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Overview

• Nodes:
– CPU
– Processor Bus
– I/O bus

• Networks
– boards
– switches
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Typical Node Architecture

Processor Processor

North Bridge Memory

=Critical point
Processor bus

Memory
bus

I/O bus

PCI bus NetworkNIC
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Computer families/1
• RISC (Reduced Instruction Set Computer)

– small set of simple instructions(Mips,alpha)
– also called Load/Store architecture because operations are 

done in registers and only load/store instructions can access 
memory

– instructions are typically hardwired and require few cycles
– instructions have fixed length so that is easy to parse them

• CISC (Complex Instruction Set Computer)
– large set of complex instructions (VAX, x86)
– many instructions can have operands in memory
– variable length instructions
– many instructions require many cycles to complete
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Computer families/2
It is very difficult to optimize computers with 

CISC instruction sets, because it is difficult to 
predict what will be the effect of the 
instructions.

For this reason today high performance 
processors have a RISC core even if the 
external instruction set is CISC. 

Starting with the Pentium Pro, Intel x86 
processors in fact translate x86 instruction 
into 1 or more RISC microops (uops). 
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Micro architecture

• Superscalar
• OOO (Out Of Order) execution
• Pipelining: super/hyper pipelining
• Branch prediction/speculative execution
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Superscalar 

It’s a CPU having multiple functional execution 
units and able to dispatch multiple instruction 
per cycle (double issue, quad issue ,...).

Pentium 4 has 7 distinct functional units:
Load, Store, 2 x double speed ALUs, normal 

speed ALU, FP, FP Move. It can issue up to 6 
uops per cycle (it has 4 dispatch ports but the 
2 simple ALUs are double speed). 

The Athlon has 9 functional units. 
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Pipelining/1

• It is the division of the work necessary 
to execute instructions in stages to 
allow more instructions in execution at 
the same time (at different stages) 

• Previous generation architectures had 
5/6 stages

• Now there are 10/20 stages, Intel called 
this superpipelining or hyperpipelining
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Pipelining/2

Instruction Fetch (IF)

Instruction decode (ID) Memory
hierarchy

(Registers,
caches,
memory)

Data access(DA)

Execute(EX)

Write back results(WB)
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Pipelining/3

WBEXDADAIDIFInstr 3

WBEXDAIDIFIFInstr 5

WBEXDAIDIDIFInstr 4

WBEXEXDAIDIFInstr 2

WBWBEXDAIDIFInstr 1

109876554321
Clock cycle

On the 5th cycle there are 5 instr. simultaneously executing
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P3/P4 superpipelining

picture from Intel
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Branch prediction
Speculative execution

To avoid pipeline starvation, the most probable branch 
of a conditional jump (for which the condition register 
is not yet ready) is guessed (branch prediction) and 
the following instructions are executed ( speculative 
execution ) and their result is stored in hidden 
registers.

If later the condition turns out as  predicted we say the 
instruction has to be retired and the hidden registers 
renamed to the real registers, otherwise we had a 
misprediction and the pipe following the branch is 
cleared.
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x86 uarchitectures

Intel:
• P6 uarchitecture

• NetBurst

AMD:

• Thunderbird

• Palomino
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Intel x86 family
• Pentium III

– Katmai

– Coppermine 
• 500 Mhz – 1.13 Ghz

– Tualatin
• 1.13 – 1.33 Ghz

• Pentium 4

– Willamette 
• 1.4-2.0 Ghz

– Northwood
• 2.0–2.2 Ghz

0.18 u

0.13 u

0.25 u
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AMD Athlon family

• K7 Athlon 1999 0.25 technology 
w/3DNow!

• K75 Athlon 0.18 techology
• Thunderbird (Athlon 3) 0.18 u 

technology(on die L2 cache)
• Palomino (Athlon 4) 0.18 u Quantispeed 

uarchitecture (SSE support) 15 stages 
pipeline
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Pentium 4 uarchitecture
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Athlon uarchitecture
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x86 Architecture extensions/1

x86 architecture was conceived in 1978. Since 
then it underwent many architecture 
extensions.

• Intel MMX (Matrix Math eXtensions):
– introduced in 1997 supported by all current 

processors
• Intel SSE (Streaming SIMD Extensions):

– introduced on the Pentium III in 1999
• Intel SSE2 (Streaming SIMD Extensions 2):

– introduced on the Pentium 4 in Dec 2000
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x86 Architecture extensions/2

• AMD 3DNow! :
– introduced in 1998 (extends MMX)

• AMD 3DNow!+ (or 3DNow! 
Professional, or 3DNow! Athlon):
– introduced with the Athlon (includes SSE)
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x86 architecture extensions/3
The so called feature set can be obtained using the 

assembly instruction
cpuid

that was introduced with the Pentium and returns 
information about the processor in the processor’s 
registers: processor family, model, revision, features 
supported, size and structure of the internal caches.

