
14/02/02 r.innocente 1

HPC on linux clusters
Nodes and Networks

hardware

Roberto Innocente
inno@sissa.it

14/02/02 r.innocente 2

Overview

• Nodes:
– CPU
– Processor Bus
– I/O bus

• Networks
– boards
– switches

14/02/02 r.innocente 3

Typical Node Architecture

Processor Processor

North Bridge Memory

=Critical point
Processor bus

Memory
bus

I/O bus

PCI bus NetworkNIC

14/02/02 r.innocente 4

Computer families/1
• RISC (Reduced Instruction Set Computer)

– small set of simple instructions(Mips,alpha)
– also called Load/Store architecture because operations are

done in registers and only load/store instructions can access
memory

– instructions are typically hardwired and require few cycles
– instructions have fixed length so that is easy to parse them

• CISC (Complex Instruction Set Computer)
– large set of complex instructions (VAX, x86)
– many instructions can have operands in memory
– variable length instructions
– many instructions require many cycles to complete

14/02/02 r.innocente 5

Computer families/2
It is very difficult to optimize computers with

CISC instruction sets, because it is difficult to
predict what will be the effect of the
instructions.

For this reason today high performance
processors have a RISC core even if the
external instruction set is CISC.

Starting with the Pentium Pro, Intel x86
processors in fact translate x86 instruction
into 1 or more RISC microops (uops).

14/02/02 r.innocente 6

Micro architecture

• Superscalar
• OOO (Out Of Order) execution
• Pipelining: super/hyper pipelining
• Branch prediction/speculative execution

14/02/02 r.innocente 7

Superscalar

It’s a CPU having multiple functional execution
units and able to dispatch multiple instruction
per cycle (double issue, quad issue ,...).

Pentium 4 has 7 distinct functional units:
Load, Store, 2 x double speed ALUs, normal

speed ALU, FP, FP Move. It can issue up to 6
uops per cycle (it has 4 dispatch ports but the
2 simple ALUs are double speed).

The Athlon has 9 functional units.

14/02/02 r.innocente 8

Pipelining/1

• It is the division of the work necessary
to execute instructions in stages to
allow more instructions in execution at
the same time (at different stages)

• Previous generation architectures had
5/6 stages

• Now there are 10/20 stages, Intel called
this superpipelining or hyperpipelining

14/02/02 r.innocente 9

Pipelining/2

Instruction Fetch (IF)

Instruction decode (ID) Memory
hierarchy

(Registers,
caches,
memory)

Data access(DA)

Execute(EX)

Write back results(WB)

14/02/02 r.innocente 10

Pipelining/3

WBEXDADAIDIFInstr 3

WBEXDAIDIFIFInstr 5

WBEXDAIDIDIFInstr 4

WBEXEXDAIDIFInstr 2

WBWBEXDAIDIFInstr 1

109876554321
Clock cycle

On the 5th cycle there are 5 instr. simultaneously executing

14/02/02 r.innocente 11

P3/P4 superpipelining

picture from Intel

14/02/02 r.innocente 12

Branch prediction
Speculative execution

To avoid pipeline starvation, the most probable branch
of a conditional jump (for which the condition register
is not yet ready) is guessed (branch prediction) and
the following instructions are executed (speculative
execution) and their result is stored in hidden
registers.

If later the condition turns out as predicted we say the
instruction has to be retired and the hidden registers
renamed to the real registers, otherwise we had a
misprediction and the pipe following the branch is
cleared.

14/02/02 r.innocente 13

x86 uarchitectures

Intel:
• P6 uarchitecture

• NetBurst

AMD:

• Thunderbird

• Palomino

14/02/02 r.innocente 14

Intel x86 family
• Pentium III

– Katmai

– Coppermine
• 500 Mhz – 1.13 Ghz

– Tualatin
• 1.13 – 1.33 Ghz

• Pentium 4

– Willamette
• 1.4-2.0 Ghz

– Northwood
• 2.0–2.2 Ghz

0.18 u

0.13 u

0.25 u

14/02/02 r.innocente 15

AMD Athlon family

• K7 Athlon 1999 0.25 technology
w/3DNow!

• K75 Athlon 0.18 techology
• Thunderbird (Athlon 3) 0.18 u

technology(on die L2 cache)
• Palomino (Athlon 4) 0.18 u Quantispeed

uarchitecture (SSE support) 15 stages
pipeline

14/02/02 r.innocente 16

Pentium 4 uarchitecture

14/02/02 r.innocente 17

Athlon uarchitecture

14/02/02 r.innocente 18

x86 Architecture extensions/1

x86 architecture was conceived in 1978. Since
then it underwent many architecture
extensions.

• Intel MMX (Matrix Math eXtensions):
– introduced in 1997 supported by all current

processors
• Intel SSE (Streaming SIMD Extensions):

– introduced on the Pentium III in 1999
• Intel SSE2 (Streaming SIMD Extensions 2):

– introduced on the Pentium 4 in Dec 2000

14/02/02 r.innocente 19

x86 Architecture extensions/2

• AMD 3DNow! :
– introduced in 1998 (extends MMX)

• AMD 3DNow!+ (or 3DNow!
Professional, or 3DNow! Athlon):
– introduced with the Athlon (includes SSE)

14/02/02 r.innocente 20

x86 architecture extensions/3
The so called feature set can be obtained using the

assembly instruction
cpuid

that was introduced with the Pentium and returns
information about the processor in the processor’s
registers: processor family, model, revision, features
supported, size and structure of the internal caches.

On linux the kernel uses this instrucion at startup and
many of these info are available typing:

cat /proc/cpuinfo

14/02/02 r.innocente 21

x86 architecture extensions/4

Part of a typical output can be :
vendor_id : GenuineIntel
cpu family : 6
model : 8
model name : Pentium III(Coppermine)
cache size : 256 KB
flags : fpu pae tsc mtrr pse36 mmx

sse

14/02/02 r.innocente 22

SIMD technology

• A way to increase processor
performance is to group together equal
instructions on different data (Data
Level Parallelism: DLW)

• SIMD (Single Instruction Multiple Data)
comes from Flynn taxonomy (1966)

• Intel proposed its :
– SWAR (SIMD Within A Register)

14/02/02 r.innocente 23

typical SIMD operation

X4 X3 X2 X1

Y4 Y3 Y2 Y1

op op op op

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

14/02/02 r.innocente 24

MMX

• Adds 8 64-bits new registers :
– MM0 – MM7

• MMX allows computations on packed
bytes, word or doubleword integers
contained in the MM registers (the MM
registers overlap the FP registers !)

