
Siti Web 1

High Performance Java

Marco Ronchetti
Dipartimento di Informatica e Telecomunicazioni
Università di Trento

marco.ronchetti@dit.unitn.it

High Performance Java

Why Java?

What is Java?

Is Java a viable solution for
scientific computing?

Siti Web 2

Why Java?
A clean object-oriented programming
language
A safer language (no pointers…)
An easier language (no pointers…)

No Pointers?No Pointers?
Well, almost…

Primitive data types
Objects id’s
In C++: Point *p = new Point();
In Java: Point p = new Point();

The main problems in C/C++

int x,y; int *z=&x; *(z+1)=-1;

void f(){ O * a = new O(); }

if (a=3) b=5;

int a= 4294967296+ 1;

char *s; strcpy(s,”hello”);

Primitive data types are well defined

Boolean is a data type!

Strings are a data type (Objects)

int z[10]; for (int k=0;k<=10; z[k++]=k;) {}
No pointer arithmetic

The Java solutions

Automatic array and string bounds check

Automatic Memory Management (Garbage Collection)

Siti Web 3

The result is…
Developing in Java is estimated to be 10 times faster
than developing in C++…
…but still 2 times slower than developing in VB…
.. Visual Basic though is not (yet) as powerful as C++…
…but Java is.

Programs developed in Java are known to run
slower than those developed in C++…
…and programs written in C++ are known to
run slower than those developed in C…
…but in the end programs written by good
programmers run much faster than programs
written by less experienced ones.

10 good reasons…
Language. The Java programming language includes features

beneficial for large-scale software engineering projects, including
object-orientation, single inheritance, garbage collection, and unified
data formats. Since threads and concurrency-control mechanisms are
part of the language, parallelism can be expressed directly at the user
level.

Class libraries. Java provides a variety of additional class libraries,
including functions essential for Grid computing, such as the ability to
perform secure socket communication and message passing.

Components. A component architecture is provided through
JavaBeans and Enterprise JavaBeans to enable component-based
program development.

Deployment . Java’s bytecode allows for easy deployment of the
software through Web browsers and automatic installation facilit ies.

Portability. Besides the unified data format, Java’s bytecode
guarantees full portability as represented by the concept “write once,
run anywhere.’’

From Getov et al.

Siti Web 4

10 good reasons…
Maintenance. Java contains an integrated documentation facility.

Components written as JavaBeans can be integrated within
commercially available integrated development environments.

Performance. Recent research results prove the performance of many
Java applications can come very close to that of their C and Fortran
counterparts.

Gadgets. Java-based smart cards, PDAs, and smart devices will
expand the working environment for scientists.

Industry. Scientific projects are sometimes required to evaluate the
longevity of a technology before it can be used. Strong vendor support
helps make Java a technology of current and future consideration.

Education. Universities all over the world are teaching Java to their
students. c

From Getov et al.

The Question:

So what is this Java?

Siti Web 5

Java History

Java was born as “Oak” at the beginning of the 90’s
target: intelligent consumer electronics.

In 1994: recycled as “the language for the
Web” (Client side: applets)

Later: the champion of the “anti-Bill crusade”
(“network computing” etc.)

Java Success Stories:

“the language for portable Graphic Interfaces”
(Swing)

“the language for the Web” (Server side: servlets,
Java Server Pages, Enterprise Java Beans)

“the language for the B2B” (Strong support for XML:
SAX, JAXP, SOAP…)

“the easy language for …
serious Microsoft development (!)”