On linux the kernel uses this instrucion at startup and
many of these info are available typing:

cat /proc/cpuinfo
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x86 architecture extensions/4

Part of a typical output can be :
vendor_id   : GenuineIntel
cpu family  : 6
model       : 8
model name : Pentium III(Coppermine)
cache size : 256 KB
flags       : fpu pae tsc mtrr pse36 mmx

sse
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SIMD technology

• A way to increase processor 
performance is to group together equal 
instructions on different data (Data 
Level Parallelism: DLW)

• SIMD (Single Instruction Multiple Data) 
comes from Flynn taxonomy (1966 ) 

• Intel proposed its : 
– SWAR ( SIMD Within A Register) 
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typical SIMD operation

X4 X3 X2 X1

Y4 Y3 Y2 Y1

op op op op

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1
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MMX

• Adds 8 64-bits new registers :
– MM0 – MM7

• MMX allows computations on packed 
bytes, word or doubleword integers 
contained in the MM registers (the MM 
registers overlap the FP registers !)

• Not useful for scientific computing
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SSE

• Adds 8 128-bits registers :
– XMM0 – XMM7

• SSE allows computations on operands 
that contain 4 Single Precision Floating 
Points either in memory or in the XMM 
registers

• Very limited use for scientific computing, 
because of lack of precision
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SSE2

• Works with operands either in memory or in 
the XMM registers

• Allows operations on packed Double 
Precision Floating Points or 128-bit integers

• Using a linear algebra kernel with SSE2 
instructions matrix multiplication can achieve 
1.8 Gflops on a P4 at 1.4 Ghz : 
http://hpc.sissa.it/p4/

http://hpc.sissa.it/p4/
http://hpc.sissa.it/p4/
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Cache memory

Cache=a place where you can safely 
hide something 

It is a high-speed memory that holds a 
small subset of main memory that is in 
frequent use.

cache MemoryCPU
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Cache memory/1

• Processor /memory gap is the 
motivation :
– 1980 no cache at all
– 1995 2 level cache
– 2002 ? 3 level cache ?
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Cache memory/2
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1975 cpu cycle 1 usec, SRAM access 1 usec
2001 cpu cycle 0.5 ns, DRAM access  50 ns 

CPU/DRAM
gap :
50 %/year
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Cache memory/3

As the cache contains only part of the 
main memory, we need to identify which 
portions of the main memory are 
cached. This is done by tagging the 
data that is stored in the cache.

The data in the cache is organized in lines 
that are the unit of transfer from/to the 
CPU and the memory. 
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Cache memory/4
DataTags

Typical line 
sizes are 32 
(Pentium III), 
64 (Athlon), 
128 bytes 
(Pentium 4)

cache line
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Cache memory/5
Block placement algorithm :
• Direct Mapped : a block can be placed in just one row of the 

cache
• Fully Associative : a block can be placed on any row
• n-Way set associative: a block can be placed on n places in a 

cache row
With direct mapping or n-way the row is determined using a simple 

hash function such as the least significant bits of the row 
address.

E.g. If the cache line is 64 bytes(bits [5:0] of address are used only 
to address the byte inside the row) and there are 1k rows, then 
bits [15:6] of the address are used to select the cache row. The
tag is then the remaining most significant bits [:16] .   
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Cache memory/6

2-way
cache :
a block
can be 
placed 
on any 
of the two 
positions in
a row

Data DataTags Tags

cache line cache line
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Cache memory/7

• With fully associative or n-way caches an 
algorithm for block replacement needs to be 
implemented. 

• Usually some approximation of the LRU 
(least recently used) algorithm is used to 
determine the victim line.

• With large associativity (16 or more ways) 
choosing at random the line is almost equally 
efficient
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Cache memory/8

• When during a memory access we find 
the data in the cache we say we had a 
hit, otherwise we say we had a miss.

• The  hit ratio is a very important 
parameter for caches in that it let us 
predict the AMAT (Average Memory 
Access Time)
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Cache memory/9

If
• tc is the time to access the cache
• tm the time to access the data from 

memory
• h the unitary hit ratio 
then:

t = h * tc+ (1-h)*tm
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Cache memory/10

In a typical case we could have :
• tc=2 ns
• tm=50 ns
• h=0.90
then the AMAT would be :
AMAT = 0.9 * 2+0.1*50= 6.8 ns
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Cache memory/11

Typical split L1/unified L2 cache 
organization:

L1
data L2

unifiedCPU
L1

code
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Real Caches 
• Pentium III :  line size 32 bytes

– split L1 – 16KB inst/16KBdata 4-way write through
– L2 256 KB (coppermine) 8-way write back

• Pentium 4 : 
– split L1 :

• Instruction L1 : 12 K uops 8-ways 
• Data L1 : 8 KB – 4 way/64 bytes line size/write through

– unified L2: 256 KB 8-way /line size 128 bytes/write back 
(512KB on Northwood)

• Athlon : split L1 64 KB/64 KB/ line 64 bytes 
– L2 256 KB 16-ways/ 64 bytes line size
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Memory performance

• stream  (McCalpin) : 
http://www.cs.virginia.edu/stream

• memperf (T.Stricker): 
http://www.cs.inf.ethz.ch/CoPs/ECT

http://www.cs.virginia.edu/stream
http://www.cs.virginia.edu/stream
http://www.cs.inf.ethz.ch/CoPs/ECT
http://www.cs.inf.ethz.ch/CoPs/ECT
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MTRR/1

Memory Type and Range Registers were 
introduced with the P6 uarchitecture, they 
should be programmed to define  how the 
processor should behave regarding the use 
of the cache in different memory areas. The 
following types of behaviour can be defined:

UC(Uncacheable), WC(Write Combining), 
WT(Write through), WB(Write back), 
WP(write Protect)
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MTRR/2

