# **Diskless Linux Clusters**

Ciro Cattuto

ciro.cattuto@pg.infn.it

#### Outline:

- Why diskless operation?
- Issues with diskless nodes
- Our choices
- Configuring the Linux kernel
- The boot sequence
- Pros and cons

Cost motivations

Cost motivations

OSCAR is too simple! ;-)

Cost motivations

OSCAR is too simple! ;-)

Single System Image (SSI) approach to clustering

- giving users and applications a unified cluster image
- requires integration at multiple levels: kernel, filesystem, namespace, ...
- . . . but it's not there yet!

Cost motivations

- OSCAR is too simple! ;-)
- Single System Image (SSI) approach to clustering
  - giving users and applications a unified cluster image
  - requires integration at multiple levels: kernel, filesystem, namespace, ...
  - . . . but it's not there yet!

A single root filesystem is the first step towards SSI: Manageability

Flexibility

Cost motivations

OSCAR is too simple! ;-)

Single System Image (SSI) approach to clustering

- giving users and applications a unified cluster image
- requires integration at multiple levels: kernel, filesystem, namespace, ...
- . . . but it's not there yet!

A single root filesystem is the first step towards SSI: Manageability

Flexibility

Sometimes, even when you do have disks, you don't want to touch them!

### **Issues with diskless nodes**

• How do I boot?

▷ Floppy

- ▶ Network (PXE, etherboot)
- Where is my root filesystem?
   ▶ Network file system (NFS)
- Where do I swap to?
  - ▷ Just don't.
  - Swap over the network

### **Issues with diskless nodes**

• How do I boot?

▷ Floppy

- ▷ Network (PXE, etherboot)
- Where is my root filesystem?
  - Network file system (NFS)
- Where do I swap to?
  - ⊳ Just don't.
  - Swap over the network

Moreover, if we want a single root filesystem for all nodes:

#### • Where is my identity?

- Created on the fly
- Stored remotely

# **Requirements and Choices**

Our requirements for system organization:

- Dedicated system (no PBS, ...)
- Easily reconfigurable at the system level:
  - ▷ System libraries
  - ▷ Kernel
  - Running set of daemons
  - Cluster-wide user environment

### Our choices:

- Root filesystem over NFS, read-only mounted
  - root filesystem based on the Debian distribution
  - the root filesystem exported to nodes is maintained using standard Debian tools (dpkg, apt-get)
- GRUB bootloader
  - ▷ integrates a BOOTP/DHCP client
  - can fetch and execute scripts specifying a boot sequence
  - ▷ we boot from floppies or PXE
- Small local ramdisk, for volatile write access
  - ▷ /tmp has to be writable! (think of lock files . . . )
- Devfs virtual filesystem
  - ▷ No device inode lookups over the network
  - ▶ No /dev files on the exported root filesystem
- NFS-shared /beowulf filesystem
  - ▶ holds the application libraries (MPICH, LAM, FFTW, ...)
  - holds home directories

# **Compute nodes**



## A closer look at one node ...

| cattuto@node10:~           | \$ df -a | Γm        |        |           |      |            |
|----------------------------|----------|-----------|--------|-----------|------|------------|
| Filesystem                 | Туре     | 1M-blocks | Used . | Available | Use% | Mounted on |
| /dev/root                  | nfs      | 5613      | 1341   | 3987      | 26%  | 1          |
| none                       | devfs    | 0         | 0      | 0         | -    | /dev       |
| proc                       | proc     | 0         | 0      | 0         | -    | /proc      |
| /dev/ram0                  | ext2     | 8         | 1      | 7         | 1%   | /ramdisk   |
| <pre>node00:/beowulf</pre> | nfs      | 10199     | 8524   | 1676      | 84%  | /beowulf   |

### A closer look at one node . . .

| cattuto@node10:~ | '\$ df -a' | Γm        |      |           |      |            |
|------------------|------------|-----------|------|-----------|------|------------|
| Filesystem       | Туре       | 1M-blocks | Used | Available | Use% | Mounted on |
| /dev/root        | nfs        | 5613      | 1341 | 3987      | 26%  | 1          |
| none             | devfs      | 0         | 0    | 0         | -    | /dev       |
| proc             | proc       | 0         | 0    | 0         | -    | /proc      |
| /dev/ram0        | ext2       | 8         | 1    | 7         | 1%   | /ramdisk   |
| node00:/beowulf  | nfs        | 10199     | 8524 | 1676      | 84%  | /beowulf   |

cattuto@node10:~\$ ls -l /tmp lrwxrwxrwx 1 root root 12 Jan 30 13:48 /tmp -> /ramdisk/tmp/

