker-
nel,MPVM is implementedat theuser-level, with its obvi-
ous limitations, e.g. relatively high migrationcosts. For
example, processmigration in MOSIX includesonly the
“dirty-pages” while in MPVM the entire virtual address
spaceof the processis transfered. Anotheradvantageof
the MOSIX approachis its transparentprocessmigration,
which makeswork distribution easierand achieve high
overall utilization. Nevertheless,MPVM is an interesting
developmentand we hopeto compareits performanceto
thatof MOSIX.

This paper is organizedas follows: the next section
presentsanoverview of MOSIX andits uniqueproperties.
Section3 gives an overview of PVM. Section4 presents
theperformanceof severalbenchmarksof CPUboundpro-
cessesunderMOSIX, PVM andPVM with theMOSIX pro-
cessmigration.Section5 presentstheperformanceof com-
municationboundprocesses.Our conclusionsaregivenin
Section6.

2 The MOSIX Multicomputer System

MOSIX is an enhancementof UNIX that allows
distributed-memorymulticomputers,including LAN con-
nectedNetworkof Workstations(NOW), to sharetheir re-
sourcesby supportingpreemptive processmigration and
dynamic load balancingamonghomogeneoussubsetsof
nodes.Thesemechanismsrespondto variationsin theload
of theworkstationsby migratingprocessesfrom onework-
stationto another, preemptively, at any stageof thelife cy-
cleof a process.Thegranularityof thework distributionin
MOSIX is the UNIX process.Userscanbenefitfrom the
MOSIX executionenvironmentby initiating multiple pro-
cesses,e.g. for parallelexecution. Alternatively, MOSIX
supportsanefficient multi-user, time-sharingexecutionen-
vironment.

TheNOW MOSIX is designedto run on configurations
that includeseveral nodes,i.e. personalworkstations,file
servers and CPU servers, that are connectedby LANs,
sharedbuses,or fast interconnectionnetworks. In these
configurationseachnodeis anindependentcomputer, with
its own local memory, communicationandI/O devices. A
low-endconfigurationmay includefew personalworksta-
tions that areconnectedby Ethernet. A larger configura-
tion may include additional file and/or CPU servers that
areconnectedby ATM. A high-endconfigurationmay in-
cludea large numberof nodesthat are interconnectedby
a high performance,scalable,switchinterconnectthatpro-
videslow latency andhigh bandwidthcommunication,e.g.
Myrinet [4].

In MOSIX, eachuserinteractwith themulticomputervia
theuser’s “home” workstation.Thesystemimagemodelis
a NOW, in whichall theuser’sprocessesseemto runat the
homeworkstation.All theprocessesof eachuserhave the
executionenvironmentof theuser’sworkstation.Processes
that migrate to other (remote)workstationsuse local re-
sourceswheneverpossible,but interactwith theuser’senvi-
ronmentthroughtheuser’sworkstation.As longastheload
of theuser’sworkstationis light, all theuser’sprocessesare
confinedto theuser’sworkstation.Whenthis loadincreases
above a certainthresholdlevel, e.g. the load createdby
oneCPUboundprocess,theprocessmigrationmechanism
(transparently)migratessomeprocessesto otherworksta-
tionsor to theCPUservers.

2.1 The Unique Propertiesof MOSIX

The MOSIX enhancementsare implementedin the
UNIX kernel,without changingits interface,andthey are
completelytransparentto theapplicationlevel,e.g.MOSIX
usesstandardNFS.Its mainuniquepropertiesare:

� Network transparency- for all crossmachineopera-
tions, i.e. for networkrelatedoperations,the interac-
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tive userand the applicationlevel programsarepro-
vided with a virtual machinethat looks like a single
machine.

� Preemptiveprocessmigration - thatcanmigrateany
user’s process,transparently, at any time, to any avail-
ablenode.Themainrequirementfor a processmigra-
tion is transparency, that is, the functionalaspectsof
thesystem’s behavior shouldnot bealteredasa result
of migratingaprocess.Achieving thistransparency re-
quiresthatthesystemis ableto locatetheprocessand
that theprocessis unawareof the fact that it hasbeen
movedfrom onenodeto another. In MOSIX thesetwo
requirementsareachievedby maintainingin theuser’s
(home)workstation,a structure,calledthedeputy[3],
that representstheprocessandinteractswith its envi-
ronment.We notethat the conceptof the deputyof a
processis basedon theobservation thatonly thesys-
tem context of a processis site dependent.The mi-
gration itself involves the creationof a new process
structureat theremotesite,followedby a copyof the
processpagetableandthe“dirty” pages.After a mi-
grationthereareno residualdependenciesotherthan
at thehomeworkstation.Theprocessresumesits exe-
cutionin thenew siteby few pagefaults,which bring
thenecessarypartsof theprogramto thatsite[3].