• UC=uncacheable:
– no cache lookups,
– reads are not performed as line reads, but as is
– writes are posted to the write buffer and performed 

in order
• WC=write combining:

– no cache lookups
– read requests performed as is
– a Write Combining Buffer of 32 bytes is used to 

buffer modifications until a different line is 
addressed or a serializing instruction is executed
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MTRR/3
• WT=write through:

– cache lookups are perfomed
– reads are performed as line reads
– writes are performed also in memory in any case (L1 cache 

is updated and L2 is eventually invalidated)
• WB=write back

– cache lookups are performed
– reads are performed as line reads
– writes are performed on the cache line eventually reading a 

full line.Only when the line needs to be evicted from cache if 
modified, it will be written in memory

• WP=write protect
– writes are never performed in the cache line
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MTRR/4

There are 8 MTRRs for variable size 
areas on the P6 uarchitecture.

On Linux you can display them with:
cat /proc/mtrr
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MTRR/5

A typical output of the command would be:
reg00: base=0x00000000 (0MB), 
size=256MB: write-back

reg01: base=0xf0000000 (3840MB), 
size=32MB:write-combining 

the first entry is for the DRAM, the other for the 
graphic board framebuffer
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MTRR/6

It is possible to remove and add  regions 
using these simple commands:

echo ‘disable=1’ >| /proc/mtrr

echo ‘base=0xf0000000 
size=0x4000000 type=write-
combining’ >|/proc/mtrr

( Suggestion: Try to use xengine while disabling 
and re-enabling the write-combining region of 
the framebuffer.)
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Explicit cache control/1

Caches were introduced as an h/w only 
optimization and as such destined  to be 
completely hidden to the programmers.

This is no more true, and all recent 
architectures have introduced some 
instructions for explicit cache control by the 
application programmer. On the x86 this was 
done togheter with the introduction of the 
SSE instructions.



14/02/02 r.innocente 48

Explicit cache control/2

On the Intel x86 architecture the following instructions 
provide   explicit cache control  :

• prefetch : these instructions load a cache line 
before the data is actually needed, to hide latency

• non temporal stores: to move data from 
registers to memory without writing it in the caches, 
when it is known data will not be re-used 

• fence: to be sure order between prior/following 
memory operation is respected

• flush : to write back  a cache line, when it is 
known it will not be  re-used
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Performance and 
timestamp counters/1

These counters were initially introduced 
on the Pentium but documented only on 
the PPro. They are supported also on 
the Athlon.

Their aim was fine tuning and profiling of 
the applications. They were adopted 
after many other processors had shown 
their usefulness. 
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Performance and 
timestamp counters/2

Timestamp counter (TSC):
• it is a 64 bit counter
• counts the clock cycles (processor cycles: now up to 

2 Ghz=0.5ns) since reset or since programmer 
zeroed

• when it reaches a count of all 1s, it wraps around 
without generating any interrupt

• it is an x86 extension that is reported by the cpuid 
instruction, as such can be found on /proc/cpuinfo

• Intel assured that even on future processor it will 
never wrap around in less than 10 years
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Performance and timestamp 
counters/3

• the TSC can be read with the RDTSC (Read TSC) 
instruction or the RDMSR (Read 
ModelSpecificRegister 0x10 ) instruction

• it is possible to zero the lower 32 bits of the TSC 
using the WRMSR (Write MSR 0x10) instruction (the 
upper 32 bits will be zeroed automagically by the h/w

• the RDTSC is not a serializing instruction as such 
does’nt avoid Out of Order execution. This can be 
obtained using the cpuid instruction
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Performance and timestamp 
counters/4

The TSC is used by Linux during the startup 
phase to determine the clock frequency:

• the PIT (Programmable Interval Timer) is 
programmed to generate a 50 millisecond 
interval

• the elapsed clock ticks are computed reading 
the TSC before and after the interval

The TSC can be read by any user or only by the 
kernel according to a cpu flag in the CR4 
register  that can be set e.g. by a module.
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Performance and timestamp 
counters/5

On the P6 uarchitecture there are  4 registers  used for 
performance monitoring:

• 2 event select registers: PerfEvtSel0, PerfEvtSel1
• 2 performance counters 40 bits wide : PerfCtr0, PerfCtr1
You have to enable and specify the events to monitor setting the

event select registers.
These registers can be accessed using the RDMSR and WRMSR 

instructions at kernel level (MSR 0x186,0x187, 0x193 0x194).
The performance counters can also be accessed using the 

RDPMC (Read Performance Monitoring Counters) at any 
privilege level if allowed by the CR4 flag.
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Performance and timestamp 
counters/6

The Performance Monitoring mechanism has been 
vastly changed and expanded on P4 and Xeons. This 
new feature is called : PEBS (Precise Event-based 
Sampling).

There are 45 event selection control (ESCR) registers , 
18 performance monitor counters and 18 counter 
configuration control (CCCR) MSR registers.

Now counters can produce an interrupt on 
overflow/underflow.

