AN INTRODUCTION TO THE NEUTRON TRANSPORT PHENOM ENA

TERESA KULIKOWSKA
Institute of Atomic Energy, Swierk Poland

The main geel of the present lecture isto is to give a short description d neutron transport
phenomena limited to those definitions that are necessary to understand the approach to
practicd solution of the problem given in the second lecture on reador lattice cdculations.
The discussion of the neutron cross ctions has been skipped as other lecturers have treated
this subject in detail.

1 Definitions

1.1 Description of the medium

The medium is described by its isotopic composition and its nuclea properties. The
composition is given in terms of number densities of isotopes defined as the
numbers of respedive nuclei in acubic centimetre:

i
; [N
ND! :piiA’ 1)

A

with the Avogadro Number N,=6.022x107, o' — density of the isotope i in grams
per cubic centimetre, and A' the Atomic Number.

The nuclea properties are described by microscopic aross sdions, d*, for
reacdions of type x.

The macroscopic aoss ®dions, = * (r,E) of an isotope i, is a product of its
microscopic crosssedion and its numberdensity, ND', at position r:

> (r,E) = ND' (r)[5™(E). 2

If the medium is composed of more than one isotope then the total maaoscopic
crosssedion of the medium is equal to the sum of crosssections for ead isotope:

¥ megium (1,E) = 512 (r,E) = 5 (0*(E)CIND' (r)). ©)

The sum of the partia cross ®dions for all possble types of neutron-nucleus
collisionsisthetotal cross &dion. It is defined as the total colli sion (or interadion)
crosssedion of a reutron at pasition r having energy E (in the laboratory system). It
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is the probability of neutron interadion per unit distance travelled by a neutron and
has the dimension of aredprocd lengt, eg., cm™:

0 (NE) = 5Zm (E). 4)

A redprocd of the total cross ction, A, is cdled a mean free path and is an
average distance of neutron travel between two consecutive collisions.

A=1 = E). (5)
A form of differential cross ®dion,
S B E - QF), (6)

is defined for collisions, from which neutrons emerge, as the aoss sdions for
initial diredion Q' and energy E' emerging in a allision in the interval dQ about Q
with energy dE about E. The aoss dion for a readion of type X, for neutrons of
energy E',is 2 and f* (r; @ ,E - Q,E)dQ dE is the probability that if a neutron of
diredion Q' and energy E’' has a allision of type X, there will emerge from the
collision a neutron in the diredion interval dQ about Q , with energy dE about E.
For elastic scatering, integration of f * over al diredions and energies gives unity.
For elastic scatering of neutrons from initialy stationary nuclei f* is afunction only
of ' [@ which is a msine of the scatering ange between the diredions of motion
of the neutron before and after the wllision. For fission it is a good approximation
to assume that the neutrons are emitted isotropicdly in the laboratory system. Then
it is pasble towrite:

£X(r; Q' E - QE)dQdE = V(AnK(r; E ~E) dQ dE, @

wherelK(r; E' - E)dE, referred to as the spedrum of the fission reutrons, is the
probability that a fisson caused by a neutron at r with energy E’ will lead to a
neutron within dE about E. It is normalised so that after integration over full angle it
gives k(r;E’), which is the average number of neutrons produced by a fisson at r
caused by a neutron of energy E'.

Instead of the neutron energy, E, the neutron velocity, v, may be used
represented as:

vV = v,

where v = v is the neutron speed and is conneded to the energy by a standard

equation
E = mv/2.
with m the neutron mass.
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The rate, in neutrons per unit volume and time & r and t, at which neutrons are
transferred by interadions of type x into final diredions within dQ about Q and
final energiesdE about E is:

v X BN QB - QE) N, E 1) d2'dE dQ dE. ©)

The total rate & which reutrons are transferred is obtained by integrating the dove
quantity over al initial neutron diredions and energies, and summing over all
readions.

1.2 Description of neutrons

A population of neutrons is described by a quantity cdled the neutron argular
density denoted by
N(r,QE,t),

and defined as the probable (or expeded) number of neutrons at the position r with
diredion Q and energy E at time t, per unit volume per unit solid angle per unit
energy, e.g., per cm® per steradian per MeV. Thus

N(r,Q,E,t)dVdQdE

is the expeded number of neutrons in the volume dement dV about r, having
diredions within dQ about Q and energiesin dE about E at time t. Such a number
of neutrons in an infinitesimal volume is ometimes referred to as a packd of
neutrons.

