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Outline
l Computational Chemistry - Background
n Molecular Electronic Structure & Molecular Simulation

l Commodity-based and High-end Systems
n Prototype Commodity Systems;  CS1 - CS7
n High-end systems from Cray, SGI, IBM and Compaq
n Performance Metrics

l Application performance
n Molecular Simulation
l DLPOLY and CHARMM

n Electronic Structure
l Distributed data: Global Arrays (GAs) ; Linear Algebra (PeIGS)
l NWChem, GAMESS-UK, and TurboMole

l Application performance analysis
n VAMPIR and instrumenting the GA Tools

l Summary
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Scaling of Molecular Computations

TeraFLOPS MPP

Calculation of Reaction
Energetics; CI/CCSD
Techniques

Determination of 
Molecular Structures:
Hartree-Fock
Techniques

Determination of 
Molecular Structures:
Density Functional
Techniques

Simulation of Biomolecules:
Molecular Dynamics
TechniquesR
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Electronic structure of molecules. I
l What can we predict?

n In principle everything, in practice ….

n Very small molecules (4 atoms?) - full chemical reaction dynamics
n Small molecules (10 atoms?) - spectra, energetics and structure at a level of 

precision rivaling experiment
n Larger molecules - lower precision - higher precision for trends

n Application areas - drug design, petrochemicals, catalysis, waste processing,…

l One-electron (Hartree-Fock) model
n Tremendous interpretative value
n Predicts equilibrium structure of many molecules
n 99% of total molecular energy 

n … but the missing 1% includes much information about chemical binding

l Electron correlation
n Fluctuations arising from “instantaneous” interactions of electrons
n Near degeneracy or resonances
n Describe these effects by either

l explicit 2-electron functions -not viable
l including other occupation patterns or configurations in the wavefunction
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Electronic structure of molecules .II
l Basis sets - the algebraic approximation
n Subsequent theory expressed as (mostly dense) matrix operations
n Gaussian basis - integrals tractable, no loss of precision in practice
n The root of nearly all our scaling woes but presently indispensable

l Density functional theory
n Exact energy is a function(al) of the 1-electron density - a 3-D entity
n But … don’t know the functional - educated guesses; nothing systematic 

n Scales from O(N) to O(N4)

l Configuration Interaction
n A linear expansion mixing important occupations - sparse eigenproblem

n Slowly convergent - large expansions are necessary; state of art is 109

n Scales from O(N6) to O(N!)

l Many-body methods - perturbation and coupled-cluster theory
n A non-linear expansion mixing important orbital occupations - size 

extensive
n Scales from O(N5) to O(N7)
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Beowulf Chemistry Sites
l http://www. wulfpack. med. jhmi. edu (Grossfield)

n C H A R M M

l http://www.lobos. n ih. gov (Brookes et al., Pentiums)

n CHARMM,  GAMESS

l http://www. hpt i.com/clusterweb (Lonergan, 34 XP1000s + Myrinet )

n CHARMM and GAUSSIAN

l http://www. soton.ac. uk/ ~chemphys/jessex/ beowulf.html

n MC and MD simulations.

l http://www. ccr.buffalo. edu (Furlani, 64 Ultra 5 CPUs)

n GAMESS and CRYSTAL 95

l http://www.dhpc.adelaide.edu.au/projects/beowulf/perseus.html
l Burger, Zurich (16 PII Cluster)

n Turbomole,  DMOL,  ADF

l http://www.t12. lanl. gov/ ~mchal lacombe (26 CPU PII cluster)

n variety of QC software

l http://zinc10. chem. ucalgary.ca (94 Alpha EV56 Compaq PW 500 au)

n ADF and PAW
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Commodity Systems (CSx)
Prototype / Evaluation Hardware

Systems Location CPUs Configuration
CS1 Daresbury 32 Pentium III / 450 MHz; fast 

ethernet (EPSRC)
CS2 Daresbury 64 24 X dual UP2000/EV67-667, 

QSNet Alpha/LINUX cluster,
8 X dual CS20/EV67-833

CS3 RAL 16 Athlon AMD K7 850MHz;
myrinet interconnect

CS4 Sara 32 Athlon AMD K7 1.2 GHz;
fast ethernet

CS6 CLiC 528 Pentium III / 800 MHz; fast
ethernet (Chemnitzer Cluster)

CS7 Daresbury 64 AMD K7/1000 MP; SCALI
SCI interconnect

Protoype Systems
CS0 Daresbury 10 10 CPUS, Pentium II/266
CS5 Daresbury 16 8 X dual Pentium III/933, SCALI
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High-End Systems

l Cray T3E/1200E
n 816 processor system at Manchester (CSAR service)
n 600 Mz EV56 Alpha processor with 256 MB memory

l IBM SP/WH2-375  (32 CPU system at DL)
n 4-way Winterhawk2 SMP “thin nodes” with 2 GB memory
n 375 MHz Power3-II processors with 8 MB L2 cache

l Compaq AlphaServer SC - 667 (APAC) and 833 MHz CPUs
n 4-way ES40/667 and /833 SMP nodes with 2 GB memory
n Alpha 21264a (EV67) CPUs with 8 MB L2 cache 
n Quadrics “fat tree” interconnect (5 usec latency, 150 MB/sec B/W)