You can count bogus (uops non retired because of 
misprediction) and nonbogus events separately.
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Performance and timestamp 
counters/7

A useful performance counters library to instrument the 
code and  a tool called rabbit to monitor programs not 
instrumented with the library can be found at:

http://www.scl.ameslab.gov/Projects/Rabbit/
Another tool in perl for Pentium 4 called brink/abyss is 

available at
http://www.eg.brucknell.edu/~bsprunt/emon/brink_abyss

.shtm
And then there is PAPI (Performance API) by Dongarra 

et al. at UTK:
http://icl.cs.utk.edu/projects/papi/

http://www.scl.ameslab.gov/Projects/Rabbit/
http://www.scl.ameslab.gov/Projects/Rabbit/
http://www.eg.brucknell.edu/~bsprunt/emon/brink_abyss.shtm
http://icl.cs.utk.edu/projects/papi/
http://icl.cs.utk.edu/projects/papi/
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Processor bus/1
• Intel (AGTL+):

– bus based (max 5 loads)
– explicit in band arbitration
– short bursts (4 data txfers)
– 8 bytes wide(64 bits), up to 133 Mhz

• Compaq Alpha (EV6)/Athlon :
– point to point
– DDR double data rate (2 transfers x clock)
– licensed by AMD for the Athlon (133 Mhz x 2)
– source synchronous(up to 400 Mhz)
– 8 bytes wide(64 bits)
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Processor bus/2

• Intel Netburst (Pentium 4):
– source synchronous (like EV6)
– 8 bytes wide
– 100 Mhz clock
– quad data rate for data transfers (4 x 100 Mhz x 8 

bytes= 3.2 GB/s, just in theory)
– double data rate for address transfer
– max 128 bytes(a P4 cache line)in a transaction (4 

data transfer cycles)
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Intel IA32 node

Pentium III Pentium III

North Bridge

shared
FSB 64 bits @100/133Mhz

Memory
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Intel PIII/P4 processor bus

• Bus phases :
– Arbitration: 2 or 3 clks
– Request phase: 2 clks packet A, packet B (size)
– Error phase: 2 clks, check parity on pkts,drive 

AERR
– Snoop phase: variable length 1 ...
– Response phase: 2 clk
– Data phase : up to 32 bytes (4 clks, 1 cache line), 

128 bytes with quad data rate on Pentium 4
• 13 clks to txfer 32 bytes, or 128 bytes on P4
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Alpha node

21264 21264

Tsunami
xbar switch

Memory

AlphaEV6 bus
64 bit 4*83Mhzstream

measured
memory 

b/w> 1GB/s

256 bit-83 Mhz
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Alpha/Athlon  EV6 bus

• 3 high speed channels  :
– Unidirectional processor request channel
– Unidirectional snoop channel
– 72-bit data channel (ECC)

• source synchronous
• up to 400 Mhz (4 x 100 Mhz: quad 

pumped, Athlon :133Mhz x 2 ddr )
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Pentium 4 (Willamette)

• 1.4-2.2 Ghz with 256( 512 Northwood)KB L2 
cache (SKT 423)/(SKT478)

• Processor bus at 100 Mhz but Quad pumped
(2x address rate/4x data rate)

• With PC800 RDRAM at 1.4 Ghz stream gives 
~ 1.5 GB/s memory bandwidth

• L2 Cache line is 128  bytes ( 1 bus 
transaction: 4x4x8)
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SMPs
Symmetrical Multi Processing denotes a 

multiprocessing architecture in which 
there is no master CPU, but all CPUs 
co-operate.

• processor bus arbitration
• cache coherency/consistency
• atomic RMW operations
• mp interrupts   
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Intel MP 
Processor bus arbitration

• As we have seen there is a special phase for each 
bus transaction devoted to arbitration (it takes 2 or 3 
cycles)

• At startup  each processor is assigned a cluster 
number from 0 to 3 and a processor number from 0 
to 3 (the Intel MP specification covers up to 16 
processors)

• In the arbitration phase each processor knows who 
had the bus during last transaction (the rotating ID) 
and who is requesting it. Then each processor knows 
who will own the current transaction because they will 
gain the bus according to the fixed sequence 0-1-2-3. 
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Cache coherency
Coherence: all processor should see the same data.
This is a problem because each processor can have its 

own copy of the data in its cache.
There are essentially 2 ways to assure cache 

coherency:
• directory based : there is a central directory that 

keeps track of the shared regions (ccNUMA: Sun 
Enterprise, SGI)

• snooping : all the caches monitor the bus to 
determine if they have a copy of the data requested 
(UMA: Intel MP)



14/02/02 r.innocente 66

Cache consistency

• Consistency: mantain the order in which 
writes are executed

Writes are serialized by the processor 
bus.
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Snooping

Two protocols can be used by caches to snoop 
the bus :

• write-invalidate: when a cache hears on the 
bus a write request for one of his lines from 
another bus agent then it invalidates its copy 
(Intel MP)

• write-update: when a cache hears on the bus 
a write request for one of his lines from 
another agent it reloads the line



14/02/02 r.innocente 68

Intel MP snooping
• If a memory transaction (memory read and invalidate/read 

code/read data/write cache line/write) was not cancelled by an 
error, then the error phase of the bus  is followed by the snoop
phase(2 or more cycles)

• In this phase the caches will check if they have a copy of the line
line

• if it is a read and a processor has a modified copy then it will
supply its copy that is also written to memory

• if it is a write and a processor has a modified copy then the 
memory will store first the modified line and then will merge the 
write data
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MESI protocol
Each cache line can be in 1 of the 4 states:
• Invalid (I): the line is not valid and should not be used
• Exclusive(E): the line is valid, is the same as main 

memory and no other processor has a copy of it, it 
can be read and written in cache w/o problems

• Shared(S): the line is valid, the same as memory, 
one or more other processors have a copy of it, it can 
be read from memory, it should be written-through 
(even if declared write back!)