� Dynamic load balancing - that initiatesprocessmi-
grationsin order to balancethe loads of the NOW.
The algorithmsrespondto variationsin the loadsof
thenodes,theruntimecharacteristicsof theprocesses,
the numberof workstationsandtheir speeds.In gen-
eral,load-balancingis accomplishedby continuousat-
temptsto reducetheloaddifferencesbetweenpairsof
nodes,andby dynamicallymigratingprocessesfrom
nodeswith a higher load to nodeswith a lower load.
Thepolicy is symmetricalanddecentralized,i.e.,all of
thenodesexecutethesamealgorithms,andthereduc-
tion of theloaddifferencesis performedindependently
by any pairof nodes.

� Memory sharing - by memorydepletionprevention
algorithmsthataregearedto placethemaximalnum-
berof processesin themainmemoryof theNOW, even
if this implies an uneven load distribution amongthe
nodes. The rationalbehindthis policy is to delayas
much as possibleswappingout of pagesor a whole
process,until the entire,networkwide main memory
is used. The algorithmsof the policy are activated
when the amountof a workstation’s free memoryis
decreasedbellow a certainthresholdvalue. The de-
cisionsof which processto migrateandwhereto mi-
grateit arebasedon knowledgeaboutthe amountof
free memoryin othernodesthat is circulatedamong
the workstations.Thesedecisionsaregearedto opti-

mizethemigrationoverhead.

� Efficient kernel communication - that was specifi-
cally developedto reducethe overheadof the inter-
nal kernelcommunications,e.g. betweenthe process
and its homesite, when it is executing in a remote
site. The new protocolwasspecificallydesignedfor
a locally distributedsystem.As such,it doesnot sup-
port generalinter-networkingissues,e.g. routing,and
it assumesa reliablemedia. The result is a fast, re-
liable datagramprotocolwith low startuplatency and
high throughput.Theprotocolappliesa “look ahead”
packetacknowledgementschemeand run-time fine
tuning in order to achieve nearoptimal utilization of
the networkmediaand the correspondingsystemre-
sources.

� Probabilistic information disseminationalgorithms
- thataregearedto provideeachworkstationwith suf-
ficient knowledgeaboutavailable resourcesin other
workstations,without polling or further relianceon
remoteinformation. The informationgatheringalgo-
rithmsmeasuretheamountsof theavailableresources
at eachworkstationusing suitableresourceindices,
which reflectstheavailability of thelocal resourcesto
possibleincomingprocessesfrom otherworkstations.
The resourceindicesof eachworkstationaresentat
regularintervalsto a randomlychosensubsetof work-
stations,by the informationdisseminationalgorithm.
Thereceiver algorithmmaintainsa smallbuffer (win-
dow), with thevaluesof the mostrecentlyarrived in-
dex valuesandat thesametime it flushsout olderval-
ues.We notethattheuseof randomworkstationID is
dueto scalingconsiderations,for evendistribution of
theinformationamongtheparticipatingworkstations,
to supporta dynamicconfigurationand to overcome
partial(workstations)failures.

� Decentralizedcontrol - eachworkstationmakesall its
own controldecisionsindependentlyandthereareno
master-slave relationshipsbetweentheworkstations.

� Autonomy - eachworkstationis capableof operating
asanindependentsystem.This propertyallows a dy-
namicconfiguration,whereworkstationsmay join or
leave thenetworkwith minimaldisruptions.

Themostnoticeablepropertiesof executingapplications
onMOSIX areits networktransparency, thesymmetryand
flexibility of its configuration,and its preemptive process
migration. The combinedeffect of thesepropertiesis that
applicationprogramsdo not needto know thecurrentstate
of the systemconfiguration.This is mostuseful for time-
sharingandparallelprocessingsystems.Usersneednot re-
compile their applicationsdue to nodeor communication
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failures,norbeconcernedabouttheloadof thevariouspro-
cessors. Parallel applicationscan simply be executedby
creatingmany processes,just like a single-machinesystem.