l SGI Origin 3800
n SARA (1000 CPUs) - Numalink with R14k/500 &  R12k/400 CPUs

l Cray Supercluster at Eagen
n Linux Alpha Cluster (96 X API CS20s - dual 833 MHz EV67 CPUs) 

n Myrinet interconnect, Red Hat 6.2 
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Chemistry Codes

l Performance comparisons between Commodity-based systems 
and proprietary High-end systems
n current  MPP (CSAR Cray T3E/1200E) and ASCI-style SMP-node 

platforms (IBM SP / WH2-375, Compaq AlphaServer SC (ES40/6-
667, 6-833), SGI Origin 3800 and Prototype Cray Supercluster:

l Molecular Simulation
n DL_POLY - parallel MD code with many applications
n CHARMM - macromolecular MD and energy minimisation

l Ab initio Electronic Structure
n GAMESS-UK, NWChem and Turbomole

Performance Metric (% 32-node high-end system)
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1.   T (32-nodes Cray T3E/1200E)  /   T (32 CPUs ) CSx

[ T 32-node T3E /  T 32-node CS1 Pentium III/450 + FE]
T 32-node T3E /  T 32-node CS6 Pentium III/800 + FE

T 32-node T3E /  T 32-CPU CS2 Alpha Linux Cluster + Quadrix

2.   T (32-CPUs SGI Origin 3800) / T (32 CPUs) CS2 Alpha Linux Cluster

T 32-CPU SGI Origin 3800 /  T 32-CPU CS2 Alpha Linux Cluster

Performance Metrics

Attempt to quantify delivered performance from the Commodity -based systems 

against current  MPP (CSAR Cray T3E/1200E)and ASCI -s ty le  SMP-node 

platforms (e.g. SGI Origin 3800) i.e.

Performance Metr ic (% 32-node Cray T3E)
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The GAMESS-UK Serial Benchmark
Performance relative to the Compaq Alpha ES40/833
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STREAM: Measured Sustainable 
Memory Bandwidth in HPC (TRIAD)
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Molecular Simulation

Molecular Dynamics Codes: 
DL_POLY and CHARMM
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l Developed as CCP5 parallel MD code 
by W. Smith and T.R. Forester

l UK + International user community
l Adopted by Materials Consortium 1995

Boundary Conditions
l None (e.g. isolated macromolecules)
l Cubic periodic boundaries

l Orthorhombic periodic boundaries
l Parallelpiped periodic boundaries

l Truncated octahedral periodic 
boundaries

l Rhombic dodecahedral periodic 
boundaries

l Slabs (i.e. x,y periodic, z nonperiodic)

Target Systems
l Atomic systems & mixtures (Ne, Ar, etc.)

l Ionic melts & crystals (NaCl, KCl etc.)

l Polarisable ionics (ZSM-5, MgO etc.)

l Molecular liquids & solids (CCl 4, Bz etc.)

l Molecular ionics (KNO3, NH4Cl, H2O etc.)

l Synthetic polymers ([PhCHCH 2]netc.)

l Biopolymers and macromolecules

l Polymer electrolytes, Membranes, 

l Aqueous solutions, Metals

MD Algorithms/Ensembles

l Verlet leapfrog, Verlet leapfrog + RD-SHAKE

l Rigid units with FIQA and RD-SHAKE

l Linked rigid units with QSHAKE

l Constant T (Berendsen) with Verlet leapfrog 
and with RD-SHAKE

l Constant T (Evans) with Verlet leapfrog and
with RD-SHAKE

l Constant T (Hoover) with Verlet leapfrog

DL_POLY:  A Parallel Molecular Dynamics
Simulation Package
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4. NaCl ;  MTS Ewald, 27,000 ions

5. NaK-disilicate glass; 8,640 atoms, Ewald
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Number of Nodes
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7. Gramicidin in water (SHAKE, 13,390)

6. K/ valinomycin in water (SHAKE, AMBER, 3,838)

1. Metallic Al (19,652 atoms, Sutton Chen)

3. Transferrin in Water (neutral groups + SHAKE, 27,593)

2. Peptide in water (neutral groups + SHAKE, 3993). 
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75 time steps, 
Cutoff=24Å

Number of CPUs

Measured Time (seconds)

T3E128 =94184%,470%
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T3E128 =16669%,260%
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Vampir
CS-1:  8 node DLPOLY trace output (single timestep)

Benchmark 5

Benchmark 7
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CHARMM

l CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a 
general purpose molecular mechanics, molecular dynamics and
vibrational analysis package for modelling and simulation of the 
structure and behaviour of macromolecular systems (proteins, 
nucleic acids, lipids etc.)

l Supports energy minimisation and MD approaches using a 
classical parameterised force field.

l J. Comp. Chem. 4 (1983) 187-217

l Parallel Benchmark - MD Calculation of Carboxy Myoglobin
(MbCO) with 3830 Water Molecules.

l QM/MM model for study of reacting species
n incorporate the QM energy as part of the system into the force field

n coupling between GAMESS-UK (QM) and CHARMM.
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Parallel CHARMM Benchmark
Benchmark MD Calculation of Carboxy Myoglobin

(MbCO) with 3830 Water Molecules: 14026 atoms, 1000 

steps (1 ps), 12- 14 A shift.
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Parallel CHARMM Benchmark:
LAM MPI vs. MPICH
Benchmark MD Calculation of Carboxy Myoglobin (MbCO) with 3830 Water 