Visual C++
Visual J++
Visual Basic
====== C#

Siti Web 6

Applications, Applets & Servlets

Java can be written and run:
as a standalone program (full fledged

application running over a JVM)
as an “applet” (Java code embedded into

an HTML Page, which borrows resources by
a JVM-enabled host application, typically a
Browser)

as a “servlet” (Java code running into an
HTTP server, triggered by am HTTP request
(I.e. from an HTML Page)

Hello World (application)
class Applicazione{

/* Hello World, my first Java application */

public static void main (String args[]) {
Applicazione p= new Applicazione();

}

Applicazione() {
System.out.println("Hello World!");
// here goes the rest of the main

}
}

Siti Web 7

Java - Introduction

Applications are built in the
frame of the

OPERATING SYSTEM
Which in turn is built over a

particular
HARDWARE

Java - Introduction

Java defines a
HW-OS neutral
SOFTWARE

LAYER
on top of which

its code runs

JVMJVM
ApplicationsApplications

Java ApplicationsJava Applications

Siti Web 8

The Software Layer is called
Java Virtual Machine

It is a (smart) interpreter of an
assembly-like language called

ByteCode

The Java Virtual Machine

Traditional “portability” (ideal)

C-code
Compiler
(Linux)

Compiler
(Pentium)

Compiler
(Mac)

Linux

Mac

Windows 32

Executable
(Linux)

Executable
(Win32)

Executable
(Mac)

Siti Web 9

Portability of Java programs

Java-code
Compiler

(Unix)

Compiler
(Pentium)

Compiler
(Mac)

Unix+JVM

Bytecode
(Platform

independent)

WRITE ONCE, RUN EVERYWHERE!
“Executable” files can be dowloaded through the net
But… Java version problem… Solve with a Plug-In

Mac+JVM

Pentium +JVM

Java based
NETWORK
COMPUTER

The Java Virtual Machine can:
be an application
live inside an application (e.g. a

Browser)
live inside the core of the Operating

System (e.g. JavaOS, an abandoned
option)

The Java Virtual Machine

Siti Web 10

Interpreters
JIT Compilers (& Hot Spot)
Direct compilers
Bytecode to source

Executing Java code

“the first universal software platform”

It is:
Hardware independent
Scalable
Open

It consists of:
The language
The Virtual Machine
(Many) class libraries and API

Easy!

You don’t c
are!

That’s
 th

e

diffi
cult p

art!

Siti Web 11

The Core Class libraries -1
The core API gives you the following features:

The Essentials: Objects, strings, threads,
numbers, input and output, data structures,
system properties, date and time, and so on.

Applets: The set of conventions used by Java
applets.

Networking: URLs, TCP and UDP sockets, and
IP addresses.

Internationalization: Help for writing
programs that can be localized for users
worldwide. Programs can automatically adapt to
specific locales and be displayed in the appropriate
language.

The Core Class libraries -2

Security: Both low-level and high-level,
including electronic signatures, public/private key
management, access control, and certificates.

Software components: Known as JavaBeans,
can plug into existing component architectures
such as Microsoft's OLE/COM/Active-X architecture.
They tipically contain the business logic, and are
supported by “Application servers”.

Siti Web 12

The Core Class libraries -3

Object serialization: Allows lightweight
persistence and communication via Remote
Method Invocation (RMI).

Java Database Connectivity (JDBC):
Provides uniform access to a wide range of
relational databases.

Java not only has a core API, but also standard
extensions. The standard extensions define APIs
for 3D, servers, collaboration, telephony, speech,
animation, and more.

JDK API

Siti Web 13

JDK API

JDK API

Siti Web 14

Java ha supports “OS” features

It has primitives for:
multithreading
synchronization
object distribution (RMI)

Multithreading

public class C extends Thread {
public void run() {

//implementation
}

}

C myThreadedObject = new C();
…
myThreadedObject.start();

Starts a new thread,
Executes “run” in it,
Does not wait completion

Siti Web 15

Synchronization

Class A {
synchronized void f() {

…
}
synchronized int g(int k) {
…
}

}

Monitors

Synchronization

Object foo;

synchronized (foo) {
while (! condition) {

// this thread enters the waiting queue on foo
foo.wait();

}
}

synchronized (foo) {
// wake up the first thread in queue on foo
foo.notify();

}

Condition variables,
Wait and notify

Siti Web 16

Object distribution (RMI)

O1

Proxy
Of
O2

O2

Skeleton
Of
O2

The
net

The Question:

Is Java a viable solution
for scientific calculation?