• Not useful for scientific computing

14/02/02 r.innocente 25

SSE

• Adds 8 128-bits registers :
– XMM0 – XMM7

• SSE allows computations on operands
that contain 4 Single Precision Floating
Points either in memory or in the XMM
registers

• Very limited use for scientific computing,
because of lack of precision

14/02/02 r.innocente 26

SSE2

• Works with operands either in memory or in
the XMM registers

• Allows operations on packed Double
Precision Floating Points or 128-bit integers

• Using a linear algebra kernel with SSE2
instructions matrix multiplication can achieve
1.8 Gflops on a P4 at 1.4 Ghz :
http://hpc.sissa.it/p4/

http://hpc.sissa.it/p4/
http://hpc.sissa.it/p4/

14/02/02 r.innocente 27

Cache memory

Cache=a place where you can safely
hide something

It is a high-speed memory that holds a
small subset of main memory that is in
frequent use.

cache MemoryCPU

14/02/02 r.innocente 28

Cache memory/1

• Processor /memory gap is the
motivation :
– 1980 no cache at all
– 1995 2 level cache
– 2002 ? 3 level cache ?

14/02/02 r.innocente 29

Cache memory/2

0
100
200
300
400
500
600
700
800

1995 1996 1997 1998 1999 2000

Year

P
er

fo
rm

an

Mem perf
CPU perf

1975 cpu cycle 1 usec, SRAM access 1 usec
2001 cpu cycle 0.5 ns, DRAM access 50 ns

CPU/DRAM
gap :
50 %/year

14/02/02 r.innocente 30

Cache memory/3

As the cache contains only part of the
main memory, we need to identify which
portions of the main memory are
cached. This is done by tagging the
data that is stored in the cache.

The data in the cache is organized in lines
that are the unit of transfer from/to the
CPU and the memory.

14/02/02 r.innocente 31

Cache memory/4
DataTags

Typical line
sizes are 32
(Pentium III),
64 (Athlon),
128 bytes
(Pentium 4)

cache line

14/02/02 r.innocente 32

Cache memory/5
Block placement algorithm :
• Direct Mapped : a block can be placed in just one row of the

cache
• Fully Associative : a block can be placed on any row
• n-Way set associative: a block can be placed on n places in a

cache row
With direct mapping or n-way the row is determined using a simple

hash function such as the least significant bits of the row
address.

E.g. If the cache line is 64 bytes(bits [5:0] of address are used only
to address the byte inside the row) and there are 1k rows, then
bits [15:6] of the address are used to select the cache row. The
tag is then the remaining most significant bits [:16] .

14/02/02 r.innocente 33

Cache memory/6

2-way
cache :
a block
can be
placed
on any
of the two
positions in
a row

Data DataTags Tags

cache line cache line

14/02/02 r.innocente 34

Cache memory/7

• With fully associative or n-way caches an
algorithm for block replacement needs to be
implemented.

• Usually some approximation of the LRU
(least recently used) algorithm is used to
determine the victim line.

• With large associativity (16 or more ways)
choosing at random the line is almost equally
efficient

14/02/02 r.innocente 35

Cache memory/8

• When during a memory access we find
the data in the cache we say we had a
hit, otherwise we say we had a miss.

• The hit ratio is a very important
parameter for caches in that it let us
predict the AMAT (Average Memory
Access Time)

14/02/02 r.innocente 36

Cache memory/9

If
• tc is the time to access the cache
• tm the time to access the data from

memory
• h the unitary hit ratio
then:

t = h * tc+ (1-h)*tm

14/02/02 r.innocente 37

Cache memory/10

In a typical case we could have :
• tc=2 ns
• tm=50 ns
• h=0.90
then the AMAT would be :
AMAT = 0.9 * 2+0.1*50= 6.8 ns

14/02/02 r.innocente 38

Cache memory/11

Typical split L1/unified L2 cache
organization:

L1
data L2

unifiedCPU
L1

code

14/02/02 r.innocente 39

Real Caches
• Pentium III : line size 32 bytes

– split L1 – 16KB inst/16KBdata 4-way write through
– L2 256 KB (coppermine) 8-way write back

• Pentium 4 :
– split L1 :

• Instruction L1 : 12 K uops 8-ways
• Data L1 : 8 KB – 4 way/64 bytes line size/write through

– unified L2: 256 KB 8-way /line size 128 bytes/write back
(512KB on Northwood)

• Athlon : split L1 64 KB/64 KB/ line 64 bytes
– L2 256 KB 16-ways/ 64 bytes line size

14/02/02 r.innocente 40

Memory performance

• stream (McCalpin) :
http://www.cs.virginia.edu/stream

• memperf (T.Stricker):
http://www.cs.inf.ethz.ch/CoPs/ECT

http://www.cs.virginia.edu/stream
http://www.cs.virginia.edu/stream
http://www.cs.inf.ethz.ch/CoPs/ECT
http://www.cs.inf.ethz.ch/CoPs/ECT

14/02/02 r.innocente 41

MTRR/1

Memory Type and Range Registers were
introduced with the P6 uarchitecture, they
should be programmed to define how the
processor should behave regarding the use
of the cache in different memory areas. The
following types of behaviour can be defined:

UC(Uncacheable), WC(Write Combining),
WT(Write through), WB(Write back),
WP(write Protect)

14/02/02 r.innocente 42

MTRR/2

• UC=uncacheable:
– no cache lookups,
– reads are not performed as line reads, but as is
– writes are posted to the write buffer and performed

in order
• WC=write combining:

– no cache lookups
– read requests performed as is
– a Write Combining Buffer of 32 bytes is used to

buffer modifications until a different line is
addressed or a serializing instruction is executed

14/02/02 r.innocente 43

MTRR/3
• WT=write through:

– cache lookups are perfomed
– reads are performed as line reads
– writes are performed also in memory in any case (L1 cache

is updated and L2 is eventually invalidated)
• WB=write back

– cache lookups are performed
– reads are performed as line reads
– writes are performed on the cache line eventually reading a

full line.Only when the line needs to be evicted from cache if
modified, it will be written in memory

• WP=write protect
– writes are never performed in the cache line

14/02/02 r.innocente 44

MTRR/4

There are 8 MTRRs for variable size
areas on the P6 uarchitecture.