In the definition the expression ‘probable’ or ‘expeded’ number of neutrons is
meant to imply that fluctuations from the mean neutron population are not taken
into acount.

Q
dQ

dV=dxdydz

Figure 1. A packet of neutrons.
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The integral of the neutron angular density over al diredions is the energy
dependent neutron density n(r,E,t):

n(r,Et)= J’N(r,.Q,E,t)d.Q, 9
A

where the integral is taken over al diredions. Herce n(r,E,t) is the expeded nunmber
of neutrons at r, with energy E at timet, per unit volume per unit energy.

The product of the neutron speed v and the neutron angular density is cdled
vedor flux:

d(r,QE;)=viN(r,Q,E 1), 10)

and its magnitude is cdled the neutron anguar flux. The integral over al diredions
of the neutron angular flux is cdled total neutron flux, often referred to smply as
the neutron flux, and is equal to:

@(r,Et).= vi(r,E ). 10)

The neutron flux has been introduced as a quantity much more useful for the
description of reador properties than the neutron number density. The product of
the neutron flux and the maaoscopic crosssedion:

{RR*==*(r,B)(r,Et) (12

gives, by definition, the number of readions suffered by neutrons per second, per
cubic centimetre and per eV. This quantity is cdled a reaction rate of type x. In
particular, the fission readion rate integrated over energy is used to cdculate the
energy production.

The net number of neutrons crossng a surface éement per unit energy in unt
timeis cdled the neutron current:

J(r,E,t)=vI.QN(r,Q,E,t)d.Q- ()

A
The quantiti es defined above are expressed in unitsgiven in Table 1.

Table 1. Summary of introduced quantities.

Quantity Symbad | Unit

Neutron angular density N neutrons/(cm’Csteradian@V)
Neutron density n neutrons/(cm?® BV)

Neutron angular flux @ neutrons/(cm?Csteradian@V [Sec)
Neutron flux @ | neutrons/(cm? [V [Seq

Neutron net current J neutrons/(cm’ BV [Seq)
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It can be seen that the reutron aurrent and the reutron total flux have the same units.
The diff erence between these two quantiti es can be better understoodif we compare
their definitions, derived from Egs. (9-11) and Eq.(13), but expressed in terms of the
angular flux:

ArE)= [S(rQENIQ,
4

(14
arEH= [Q@(rQENdR.

A
Equations (14) show that the neutron flux and current are, respedively, the zeo’'s
and first moment of the neutron angular flux.

By the neutron sources we understand neutrons which emerge in the system
from events other than neutron collision and, therefore, they are independent of the
neutron density. They are usually denoted by Q(r,Q,Et), which expresses the
probabili ty per unit time that a neutron of energy E will appea at r per unit volume
per unit solid angle per unit energy. Sometimes they are referred to as external or
independent neutron sources.

2 Theneutron transport equation

2.1 Two basic forms of the neutron transport equation

The neutron transport equation is derived from the neutron balance inside aneutron
padket (cf. Fig.1). It takes into acount the number of neutrons remaining in the
padket, the number of neutrons entering the padket as a result of collision and the
number of neutrons entering the padket from external sources. The final result is:

%+vQDN +2yN =[[2' fv'N'dE'dQ +Q, @15)

where N=N(r,Q,E,t), N=N(r,Q E' t), Z==3(r,E), = = 3(r,E), f = f(r; Q' E - QF),
Q= Q(r,2E).

The neutron transport equation may be dso expressed in terms of the angular flux
®, which isequal to vIN. By adired substitution of its definition one gets:

10
——+QUd+ 2P = ' fodE +
X + Q0P+ X HZ dE d2 Q.

\Y

16)
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2.2 Interfacecondtions

The solutions to the neutron transport equation are frequently sought in spatial
regions including interfaces between different materials. At such interfaces, the
cross dions are discontinuous and it is necessry to consider how the transport
equation is to be used in these drcumstances. The number of neutronsin a packet is
not changed, merely by crossng a physicd interface This means that the neutron
angular density must be cntinuous in r as the interface is crossed. Thus the
continuity condition isto be used at the interface This refers to the neutron angular
density but is equally applicable to the angular flux.