Siti Web 17

A first answer
“The nature of many scientific applications makes them well

suited to Java execution environments.

They typically spend a large amount of execution time in a
small number of user-written methods, making them good
candidates for JIT compilation, and less susceptible than
other applications to poor implementations of the Java API.

Scientific applications, when written in a traditional, non-
objected oriented manner, often have large and persistent
persistent data structures, resulting in low garbage collection
overheads .”

J.M.Bull et al.

A first answer
Benchmarking Java against C and Fortran for Scientific
Applications, Bull et al.

4.1 Intel Pentium, Windows NT
The ratio of the best Java to best C execution time has a
mean of 1.23 and exceeds 2.0 only in the case of the FFT
benchmark.

4.2 Intel Pentium, Linux
The mean ratio of fastest Java to fastest C execution times is
only 1.07.

4.3 Sun Ultrasparc
Taking the best Java execution time and comparing to the fastest
C execution time, we observe a mean ratio of 1.61, with a range
from 1.29 (HeapSort) to 2.61 (SparseMatmult).

Siti Web 18

A first answer

Design and Evaluation of a Linear Algebra Package for Java,
Almasi et al.

“Even though it is still in earlier stages of development, our Java linear
algebra package has already achieved 65-85% of the performance of
one of the most respected industrial-strength numerical libraries
(ESSL).”

AJaPACK: Experiments in Performance Portable Parallel Java
Numerical Libraries, Itou et al.

“... we record nearly 300MFlops, which is approximately about 1/2 of C
performance.”

“Parallel execution on the SMP platforms scaled well, but not so on a PC,
where practically no benefit and even performance loss is incurred with
parallelization.”

bytecode optimization
dynamic compilation
improved JVM techniques
n Thread synchronization
n RMI
n Garbage collection

improved language features
n Better Floating point
n Complex numbers
n Support for regularly shaped arrays

Research lines

Siti Web 19

From
Getov et al.

Research lines – distributed computation

Hyperion, cVJM, Java/DSM, Jessica
n View a cluster of processors as executing a single

JVM
Manta, JavaParty
n store shared data in objects accessible via RMI
MPJ (Message Passing using Java)
JOMP (Java Open Message Passing)

Research lines – distributed computation

“When tested on a Sun E3500/8 UltraSPARC, the original serial code took
80.46 seconds, the parallel code on one processor took 81.02 seconds, and
the parallel code on all eight processors took 12.23 seconds. This represents
a speedup factor of 6.58, and an efficiency of 82.2%. Similar results were
obtained when the same code was parallelised by hand.” Bull et al.

Siti Web 20

Papers:
From: Communications of the ACM
•High-performance Java

•The NINJA project

•Enabling Java for high-performance computing

•Multiparadigm communications in Java for grid computing

From: ACM Computing Surveys
•Techniques for obtaining high performance in Java
programs

Papers:
•JOMP—an OpenMP-like interface for Java

•Development routes for message passing
parallelism in Java

•AJaPACK: experiments in performance portable
parallel Java numerical libraries

•Design and evaluation of a linear algebra package
for Java

•A high performance cluster JVM presenting a pure
single system image

From: Proceedings of the ACM 2000
conference on Java Grande

Siti Web 21

Papers:

•High performance Java code in computational
fluid dynamics

•Benchmarking Java against C and Fortran for
scientific applications

•Object-based collective communication in Java

•A scalable, robust network for parallel
computing

•Automatic translation of Fortran to JVM
bytecode

From: ISCOPE Conference on ACM 2001
Java Grande

Useful links:

•Java Grande Forum

•The Java Memory Model

•Java Home (Sun site)

•Java Platform Performance
Strategies and tactics (Book on line)

Siti Web 22

High Performance Java

Thanks for your attention!

marco.ronchetti@dit.unitn.it

