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REACTOR LATTICE TRANSPORT CALCULATIONS

TERESA KULIKOWSKA

Institute of Atomic Energy, 
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The present lecture is a continuation of the lecture on Introduction to the Neutron Transport
Phenomena, where the basic ideas have been recalled necessary to understand lattice cell
calculations. Reactor lattice calculations are carried out by reactor lattice codes. There are
several such codes used currently for standard lattice calculations. The most popular of them
is the WIMS code applied in several versions in various laboratories. Here the attention will
be focused on the most recent version of WIMS, WIMSD-5B, distributed by NEA DATA
BANK.

1 Goal of reactor lattice calculations

A reactor lattice code is used to calculate neutron flux distribution and an infinite
medium multiplication factor. It takes as input the multigroup library of isotopic
nuclear data and a description of the reactor lattice, and solves the neutron transport
equation in an infinite reactor lattice. Thus, during the calculation the reactor lattice
is assumed to be infinite and only corrections are applied to take care of specific
phenomena characteristic for a finite medium with the actual reactor core structure.

The lattice codes include algorithms for solving an appropriate set of equations
for neutron flux and infinite multiplication factor (k-inf) in a discrete energy and
spatial mesh (energy groups and discrete spatial points). The calculated neutron flux
may be used to get sets of macroscopic cross sections homogenised over chosen
subregions and in a chosen broad energy group structure as can be seen in Fig. 1.

Those sets of macroscopic cross sections are then used as material data in the
input for various codes solving the neutron transport equation or diffusion equation,
over the whole reactor or its fragment. The calculated neutron flux can be also used
for reaction rates calculation or in fuel depletion calculations.

2 Reactor lattice

2.1 A unit cell concept

In thermal reactors fuel is arranged in lumps of rods or plates separated by a
material such as graphite, water or heavy water, in which neutrons are slowed to
thermal energy with a minimum of capture. The fuel has a cladding separating the
fission products from the cooling water. Thus, every thermal reactor, of research as
well as of power type, is heterogeneous. The fuel elements are arranged in a regular
manner. The cylindrical fuel elements with circular horizontal intersection are
arranged in squares, hexagons or rings. The fuel plates are arranged in parallel
bundles



tr2w_02 submitted to World Scientific : 13/03/02 : 17.19 2/19

SPECIFICATION  OF
REACTOR  LATTICE

LIBRARY OF MICRO DATA
FOR ISOTOPES

LATTICE SPECTRUM
CODES

k-inf
k-eff

Neutron flux
distribution
Φ(E,r)≅ Φg

n

macroscopic
cross sections

ΣG
Z , ϕ G

Z

reaction rates

fuel depletion

Figure 1. General diagram of the input and output of a reactor lattice code.

.In any case the fuel elements surrounded by moderator (coolant) form a reactor
lattice which in the first step of reactor calculations is assumed infinite. We speak
about the square lattice if fuel elements are arranged in squares, hexagonal if fuel
elements are situated in corners of hexagons etc. In any type of reactor lattice we are
able to identify a repetitive fragment composed of a single fuel element surrounded
by a portion of adjacent moderator. Thus a fictitious boundary is introduced in the
middle of moderator dividing the nearest fuel elements. The fuel rod (or plate) with
its cladding and adjacent moderator portion form a unit cell, as shown in Fig. 2.

The form of the unit cell depends on the reactor type. For instance a typical unit
cell of a PWR type reactor is square with a cylindrical fuel rod in its centre (cf.
Fig. 1). The unit cell for TRIGA is most often hexagonal with a cylindrical rod; the
MTR unit cell is a fuel plate, claded on both sides and surrounded by water. Typical
shapes of unit cells are shown in Fig. 2.

In the concept of the unit cell it is assumed that such a cell is a repetitive
fragment of the large reactor lattice and under this assumption a zero current
boundary condition can be imposed on its boundary. The outer boundary of the unit
cell , in case of a cylindrical fuel rod, is transformed from the rectangle, hexagon etc.
into a cylinder as shown in Fig.2.
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Figure 2. Fragment of a horizontal intersection of a square and plane lattice with a unit cell .