On Linux you can display them with:
cat /proc/mtrr

14/02/02 r.innocente 45

MTRR/5

A typical output of the command would be:
reg00: base=0x00000000 (0MB),
size=256MB: write-back

reg01: base=0xf0000000 (3840MB),
size=32MB:write-combining

the first entry is for the DRAM, the other for the
graphic board framebuffer

14/02/02 r.innocente 46

MTRR/6

It is possible to remove and add regions
using these simple commands:

echo ‘disable=1’ >| /proc/mtrr

echo ‘base=0xf0000000
size=0x4000000 type=write-
combining’ >|/proc/mtrr

(Suggestion: Try to use xengine while disabling
and re-enabling the write-combining region of
the framebuffer.)

14/02/02 r.innocente 47

Explicit cache control/1

Caches were introduced as an h/w only
optimization and as such destined to be
completely hidden to the programmers.

This is no more true, and all recent
architectures have introduced some
instructions for explicit cache control by the
application programmer. On the x86 this was
done togheter with the introduction of the
SSE instructions.

14/02/02 r.innocente 48

Explicit cache control/2

On the Intel x86 architecture the following instructions
provide explicit cache control :

• prefetch : these instructions load a cache line
before the data is actually needed, to hide latency

• non temporal stores: to move data from
registers to memory without writing it in the caches,
when it is known data will not be re-used

• fence: to be sure order between prior/following
memory operation is respected

• flush : to write back a cache line, when it is
known it will not be re-used

14/02/02 r.innocente 49

Performance and
timestamp counters/1

These counters were initially introduced
on the Pentium but documented only on
the PPro. They are supported also on
the Athlon.

Their aim was fine tuning and profiling of
the applications. They were adopted
after many other processors had shown
their usefulness.

14/02/02 r.innocente 50

Performance and
timestamp counters/2

Timestamp counter (TSC):
• it is a 64 bit counter
• counts the clock cycles (processor cycles: now up to

2 Ghz=0.5ns) since reset or since programmer
zeroed

• when it reaches a count of all 1s, it wraps around
without generating any interrupt

• it is an x86 extension that is reported by the cpuid
instruction, as such can be found on /proc/cpuinfo

• Intel assured that even on future processor it will
never wrap around in less than 10 years

14/02/02 r.innocente 51

Performance and timestamp
counters/3

• the TSC can be read with the RDTSC (Read TSC)
instruction or the RDMSR (Read
ModelSpecificRegister 0x10) instruction

• it is possible to zero the lower 32 bits of the TSC
using the WRMSR (Write MSR 0x10) instruction (the
upper 32 bits will be zeroed automagically by the h/w

• the RDTSC is not a serializing instruction as such
does’nt avoid Out of Order execution. This can be
obtained using the cpuid instruction

14/02/02 r.innocente 52

Performance and timestamp
counters/4

The TSC is used by Linux during the startup
phase to determine the clock frequency:

• the PIT (Programmable Interval Timer) is
programmed to generate a 50 millisecond
interval

• the elapsed clock ticks are computed reading
the TSC before and after the interval

The TSC can be read by any user or only by the
kernel according to a cpu flag in the CR4
register that can be set e.g. by a module.

14/02/02 r.innocente 53

Performance and timestamp
counters/5

On the P6 uarchitecture there are 4 registers used for
performance monitoring:

• 2 event select registers: PerfEvtSel0, PerfEvtSel1
• 2 performance counters 40 bits wide : PerfCtr0, PerfCtr1
You have to enable and specify the events to monitor setting the

event select registers.
These registers can be accessed using the RDMSR and WRMSR

instructions at kernel level (MSR 0x186,0x187, 0x193 0x194).
The performance counters can also be accessed using the

RDPMC (Read Performance Monitoring Counters) at any
privilege level if allowed by the CR4 flag.

14/02/02 r.innocente 54

Performance and timestamp
counters/6

The Performance Monitoring mechanism has been
vastly changed and expanded on P4 and Xeons. This
new feature is called : PEBS (Precise Event-based
Sampling).

There are 45 event selection control (ESCR) registers ,
18 performance monitor counters and 18 counter
configuration control (CCCR) MSR registers.

Now counters can produce an interrupt on
overflow/underflow.

You can count bogus (uops non retired because of
misprediction) and nonbogus events separately.

14/02/02 r.innocente 55

Performance and timestamp
counters/7

A useful performance counters library to instrument the
code and a tool called rabbit to monitor programs not
instrumented with the library can be found at:

http://www.scl.ameslab.gov/Projects/Rabbit/
Another tool in perl for Pentium 4 called brink/abyss is

available at
http://www.eg.brucknell.edu/~bsprunt/emon/brink_abyss

.shtm
And then there is PAPI (Performance API) by Dongarra

et al. at UTK:
http://icl.cs.utk.edu/projects/papi/

http://www.scl.ameslab.gov/Projects/Rabbit/
http://www.scl.ameslab.gov/Projects/Rabbit/
http://www.eg.brucknell.edu/~bsprunt/emon/brink_abyss.shtm
http://icl.cs.utk.edu/projects/papi/
http://icl.cs.utk.edu/projects/papi/

14/02/02 r.innocente 56

Processor bus/1
• Intel (AGTL+):

– bus based (max 5 loads)
– explicit in band arbitration
– short bursts (4 data txfers)
– 8 bytes wide(64 bits), up to 133 Mhz

• Compaq Alpha (EV6)/Athlon :
– point to point
– DDR double data rate (2 transfers x clock)
– licensed by AMD for the Athlon (133 Mhz x 2)
– source synchronous(up to 400 Mhz)
– 8 bytes wide(64 bits)