### A closer look at one node . . .

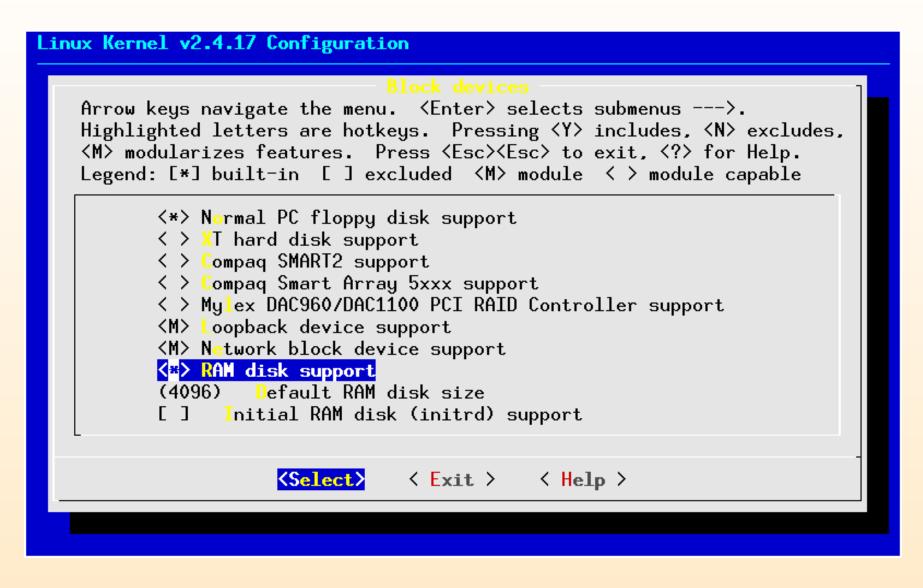
| cattuto@node10:~           | \$ df -a | Γm        |      |           |      |            |
|----------------------------|----------|-----------|------|-----------|------|------------|
| Filesystem                 | Туре     | 1M-blocks | Used | Available | Use% | Mounted on |
| /dev/root                  | nfs      | 5613      | 1341 | 3987      | 26%  | 1          |
| none                       | devfs    | 0         | 0    | 0         | -    | /dev       |
| proc                       | proc     | 0         | 0    | 0         | -    | /proc      |
| /dev/ram0                  | ext2     | 8         | 1    | 7         | 1%   | /ramdisk   |
| <pre>node00:/beowulf</pre> | nfs      | 10199     | 8524 | 1676      | 84%  | /beowulf   |

cattuto@node10:~\$ ls -l /tmp lrwxrwxrwx 1 root root 12 Jan 30 13:48 /tmp -> /ramdisk/tmp/

cattuto@node10:~\$ ls -l /ramdisk
drwxr-xr-x 3 root root 1024 Feb 8 15:02 etc/
drwxrwxrwt 5 root root 1024 Feb 14 00:17 tmp/
drwxr-xr-x 9 root root 1024 Feb 6 18:08 var/
cattuto@node10:~\$

# **Kernel configuration (1)**

| Linux Kernel v2.4.17 Configuration                                                           |
|----------------------------------------------------------------------------------------------|
| Networking options                                                                           |
| Arrow keys navigate the menu. <enter> selects submenus&gt;.</enter>                          |
| Highlighted letters are hotkeys. Pressing <y> includes, <n> excludes,</n></y>                |
| <pre><m> modularizes features. Press <esc><esc> to exit, <?> for Help.</esc></esc></m></pre> |
| Legend: [*] built-in [ ] excluded <m> module &lt; &gt; module capable</m>                    |
| <*> Unix domain sockets                                                                      |
| [*] CP/IP networking                                                                         |
| [] IP: multicasting                                                                          |
| [ ] IP: advanced router                                                                      |
| [*] IP: kernel level autoconfiguration                                                       |
| [*] IP: DHCP support (NEW)                                                                   |
| [*] IP: BOOTP support (NEW)                                                                  |
| []     IP: RARP support (NEW)       < >     IP: tunneling                                    |
| $\langle \rangle$ IP: GRE tunnels over IP                                                    |
| v(+)                                                                                         |
|                                                                                              |
| <pre> <b>                                    </b></pre>                                      |
|                                                                                              |
|                                                                                              |


 $\rightarrow$  enable boot-time automatic IP configuration

# **Kernel configuration (2)**

| Linux Kernel v2.4.17 Configuration                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Network File Systems<br>Arrow keys navigate the menu. 〈Enter〉 selects submenus>.<br>Highlighted letters are hotkeys. Pressing <y> includes, <n> excludes,<br/><m> modularizes features. Press <esc><esc> to exit, <? > for Help.<br/>Legend: [*] built-in [] excluded <m> module &lt; &gt; module capable</m></esc></esc></m></n></y> |
| <pre>&lt; &gt; Coda file system support (advanced network fs) &lt;*&gt; NFS file system support [*] Provide NFSv3 client support [*] Root file system on NFS &lt; &gt; NFS server support &lt; &gt; SMB file system support (to mount Windows shares etc.) &lt; &gt; NCP file system support (to mount NetWare volumes)</pre>         |
| <pre></pre>                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                       |