2.3 Bourdary conditions

In general the region of interest is surrounded by a onvex surface A neutron
leaving the region through the surface canot intersed the surface gain. If neutrons
enter the region from external sources, then the incoming reutron flux must be
spedfied. If no neutrons enter from external sources and if a neutron, onceit leaves
the surface cannot return, then the surfaceis cdled a freesurface ad we have the
conditi on:

N(r,QEt)=0 if n-Q<0, 17)

where n isaunit vedor in the diredion of the outward normal at a position r on the
surface Such situation appeas if the region is surrounded by vacuum, or a perfed
absorber.

In pradicd applications we ded quite often with another type of boundary
conditions. We spe& about a specular refledion boundary condition if al the
neutrons approaching the boundary from within are refleded bad to the region with
angles preserving the general refledion rule and aout awhite bourdary condition if
they are reflected badk with an isotropic distribution. The schematic explanation of
the difference between the two bourdary conditions is given in Fig. 2. It can be e
that if a padket of neutrons born in the midde of square region reaches the
conseautive boundaries without collision they have a good chance to read the
central region under both types of boundary conditi ons. The same padet born in the
middle of a drcular region has a good chance to read the central region under the
white boundary condition but pradicdly no chance under the refledive one. This
fad is used in the gplicaion of the transport theory to the solution of pradicd
reador problems.
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Figure 2. Effect of reflective (on the left hand side) and white (on the right hand side) boundary
conditions for plane, square and circular boundaries.

2.4  Neutron conservation

The neutron transport equation is smply a statement of neutron conservation as
applied to an infinitesimal element of volume, diredion and energy. If it is
integrated over al diredions, the result will be astatement of neutron conservation
for a small element of volume and energy. Integration of the neutron transport
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equation (15) over al values of Q gives with the previous notation (cf. Egs. (9) and
(13)):

%J,DJ +5m=[Z(r;E ~ E'n'dE+Q, 18)

where also Q and > hawe keen integrated over theargle and
2(r;E' - E):J’Z(r;E' (r; Q' \E' - Q,E)dQ, 19)

which isthe adoss ®dion at r for colli sions which result in a neutron of energy E’
being replacal by one of erergy E.
Integration over afinite region of volume, V, and energy gives:

fﬂr::_m + J’J’DJdVdE+ J’ J’ vnzdVdE

(20)
= [[[>(r;E' ~ E)v'n'dE'dVdE+ [J Qdvde

Eadh of the five termsin the equation has clea physical meaning. The quantity

I ndVdE

is the total number of neutrons in the space-energy region urder consideration.
Hencethe first term is the time rate of change of the total number of neutrons in this
region. The seaond term can be written with appli cation of the divergence theorem:

J’J’DJ AVdE= I J’ JnWAdE, 21)
A

V
where dA refers to an element of area on the boundary surface of the region, V,
under consideration and n is a unit normal to the surface éement, direded outward

from the region. Hence, the second term is the net number of neutrons flowing out
of the space-energy region per unit time. The third term

I vZndVdE

isthe rate & which neutrons are entering into colli sons in the given region, i.e., the
total colli sion rate, and the fourth term

tr1 02 submitted to World Scientific : 13/03/02: 17.17 8/22




IJ’IZ(r; E' - E)v'n'dE'dVdE

is the rate & which they emerge from these wlli sions. The fifth term gives the rate
at which neutrons from independent sourcesare introduced into the region.
Thusthe dired representation of particular terms gives:

Rate of change of neutrons = Net rate of generation of neutronsin collisions
+ Rate of introduction of source neutrons
- Net rate of outflow of neutrons.

2.5 Integral equationfor neutrontransport

The neutron transport equation is an integro-differential one for the neutron angular
density or flux. By the gplication of the method o charaderistics to the neutron
transport equation, it can be converted into an integral equation:

0 DS D '
S(rQEN= [expr [ £(r -8 Q;E)dS [4(r -5 ZR.EL- S ds' (22
o [Jo Y
with
q(r,Q,Et) =

= [dE[2(1iE (2 E - Q,E)0(r, 2,2 EHQ +Q(rQ,Et)

Thus q isthetotal rate with which neutrons appea at r, Q, E and t as a result of both
colli sions and the independent source.