3 PVM

This sectionpresentsan overview of the Parallel Vir-
tual Machine(PVM) [8]. PVM is an integral framework
thatenablesa collectionof heterogeneouscomputersto be
usedas a coherentand flexible concurrentcomputational
resource.The supportedarchitecturesincludeshared-and
distributed-memorymultiprocessors,vector supercomput-
ers, specialpurposecomputers,and workstationsthat are
interconnectedby a variety of networks. Below is a brief
descriptionof someaspectsof PVM.

3.1 Heterogeneity

PVM supportsheterogeneityat three levels: applica-
tions, machinesand networks. At the applicationlevel,
subtaskscanexploit the architecturebestsuitedfor them.
At themachinelevel, computerswith differentdataformats
are supported,including serial, vector and parallel archi-
tectures. The virtual machinecan be interconnectedvia
different networks,at the network level. Under PVM, a
user-definedcollectionof computationalresourcescan be
dynamicallyconfiguredto appearasonelarge distributed-
memorycomputer, called“virtual machine”

3.2 Computing Model

PVM supportsastraightforwardmessagepassingmodel.
Usingdedicatedtools,onecanautomaticallystartup tasks
on the virtual machine. A task, in this context, is a unit
of computation,analogousto a UNIX process. PVM al-
lows the tasksto communicateandsynchronizewith each
other. By sendingandreceiving messages,multipletasksof
anapplicationcancooperateto solve a problemin parallel.
Themodelassumesthatany taskcansendamessageto any
otherPVM task,with no limit on thesizeor amountof the
messages.

3.3 Implementation

PVM is composedof two parts. The first is the li-
brary of PVM interfaceroutines. Theseroutinesprovide
a set of primitives to perform invocationand termination
of tasks,messagetransmissionandreception,synchroniza-
tion, broadcasts,mutualexclusionandsharedmemory. Ap-
plication programsmustbe linked with this library to use
PVM. Thesecondpartconsistsof supportingsoftware,that
is executedon all the computers,that makeup the virtual
machine,called “daemon”. Thesedaemonsinterconnect

with eachotherthroughthe network. Eachdaemonis re-
sponsiblefor all theapplicationcomponentsprocessesexe-
cutingon its host. Thus,control is completelydistributed,
exceptonemasterdaemon. Two crucial topics rise when
discussingimplementationissues:inter-processcommuni-
cations(IPC) and processcontrol. Thesetopics are dis-
cussedbelow.

3.3.1 Inter ProcessCommunications

In PVM differentdaemonscommunicatevia the network.
PVM assumesexistenceof only unreliable,unsequenced,
point-to-point data transfer facilities. Therefore,the re-
quiredreliability aswell asadditionaloperationslike broad-
casts,arebuilt into PVM , above the UDP protocol. For
IPC, the datais routedvia thedaemons,e.g.,whentaskA
invokesa sendoperation,thedatais transferredto thelocal
daemon,which decodesthe destinationhostandtransfers
the datato the destinationdaemon.This daemondecodes
thedestinationtaskanddeliversthedata.Thisprotocoluses
3 datatransfers,of whichoneis acrossthenetwork.Alter-
natively, a direct-routingpolicy canbe chosen(depending
on availableresources).In this policy, after the first com-
municationinstancebetweentwo tasks,the routingdatais
locally cached(at thetask).Subsequentcallsareperformed
directly accordingto this information. This way, thenum-
ber of datatransfersis reducedto only one,over the net-
work. Additional overheadsare incurredby acknowledg-
mentschemesandpacking/unpackingoperations.

3.3.2 ProcessControl

Processcontrol includesthe policiesandmeansby which
PVM managesthe assignmentof tasksto processorsand
controlstheir executions. In PVM, the computationalre-
sourcesmay be accessedby tasks using four different
policies: (a) a transparentmode policy, in which sub-
tasksareautomaticallyassignedto availablenodes;(b) the
architecture-dependentmode,in which theassignmentpol-
icy of PVM is subjectto a specificarchitectureconstraints;
(c) the machine-specificmode, in which a particularma-
chinemaybespecified;and(d) a user’s definedpolicy that
canbe“hooked” to PVM. Notethatthis lastpolicy requires
a goodknowledgeof thePVM internals.