 $\rightarrow$  enable NFS support and NFSroot functionality

# **Kernel configuration (3)**



 $\rightarrow$  enable ramdisk support

### The boot sequence

- 1. Power on. GRUB is loaded from the PXE ROM or boot floppy
- 2. GRUB probes the NIC and sends out a DHCP query to configure the network
- 3. GRUB downloads (via TFTP) a boot script from the DHCP server
- 4. The boot script fetches a kernel image and fires it up, passing it proper parameters

## The boot sequence

- 1. Power on. GRUB is loaded from the PXE ROM or boot floppy
- 2. GRUB probes the NIC and sends out a DHCP query to configure the network
- 3. GRUB downloads (via TFTP) a boot script from the DHCP server
- 4. The boot script fetches a kernel image and fires it up, passing it proper parameters
- 5. The Linux kernel boots and the IP autoconfiguration code sends out a DHCP query to configure the NIC
- 6. The root filesystem is mounted over NFS (read-only) from the DHCP server
- 7. System initialization begins.

#### 8. Devfs is mounted

9. The ramdisk is created, populated and mounted

- 8. Devfs is mounted
- 9. The ramdisk is created, populated and mounted
- 10. Boot scripts complete local configuration (on ramdisk)
- 11. Remote /beowulf filesystem gets mounted
- 12. Per-node configuration is performed (if any)
- 13. System is ready!



### A glance at the server side ...

virgo-bwulf:/beowulf/boot# ls -1
1 root root 827361 Nov 23 16:18 bzImage-2.4.17
1 root root 921385 Nov 18 16:13 bzImage-2.4.17-mosix
1 root root 151 Jan 29 21:34 install.lst
1 root root 232 Jan 29 21:34 local.lst
1 root root 139 Jan 29 21:34 node-rw.lst
1 root root 102 Jan 29 21:34 node.lst
1 root root 11 Feb 14 00:49 node10.lst -> install.lst

- At boot time, GRUB configures the network via DHCP
- Then, each node attempts to download and execute a GRUB boot script:
  - ▶ if there is a node-specific script, go for it
  - ▷ otherwise, use the generic node.lst
- The boot script downloads the right kernel and starts it
   the kernel command line can be manipulated by GRUB
- Kernel and boot sequence of all the nodes can be controlled by changing files and symlinks in /beowulf/boot - and only that.

# **Pros and Cons**

#### Pros:

- Manageability
  - ▶ Single point of control for kernel image and boot sequence of all nodes
  - Single point of control for system libraries
  - Single point of control for application libraries (/beowulf)
  - Single point of control for user environment (/beowulf/env)
  - Chrooted operation on node root filesystem, using Debian tools
  - Compute nodes share an identical namespace
- Flexibility
  - ▷ Nodes need not have the same running set of daemons
  - Local disks, if present, can be automatically partitioned and populated (useful for local swapping, PVFS, ...)
- No loss of performance wrt nodes with local installation (OSCAR style)

#### Cons:

- Scalability
  - During boot, all nodes access the same NFS filesystem (then VFS caching takes over)
  - ▷ In practice: no noticeable slowdown of boot sequence was observed

# **Other directions:**

- Scyld: second generation Beowulf clusters
  - User friendly cluster installation procedure
  - Diskless operation
  - ▶ Kernel modifications to support distributed process space (BProc)
  - Kernel lightweight facilities to start remote processes
  - Cluster control tools

# **Other directions:**

- Scyld: second generation Beowulf clusters
  - User friendly cluster installation procedure
  - Diskless operation
  - ▶ Kernel modifications to support distributed process space (BProc)
  - Kernel lightweight facilities to start remote processes
  - Cluster control tools
- Single System Image efforts

"I really want to see the Compaq clustering code, the IBM DLM and OpenGFS in the 2.5 tree creating a real clustered Linux with true failover facilities. That will really open the door to the enterprise market." -Alan Cox (Nov 8th, 2001)

# References

• GRUB

http://www.gnu.org/software/grub/

- Linux NFS-Root mini-HOWTO http://www.linuxdoc.org/HOWTO/mini/NFS-Root.html
- Linux Diskless HOWTO http://www.linuxdoc.org/HOWTO/Diskless-HOWTO.html
- Devfs FAQs http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html
- Debian http://www.debian.org/
- Single System Image Clusters for Linux http://ssic-linux.sourceforge.net/
- Scyld http://www.scyld.com/

# Acknowledgements

- INFM
- INFN/CNRS
- VIRGO Perugia Group
- Leone Bosi

This presentation has been prepared using Free Software tools only, see <a href="http://www.cs.berkeley.edu/~mdw/proj/texslides/">http://www.cs.berkeley.edu/~mdw/proj/texslides/</a> :-)