• Modified(M): the line is valid, has been updated by 
the local processor, no other cache has a copy, it can 
be read and written in cache
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MESI states
WSR

RR

I S SW

EM

R
S

WS

Legenda:
Read access
Write access
Snoop

W W

RR
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L2/L1 coherence

• An easy way to keep coherent the 2 
levels of caches is to require inclusion ( 
L1 subset of L2)

• Otherwise each cache can perform its 
snooping
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Atomic Read Modify Write

The x86 instruction set has the possibility to prefix some 
instructions with a LOCK prefix: 
– bit test and modify
– exchange
– increment, decrement, not,add,sub,and,or

These will cause the processor to assert the LOCK#  
bus signal for the duration of the read and write.

The processor automatically asserts the LOCK# signal 
during execution of an XCHG , during a task switch, 
while reading a segment descriptor
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Intel MP interrupts

Intel has introduced an I/O APIC (Advanced Programmable 
Interrupt controller) which replaces the old 8259A.

• each processor of an SMP has its own integrated local APIC
• an Interrupt Controller Communication (ICC) bus connects an 

external I/O APIC (front-end) to these local APICs  (on the 
Pentium 4 this communication happens on the processor bus)

• externel IRQ lines are connected to the I/O APIC that acts as a 
router 

• the I/O APIC can dispatch interrupts to a fixed processor or to 
the one executing lowest priority activites (the priority table has 
to be updated by the kernel at each context switch)
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PCI Bus
Standard PCI in use today is 32 bits at 33 Mhz, just 

sufficient for 1 Gb/s 

• PCI32/33 4 bytes@33Mhz=132MBytes/s  (on 
i440BX,...)   

• PCI64/33 8 bytes@33Mhz=264Mbytes/s

• PCI64/66 8 bytes@66Mhz=528Mbytes/s (on i840)

• PCI-X 8 bytes@133Mhz=1056Mbytes/s 

PCI-X will implement split transactions
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PCI efficiency

• Multimaster bus but arbitration is performed 
out of band

• Multiplexed but in burst mode (implicit 
addressing) only start address is txmitted

• Fairness guaranteed by MLT (Maximum 
Latency Timer)

• 3 / 4 cycles overhead on 64 data txfers < 5 %
• on Linux use : lspci –vvv to look at the setup 

of the boards
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PCI 2.2/X timing diagram
Target 

response
Address

phase 
Attribute

phase 
Data

phaseCLK

Address

Bus cmd Attr

DataAttr
AD

C/BE#
BE

FRAME #

IRDY#

TRDY#
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common chipsets 
PCI performance

372303Serverworks HE

315227Intel 860

328315AMD760MPX

248205Tsunami (alpha)

372309Serverworks champion II HE

372315Serverset III HE

399372Intel 460GX (Itanium)

488407Titan (Alpha)

512455Serverworks Serverset III LE

Write MB/sRead MB/sChipset
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Memory buses

• SDRAM 8 bytes wide (64 bits): these memories are pipelined 
DRAM. Industry found for them much more appealing to indicate 
clock frequency than access times. Number of clock cycles to 
wait for access is written in a small rom on the module(SPD)
– PC-100 PC-133
– DDR PC-200, DDR 266 QDR on the horizon

• RDRAM 2 bytes wide(16 bits) these memories  have a completely 
new signaling technology. Their bus should be terminated at both
ends (coninuity module required if slot not used!)
– RDRAM 600/800/1066 double data rate at 300,400,533 Mhz
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Interconnects /1
Today we speak of interconnection networks (or interconnects) 

referring to processor-memory, I/O controllers-I/O devices, 
processor-processor, computer-computer communications. Up 
to the beginning of the ’90 many of these applications were 
using a very simple interconnection: the multidrop bus. 

Now all high performance communications are performed by point-
to-point interconnection networks. This depends on the demand 
for higher performance and the impossibility to scale for the bus.

bandwidth : speed in Mb/s of the network including overhead bits
txmission time: time to pass through the net (size in bits with 

overhead )/bandwidth
time of flight: time for a bit to traverse the net sender to receiver
sender overhead: time to prepare the message
receiver overhead: time to get the message from the network
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LogP metrics (Culler)
This metric was introduced to characterize a distributed 

system with its most important parameters,a bit outdated, but 
still useful.(e.g..does’nt take into account pipelining)

• L = Latency: time data is on flight between the 2 
nodes

• o = overhead: time during which the processor is 
engaged in sending or receiving 

• g = gap : minimum time interval between consecutive 
message txmissions(or receptions)

• P = # of Processors
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LogP diagram

Network

NI NI
g

g

L

os
or

Processor Processor

time=os+L+or
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Interconnects /2

• single mode fiber ( sonet 10 gb/s for 
some km)

• multimode fiber (1 gb/s 300 m: GigE)
• coaxial cable (800 mb/s 1 km: CATV)
• twisted pair (1 gb/s 100 m: GigE)
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Interconnects /3

• shared  / switched media:
– bus (shared communication): 