14/02/02 r.innocente 57

Processor bus/2

• Intel Netburst (Pentium 4):
– source synchronous (like EV6)
– 8 bytes wide
– 100 Mhz clock
– quad data rate for data transfers (4 x 100 Mhz x 8

bytes= 3.2 GB/s, just in theory)
– double data rate for address transfer
– max 128 bytes(a P4 cache line)in a transaction (4

data transfer cycles)

14/02/02 r.innocente 58

Intel IA32 node

Pentium III Pentium III

North Bridge

shared
FSB 64 bits @100/133Mhz

Memory

14/02/02 r.innocente 59

Intel PIII/P4 processor bus

• Bus phases :
– Arbitration: 2 or 3 clks
– Request phase: 2 clks packet A, packet B (size)
– Error phase: 2 clks, check parity on pkts,drive

AERR
– Snoop phase: variable length 1 ...
– Response phase: 2 clk
– Data phase : up to 32 bytes (4 clks, 1 cache line),

128 bytes with quad data rate on Pentium 4
• 13 clks to txfer 32 bytes, or 128 bytes on P4

14/02/02 r.innocente 60

Alpha node

21264 21264

Tsunami
xbar switch

Memory

AlphaEV6 bus
64 bit 4*83Mhzstream

measured
memory

b/w> 1GB/s

256 bit-83 Mhz

14/02/02 r.innocente 61

Alpha/Athlon EV6 bus

• 3 high speed channels :
– Unidirectional processor request channel
– Unidirectional snoop channel
– 72-bit data channel (ECC)

• source synchronous
• up to 400 Mhz (4 x 100 Mhz: quad

pumped, Athlon :133Mhz x 2 ddr)

14/02/02 r.innocente 62

Pentium 4 (Willamette)

• 1.4-2.2 Ghz with 256(512 Northwood)KB L2
cache (SKT 423)/(SKT478)

• Processor bus at 100 Mhz but Quad pumped
(2x address rate/4x data rate)

• With PC800 RDRAM at 1.4 Ghz stream gives
~ 1.5 GB/s memory bandwidth

• L2 Cache line is 128 bytes (1 bus
transaction: 4x4x8)

14/02/02 r.innocente 63

SMPs
Symmetrical Multi Processing denotes a

multiprocessing architecture in which
there is no master CPU, but all CPUs
co-operate.

• processor bus arbitration
• cache coherency/consistency
• atomic RMW operations
• mp interrupts

14/02/02 r.innocente 64

Intel MP
Processor bus arbitration

• As we have seen there is a special phase for each
bus transaction devoted to arbitration (it takes 2 or 3
cycles)

• At startup each processor is assigned a cluster
number from 0 to 3 and a processor number from 0
to 3 (the Intel MP specification covers up to 16
processors)

• In the arbitration phase each processor knows who
had the bus during last transaction (the rotating ID)
and who is requesting it. Then each processor knows
who will own the current transaction because they will
gain the bus according to the fixed sequence 0-1-2-3.

14/02/02 r.innocente 65

Cache coherency
Coherence: all processor should see the same data.
This is a problem because each processor can have its

own copy of the data in its cache.
There are essentially 2 ways to assure cache

coherency:
• directory based : there is a central directory that

keeps track of the shared regions (ccNUMA: Sun
Enterprise, SGI)

• snooping : all the caches monitor the bus to
determine if they have a copy of the data requested
(UMA: Intel MP)

14/02/02 r.innocente 66

Cache consistency

• Consistency: mantain the order in which
writes are executed

Writes are serialized by the processor
bus.

14/02/02 r.innocente 67

Snooping

Two protocols can be used by caches to snoop
the bus :

• write-invalidate: when a cache hears on the
bus a write request for one of his lines from
another bus agent then it invalidates its copy
(Intel MP)

• write-update: when a cache hears on the bus
a write request for one of his lines from
another agent it reloads the line

14/02/02 r.innocente 68

Intel MP snooping
• If a memory transaction (memory read and invalidate/read

code/read data/write cache line/write) was not cancelled by an
error, then the error phase of the bus is followed by the snoop
phase(2 or more cycles)

• In this phase the caches will check if they have a copy of the line
line

• if it is a read and a processor has a modified copy then it will
supply its copy that is also written to memory

• if it is a write and a processor has a modified copy then the
memory will store first the modified line and then will merge the
write data

14/02/02 r.innocente 69

MESI protocol
Each cache line can be in 1 of the 4 states:
• Invalid (I): the line is not valid and should not be used
• Exclusive(E): the line is valid, is the same as main

memory and no other processor has a copy of it, it
can be read and written in cache w/o problems

• Shared(S): the line is valid, the same as memory,
one or more other processors have a copy of it, it can
be read from memory, it should be written-through
(even if declared write back!)

• Modified(M): the line is valid, has been updated by
the local processor, no other cache has a copy, it can
be read and written in cache

14/02/02 r.innocente 70

MESI states
WSR

RR

I S SW

EM

R
S

WS

Legenda:
Read access
Write access
Snoop

W W

RR

14/02/02 r.innocente 71

L2/L1 coherence

• An easy way to keep coherent the 2
levels of caches is to require inclusion (
L1 subset of L2)

• Otherwise each cache can perform its
snooping

14/02/02 r.innocente 72

Atomic Read Modify Write

The x86 instruction set has the possibility to prefix some
instructions with a LOCK prefix:
– bit test and modify
– exchange
– increment, decrement, not,add,sub,and,or

These will cause the processor to assert the LOCK#
bus signal for the duration of the read and write.

The processor automatically asserts the LOCK# signal
during execution of an XCHG , during a task switch,
while reading a segment descriptor

14/02/02 r.innocente 73

Intel MP interrupts

Intel has introduced an I/O APIC (Advanced Programmable
Interrupt controller) which replaces the old 8259A.

• each processor of an SMP has its own integrated local APIC
• an Interrupt Controller Communication (ICC) bus connects an

external I/O APIC (front-end) to these local APICs (on the
Pentium 4 this communication happens on the processor bus)

• externel IRQ lines are connected to the I/O APIC that acts as a
router

• the I/O APIC can dispatch interrupts to a fixed processor or to
the one executing lowest priority activites (the priority table has
to be updated by the kernel at each context switch)

14/02/02 r.innocente 74

PCI Bus
Standard PCI in use today is 32 bits at 33 Mhz, just

sufficient for 1 Gb/s

• PCI32/33 4 bytes@33Mhz=132MBytes/s (on
i440BX,...)