Molecules:
Measured Time (seconds)

Number of CPUs
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Molecular Electronic Structure

Ab initio Electronic structure Codes: 
NWChem, GAMESS-UK and 

Turbomole
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Distributed Data SCF

Pictorial representation of the iterative SCF 
process in (i) a sequential process, and (i i) a 

distributed data parallel process: MOAO 
represents the molecular orbitals , P the 

density matrix and F the Fock or Hamiltonian 

matrix

Sequential

Distributed Data

MOAO Pµµ νν

dgemm

Integrals

V
XC

V
Coul

V
1e

Sequential
Eigensolver

Fρρ σσ

guess
orbitals

If Converged

MOAO Pmn

ga_dgemm

Integrals
VXC

VCoul
V1e

PeIGS
Fr s

guess
orbitals

If Converged
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High-End Computational Chemistry
The NWChem Software

l Developed as part of the construction of the Environmental Molecular Sciences 
Laboratory (EMSL) at PNNL.

l Funded to be used as an integrated component in solving DOE’s grand 
challenge environmental restoration problems

l Designed and developed to be a highly efficient  and portable MPP 
computational chemistry package, providing computational chemistry solutions 
which are scalable with respect to chemical system size as well as MPP 
hardware size

l Extensible framework supporting development of new methods in 
computational chemistry; NWChem Architecture

l Object-oriented design
– abstraction, data hiding, handles, APIs

l Parallel programming model
– non-uniform memory access, global arrays (GAs)

l Infrastructure

– Global Arrays (GA) , Parallel I/O, RTDB, MA, Linear algebra (PeiGS) ...
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High-End Computational Chemistry
The NWChem Software

l Capabilities (Direct, Semi-direct and conventional):
n RHF, UHF, ROHF using up to 10,000 basis functions; analytic 1st and 2nd 

derivatives.

n DFT with a wide variety of local and non-local XC potentials, using up to 

10,000 basis functions; analytic 1st and 2nd derivatives.

n CASSCF; analytic 1st and numerical 2nd derivatives.

n Semi-direct and RI -based MP2 calculations for RHF and UHF wave 

functions using up to 3,000 basis functions; analytic 1st derivatives and 

numerical 2nd derivatives.

n Coupled cluster, CCSD and CCSD(T) using up to 3,000 basis functions; 

numerical 1st and 2nd derivatives of the CC  energy. 

n Classical molecular dynamics and free energy simulations with the forces  

obtainable from a variety of sources
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Si8O7H18 347/832 64 238s
Si8O25H18 617/1444 128 364s
Si26O37H36 1199/2818 256 1137s
Si28O67H30 1687/3928 256 2766s

Measured Parallel Efficiency for NWChem - DFT on 
IBM-SP; Wall Times to Solution for SCF Convergence
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Single, shared data structure

Physically distributed data • S h a r e d - m e m o r y - l i k e  m o d e l
–  F a s t  l o c a l  a c c e s s

–  N U M A  a w a r e  a n d  e a s y  t o  u s e

–  M I M D  a n d  d a t a - p a r a l l e l  m o d e s
–  I n t e r - o p e r a t e s  w i t h  M P I ,  …

• B L A S  a n d  l i n e a r  a l g e b r a  i n t e r f a c e

• P o r t e d  t o  m a j o r  p a r a l l e l  m a c h i n e s
–  I B M ,  C r a y ,  S G I ,  c l u s t e r s , . . .

• O r i g i n a t e d  i n  a n  H P C C  p r o j e c t

• U s e d  b y  5  m a j o r  c h e m i s t r y  c o d e s ,
f i n a n c i a l  f u t u r e s  f o r e c a s t i n g ,

a s t r o p h y s i c s ,  c o m p u t e r  g r a p h i c s

Global Arrays

Tools developed as part of the NWChem project
at PNNL; R.J. Harrison, J. Nieplocha et al.
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(Solution of real symmetric generalized and 
standard eigensystem problems)

Full eigensolution performed on a matrix generated in a charge density fitt ing procedure (966 

fitt ing functions for a fluorinated biphenyl).

•
aranteed orthonormal eigenvectors in 
the presence of large clusters of 
degenerate eigenvalues•
acked Storage•
maller scratch space requirements
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Features (not available elsewhere):
• Inverse iteration using Dhillon-Fann-

Parlett’s parallel algorithm (fastest 
uniprocessor performance and good 
parallel scaling)

• Guaranteed orthonormal eigenvectors 
in the presence of large clusters of 
degenerate eigenvalues

• Packed Storage
• Smaller scratch space requirements

PeIGS 3.0 Parallel Performance
Developed as part of the
NWChem project at PNNL; R.J. 
Harrison, J. Nieplocha et al.



16

High Performance Computing on Linux Clusters 13 February 2002

Computational Science and Engineering Department Daresbury Laboratory

Fock matrix (N = 1152) 
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N = 1152
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Case Studies - Zeolite Fragments

Si8O7H18 347/832

Si8O25H18 617/1444

Si26O37H36 1199/2818

Si28O67H30 1687/3928

• DFT Calculations with 

Coulomb Fit t ing

Basis (Godbout et al.)