The integral equation in the ssimple cae of the total cross gdion independent
of pasition, isotropic scatering and source and no time dependence of the neutron
flux becomes:

0 0
-XER 0O 0
@(r,E):Ie—dV' O [£(rE - E)o(r EAE+Q( E)D
4z TR2 E 0

H
(23
with R=0r-r’' .

The asumption of a aoss ®dion independent of the spatial variable is not
fulfilled in any redistic reador system. However, if the system can be divided into
subregions with constant material properties Eq. (23) can be used for effective
reador cdculations.
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2.6  Multigroupapproach to the neutron transpat equation lution

Thereis no passhility of obtaining exact solutions to the energy-dependent neutron
transport equation for general reador problems. It is necessary, therefore, to adopt
approximate methods for solving the transport equation. The most important are the
multigroup methods in which the neutron energy interval of interest is divided into a
finite number of intervals, AE; (cdled groups). It is then assumed that the aoss
sedion in ead group is constant, e.g., equal to an average over energy. Within each
group it is then independent of erergy, althouch arbitrarily dependent on pasiti on:

2Xr,E)O Zé‘(r) , forg=1.2,..G,

J’f(r;.Q' JE' = Q,E)dE'dEzcg(r)ng-g(r;Q' - Q). (29
AE g AE,

The neutron angular flux and sources are integrated over respedive energy intervals
of groups:

Dy(r,Q)= Idi(r,Q,E)dE
4E 4
Qy(rn2)= [Q(r.QE)dE '
AEg
For a time independent case, using definitions from Eqgs. (24,25), the elergy

dependent equation is replaced by a set of coupled one-speed equations, which are
then solved by approximate methods

(29

QUP,(r, Q)+ 24(rDy(r,Q2) =
= cg(r)z Zg.(r)J'fg-g(r;Q' = QD (r,Q )dQ +Qy(r, Q)
&

(26)
The quantity cq(r) introduced in Eq. .(24) has a meaning of the mean number of
neutrons with energy in AE; emerging per collision at r. For scatering collision ¢ =
1 and for fission ¢ = k (cf. Eq. (7)).
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3 Criticality

From physicd consideration, it is to be epeded that system containing fissile
nuclides can be subcriticd, criticd or supercriticd, based on the behaviour of the
neutron population as a function of time.

A system is said to be subcriticd if for any nonzero initial neutron population,
the expeded popilation dies out with time unless it is sustained by an external
neutron source.

A system is sid to be supercriticd when the expeded neutron population
diverges with time, starting from any nonzero population.

A system is sid to be aiticd as one in which a steady, time independent
neutron population can be maintained in the absence of a source.

The neutron transport equation with boundary conditions defines an initia
value problem. If the neutron angular density at t = 0 is given, the expeded density
a any later time @n be found, in principle by solving the neutron transport
equation. It has been shown that such a solution exists and is unique, provided some
mathematicad conditions are satisfied for adual physicd situations.

The homogeneous (source freg neutron transport equation may be written in
the operator form:

N _ \QON- 5N +[[2' v N'dEd2 = LN, 27)
o

where L is the transport operator. The boundary condition of no incoming neutrons
is assumed. We mnsider the solution of the eguation expressed in the form
N= N(r,Q,E)e™ from which aN(r,QE) = LN(r,QE). There may exist many
eigenvalues o of the operator L, represented by o with corresponding
eigenfunctions N;:

aN; =L N;. (28)

In pradicd cases there exist ared eigenvalue greder than the red part of any other
eigenvalue. It will be denoted a, and the eigenfunction asciated with it No(r,Q,E).
If the sign of ag is negative the solution of Eq. (27) will deaease asymptoticdly and
the system is subcriticd. If the sign is pasitive the solution will tend asymptoticdly
to infinity and the system is supercriticd.. More rigorous considerations consisting
in applying the Laplacetransform lea to the asymptotic solution in the form:

N(r,Q,Et) = Aexp(act) Ny (r,Q,E), ast- o, 29

where A is a @nstant determined by the initial conditions. Thus, the aiticdity
problem is that of finding the conditions for which a, = 0. A rigorous analysis has
shown that for certain conditions (satisfied in pradice) on the scattering kernel there
isat least one discrete eigenvalue.
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The homogeneous neutron transport equation will have atime independent
solution when a, = 0 or the system is critical:

LNo =0.