• coaxial
• pcb trace
• backplane

– switch (1-1 connection):
• point to point
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Interconnects /4
Network Topology:
• now not so important as it has been considered in the past
• clearly the best network would be the complete graph: every node

connected directly with all other nodes, but this requires n(n-1)/2 
connections

• issues: routing distance, diameter, avg distance
• the major issue is the number of wires, delay and bandwidth

– ring : nodes are numbered 0:n-1, each node has 2 connections one with 
the preceding and one with the following node (modulo n) 

– crossbar
– hypercube
– mesh/grid
– star: there is a central switch to which all nodes are connected
– torus
– omega
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Interconnects /5
Hypercube:
• A k-cube has 2**k 

nodes, each node is 
labelled by a k-dim 
binary coordinate

• 2 nodes differing in only 
1 dim are connected

• there are at most k 
hops between 2 nodes, 
and 2**k * k wires

0 1
01 11

1-cube

00
2-cube

10

3-cube
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Interconnects /6
Mesh:
• an extension of hypercube
• nodes are given a k-dim 

coordinate (in the 0:N-1 
range) 

• nodes that differ by 1 in only 
1 coordinate are connected

• a k-dim mesh has N**k 
nodes

• at most there are kN hops 
between nodes and wires 
are ~ kN**k

02 12 22

11 2101

00 0000

2-dim 3x3 mesh
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Interconnects /7
Crossbar (xbar):
• typical telephone network 

technology
• organized by rows and 

columns (NxN)
• requires N**2 switches
• any permutation w/o blocking

blocking
• in the picture the i-row is the 

sender and the i-col is the 
receiver of node i

4

3

2

1

0

0 1 2 3 4

5x5 xbar switch 
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Interconnects /8
• Bisection width :

732hypercube
641024fully connected

5162-d torus
58grid/mesh
6432star
32ring

1bus

ports/switchbisection
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Interconnects /9

• Connection/connectionless:
– circuit switched: the telephone network is a 

typical example of circuit switching, ATM
– packet switched: ethernet, X25

• routing
– source based routing (SBR): myrinet
– virtual circuit: ATM, phone net
– destination based: multicast routing
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Interconnects /10
• switch mechanism (buffer management):

– store and forward
• each msg is received completely by a switch before being forwarded to 

the next
• pros: easy to design because there is no handling of partial msgs
• cons: long msg latency, requires large buffer

– cut-through (virtual cut-through)
• msg forwarded to the next node as soon as its header arrives
• if the next node cannot receive the msg then the full msg needs to be 

stored
– wormhole routing

• the same as cut-trough except that the msg can be buffered togheter 
by multiple successive switches

• the msg is like a worm crawling through a worm-hole
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Interconnects /11

• congestion control
– packet discarding: typically used by switches, routers on 

IP stack
– flow control

• window /credit based: MAN, myrinet gm protocol
• start/stop: xon/xoff serial protocol



14/02/02 r.innocente 92

Bisection /1
Bisection width : given an N nodes net, divided the 

nodes in two sets of N/2 nodes, the number of links  
that go from one set to the other.

An important parameter is the minimum bisection width: 
the minimum number of links whatever cut you use to
bisect the nodes.

An upper bound on the minimum bisection is N/2 
because whatever the topology would be you can 
always find a cut across half of the node links. If a 
network has minimum bisection of N/2 we say it has 
full bisection.
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Bisection   /2
2 different 8 nodes nets

Bisection cut:
1 link

Bisection cut:
4 links
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Bisection /3

It can be difficult to find the min bisection.
For full bisection networks, it can be shown that 

if a network is re-arrangeable (it can route 
any permutation w/o blocking) then it has full 
bisection.

1625403To
6543210From
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NIC Interconnection point
(from D.Culler)

Controller Special uproc General uproc

Register TMC CM-5

Memory T3E annex Meiko 
CS-2

Intel
Paragon

Graphics
Bus

HP 
Medusa

I/O Bus SP2, Fore 
ATM cards

Myrinet, 
3ComGbe

Many
ether cards
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Ethernet history

• 1976 Metcalfe invented a 1 Mb/s ether 
• 1980 Ethernet DIX (Digital, Intel, Xerox) 

standard
• 1989 Synoptics invented twisted pair 

Ethernet
• 1995 Fast Ethernet
• 1998 Gigabit Ethernet
• 200x 10 Gigabit Ethernet
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Ethernet

• 10 Mb/s 
• Fast Ethernet
• Gigabit Ethernet 
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Ethernet Frames
• 6 bytes dst address 
• 6 bytes src address :3 bytes vendor codes, 3 bytes 

serial #
• 2 bytes ethernet type: ip, ...
• data from 46 up to 1500 bytes
• 4 bytes FCS (checksum)

dst
address

src
address

type FCSdata
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VLAN

Virtual LAN :
– IEEE 802.1Q extension to the ethernet std
– frames can be tagged with 4 more bytes 

(so that now an ethernet frame can be up 
to 1522 bytes):

• TPID tagged protocol identifier, 2 bytes with 
value 0x8100

• TCI Tag control information: specifies priority 
and Virtual LAN (12 bits) this frame belongs

• remaining bytes with standard content



14/02/02 r.innocente 100

Hubs
• Repeaters: layer 1

– like a bus they just repeat all the data across all 
the connections (not very useful for clusters)

• Switches (bridges) layer 2
– they filter traffic and repeat only necessary traffic 

on connections (very cheap switches can easily 
switch at full speed many Fast Ethernet 
connections)