• PCI64/33 8 bytes@33Mhz=264Mbytes/s

• PCI64/66 8 bytes@66Mhz=528Mbytes/s (on i840)

• PCI-X 8 bytes@133Mhz=1056Mbytes/s

PCI-X will implement split transactions

14/02/02 r.innocente 75

PCI efficiency

• Multimaster bus but arbitration is performed
out of band

• Multiplexed but in burst mode (implicit
addressing) only start address is txmitted

• Fairness guaranteed by MLT (Maximum
Latency Timer)

• 3 / 4 cycles overhead on 64 data txfers < 5 %
• on Linux use : lspci –vvv to look at the setup

of the boards

14/02/02 r.innocente 76

PCI 2.2/X timing diagram
Target

response
Address

phase
Attribute

phase
Data

phaseCLK

Address

Bus cmd Attr

DataAttr
AD

C/BE#
BE

FRAME #

IRDY#

TRDY#

14/02/02 r.innocente 77

common chipsets
PCI performance

372303Serverworks HE

315227Intel 860

328315AMD760MPX

248205Tsunami (alpha)

372309Serverworks champion II HE

372315Serverset III HE

399372Intel 460GX (Itanium)

488407Titan (Alpha)

512455Serverworks Serverset III LE

Write MB/sRead MB/sChipset

14/02/02 r.innocente 78

Memory buses

• SDRAM 8 bytes wide (64 bits): these memories are pipelined
DRAM. Industry found for them much more appealing to indicate
clock frequency than access times. Number of clock cycles to
wait for access is written in a small rom on the module(SPD)
– PC-100 PC-133
– DDR PC-200, DDR 266 QDR on the horizon

• RDRAM 2 bytes wide(16 bits) these memories have a completely
new signaling technology. Their bus should be terminated at both
ends (coninuity module required if slot not used!)
– RDRAM 600/800/1066 double data rate at 300,400,533 Mhz

14/02/02 r.innocente 79

Interconnects /1
Today we speak of interconnection networks (or interconnects)

referring to processor-memory, I/O controllers-I/O devices,
processor-processor, computer-computer communications. Up
to the beginning of the ’90 many of these applications were
using a very simple interconnection: the multidrop bus.

Now all high performance communications are performed by point-
to-point interconnection networks. This depends on the demand
for higher performance and the impossibility to scale for the bus.

bandwidth : speed in Mb/s of the network including overhead bits
txmission time: time to pass through the net (size in bits with

overhead)/bandwidth
time of flight: time for a bit to traverse the net sender to receiver
sender overhead: time to prepare the message
receiver overhead: time to get the message from the network

14/02/02 r.innocente 80

LogP metrics (Culler)
This metric was introduced to characterize a distributed

system with its most important parameters,a bit outdated, but
still useful.(e.g..does’nt take into account pipelining)

• L = Latency: time data is on flight between the 2
nodes

• o = overhead: time during which the processor is
engaged in sending or receiving

• g = gap : minimum time interval between consecutive
message txmissions(or receptions)

• P = # of Processors

14/02/02 r.innocente 81

LogP diagram

Network

NI NI
g

g

L

os
or

Processor Processor

time=os+L+or

14/02/02 r.innocente 82

Interconnects /2

• single mode fiber (sonet 10 gb/s for
some km)

• multimode fiber (1 gb/s 300 m: GigE)
• coaxial cable (800 mb/s 1 km: CATV)
• twisted pair (1 gb/s 100 m: GigE)

14/02/02 r.innocente 83

Interconnects /3

• shared / switched media:
– bus (shared communication):

• coaxial
• pcb trace
• backplane

– switch (1-1 connection):
• point to point

14/02/02 r.innocente 84

Interconnects /4
Network Topology:
• now not so important as it has been considered in the past
• clearly the best network would be the complete graph: every node

connected directly with all other nodes, but this requires n(n-1)/2
connections

• issues: routing distance, diameter, avg distance
• the major issue is the number of wires, delay and bandwidth

– ring : nodes are numbered 0:n-1, each node has 2 connections one with
the preceding and one with the following node (modulo n)

– crossbar
– hypercube
– mesh/grid
– star: there is a central switch to which all nodes are connected
– torus
– omega

14/02/02 r.innocente 85

Interconnects /5
Hypercube:
• A k-cube has 2**k

nodes, each node is
labelled by a k-dim
binary coordinate

• 2 nodes differing in only
1 dim are connected

• there are at most k
hops between 2 nodes,
and 2**k * k wires

0 1
01 11

1-cube

00
2-cube

10

3-cube

14/02/02 r.innocente 86

Interconnects /6
Mesh:
• an extension of hypercube
• nodes are given a k-dim

coordinate (in the 0:N-1
range)

• nodes that differ by 1 in only
1 coordinate are connected

• a k-dim mesh has N**k
nodes

• at most there are kN hops
between nodes and wires
are ~ kN**k

02 12 22

11 2101

00 0000

2-dim 3x3 mesh

14/02/02 r.innocente 87

Interconnects /7
Crossbar (xbar):
• typical telephone network

technology
• organized by rows and

columns (NxN)
• requires N**2 switches
• any permutation w/o blocking

blocking
• in the picture the i-row is the

sender and the i-col is the
receiver of node i

4

3

2

1

0

0 1 2 3 4

5x5 xbar switch

14/02/02 r.innocente 88

Interconnects /8
• Bisection width :

732hypercube
641024fully connected

5162-d torus
58grid/mesh
6432star
32ring

1bus

ports/switchbisection

14/02/02 r.innocente 89

Interconnects /9

• Connection/connectionless:
– circuit switched: the telephone network is a

typical example of circuit switching, ATM
– packet switched: ethernet, X25

• routing
– source based routing (SBR): myrinet
– virtual circuit: ATM, phone net
– destination based: multicast routing

14/02/02 r.innocente 90

Interconnects /10
• switch mechanism (buffer management):

– store and forward
• each msg is received completely by a switch before being forwarded to

the next
• pros: easy to design because there is no handling of partial msgs
• cons: long msg latency, requires large buffer

– cut-through (virtual cut-through)
• msg forwarded to the next node as soon as its header arrives
• if the next node cannot receive the msg then the full msg needs to be

stored
– wormhole routing

• the same as cut-trough except that the msg can be buffered togheter
by multiple successive switches

• the msg is like a worm crawling through a worm-hole

14/02/02 r.innocente 91

Interconnects /11

• congestion control
– packet discarding: typically used by switches, routers on

IP stack
– flow control

• window /credit based: MAN, myrinet gm protocol
• start/stop: xon/xoff serial protocol

14/02/02 r.innocente 92

Bisection /1
Bisection width : given an N nodes net, divided the

nodes in two sets of N/2 nodes, the number of links
that go from one set to the other.