DZVP  - O, Si

DZVP2  - H

Fitt ing Basis:

DGAUSS-A1 - O, S i

DGAUSS-A2 - H

• NWChem & GAMESS-UK

Both codes use auxiliary fitting 

basis for coulomb energy,  with 3 

centre 2 electron integrals held in 

core.
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DFT Coulomb Fit - NWChem

Number of CPUs Number of CPUs

Measured Time (seconds)

Si8O 7H18 347/832 Si8O 25H1 8 617/1444

Measured Time (seconds)
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DFT Coulomb Fit - NWChem

Number of CPUs Number of CPUs

Measured Time (seconds) Measured Time (seconds)

Si2 8O67H30 1687/3928Si2 6O37H36 1199/2818

TIBM-SP/P2SC-120 (256) = 1137 TIBM-SP/P2SC-120 (256) = 2766
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288%
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NWChem - DFT (LDA) 
Performance on the SGI Origin 3800

• DZVP Basis (DZV_A2) and Dgauss
A1_DFT Fitting basis:

AO basis: 3554 
CD basis: 12713

• MIPS  R14k-500 CPUs (Teras)

Wall time (13 SCF iterations):
64 CPUs  =  5,242 seconds
128 CPUs=  3,951 seconds

Est. time on 32 CPUs = 40,000 secs

Zeolite ZSM-5

• 3-centre 2e-integrals = 1.00 X 10 12

• Schwarz screening    = 5.95 X 10 10

• % 3c 2e-ints. In core = 100%
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GAMESS-UK

GAMESS-UK is the general purpose ab initio molecular electronic structure 
program for performing SCF-, MCSCF- and DFT-gradient calculations, together 
with a variety of techniques for post Hartree Fock calculations.

n The program is derived from the original GAMESS code, obtained from Michel
Dupuis in 1981 (then at the NRCC), and has been extensively modified and 
enhanced over the past decade.

n This work has included contributions from numerous authors†, and has been 
conducted largely at the CCLRC Daresbury Laboratory, under the auspices of the 
UK's Collaborative Computational Project No. 1 (CCP1). Other major sources that 
have assisted in the on-going development and support of the program include 
various academic funding agencies in the Netherlands, and ICI plc.

Additional information on the code may be found from links at:
http://www.dl.ac.uk/CFS

† M.F. Guest, J.H. van Lenthe, J. Kendrick, K. Schoffel & P. Sherwood, with contributions 
from R.D. Amos, R.J. Buenker, H.H. van Dam, M. Dupuis, N.C. Handy, I.H. Hillier, P.J.
Knowles, V. Bonacic-Koutecky, W. von Niessen, R.J. Harrison, A.P. Rendell, V.R. 
Saunders, A.J. Stone and D.Tozer.
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Parallel Implementations of GAMESS-UK

l Extensive use of Global Array (GA) Tools and Parallel 
Linear Algebra from NWChem Project (EMSL)

l SCF and DFT energies and gradients
n Replicated data, but …

n GA Tools for caching of I/O for restart and checkpoint files

n Storage of 3-centre 2-e integrals in DFT Jfit

n Linear Algebra (via PeIGs, DIIS/MMOs, Inversion of 2c-2e matrix)

l SCF second derivatives
n Distribution of <vvoo> and <vovo> integrals via GAs

l MP2 gradients
n Distribution of <vvoo> and <vovo> integrals via GAs
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GAMESS-UK ∆SCF Performance
Cray T3E/1200E, High-end and Commodity-based Systems

Number of CPUs

Cyclosporin:(3-21G Basis, 1000 GTOS)

Elapsed Time (seconds)

96%,256%

T3E128 = 436

Impact of Serial Linear Algebra:
TIBM -SP (16) = 2656 [1289]

TIBM -SP (32) = 2184 [  821]
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∆SCF Performance - Cray T3E/1200E , SGI 
Origin3800/R14k-500 and Compaq AlphaServer SC/667

Number of CPUs

Cyclosporin:(3 -21G Basis, 1000 GTOS)

Gaussian 98
Serial: L302 - 90 secs; 

L401 - 292 secs.
Serial linear algebraElapsed Time (seconds)
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0
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GAUSSIAN98 - Cray T3E/1200E
Cray T3E/1200E
Compaq AlphaServer SC/667
SGI Origin 3800/R14k-500
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32

64
64-nodes
32-nodes
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Elapsed Time (seconds)

Number of Compaq AlphaServer CPUs
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130%,301%
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Auxilliary Basis Coulomb Fit (I)

Where V is the matrix of 2-cent re 2-electron repulsion integrals in the charge 

density basis and b are the three centre electron repulsion integrals between the

wavefunct ion basis set and the charge density basis.

pqpq bVC 1−=

The approach is based on the expansion of the charge density in an auxiliary basis 

of Gauss ian functions

As suggested by Dunlap, a variational choice of the fitting coefficients C can be 

obtained as follows:

∑∑ ∑∑ =







≈=

u
u

u pq

pq
upq

pq
pq uduCDpqDr )(ρ
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l The number of 3-centre integrals is signif icantly smaller than the 4-centre integrals 

used in the conventional coulomb evaluation, but for large molec ules additional 

screening is required.

l We make use of the Schwarz inequality

Auxilliary Basis Coulomb Fit (ii)