• Routers : layer 3



14/02/02 r.innocente 101

Ethernet flow/control
• With large switches it is necessary to be able to limit the flow of packets 

to avoid packet discarding following an overflow
• Vendors had tried to implement non standard mechanism to overcome 

the problem
• One of this mechanism that could be used for half/duplex links is 

sending carrier bursts to simulate a busy channel
• This mechanism does’nt apply  to full/duplex links
• MAC control protocol : to support flow control on f/d links

– a new ethernet type = 0x8808, for frames of 46 bytes (min length)
– first 2 bytes are the opcode other are the parameters
– opcode = 0x0001 PAUSE stop txmitting
– dst address = 01-80-c2-00-00-01 (an address not forwarded by bridges)
– following 2 bytes represent the number of 512 bit times to stop txmission
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Auto Negotiation
• On twisted pairs each station transmits a  series of pulses (quite 

different from data) to signal link active. These pulses are called 
Normal Link Pulses (NLP)

• A set of Fast Link Pulses (FLP) is used to code station 
capabilities.These FLPs bits code the set of station capabilities

• There are some special repeaters that connect 10mb/s links 
together and 100mb/s together and then the  two sets to ports of
a mixed speed bridge 

• Parallel detection: when autonegotiation is not implemented, 
this mechanism tries to discover speed used  from NLP pulses 
(will not detect duplex links).
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GigE 
Peculiarities :
• Flow control necessary on full duplex
• 1000base-T uses all 4-pairs of cat 5 cable in both directions: 

250 Mhz*4 , with echo cancellation(10 and 100base-T used only 
2 pairs)

• 1000base-SX on multimode fiber uses a laser (usually a 
VCSEL). Some multimode fibers have a discontinuity in the 
refraction index for some microns just in the middle of the fiber. 
This is not important with a LED launch where the light fills the 
core but is essential with a laser launch. An offset patch cord (a 
small length of single mode fiber that moves away from the 
center the spot) has been proposed as solution.
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Network (Physical Layer)

Current technology is at ~1/2 Gb/s(GbE,Myrinet), is 
there room for improvement?

• Ethernet 2.5 Gb/s ..10 Gb/s
• Infiniband  2.5Gb/s – 30 Gb/s
• SONET OC192 10 Gb/s
• GSN(Hippi) 6.4 Gb/s

A lot of the improvements in the optical arena are coming 
from the use in the last years of the low cost VCSELs(Vertical 

Cavity Surface Emitting Laser)
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Network (Physical Layer)

Two technologies have provided room for 
vast improvements at the net physical 
layer in the last decade : 

• LVDS(Low voltage differential signaling) 
on copper

• VCSEL (Vertical Cavity Surface 
Emitting Lasers) on fibers
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LVDS/1

• Low Voltage Differential Signaling 
(ANSI/TIA/EIA 644-1995)

• Defines only the electrical 
characteristics of drivers and receivers

• Transmission media can be copper 
cable or PCB traces
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LVDS/2
• Differential :

– Instead of measuring the voltage Vref+U between a signal 
line and a common GROUND, a pair is used and Vref+U 
and Vref–U are transmitted on the 2 wires 

– In this way the transmission is immune to Common Mode 
Noise (the electrical noise induced in the same way on the 2 
wires: EMI,..) 
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LVDS/3

• Low Voltage:
– voltage swing is just 300 mV, with a driver offset of +1.2V
– receivers are able to detect signals as low as 20 mV,in the 0 

to 2.4 V (supporting +/- 1 V of noise)

0 V

+300mV

-300mV

1.2 V
1.35V

1.05V



14/02/02 r.innocente 109

LVDS/4

• It consumes only 1 mW(330mV swing 
constant current): GTL would consume 40 
mW(1V swing) and TTL much more

• consumer chips for connecting displays 
(OpenLDI DS90C031) are already txmitting 6 
Gb/s

• The low slew rate (300mV in 333 ps is only 
0.9V/ns) minimize xtalk and distortion
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VCSEL/1
VCSELs: Vertical Cavity 

Surface Emitting 
Lasers:

• the laser cavity is 
vertical to the 
semiconductor wafer

• the light comes out from 
the surface of the wafer

Distributed Bragg 
Reflectors(DBR):

• 20/30 pairs of 
semiconductor layers

Active region

p-DBR

n-DBR
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VCSEL/2-EEL (Edge Emitting)

picture from Honeywell 
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VCSEL/3- Surface Emission

picture from Honeywell
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VCSEL/4

pict from Honeywell
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VCSEL/5

At costs similar to LEDs have the characteristics of 
lasers.