An important parameter is the minimum bisection width:
the minimum number of links whatever cut you use to
bisect the nodes.

An upper bound on the minimum bisection is N/2
because whatever the topology would be you can
always find a cut across half of the node links. If a
network has minimum bisection of N/2 we say it has
full bisection.

14/02/02 r.innocente 93

Bisection /2
2 different 8 nodes nets

Bisection cut:
1 link

Bisection cut:
4 links

14/02/02 r.innocente 94

Bisection /3

It can be difficult to find the min bisection.
For full bisection networks, it can be shown that

if a network is re-arrangeable (it can route
any permutation w/o blocking) then it has full
bisection.

1625403To
6543210From

14/02/02 r.innocente 95

NIC Interconnection point
(from D.Culler)

Controller Special uproc General uproc

Register TMC CM-5

Memory T3E annex Meiko
CS-2

Intel
Paragon

Graphics
Bus

HP
Medusa

I/O Bus SP2, Fore
ATM cards

Myrinet,
3ComGbe

Many
ether cards

14/02/02 r.innocente 96

Ethernet history

• 1976 Metcalfe invented a 1 Mb/s ether
• 1980 Ethernet DIX (Digital, Intel, Xerox)

standard
• 1989 Synoptics invented twisted pair

Ethernet
• 1995 Fast Ethernet
• 1998 Gigabit Ethernet
• 200x 10 Gigabit Ethernet

14/02/02 r.innocente 97

Ethernet

• 10 Mb/s
• Fast Ethernet
• Gigabit Ethernet

14/02/02 r.innocente 98

Ethernet Frames
• 6 bytes dst address
• 6 bytes src address :3 bytes vendor codes, 3 bytes

serial #
• 2 bytes ethernet type: ip, ...
• data from 46 up to 1500 bytes
• 4 bytes FCS (checksum)

dst
address

src
address

type FCSdata

14/02/02 r.innocente 99

VLAN

Virtual LAN :
– IEEE 802.1Q extension to the ethernet std
– frames can be tagged with 4 more bytes

(so that now an ethernet frame can be up
to 1522 bytes):

• TPID tagged protocol identifier, 2 bytes with
value 0x8100

• TCI Tag control information: specifies priority
and Virtual LAN (12 bits) this frame belongs

• remaining bytes with standard content

14/02/02 r.innocente 100

Hubs
• Repeaters: layer 1

– like a bus they just repeat all the data across all
the connections (not very useful for clusters)

• Switches (bridges) layer 2
– they filter traffic and repeat only necessary traffic

on connections (very cheap switches can easily
switch at full speed many Fast Ethernet
connections)

• Routers : layer 3

14/02/02 r.innocente 101

Ethernet flow/control
• With large switches it is necessary to be able to limit the flow of packets

to avoid packet discarding following an overflow
• Vendors had tried to implement non standard mechanism to overcome

the problem
• One of this mechanism that could be used for half/duplex links is

sending carrier bursts to simulate a busy channel
• This mechanism does’nt apply to full/duplex links
• MAC control protocol : to support flow control on f/d links

– a new ethernet type = 0x8808, for frames of 46 bytes (min length)
– first 2 bytes are the opcode other are the parameters
– opcode = 0x0001 PAUSE stop txmitting
– dst address = 01-80-c2-00-00-01 (an address not forwarded by bridges)
– following 2 bytes represent the number of 512 bit times to stop txmission

14/02/02 r.innocente 102

Auto Negotiation
• On twisted pairs each station transmits a series of pulses (quite

different from data) to signal link active. These pulses are called
Normal Link Pulses (NLP)

• A set of Fast Link Pulses (FLP) is used to code station
capabilities.These FLPs bits code the set of station capabilities

• There are some special repeaters that connect 10mb/s links
together and 100mb/s together and then the two sets to ports of
a mixed speed bridge

• Parallel detection: when autonegotiation is not implemented,
this mechanism tries to discover speed used from NLP pulses
(will not detect duplex links).

14/02/02 r.innocente 103

GigE
Peculiarities :
• Flow control necessary on full duplex
• 1000base-T uses all 4-pairs of cat 5 cable in both directions:

250 Mhz*4 , with echo cancellation(10 and 100base-T used only
2 pairs)

• 1000base-SX on multimode fiber uses a laser (usually a
VCSEL). Some multimode fibers have a discontinuity in the
refraction index for some microns just in the middle of the fiber.
This is not important with a LED launch where the light fills the
core but is essential with a laser launch. An offset patch cord (a
small length of single mode fiber that moves away from the
center the spot) has been proposed as solution.

14/02/02 r.innocente 104

Network (Physical Layer)

Current technology is at ~1/2 Gb/s(GbE,Myrinet), is
there room for improvement?

• Ethernet 2.5 Gb/s ..10 Gb/s
• Infiniband 2.5Gb/s – 30 Gb/s
• SONET OC192 10 Gb/s
• GSN(Hippi) 6.4 Gb/s

A lot of the improvements in the optical arena are coming
from the use in the last years of the low cost VCSELs(Vertical

Cavity Surface Emitting Laser)

14/02/02 r.innocente 105

Network (Physical Layer)

Two technologies have provided room for
vast improvements at the net physical
layer in the last decade :

• LVDS(Low voltage differential signaling)
on copper

• VCSEL (Vertical Cavity Surface
Emitting Lasers) on fibers

14/02/02 r.innocente 106

LVDS/1

• Low Voltage Differential Signaling
(ANSI/TIA/EIA 644-1995)

• Defines only the electrical
characteristics of drivers and receivers

• Transmission media can be copper
cable or PCB traces

14/02/02 r.innocente 107

LVDS/2
• Differential :

– Instead of measuring the voltage Vref+U between a signal
line and a common GROUND, a pair is used and Vref+U
and Vref–U are transmitted on the 2 wires

– In this way the transmission is immune to Common Mode
Noise (the electrical noise induced in the same way on the 2
wires: EMI,..)