( ) ( ) ( )uupqpqupq ≤

l Where p and q are AO basis functions and u are the fitting funct ions. Since 

screening is applied on a shell basis,  the maximal integrals for each shell 

quartet are stored.

l Using this screening, and exploit ing the aggregate memory of a parallel 

machine, it is possible to hold a significant fraction of the 3-centre integrals in 

core.
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GAMESS-UK: DFT HCTH on Valinomycin. 
Impact of Coulomb Fitting:  Cray T3E/1200, High-

end and Commodity Systems

Number of CPUs Number of CPUs

Measured Time (seconds) Measured Time (seconds)

Basis: DZV_A2 (Dgauss)
A1_DFT Fit: 882/3012

178%,361%

JEXPLICIT

131%,379%JFIT

TT3E/1200E (128) = 2139 TT3E/1200E (128) = 995
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GAMESS-UK: DFT HCTH on Valinomycin. 
Impact of Coulomb Fitting: Cray T3E/1200, Cray Super 

Cluster/833, Compaq AlphaServer SC/667 and SGI Origin R14k/500
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GAMESS-UK: DFT HCTH on Valinomycin. Speedups 
for both Explicit and Coulomb Fitting.

JEXPLICIT JFIT

Number of CPUsNumber of CPUs

Speedup Speedup
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GAMESS-UK: DFT S-VWN  
Impact of Coulomb Fitting: Compaq AlphaServer SC /833 

Number of CPUs Number of CPUs

Measured Time (seconds) Measured Time (seconds)

Basis: DZVP, DZVP2 (DGAUSS)
Fit: DGAUSS A1, A2
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MP2 Gradient Algorithms

l Conventional
n integrals written to disk
n read back, transformed, 

written out, resorted etc.
n heavy I/O demands

l Direct/Semi-direct (Frisch, 
Head-Gordon & Pople, Hasse 
and Ahlrichs)
n replace all/some I/O with 

batched integral 
recomputation

l Poor I/O-to-compute 
performance of MPPs
n direct approach

l Current MPPs have large 
global memories

l Store subset of MO integrals
n reduce number of integral 

recomputations
n increase communication 

overhead

l Subset includes VOVO, VVOO, 
VOOO,
n VVVO-class too large to store

n compute VVVO-terms in 
separate step

Serial Parallel
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l Mn(CO)5H - MP2 geometry 
optimisation

l BASIS:  TZVP + f (217 GTOs

Performance of MP2 Gradient Module
Cray T3E/1200, High-end and Commodity-
based Systems
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(C6H4 (CF3))2 : Basis 6 -31G (196 GTO)

Elapsed Time (seconds)

• Terms from MO 2e-integrals in GA storage (CPHF & pert. Fock
matrices); Calculation dominated by  CPHF:
Gaussian98 - L1002 (CPU) - 32 nodes: 1181 secs ; 64 nodes: 1058 secs.

GAMESS -UK (total job time); 128 nodes: 499 secs .

CPUs

79%,154%
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The QM/MM Modelling Approach

l Couple quantum mechanics and 
molecular mechanics approaches

l QM treatment of the active site
n reacting centre

n problem structures (e.g. complex 
transition metal centre)

n excited state processes (e.g. 
spectroscopy)

l Classical MM treatment of 
environment
n enzyme structure
n zeolite framework

n explicit and/or dielectric solvent models
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QM/MM Modelling - Challenges

l Methodological validation
n establish reliability of both QM and MM schemes
n QM/MM coupling schemes introduce additional artefacts
n consistency of QM and MM energy expressions

l Computational demands
n macromolecular systems, with extended conformational space

l conformational search problems

l entropic contributions

n QM component means an expensive energy and gradient evaluation

l Software Complexity
n range of forcefield types
n wide variation in QM and MM program design
n close integration needed for performance (e.g. HPC), but weak coupling 

simplifies maintenance (e.g. incorporating new versions of QM and MM 
packages)
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Quantum Simulation in Industry (QUASI)
l Software Development
n Address barriers to uptake of existing QM/MM methodology

l explore range of QM/MM coupling schemes

l enhance performance of geometry optimisation for large systems
l maintain flexible approach, address enzymes, zeolites

and metal oxide surfaces
l adopt modular scheme with interfaces to industry standard codes

l High Performance Computing
n Scalable MPP implementation
n QM/MM MD simulation based on  semi-

empirical ab-initio and DFT methods

l Demonstration Applications
n Value of modelling technology 

and HPC to industrial problems

n Beowulf EV6-based solution

l Exploitation
n Disseminate results through workshop, newsletters etc.