Thedefaultpolicy usedby PVM is thetransparentmode
policy. In this case,when a task initiation requestis in-
voked,thelocaldaemondeterminesacandidatepoolof tar-
get nodes(amongthe nodesof the virtual machine),and
selectsthenext nodefrom this pool in a round-robinman-
ner. Themainimplicationsof thispolicy aretheinability of
PVM to distinguishbetweenmachinesof differentspeeds,
andthefactthatPVM ignorestheloadvariationsamongthe
differentnodes.
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No. of Optimal MOSIX PVM PVM Slow- PVM on
Processes Time Time Time down (%) MOSIX

1 300 301.91 301.83 0.0 304.54
2 300 302.92 303.78 0.3 304.70
4 300 304.57 305.60 0.3 306.59
8 300 305.73 308.57 0.9 301.88
16 300 310.83 317.12 2.0 303.40
17 450 456.91 604.36 32.3 452.84
20 450 462.07 602.40 30.4 454.07
24 450 471.87 603.25 27.8 454.67
25 525 533.15 603.83 13.3 530.15
27 525 549.07 603.86 10.0 559.81
31 563 574.03 604.63 5.3 595.17
32 600 603.17 603.14 0.0 604.64
33 700 705.93 906.31 28.4 707.39
36 700 715.35 905.27 26.5 708.41
38 750 759.90 905.34 19.1 755.53
40 750 767.67 905.39 17.9 771.71
43 833 833.33 908.96 9.1 839.61
47 883 901.81 907.79 0.7 893.65
48 900 916.11 908.51 -0.8 907.71

Table 1. Optimal vs. MOSIX vs. PVM vs. PVM on MOSIX execution times (Sec.)

4 Performanceof CPU-boundProcesses

In thissectionwecomparetheperformanceof theexecu-
tion of setsof identicalCPU-boundprocessesunderPVM,
with and without processmigration, in order to highlight
theadvantagesof theMOSIX preemptiveprocessmigration
mechanismandits loadbalancingscheme.Severalbench-
markswereexecuted,rangingfrom pureCPU-boundpro-
cessesin an idle system,to a systemwith a background
load. We notethat in themeasurements,processmigration
is performedonly whenthedifferencebetweentheloadsof
two nodesis abovetheloadcreatedby oneCPUboundpro-
cess.This policy differs from the time-slicingpolicy com-
monlyusedby shared-memorymulticomputers.

Theexecutionplatformfor all thebenchmarksis aNOW
configuration,with 16identical,Pentium-90basedworksta-
tionsthatwereconnectedby anEthernetLAN.

4.1 CPU-BoundProcesses

Thefirst benchmarkis intendedto show theefficiency of
the MOSIX loadbalancingalgorithms.We executeda set
of identicalCPU-boundprocesses,eachrequiring300sec-
onds,andmeasuredthetotalexecutiontimesunderMOSIX
(with its preemptive processmigration),followedby mea-
surementsof thetotalexecutiontimesunderPVM (without
processmigration),and then the executiontimesof these
processesunderPVM with theMOSIX processmigration.

Table1 summarizestheresultsof thesebenchmarks(all

executiontimesarein seconds).In the table,the first col-
umnliststhenumberof processes.Thesecondcolumnlists
thetheoreticalexecutiontimesof theseprocessesusingthe
optimalassignmentalgorithmwith preemptive processmi-
grationandnocommunicationoverhead.Columnthreelists
the measuredexecution times of the processesusing the
MOSIX load balancingalgorithm. Column four lists the
executiontimesof thesameprocessesunderPVM andcol-
umn five givesthe PVM slowdown, i.e. the ratio between
columnfour andcolumnthree.Columnsix lists thecorre-
spondingexecutiontimesof theprocessesunderPVM with
theMOSIX loadbalancing.

By comparingcolumns2 and3 of Table1, it followsthat
the averageslow-down ratio of theMOSIX policy vs. the
optimal executionalgorithm is only 1.95%(considerthat
MOSIX imposesa minimal residency periodof 1 Sec. for
eachnew processbeforeit canbe migrated). Anotherre-
sult is that theexecutiontimesof PVM (forth column)can
besignificantlyslower thanPVM underMOSIX (sixthcol-
umn). Observe that the initial allocationof PVM reduces
the residency timesimposedby MOSIX, asshown in col-
umnsix.

Figure1 depictstheresultsof Table1. Comparisonof the
measuredresultsshowsthattheaverageslowdown of PVM
vs. MOSIX is over 15%,whenexecutingmorethan16pro-
cesses.This slowdown can becomevery significant,e.g.
32% for 17 processesand28% for 33 processes.In con-
trast, the measurementsshow that PVM with the MOSIX
processmigrationis slightly betterthanMOSIX itself, due
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to theresidency periodthatis imposedby MOSIX.
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Figure 1. MOSIX, PVM and PVM on MOSIX ex-
ecution times

As indicatedearlier, onedrawbackof PVM is its inabil-
ity to distinguishbetweenmachinesof differentspeeds.To
demonstratethis point, we executedthe above setof pro-
cesseson a clusterof Pentium-90andseveral (threetimes
slower) i486/DX66basedworkstations.Theresultsof this
testshow thatPVM was336%slower thanMOSIX.