14/02/02 r.innocente 108

LVDS/3

• Low Voltage:
– voltage swing is just 300 mV, with a driver offset of +1.2V
– receivers are able to detect signals as low as 20 mV,in the 0

to 2.4 V (supporting +/- 1 V of noise)

0 V

+300mV

-300mV

1.2 V
1.35V

1.05V

14/02/02 r.innocente 109

LVDS/4

• It consumes only 1 mW(330mV swing
constant current): GTL would consume 40
mW(1V swing) and TTL much more

• consumer chips for connecting displays
(OpenLDI DS90C031) are already txmitting 6
Gb/s

• The low slew rate (300mV in 333 ps is only
0.9V/ns) minimize xtalk and distortion

14/02/02 r.innocente 110

VCSEL/1
VCSELs: Vertical Cavity

Surface Emitting
Lasers:

• the laser cavity is
vertical to the
semiconductor wafer

• the light comes out from
the surface of the wafer

Distributed Bragg
Reflectors(DBR):

• 20/30 pairs of
semiconductor layers

Active region

p-DBR

n-DBR

14/02/02 r.innocente 111

VCSEL/2-EEL (Edge Emitting)

picture from Honeywell

14/02/02 r.innocente 112

VCSEL/3- Surface Emission

picture from Honeywell

14/02/02 r.innocente 113

VCSEL/4

pict from Honeywell

14/02/02 r.innocente 114

VCSEL/5

At costs similar to LEDs have the characteristics of
lasers.

EELs:
• it’s difficult to produce a geometry w/o problems

cutting the chips
• it’s not possible to know in advance if the chip it’s

good or not
VCSELs:
• they can be produced and tested with standard I.C.

procedures
• arrays of 10 or 1000 can be produced easily

14/02/02 r.innocente 115

MINI
(Memory Integrated Network Interface)

• MINI (R.Minnich,D.Burns) IEEE Micro
1995: ATM interface on a SIMM slot

• MEMOnet/DIMMnet: (Tanabe et al.
2000) a NIC on a PC-133 DIMM slot

• Estimated performance of DIMMnet-1 :
– short msg latency: 250ns
– long msgs b/w: 300-450 MB/s (depending

on processor and chipset)

14/02/02 r.innocente 116

MINI/2

Dual port memory Snd/Rcv Logic

COmmunication link

Memory I/F

Host memory slot

14/02/02 r.innocente 117

Infiniband/1

• It represents the convergence of 2 separate
proposal:
– NGIO

(NextGenerationIO:Intel,Microsoft,Sun)
– FutureIO (Compaq,IBM,HP)

• Infiniband: Compaq, Dell, HP, IBM, Intel,
Microsoft, Sun

14/02/02 r.innocente 118

Infiniband/2

• Std channel at 2.5 Gb/s (Copper LVDS
or FIber) :
– 1x width 2.5 Gb/s
– 4x width 10 Gb/s
– 12x width 30 Gb/s

14/02/02 r.innocente 119

Infiniband/3

• Highlights:
– point to point switched interconnect
– channel based message passing
– computer room interconnect, diameter <

100-300 m
– one connection for all I/O : ipc, storage I/O,

network I/O
– up to thousands of nodes

14/02/02 r.innocente 120

Infiniband/4

14/02/02 r.innocente 121

Infiniband/5

14/02/02 r.innocente 122

Myrinet/1
• comes from a USC/ISI research project : ATOMIC
• flow contro and error control on all links
• cut-through xbar switches, intelligent boards
• Myrinet packet format :

type CRCdata (no length limit)

Allows multiple protocols

Source route bytes

14/02/02 r.innocente 123

Myrinet/2

14/02/02 r.innocente 124

Myrinet/3
Every node can discover the topology

with probe packets (mapper).
In this way it gets a routing table that can

be used to compute headers for any
destination.

There is 1 byte for each hop traversed,
the first byte with routing information is
removed by each switch on the path.

14/02/02 r.innocente 125

Clos networks

Named after Charles Clos who introduced them
in 1953.

These networks have full bisection.
Large Myrinet clusters are frequently arranged

as a Clos network.
Myricom base block is their 16 port xbar switch.
From this brick it’s possible to build 128 nodes/3

level (16+8switches) and 1024 nodes 5 level
networks.

14/02/02 r.innocente 126

Clos networks/2

from myri.com

14/02/02 r.innocente 127

Software

Despite great advances in network
technology(2-3

orders of magnitude), much communication s/w
remained almost unchanged for many years
(e.g.BSD networking).

There is a lot of ongoing research on this theme
and

very different solutions are proposed(zero-
copy, page remapping,VIA,...)

14/02/02 r.innocente 128

Software overhead

software

overhead
Being a constant, is becoming
more and more important !!

txmission
time

total
time software

overhead software
overhead

10Mb/s Ether 100Mb/s Ether 1Gb/s

14/02/02 r.innocente 129

Zero Copy Research
High speed networks, I/O systems and memory have

comparable bandwidths -> it is essential to avoid any
unnecessary copy of data !