QUASI Partners
CLRC Daresbury Laboratory

P. Sherwood, M.F. Guest, A.H. de Vries
Royal Institition of Great Britain

C.R.A Catlow, A. Sokol
University of Zurich / MPI Mulheim

W. Thiel, S. Billeter, F. Terstegen.
ICI Wilton (UK)

J. Kendrick (CAPS), J. Casci (Catalco)
Norsk Hydro (Porsgrunn, Norway)

K. Schoeffel, O. Swang (SINTEF)
BASF (Ludwigshafen, Germany)

A. Schaefer
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l R. Ahlrichs, M. Bar, M. Haser, H. Horn 
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QM/MM Implementations
l Specialised for a classical modelling approach, by integrating 

QM code into MM package
n CHARMM + GAMESS(US), MNDO (Harvard & NIH)
n AMBER + Gaussian (UCSF, Manchester)
n GULP + TURBOMOLE  (Berlin)

n CHARMM + GAMESS (UK) (Daresbury & NIH)
l Gaussian blur / double link atom

l Generalised approaches, e.g. ChemShell
n Modular architecture

l Tcl Interpreter
– Optimisation, dynamics, QM/MM coupling

l 3rd party code interfaces

– GAMESS-UK, Gaussian, TURBOMOLE, MNDO, DL_POLY, 
GULP, CHARMM etc

n Basis for QUASI project “Quantum Simulation in Industry”.
l applications to metal oxide, zeolite, and enzyme systems
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GAMESS-UK Version 6.2
IV. QM/MM Interface with CHARMM

l Implemented in collaboration with Bernie Brooks, Eric 
Billings, (NIH, Bethesda Maryland)

l Functionality:
n Similar to existing ab-initio interfaces; CHARMM side follows 

coupling to GAMESS(US) (Milan Hodoscek)

n Support for Gaussian delocalised point charges implemented in 
GAMESS-UK, based on 2- and 3- centre integral and derivative 
integral drivers from the CCP1 DFT module, (Phillip Young).

l Availability:
n CHARMM-capable code incorporated into GAMESS-UK 

Version 6.2.

n CHARMM (implemented in c26b2) requires independent 
licensing from Prof Martin Karplus.
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Enzyme Catalysis Applications

Demonstration phase

n Variation of inhibitor binding 
enthalpies and free energies 
with QM region and 
electrostatic interactions

n Determination of activation 
energies, variation with QM 
scheme and QM/MM coupling.

n Comparison of substrate 
structure with X-ray results

Target Applications

n Influence of active site features 
on inhibitor binding energies 
and activation energies.

n Systematic study of free 
energies of binding for novel 
inhibitors, inhibitor design

n Understanding the mechanism 
of TIM action.

Lead Partner: BASF

• Enzyme/inhibitor binding energetics for thrombin
• Mechanistic studies of enzyme catalysis - triosephosphate 

isomerase (TIM)
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• QM region 35 atoms (DFT BLYP)
– include residues with possible proton 
donor/acceptor roles 
– GAMESS-UK, MNDO, TURBOMOLE

• MM region (4,180 atoms + 2 l ink)
– CHARMM force-field, implemented   in 
CHARMM, DL_POLY

Triosephosphate 
isomerase (TIM)

• Central reaction in
glycolysis, catalytic
interconversion of
DHAP to GAP

• Demonstration case 
within QUASI 
(Partners UZH, and 
BASF)

QM/MM Applications
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Vampir 2.5

Visualization and 
Analysis of
MPI
Programs

GAMESS-UK on High-end and Commodity 

class machines
• extensions to handle GA applications

Performance Analysis of GA-
based Applications using Vampir
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Performance analysis of GA-based applications 
using the Vampir tool

l Tool for Performance Analysis - VAMPIR & VAMPIR 
Trace
n VAMPIR - analysis of trace files
n VAMPIR Trace 

l Trace Library for MPI applications
l Extensions to handle GA applications

l Case Studies
n DFT Calculations on Zeolite Fragments (347 - 1687 GTOs) 

with Coulomb Fitting
n High-end and Commodity-based Systems 

l NWChem and GAMESS-UK
n Distributed data (NWChem) and Replicated Data 

(GAMESS-UK)
n Analysis of GAs and PeIGs
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Instrumenting single-sided memory 
access

l Approach 1: Instrument the puts, gets and data 
server
n Advantage: robust and accurate
n Disadvantage: one does not always have access 

to the source of the data server

l Approach 2: Instrument the puts and gets only, 
“cheating” on the source and destination of the 
messages
n Advantage: no instrumentation of the data server 

required
n Disadvantage: timings of the messages are 

inaccurate in case of non-blocking operations
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Runtime tracing options

l The tracing of activit ies can be 

modif ied at runtime through a 

configuration f i le.

l Tracing of messages can not 

be changed.

l VTTRACEON and 

VTTRACEOFF should be used 

sparingly.

Logfile-name /home/user/prog.bpv
Symbol nnodes off

Symbol nodeid off
Symbol GA_Nnodes off
Symbol GA_Nodeid off

Practical issues
• The vampirtrace library and evaluation l icenses can be

downloaded f rom http://www.pallas.com/

• Evaluation l icenses are l imited to 32 processors
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GAMESS-UK / Si8O25H18 : 8 CPUs:
One DFT Cycle
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GAMESS-UK / Si8O25H18 : 8 CPUs
Q†HQ (GAMULT2) and PEIGS
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Performance Analysis of GA-based Applications using 
Vampir - Summary

l Daresbury and PALLAS collaboration

l Tool for Performance Analysis - VAMPIR & VAMPIR Trace
n Extended to handle GA Applications

l Applied in a number of DFT Calculations on Zeolite Fragments on 
a variety of high-end and commodity-based platforms

l Instrumentation of both NWChem and GAMESS-UK:
n Distributed data (NWchem) 
n Replicated Data (GAMESS-UK)
n Analysis of GAs and PeIGs

l Findings
n non-intrusive
n Tracing of substantial runs possible

l Size of trace files in distributed data applications

n Use in quantifying scaling problems
l e.g. GA_MULT2 in GAMESS-UK
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Materials Simulation Codes

Plane Wave DFT Codes:
• CASTEP
• VASP
• CPMD

These codes have similar functionality, 

power and problems. CASTEP is the 

flagship code of UKCP and hence 

subsequent discussions wil l focus on this.