Introducing auxili ary charaderistic values may approac the aiticdity problem. In
particular, the spedrum of the fisson reutrons k(r,E' -E) we replace by
K(r,E' - E)/k, and k can be varied to oltain the stationary solution, with k = k-€ff ,
cdled effedive multiplicaion fador. This amounts to multiplying the number of
neutrons emitted per fission by the facor 1/k-eff.

By definition k-eff is a charaderistic value of the equation:

VQDNK +ZVN|( =
- X X ] l l = fa ]
—JIZZ fV Ny d.Q'dE'+—J’J'—K(I’,E - E)> "'V N,/ d2 dE
X1 Kefr 32 47T
(30

where the summation over x unequal f refersto colli sions other than fisdon in which
neutrons are produced and N, are el genfunctions independent of time.

In elementary reador theory k-eff is treaed as aratio between the numbers of
neutrons in successive generations, with the fisson process being regarded as the
birth event which separates generations of neutrons.

For a aiticd system, i.e.,, when a, = 0 and k-eff = 1, the crresponding
eigenfunctions stisfy the same equation, for any other system, however, the two
eigenfunctions are different. This can be seen when writing the homogeneous
eigenvalue equation in the form:

a
VQON, +(Z+—2)N, =J’IZ' fvN', d2dE. i)
o \ 0 0
The term a,/v appeas as an additional absorption and it is smetimes referred to as
‘time absorption’ (or production).

4 Solution of the one-speed transport equation by the spherical
har monics method

4.1 Limitationto atime indgpendent one-speel transpat equation

The method is demonstrated for the time-independent, one-speed neutron transport
equation in plane geometry. It has been shown that the gplicaion of the multigroup
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approach leads to a set of coupled one speed equations and, therefore, the
assumption of one speed is not ared limitation of the method.

For a one speal case scdtering is a function only of the csine of the scatering
ange, i.e, U, = QM@ , where Q' and Q are the neutron diredions before and after
scéttering, respedively. A quantity 24(r,Q,Q") isthen defined by:

24r,Q,Q) = 2 (r)c(nf(r; Q- Q), (32

which will be referred to as dtering cross gadion. With this notation the one-
sped Eq. (26) may be written:

Q0P + (1) (1, 2) = [ Z(1.Q ) B(F.)AQ +Q(r,2). (33

4.2 Choiceof geometry

To apply any effedive method o solution to the neutron transport equation one has
to spedfy the streaming term given by Eqg. (21), i.e, to have expressons for the
quantity QN or Q[J®. For that purpose asystem of co-ordinates has to be chosen
and the geometry defined. The expresson can be derived for co-ordinate systems
where the position vedor r is given in terms of redangular, sphericd, or cylindricd
co-ordinates. Two angular co-ordinates are required to spedfy the neutron diredion
and these ae cosen to be polar and azmuthal anges. Here the method is
demonstrated using the simplest possble geometry, i.e., the plane geometry, for
which sphericd harmonics reduceto Legendre polynomials.

For plane geometry, in which the neutron angular density (for a spedfic
energy) is a function of x and the azmuthal angle, 6 , the streaming term can be
expressed:

QDd)_d_CD_a_CD%_GCD 0s@ = u@ (39
ds o0x ds o0ox oX

with = cosf, where 6 is the azmuthal angle corresponding to the diredion Q.

Hence Eq. (32) becomes:

2r

u 2R ¢ a9 - I ;2 (katg )DL xa” Ot +QUxs).
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4.3 Exparsion d the sattering crosssedion

The scdtering cross ®dion is expanded in Legendre polynomials and associated
Legendre functions:

— 2l +

2g(Xug) = 4—):sl( )R (o) %6)
E

and then P(l,) is expresed in terms of Legendre polynomials and assciated
Legendre functions of the dirediona cosines u and u'. The integration over the
azmuthal angleis carried out giving:

(9d5(x,,u) + Z) P ) = Z_Zsl(x)ﬁ(’u)-l'é(x,u YR ()d +Q( X, 1)

(37)

4.4 Exparsion d the flux

The next step is to represent the angular dependence of the neutron flux as an
expansion in terms of Legendre paynomials, P(L)

m(H) 89

where @,(X) are the expansion coefficients dependent on x. Becaise of the
orthogonality of P,() the latter are given by
1