• Shared memory between user/kernel:
– Fbufs(Druschel,1993)
– I/O-Lite (Druschel,1999)

• Page remapping with copy on write (Chu,1996)
• Blast: hardware splits headers from

data(Carter,O’Malley,1990)
• Ulni (User-level Network Interface): implementation

of communication s/w inside libraries in user space

14/02/02 r.innocente 130

OS bypass – User level
networking

• Active Messages (AM) – von Eicken,
Culler (1992)

• U-Net –von Eicken, Basu, Vogels (1995)
• PM – Tezuka, Hori, Ishikawa, Sato (1997)
• Illinois FastMessages (FM) – Pakin,

Karamcheti, Chien (1997)
• Virtual Interface Architecture (VIA) –

Compaq,Intel,Microsoft (1998)

14/02/02 r.innocente 131

Active Messages (AM)
• 1-sided communication paradigm(no

receive op)
• each message as soon as received

triggers a receive handler that acts as a
separate thread (in current
implementations it is sender based)

14/02/02 r.innocente 132

FastMessages (FM)
• FM_send(dest,handler,buf,size)

sends a long message
• FM_send_4(dest,handler,i0,i1,i2,i3)

sends a 4 words msg (reg to reg)
• FM_extract()

process a received msg

14/02/02 r.innocente 133

VIA/1
Wanting to get at the industrial level the advantages

obtained from the various User Level Networking
(ULN) initiatives, Compaq, Intel and Microsoft
proposed an industry standard called VIA (Virtual
Interface Architecture). This proposal specifies an
API (Application Programming Interface).

In this proposal network reads and writes are done
bypassing the OS, while open/close/map are done
with the kernel intervention. It requires memory
registering.

14/02/02 r.innocente 134

VIA/2

VI Hardware

VI

VI kernel i/f

VI kernel agent

VI
D
o
o
r
b
e
l
l
s

SendQRecQ RecQ SendQ

VI Provider API
Open/Close/Map Send/Receive/RDMA

14/02/02 r.innocente 135

VIA/3

• VIA is better suited to network cards
implementing advanced mechanism like
doorbells (a queue of transactions in the
address space of the memory card, that are
remembered by the card)

• Anyway it can also be implemented
completely in s/w, despite less efficiently (look
at the M-VIA UCB project, and MVICH)

14/02/02 r.innocente 136

Software layering
Use of abstraction layers has promoted generality, but maybe

it can be harmful to efficiency

A typical read/write on a tcp socket passes through:
• VFS(Virtual File System) layer
• BSD socket layer
• Inet socket layer

14/02/02 r.innocente 137

Network layering considered
harmful ?

Is the successful network layering approach to networking
harmful to today high speed network performance ?

• 7 layers ISO/OSI model
• 4 layers TCP/IP

Yes, if it implies data copying between layers, no if layering is
just an abstraction

14/02/02 r.innocente 138

Linux Socket buffers (sk_buff)
This is the Linux

way to avoid
copying between
network layers,
does’nt avoid

copies between
kernel/user

spaces and for
frag/defrag-
mentation

header

datapush

pull
len

trimtail

put

14/02/02 r.innocente 139

Memory Management

14/02/02 r.innocente 140

Linux 2.4 kiobuff

14/02/02 r.innocente 141

Bibliography

• Patterson/Hennessy: Computer
Architecture – A Quantitative Approach

• Hwang – Advanced Computer
Architecture

• Schimmel – Unix Systems for Modern
Architectures

	HPC on linux clustersNodes and Networkshardware
	Overview
	Typical Node Architecture
	Computer families/1
	Computer families/2
	Micro architecture
	Superscalar
	Pipelining/1
	Pipelining/2
	Pipelining/3
	P3/P4 superpipelining
	Branch predictionSpeculative execution
	x86 uarchitectures
	Intel x86 family
	AMD Athlon family
	Pentium 4 uarchitecture
	Athlon uarchitecture
	x86 Architecture extensions/1
	x86 Architecture extensions/2
	x86 architecture extensions/3
	x86 architecture extensions/4
	SIMD technology
	typical SIMD operation
	MMX
	SSE
	SSE2
	Cache memory
	Cache memory/1
	Cache memory/2
	Cache memory/3
	Cache memory/4
	Cache memory/5
	Cache memory/6
	Cache memory/7
	Cache memory/8
	Cache memory/9
	Cache memory/10
	Cache memory/11
	Real Caches
	Memory performance
	MTRR/1
	MTRR/2
	MTRR/3
	MTRR/4
	MTRR/5
	MTRR/6
	Explicit cache control/1
	Explicit cache control/2
	Performance and timestamp counters/1
	Performance and timestamp counters/2
	Performance and timestamp counters/3
	Performance and timestamp counters/4
	Performance and timestamp counters/5
	Performance and timestamp counters/6
	Performance and timestamp counters/7
	Processor bus/1
	Processor bus/2
	Intel IA32 node
	Intel PIII/P4 processor bus
	Alpha node
	Alpha/Athlon EV6 bus
	Pentium 4 (Willamette)
	SMPs
	Intel MP Processor bus arbitration
	Cache coherency
	Cache consistency
	Snooping
	Intel MP snooping
	MESI protocol
	MESI states
	L2/L1 coherence
	Atomic Read Modify Write
	Intel MP interrupts
	PCI Bus
	PCI efficiency
	PCI 2.2/X timing diagram
	common chipsets PCI performance
	Memory buses
	Interconnects /1
	LogP metrics (Culler)
	LogP diagram
	Interconnects /2
	Interconnects /3
	Interconnects /4
	Interconnects /5
	Interconnects /6
	Interconnects /7
	Interconnects /8
	Interconnects /9
	Interconnects /10
	Interconnects /11
	Bisection /1
	Bisection /2
	Bisection /3
	NIC Interconnection point(from D.Culler)
	Ethernet history
	Ethernet
	Ethernet Frames
	VLAN
	Hubs
	Ethernet flow/control
	Auto Negotiation
	GigE
	Network (Physical Layer)
	Network (Physical Layer)
	LVDS/1
	LVDS/2
	LVDS/3
	LVDS/4
	VCSEL/1
	VCSEL/2-EEL (Edge Emitting)
	VCSEL/3- Surface Emission
	VCSEL/4
	VCSEL/5
	MINI (Memory Integrated Network Interface)
	MINI/2
	Infiniband/1
	Infiniband/2
	Infiniband/3
	Infiniband/4
	Infiniband/5
	Myrinet/1
	Myrinet/2
	Myrinet/3
	Clos networks
	Clos networks/2
	Software
	Software overhead
	Zero Copy Research
	OS bypass – User level networking
	Active Messages (AM)
	FastMessages (FM)
	VIA/1
	VIA/2
	VIA/3
	Software layering
	Network layering considered harmful ?
	Linux Socket buffers (sk_buff)
	Memory Management
	Linux 2.4 kiobuff
	Bibliography