4.2 CPU-Bound Processeswith Random Execu-
tion Times

Thesecondbenchmarkcomparestheexecutiontimesof
a setof CPU-boundprocessesthat wereexecutedfor ran-
domdurations,in therange0 – 600seconds,underMOSIX
andPVM. Theseprocessesreflectparallel programswith
unpredictableexecutiontimes, e.g. due to recursion,dif-
ferentamountof processing,etc.,whicharedifficult to pre-
schedule.In eachtest,all theprocessesstartedtheexecution
simultaneouslyandthecompletiontime of thelastprocess
wasrecorded. In order to obtain accuratemeasurements,
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Figure 2. MOSIX vs. PVM random execution
times

eachtestwasexecutedfivetimes,with differentrandomex-
ecutiontimes. We notethat the samesequenceof random
executiontimeswereusedin theMOSIX andthePVM ex-
ecutions.

Theresultsof this benchmarkarepresentedin Figure2,
From the correspondingmeasurementsit follows that the
averageslowdown of PVM vs. MOSIX is over 52%,with
an averagedstandarddeviation of 13.9%. This slowdown
reachedasmuchas75%for 36 processes,andover 600%
when the above benchmarkwas executedon a clusterof
Pentium-90andi486/DX66basedworkstations.

4.3 CPU-bound Processeswith a Background
Load

Thethird benchmarkcomparestheexecutiontimesof a
set of identical CPU-boundprocessesunderMOSIX and
PVM, in a systemwith a backgroundload. This addi-
tionalloadreflectsprocessesof otherusersin atypicaltime-
sharingcomputingenvironment.
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Figure 3. MOSIX vs. PVM with background
load execution times

The specificbackgroundload consistedof 8 additional
CPU-boundprocessesthatwereexecutedin cycles,where
eachcycle includedanexecutionperiodfollowedby anidle
(suspended)period. The backgroundprocesseswereexe-
cutedindependently, throughoutthe executiontime of the
benchmark,andthedurationsof theexecutionandsuspen-
sionperiodswererandomvariables,in therangeof 0 to 30
seconds.In orderto get accuratemeasurements,eachtest
wasexecutedfive times.

Theresultsof this benchmarkarepresentedin Figure3.
Comparisonof the correspondingmeasuredresultsshows
that the averageslowdown of PVM vs. MOSIX is over
35%, with as much as 62% slowdown, in the measured
range,for 20 processes.From thesemeasurementsit fol-
lows that in a multi-userenvironment,whenit is expected
that backgroundprocessesof otherusersarerunning,ex-
ecutionof parallel programsunderPVM may result in a
significantslowdown vs. the sameexecutionswith a pre-
emptiveprocessmigration.

5 Communication Bound Processes

This sectioncomparestheperformanceof inter-process
communicationoperationsbetweena setof processesun-
derPVM andMOSIX. First, we show theoverheadof us-
ing the PVM communicationlayerby comparingthe exe-
cutiontimesof asetof identicalcommunicationboundpro-
cesses,thatwerestaticallyassignedto differentnodesand
werecommunicatingalonga ring topology. We note that
this benchmarkdid not involve processmigrationandthat
bothof theexecutionsunderPVM andMOSIX usedstan-
dardInternet-domainsockets.

In the benchmark,in eachiteration,eachprocesssends
andreceives a singlemessageto/from eachof its two ad-
jacentprocesses,thenit proceedswith a shortCPU-bound
computation.In eachtest,60 cycleswereexecutedandthe
net communicationtimes, without the computationtimes,
weremeasured.Thuseachmeasurementreflectstheexecu-
tion timeof 240one-waymessagesby eachprocess.

Theresultsof this benchmark,for messagesizesof 1K
bytesto 256K bytes,areshown in Table2. From the ta-
ble it canbeseenthattheMOSIX communicationtimesare
consistentlybetterthanPVM for almostall messagesizes.
This is dueto therelatively complex protocolsusedby the
PVM daemons,andthe messagehandingmechanismthat
supportsheterogeneity. Note that in few casesthe PVM
times arebetter than the MOSIX times. This can be ac-
countedfor bettersynchronizationmechanismsof PVM.

