Power Systems Reliability Evaluation on Parallel and Distributed Processing Environments

Power Systems Reliability Evaluation on Parallel and Distributed Processing Environments

Prof. Carmen L. T. Borges carmen@dee.ufrj.br

Federal University of Rio de Janeiro P.O.Box 68516, 21945 970 Brazil

1

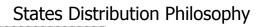
Power Systems Reliability

- $\nu\,$ Main Objective: Satisfy demand as economically as possible with continuity, quality and security
- Random failure of components can lead to power supply interruption and quality degradation
- Financial investments are necessary to increase system reliability and to reduce the probability, frequency and duration of failure events
- Power supply reliability evaluation is fundamental to establish transactions in the new competitive electric energy market

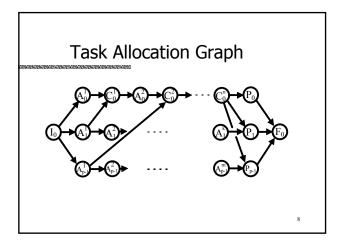
Composite Reliability using Monte Carlo Simulation

- Analysis of a very large number of system operating states for different load levels and scenarios
- System state analysis requires simulation of the system behavior under contingency satisfying operation and security restrictions
 - → Demands high computational effort
- The many system states analyses may be performed independently from each other
 - ➔ PARALLEL/DISTRIBUTED PROCESSING

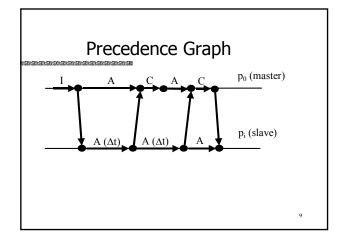
Conceptual Algorithm


- ←Select an operating scenario **x** corresponding to a load level, components availability, operating conditions, etc.
- ↑ Calculate an evaluation function *F(x)* which quantifies the effect of violations in the operating limits in this specific scenario.
- →Update the expected value of the reliability indexes based on the result obtained in step 2.
- ↓ If the accuracy of the estimates is acceptable, terminate the process. Otherwise, return to step 1.

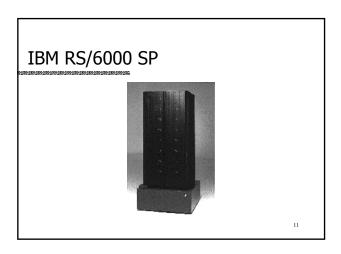
Basic Functions

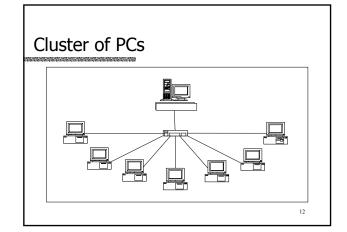

- v *States Selection*: Obtain a sample of random vector $\mathbf{x} = (x_{1}, x_{2}, \dots, x_{n})$ by sampling the components operating states probability distribution
- ✓ States Adequacy Analysis: Contingency Analysis (large sets of nonlinear algebraic equations) and Optimal Power Flow (large scale nonlinear programming problems) → Concentrates the computational effort
- v Reliability Indexes Calculation

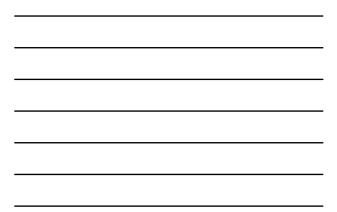
Parallelization Strategy


- Parallelization of system states adequacy analysis (coarse grain parallelism)
- v Master Saves Paradigm
 - Master: data flow and parallel convergence control, reliability indexes calculation
 - Slaves: system states analysis
- v Communication Requirements
 - Initial distribution/Final grouping of data
 - Control of global parallel convergence

- Parallel generation of random numbers sequences: avoid correlation between sequences generated in different processors
- $\nu\,$ System states generated directly at the processors in which they are analyzed
- $_{\nu}\,$ All processors receive the same seed and execute the same random numbers sampling
- Each processor starts to analyze the state with a number equal to its rank and analyzes the next, states using as step the number of processors


Power Systems Reliability Evaluation on Parallel and Distributed Processing Environments




- $_{\rm v}~$ IBM RS/6000 SP: Scalable parallel computer with distributed memory
 - 10 POWER2 processors
 - high performance switch: 40 MB/s full diplex

10

- $_{\nu}\,$ Cluster of PCs based on Windows NT
 - 8 Intel Pentium III 500MHz
 - Fast Ethernet: 100 Mbits/s
- $_{\nu}~$ Message passing system: MPI

RS/6000 SP Results					
System	Sequential	Parallel	Efficiency		
			(%)		
BR-NNE	6.18 min	39.91 s	92.9		
BR-S	8.03 min	51.80 s	93.0		
BR-SE	2.78 h	17.36 min	96.1		
			13		

Cluster	of PCs		
System	Sequential	Parallel	Efficiency
			(%)
BR-NNE	1.85 min	17.42 s	79.7
BR-S	2.77 min	23.75 s	87.5
BR-SE	1.08 h	8.48 min	95.5
			14

Conclusions

- $_{\rm v}~$ Speedup almost linear and efficiency higher than 90% for larger system
- $_{\nu}$ Good scalability

Г

- $\nu\,$ High performance is due to the combination of three aspects:
 - Degree of parallelism inherent to the problem
 - Coarse grain parallelization strategy adopted
 - Asynchronous implementation developed

15