Om(X) =J’<D( X, 1 )Py (u)dQ = 2ﬂj’¢’( X, {)Pn(p)du. @9
-1

If the series is truncated after N+1 terms, the result is referred to as a Py
approximation.
For m= 0, Po(1) = 1; hence @(x) is smply the total flux at x. For m= 1, Py(L)
= uand Eq. (39) gives
1

@(x)=2m [ pue(x,p)du., 40)

which isthe net current at x in the positive diredion.
The genera form of equations obtained by substituting expansion of Eq. (38)
into Eq. (37) is:
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(n+2) 2221 g n SAL 4 (0 )7, ()9 (X) = (20 +1)Q0(X)

(41)
n=0,1,2, ..

where 2,(X)=2(X)-2s(X) and the epansion coefficients are given by the
orthogonality relations:

1

%(X)=2ﬂj¢(x,u)Pn(u)du, @¢2a)
-1
1

Qn(X)=2ﬂ_[Q(x,u)Pn(u)du- 42b)
-1

4.5 The P; approximation

It is easy to seethat the first two equations of the system (41), forn=0andn=1
are

WX) 4 5 (0A %)= Qo( %), @)
dx
d(g(xX) +321(x)J(x)=3Q(x), 43b)

with appropriate definitions of Q, (x) and Q; (X).
By definition Z,(X) = Z(X)-Z (X) and, therefore, is equa to the asorption
crosssedion while 2, isthe transport crosssedion..

4.6 Diffusion approximation
If the sourceisisotropic, Q1(xX) = 0 and Eq. (43b) becomes aso cdled Fick’slaw:
dg(x)

»(x)=J(x)=-D o 44

where D(x)=1/323(x) is the diffusion coefficient.
Equation (44) combined with Eq. (43a) gives the diffusion equétion:
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_d de(x)Od _
dx@xx) e 20003 = Q) e

With anisotropic scatering the ejuivalent equation can be obtained but with the
diffusion coefficient defined as

D=(3% (1- o)) " 46)

The quantity (1- Lg)>s = 2, is the transport cross gdion correded for the first
order of anisotropy.

5 Multigroup equations

5.1 P,equdions

The genera form of the P, equations in the multigroup approximation with the
charaderistic value introduced in sedion 3 is:

s 1
13500+ Zog0850) = 3 25400 (04103 ¥Eg o 0e0)
g g
(47)

O@g(r)+3Z g(NJ 4(r) = 32 2y gMIg): 09=12,..G.
&

In Egs. (47) theindicesg and g' refer to the group number and represent the energy
dependence, whil e the variable r refersto the spatial dependence.

5.2 Diffusionequations

With the same notation the multigroup diffusion equations are:
—0ODg(r)deg(r)+ 2og@q(r) =
1 f (48)
=3 Z0g-g(NPg()*+ 3 vEg_4O)eg(r)
g g

0=12,..G,g=12..G
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6 TheBy approximation

6.1 Asamptionon the spatial shapeof the neutron flux

The method is demonstrated for the time independent neutron transport equation in
plane geometry. The basis of the By method is that the spatial dependence of the
angular flux can be often approximated by a wsine or exponential term. Thus, by
assuming spatial distribution independent of neutron energy it is passible to write:

@(x,u,E)=e By (u,E), 40)

where B? for a bare reador is the lowest eigenvalue of the wave ejuation, i.e.,

0%¢ = B2® with the zeo flux boundary condition. For a refleded reador, B is
expeded to be ared number in the core and an imaginary number in the refledor.

6.2 Exparsion d the sattering crosssedion

If EQ. (49) isinserted to the neutron transport equation with scattering cross £dion
expanded in Legendre paynomials (Eq.(37) generdized to the energy dependent
case), we get:

_iBu -
Zgl ZEP(H,E) -

- 2|+1 S 1 ! 1 1 ' ' 1
- | | - ' | "
=Y “ R)[ZF(E - E)[w( ER (K )i dE+ F(E)
& 2 J 2

where Q(X,u,E) has been replaced by an isotropic fisson

source, % F(E)e®~.

6.3 Algebraic transformations

Equation (50) is divided by 1—(iBu/ X), muitiplied by P,(u), and then
integrated to obtainforn=0, 1, 2, ...