EELs:
• it’s difficult to produce a geometry w/o problems

cutting the chips  
• it’s not possible to know in advance if the chip  it’s 

good or not
VCSELs:
• they can be produced and tested with standard I.C. 

procedures
• arrays of 10 or 1000 can be produced easily
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MINI 
(Memory Integrated Network Interface)

• MINI (R.Minnich,D.Burns) IEEE Micro 
1995: ATM interface on a SIMM slot

• MEMOnet/DIMMnet: (Tanabe et al. 
2000) a NIC on a PC-133 DIMM slot

• Estimated performance of DIMMnet-1 :
– short msg latency: 250ns
– long msgs b/w: 300-450 MB/s (depending 

on processor and chipset)



14/02/02 r.innocente 116

MINI/2

Dual port memory Snd/Rcv Logic

COmmunication link

Memory I/F

Host memory slot
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Infiniband/1

• It represents the convergence of 2 separate 
proposal:
– NGIO 

(NextGenerationIO:Intel,Microsoft,Sun) 
– FutureIO (Compaq,IBM,HP)

• Infiniband: Compaq, Dell, HP, IBM, Intel, 
Microsoft, Sun
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Infiniband/2

• Std channel at 2.5 Gb/s (Copper LVDS 
or FIber) :
– 1x width 2.5 Gb/s
– 4x width 10 Gb/s
– 12x width 30 Gb/s
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Infiniband/3

• Highlights:
– point to point switched interconnect
– channel based message passing
– computer room interconnect, diameter < 

100-300 m
– one connection for all I/O : ipc, storage I/O, 

network I/O
– up to thousands of nodes
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Infiniband/4
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Infiniband/5
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Myrinet/1
• comes from a USC/ISI research project : ATOMIC
• flow contro and error control on all links
• cut-through xbar switches, intelligent boards
• Myrinet packet format :

type CRCdata (no length limit)

Allows multiple protocols

Source route bytes
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Myrinet/2
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Myrinet/3
Every node can discover the topology 

with probe packets (mapper).
In this way it gets a routing table that can 

be used to compute  headers for any 
destination.

There is 1 byte for each hop traversed, 
the first byte with routing information is 
removed by each switch on the path.
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Clos networks

Named after Charles Clos who introduced them 
in 1953.

These networks have full bisection.
Large Myrinet  clusters are frequently arranged 

as a Clos network.
Myricom base block is their 16 port xbar switch.
From this brick it’s possible to build 128 nodes/3 

level (16+8switches) and 1024 nodes 5 level 
networks.
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Clos networks/2

from myri.com
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Software

Despite great advances in network 
technology(2-3 

orders of magnitude), much communication s/w
remained almost unchanged for many years
(e.g.BSD networking).

There is a lot of ongoing research on this theme 
and

very different solutions are proposed(zero-
copy,  page remapping,VIA,...)
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Software overhead

software

overhead
Being a constant, is becoming 
more and more important !!

txmission
time

total
time software

overhead software
overhead

10Mb/s Ether 100Mb/s Ether 1Gb/s 
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Zero Copy Research
High speed networks, I/O systems and memory have 

comparable bandwidths -> it is essential to avoid any 
unnecessary copy of  data !

• Shared memory between user/kernel:
– Fbufs(Druschel,1993)
– I/O-Lite (Druschel,1999)

• Page remapping with copy on write (Chu,1996)
• Blast: hardware splits headers from 

data(Carter,O’Malley,1990)
• Ulni (User-level Network Interface): implementation 

of communication s/w inside libraries in user space
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OS bypass – User level 
networking

• Active Messages (AM) – von Eicken, 
Culler (1992) 

• U-Net –von Eicken, Basu, Vogels (1995)
• PM – Tezuka, Hori, Ishikawa, Sato (1997)
• Illinois FastMessages (FM) – Pakin, 

Karamcheti, Chien (1997)
• Virtual Interface Architecture (VIA) –

Compaq,Intel,Microsoft (1998)
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Active Messages (AM)
• 1-sided communication paradigm(no 

receive op)
• each message as soon as received 

triggers a receive handler that acts as a 
separate thread (in current 
implementations it is sender based)
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FastMessages (FM)
• FM_send(dest,handler,buf,size)

sends a long message
• FM_send_4(dest,handler,i0,i1,i2,i3)

sends a 4 words msg (reg to reg)
• FM_extract()

process a received msg
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VIA/1
Wanting to get at the industrial level the advantages 

obtained from the various User Level Networking 
(ULN) initiatives, Compaq, Intel and Microsoft 
proposed an industry standard called VIA (Virtual 
Interface Architecture). This proposal specifies an 
API (Application Programming Interface).

In this proposal network reads and writes are done 
bypassing the OS, while open/close/map are done 
with the kernel intervention. It requires memory 
registering.
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VIA/2

VI Hardware

VI

VI kernel i/f

VI kernel agent

VI
D
o
o
r
b
e
l
l
s

SendQRecQ RecQ SendQ

VI  Provider API
Open/Close/Map            Send/Receive/RDMA               
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VIA/3

• VIA is better suited to network cards 
implementing advanced mechanism like 
doorbells (a queue of transactions in the 
address space of the memory card, that are 
remembered by the card)

• Anyway it can also be implemented 
completely in s/w, despite less efficiently (look 
at the M-VIA  UCB project, and MVICH)
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Software layering
Use of abstraction layers has promoted generality, but maybe 

it can be harmful to efficiency

A typical read/write on a tcp socket passes through:
• VFS(Virtual File System) layer
• BSD socket layer
• Inet socket layer
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Network layering considered 
harmful ?

Is the successful network layering approach to networking 
harmful to today high speed network performance ?

• 7 layers ISO/OSI model
• 4 layers TCP/IP

Yes, if it implies data copying between layers, no if layering is 
just an abstraction
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Linux Socket buffers (sk_buff)
This is the Linux 

way to avoid 
copying between 
network layers, 
does’nt avoid 

copies between 
kernel/user 

spaces and for 
frag/defrag-
mentation

header

datapush

pull
len

trimtail

put
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Memory Management
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Linux 2.4 kiobuff
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