Local Gaussian Basis Set Codes:
• CRYSTAL

This code presents a different set of 

problems when considering 

performance on HPC(x).

SIESTA and CONQUEST:
• O(n) scaling codes which will be extremely attractive to users. 

• Both are currently development rather than production codes. 
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CRYSTAL98: Periodic SCF for MgO and TiO2
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CRYSTAL - 2000
l Distributed Data implementation

l Benchmark:  

n An Acid Centre in Zeol i te-Y (Faujasite)

n Single point energy

n 145 atoms / cell, No symmetry / 8k -points

n 2208 basis functions, (6 -2 1 G*  )
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Plane Wave Methods: CASTEP
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• Direct minimisat ion of the total energy (avoiding diagonalisation )

• Pseudopotent ials must be used to keep the number of plane
waves manageable

• Large number of  basis funct ions N~106 (especial ly for heavy 
atoms).

The plane wave expansion means that the bulk of the computation comprises large 3D 

Fast Fourier Transforms ( FFTs ) between real and momentum space. 

• These are distributed across the processors in various ways.

• The actual FFT routines are optimized for the cache size of t he processor.
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UK Car-Parrinello Consortium
l The Cambridge Serial Total Energy Package CASTEP 

(M. Payne et al.) calculates the total energy, forces and 
stresses in a 3D-periodic system.

l Rev. Mod.Phys. 64 (1992) 1045

l DFT, plane-waves, pseudo-potentials & FFT's

CASTEP - The UK Car-Parrinello Consortium

CASTEP 4.2β Key Features:
l Ultrasoft pseudo-potentials with non-linear core corrections 

l Range of minimisation methods: Density Mixing, RM-DIIS, 
Conjugate Gradients band-by-band & all-bands.  Full structural 
relaxation and MD 

l LD and GGAs, spin-polarisation
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Parallelization of CASTEP

l A Number of parallelization methods are implemented:
n k-point: a processor holds all the wavefunction for a k-point 

(MPI_ALLTOALLV is NOT required) BUT for large unit cells Nk ⇒1 i.e 
small CPU count.

n G-vector: a processor holds part of the wavefunction for all k-points 
(MPI_ALLTOALLV is over ALL CPUs) i.e. biggest systems with 1 K point

n mixed kG: k-points are allocated amongst processors, the wavefunctions
sub-allocated amongst processors associated with their particular k-
points i.e. MPI_ALLTOALLV  is over NCPUs / Nk - intermediate cases.

l On HPC hardware the desired method is either k or kG as this 
minimizes inter-processor communication, specifically 
MPI_ALLTOALLV. 

l However, on large numbers of processors such distributions will still 
be problematic. New algorithms will therefore need to be developed 
to overcome latency problems. 
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CPU Optimizations: 
Efficiency on Commodity-based  Systems

l CASTEP on the Cray T3E and SGI 
Origin 3800 systems use FFT code 
fully optimized for the processor L1-
cache. 

l Extended to other cache-based 
processors. FFT operations are 
performed on chunks of data that fit in 
L1-cache and run at maximum speed. 
i.e. FFT exploited efficiently on cache-
based CPUs.

l Example:
64 processor (32 dual 1GHz AMD K7) 
system, SCALI interconnect

TiN: A TiN 32 atom slab,  8 k -points, 
single point energy calculation with
Mulliken analysis,
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CASTEP 4.2  - Parallel Benchmark
Chabazite
l Acid sites in a zeolite. (Si11 O24

Al H)
l Vanderbilt ulatrasoft pseudo-

potential

l Pulay density mixing minimiser
scheme

l single k point total energy, 96 
bands

l 15045 plane waves on 3D FFT 
grid size = 54x54x54; 
convergence in 17 SCF cycles

CPUs

42%,166%

Measured Time (seconds)

Time (comms)
IBM SP/WH2 -375 157

Cray T3E/1200E 90
CS1 PIII/450+FE 660

CS6 PIII/800+FE 600
CS7 AMD K7/1000 + SCI 242
CS2 QSNet Alpha 111

SGI Origin 3800/R14k 71

High Performance Computing on Linux Clusters 13 February 2002

Computational Science and Engineering Department Daresbury Laboratory

0

16

32

48

64

0 16 32 48 64

Linear
Cray T3E/1200E
CS1 PIII/450 + FE/MPICH

CPMD - Car-Parrinello Molecular Dynamics

CPMD
l Version 3.3: Hutter, Alavi, Deutsh,

Bernasconi, St. Goedecker, Marx,
Tuckerman and Parrinello (1995-1999)

l DFT, plane-waves, pseudo-potentials 
and FFT's

Benchmark Example: Liquid Water
l Physical Specifications:

32 molecules, Simple cubic periodic box of 
length 9.86 A, Temperature 300K

l MD parameters;
Time step 7 au = 0.169 fs; Length test run 
200 steps = 34 fs

l Electronic Structure; 
BLYP functional, Trouillier Martins
pseudopotential, Recriprocal space cutoff 70
Ry = 952 eV