2(BE)o.(E)= §(2| +1)A|n(E)IZIS(E' - E)p (E' )dE' +Ay, (E)F(E)
=0

(59)
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with
1 RPL(K),

Aqn(E)=2_l By . bla)
>(E)
1
rpn(E)=j‘P(u,E)Pn(u)du- F1b)
-1

The coefficients A, can be found by the fad that they satisfy the recurencerelation:

1 _5j|
9(2| + A (y) = (1 +1)Aj,l+1_|Aj,I—l_7 62)

iB
where y:ﬁ.

-1
Furthermore, AjI = /_\1j and Ago :tanh—y_
y

The set of coupled equations (51) can be solved numericdly for ¢, provided the sum
on the right-hand side is truncated. If the seriesis terminated by assuming @ = O for
I>N the result is the By approximation. In pradicd lattice caculations the most
often used isthe B, approximation.

7 Leakagein diffusion approximation

In every redistic reador system there exists the neutron legkage through the outer
boundary. Thisle&age can be acmunted for in an approximate way by applying the
formulas based on the Fick’s law. Let us consider in infinitesimal cube defined in
Fig.3.
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dy

dx

- .

Figure 3. Infinitesimal cube in rectangular co-ordinate system.

X

Throughead of the cube boundaries there exists a neutron flow conneded with the
net current:

Jnet =J+ —J- 58

where the cmmponents, J, and J_, describe the partial currents in positive and
negative diredions. Using the definition of the diffusion coefficient introduced in

Eqgs. (44,46):
J=D ﬂ
0z

D= Atr/31

the foll owing formulas can be derived for the magnitude of the partial currents in
the zdiredion:

3, -9 D0
4 2 oz 5)
\]_:2+2ﬂ
4 2 oz
Hencefor the zdiredion:
op _ M 09
J,=-D——=——""-—-
z Fe 3 & £5

and
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(Jz+dz ~Jz )dxdy= —Dé&ﬁ oCuds quxdyz

0z [iZ+dZ [0z [12@ . (56)
2 2
=-p2? 5 dxdydz= 022 S dv
oz oz

Similar expressons are obtained for x and y.
The leakage of neutrons out of an arbitrary volume will be mompaosed of those

in al partial direcions and can be written as —DDZ(p. Assuming the spatial

independence of the diffusion coefficient D(X)=D in Eq. (45) the diffusion equation
can be written:

DO%p-3%p+Q=0, (57)
which expresses the neutron balance in diffusion approximation: legage out of the

system plus absorption equals the total sources, Q, including the external as well as
internal sources.

8 Theboundary with vacuum

The typicd bouwndary condition, introduced together with the diffusion
approximation, is the neutron flux going to zero at some distance from the outer
boundary of the system considered. Let us consider an idedised case of an infinite

plane reador core surrounded by vacuum. The distance d which the flux drops off
to zero is cdled then the exrapdation distance, and it is shown in Fig. 4.

slope
reactor void

flux

=
A3

Extrapolation distance

Figure 4. Extrapolation distance.

By diffusion theory, using Egs. (55) the extrapalation distance, d, is found to be
equal to:
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2

d :gltl’ .
A cdculation based on the trangport theory gives approximately:
- 4 -
d = - = 0.71 Ay - 8
do / dx ” *9

where Ay, isthe transport mean freepath.

9 Disadvantage factor

In thermal readors the magjority of fisson readions take place for energies
below certain energy cdled the thermal cut-off energy. The neutron flux below the
cut-off energy is cdled the thermal flux. Its magnitude is of primary importance for
the neutron physics analysis. The thermal flux in the fuel region is always lower
than in the moderator because of a high absorption of neutrons by the fuel nuclei.
Typicd shape of the therma flux is shown in Fig. 5, where the dotted lines
represent the average thermal flux levels in the fuel, in the moderator and in the
whole cel.

thermal flux

________ rai

fud 7 " moderator

Figure: 5. Thermal flux distribution in aunit cell.

The quantity called flux disadvantage factor is used to compare the flux level in the

fuel element to the average flux in the fuel cdl and is cdculated as a ratio of the
average thermal flux valuein the fuel and tothat in the cdl:

Pruel
fdiS = i . 59)
Peell
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