No. of 1KB Messages 16KB Messages
Processes MOSIX PVM MOSIX PVM

4 0.77 4.17 10.66 10.91
8 1.15 4.59 18.62 20.31
12 1.67 4.61 24.95 30.65
16 1.58 5.13 30.31 41.80

64KB Messages 256KB Messages
4 54.2 34.7 148.8 132.5
8 79.2 71.6 253.1 298.1
12 94.4 113.5 297.5 507.2
16 97.6 172.2 403.3 751.5

Table 2. MOSIX vs. PVM communication
bound processes execution times (Sec.)

Thenext benchmarkshowstheoverheadimposedby the
MOSIX internalmigrationmechanismsover Unix domain
IPC. In this testwe executeda similar (to theabove) setof
communicatingprocesseswhich werecreatedin one ma-
chineandwereforcedto migrateoutto othermachines.We
notethatdueto theuseof thehomemodelin MOSIX, pro-
cessesthatmigrateto remotenodes,performall their Unix
domainIPC via their homesites. The main implication is
a reducedcommunicationbandwidthandincreasedlatency
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due to possiblebottlenecksat the homesites. For exam-
ple,thecommunicationtimebetweentwo processes,oneof
which wasmigratedaway from their commonhomesite,
was10%slower thanthecommunicationtimebetweentwo
processesthatdid nothaveacommonhomesite.Theabove
overhead,of thetwo processeswith thecommonhomesite,
reachedas much as 50% when both processeswere mi-
gratedaway.

The phenomenonpresentedin the previous paragraph
may lead to a substantialcommunicationoverhead,when
a large numberof processesarecreatedin onenode,and
later migrate to other nodes. To overcomethis potential
bottleneck,our currentpolicy is to spawn communicating
processesusingPVM andthento refinethe (static)PVM
allocationby theMOSIX preemptive(dynamic)processmi-
gration.

6 Conclusions

In this paperwe presentedthe performanceof several
benchmarksthat wereexecutedunderMOSIX, PVM, and
PVM with the MOSIX preemptive processmigration. We
showedthat in many executions,theperformanceof PVM
without theprocessmigrationwassignificantlylower than
its performancewith the processmigration. We predict
that in a typical multi-userenvironment,whereeachuser
is executingonly a few process,usersmay loosehundreds
of percentsin the performancedue to lack of preemptive
processmigrationmechanisms,asdiscussedin [10]. We
note that the choiceof PVM wasbasedon its popularity.
Wepredictthatthespeedupratiospresentedherecharacter-
izemany otherparallelprogrammingenvironmentsthatuse
staticprocessassignments.

The NOW MOSIX is compatible with BSDI’s
BSD/OS [11], which is based on BSD-Lite from the
ComputerSystemsResearchGroupat UC Berkeley. The
current implementationhas been operationalfor over 3
yearson a clusterof 32 Pentiumsandseveral i486 based
workstations. It is usedfor researchand developmentof
multicomputersystemsandparallelapplications.Its unique
mechanismsprovide a convenientenvironmentfor writing
and executingparallel programs,with minimal burdento
theapplicationprogrammers.

Currently we are researchingthe idea of migrateable
socketsto overcomepotentialbottlenecksof executing a
largenumberof communicatingprocesses.We arealsode-
velopingoptimizationalgorithmsfor memorysharing,by
using competitive, on-line algorithmsto utilize available
remotememory. Anotherareaof researchis optimization
of thecommunicationoverheadby migratingcommunicat-
ing processesto commonsites,to benefitfrom fast,shared
memorycommunication.

After we install theMyrinet LAN [4], weintendto start
several new projectsthat benefitfrom its fast communica-

tion speed.Oneprojectis to developa memoryserverthat
canswapportionsof a largeprogramto “idle” memoryin
remoteworkstations.This mechanismscouldbenefitfrom
our processmigrationmechanism,that is capableto page
acrossthe network. This project is similar to the network
RAM projectdescribedin [1]. Anotherproject is to de-
velopasharedmemorymechanismbasedonnetworkRAM
andprocessmigrations.

Finally, we notethata limited (up to 6 processors)ver-
sion of MOSIX, calledMO6, is availableon the Internet:
WWW: http://www.cs.huji.ac.il/mosix.MO6 allows users
of BSD/OSto build a low-cost,distributedmemorymulti-
computer.
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