CPUs
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l Performances on NH2 nodes 
n 256 CPUs and 8 MPI tasks/node 

including IO (RD30WFN / 
WR30WFN)

n 390 Mflops per CPU, 99.8 Gflops
n 252*252*252 - 8 MPI tpn

n Use of ESSL routines instead of 
Lapack; Some routines were 
"OpenMPed”

l Mixed mode MPI and OMP (IBM)
l CPMD is dominated by ESSL SMP 

routines (ROTATE and OVLAP).
l 4 MPI tpn and 2 SMP tpn is 1.36 faster 

than flat MPI on a given MESH

l Power4 estimates: The key is 
FFTCOM (MPall2all). Average  speedup 
of 2.0 on a R-H LPARd system

CPMD on High-end Computers
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ANGUS: Combustion modelling (regular grid)
The Cray T3E/1200, IBM SP/WH2 and Beowulf Systems

CPUs

Measured Time (seconds)
Direct numerical simulations (DNS) 
of turbulent pre- mixed combustion 

solving the augmented Navier -

Stokes equations for fluid flow.

Discretisation of equations is 

performed using standard 2nd order 
central differences on a 3D- grid.

Pressure solver util ises either a 

conjugate gradient method with 

modif ied incomplete LU pre-

conditioner or a multi- grid solver 
(both make extensive use of Level 1 

BLAS) or fast Fourier transform.

Conjugate Gradient + ILU

Grid Size - 1443
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ANGUS: Combustion modelling (regular grid)
Memory Bandwidth Effects: The IBM SP and Alpha Linux System

Number of CPUs

Measured Time (seconds)

Conjugate Gradient + ILU

Grid Size - 1443

776

0 4000 8000 12000

4

8

16

32 8 Nodes
4 Nodes
2 Nodes
1 Node

751

0 2000 4000 6000

4

8

16

32
16 Nodes
8 Nodes
4 Nodes
2 Nodes

Number of CPUs

IBM SP/WH2-375 CS2 QSNet Alpha Cluster

High Performance Computing on Linux Clusters 13 February 2002

Computational Science and Engineering Department Daresbury Laboratory

478

2620

581

263

1350

306

150

720

172

415
250

0

700

1400

2100

2800

8 16 32 64 128

CS1 PIII/450 + FE

CS2 QSNet Alpha Cluster/667

Cray T3E/1200E

IBM SP/WH2-375

FLITE3D: An Industrial Aerospace Code

Processors

Measured Time 

(seconds)

A finite- element code for solving the Euler equations governing air 
f low over whole aircraft. Parallelisation of the code was undertaken 

for British Aerospace Military Aircraft and Aerostructures Division. 

A multi- grid solver is used.

F18 test, 3444350 elements

104%,480%
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Beowulf Comparisons with the T3E & O3800/R14k-500
CSx - Pentium III + FE
% of 32-node Cray T3E/1200E
GAMESS-UK CS1 CS6
SCF 53-69% 96%
DFT 65-85% 130-178%
DFT (Jfit) 44-77% 65-131%
DFT Gradient 90% 130%
MP2 Gradient 44% 73%
SCF Forces 80% 127%

NWChem (DFT Jfit) 50-60%

REALC 67%

CRYSTAL 145%

DL_POLY
Ewald-based 95-107% 151-184%
bond constraints 34-56% 69%

CHARMM 96% 172%

CASTEP 33% 42%

CPMD 62%

ANGUS 60% 68%

FLITE3D 104%

CS2 - QSNet Alpha Linux Cluster
% of 32-node Cray T3E and O3800/R14k -500

GAMESS-UK
SCF 256% 99%
DFT † 301-361% 99%
DFT (Jfit) 219-379%       89-100%
DFT Gradient † 289% 89%
MP2 Gradient 228% 87%
SCF Forces 154% 86%

NWChem (DFT Jfit) † 150-288%       74-135%

CRYSTAL † 349%

DL_POLY
Ewald-based † 363-470% 95%
bond constraints 143-260% 82%

CHARMM † 404% 78%

CASTEP   166% 78%

ANGUS 145%

FLITE3D † 480%
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Summary
l Computational Chemistry - Background

l Commodity-based and High-end Systems
n Prototype Commodity Systems;  CS1 - CS7

n High-end systems from Cray, SGI, IBM and 
Compaq

n Performance Metrics

l Application performance 
n Electronic Structure
l Distributed data: GAs and PeIGS

l NWChem, GAMESS-UK, and TurboMole
n Molecular Simulation
l DL_POLY and CHARMM

l Application performance analysis
n VAMPIR and instrumenting the GA Tools
n Linux Alpha Cluster delivers between 150-400%

of T3E/1200E, 78-100% of SGI Origin 3800/R14k-500

CS2 - QSNet Alpha 
Linux Cluster

% of 32 CPU 
O3800/R14k-500

GAMESS-UK
SCF 99%
DFT 99%
DFT (Jfit) 89-100%
DFT Gradient  89%
MP2 Gradient 87%
SCF Forces 86%

NWChem 74-135%

DL_POLY
Ewald-based  95%
bond constraints 82%

CHARMM 78%