The transformation of the outer boundary is carried out on the basis of preservation
of the volumes of all materials. For a rectangle the outer radius of the equivalent
unit cell i s R = a/√π with a denoting the lattice pitch (distance between centres of
direct neighbours of fuel rods). The white boundary condition, introduced in section
2.3 of “ Introduction to the Neutron Transport Phenomena”, at the cylindrical unit
cell boundary is applied.

In the plate unit cell concept it is usually assumed that the plates are infinite in
both y and z directions (cf. Fig.3), which reduces the problem of solution of the
transport equation to a one-dimensional one with constant flux (or zero current)
boundary condition. With this assumption the plane unit cell does not need to be
transformed. Similarly, it is assumed that for a cylindrical unit cell , the cell i s
infinite in the vertical direction. This again reduces the transport equation to a one-
dimensional case in cylindrical geometry.
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x

Figure 3. Typical shapes of unit cells.

The transport equation over the unit cell is solved to get the neutron flux distribution
and eigenvalue. The diffusion approximation is not recommended here as it can be
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used only in case of low neutron flux gradients. At the fuel-moderator interface this
is never the case, nor it is in the presence of strongly absorbing control elements.

A unit cell i n the WIMS code has a limitation concerning its structure: Only 4
types of materials are allowed with material defined as fuel, occupying the central
position of the unit cell (index 1), then cladding (index 2), coolant (index 3) and
possibly moderator (index 4), as shown in Fig. 4.
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Figure 4. Spatial model of representative elementary cells in WIMS:
fuel - index 1, can - index 2, coolant - index 3, moderator - index 4.

All the materials with a given index are mixed together by the code and placed in
the appropriate layer of the cylinder (plate or sphere). If the code user wants to
exclude a material from calculations of the unit cell a negative spectrum index
should be prescribed to this material. This possibility is recommended for a heavy
absorber.

This definition implies that a tubular fuel element is not treated properly at the
unit cell l evel and special tricks are needed to calculate that type of fuel by the
WIMS code.

For the unit cell the integral neutron transport equation is solved in WIMS by a
colli sion probabili ty method. The flat flux assumption is made for each of the basic
4 regions. The latter has a meaning of treating each of these regions as a separate
annulus of Fig. 4. The integral transport equation is solved only up to the coolant
region. The bulk moderator region is treated by an approximate technique based on
the diffusion theory. For that purpose a separate balance equation is built for the
moderator region and coupled by the neutron current at the outer boundary of the
coolant region: A negligible absorption in the moderator region is assumed

2.2 Definition of a macrocell

Unfortunately, the fuel elements are not the only heterogeneity in the reactor core.
In power reactors the fuel elements are combined into fuel assemblies. This is not a
serious problem, as the number of fuel elements in the assembly is large enough to
assume an infinite lattice of unit cells. The real diff iculty is connected with the
presence of strongly absorbing control elements. In research reactors besides control
elements (plates or rods) there exist other types of heterogeneity as, e.g., various
non-multiplying media inserted for irradiation.
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To account for various types of strong heterogeneity a concept of a macrocell
has been created. A macrocell i s again a repetitive fragment of the reactor lattice but
composed of several unit cells. By ‘ repetitive’ it is understood that a constant flux
(zero current) boundary condition is justified at the outer boundary of the macrocell .
It is just left to the reactor physicist to decide which region of a given reactor core
can be chosen as a macrocell . Typical shapes of a macrocell are shown in Fig. 5.

absorber

fuel

moderator

r

absorber

absorber

Figure 5. Possible macrocells with fuel rods and fuel plates with an absorber.

The typical approach applied in reactor macrocell calculations is to solve first the
neutron transport equation for a unit cell and then use the obtained results in the
second solution of the transport equation over the macrocell . This two-step
procedure can be carried out by one code or by two codes with automatic transfer of
information. The two steps can use the same method of solution or different
methods and/or different approximations of the neutron transport equation. For
instance, in case of a PWR assembly the second step can be carried out for the
whole, or a quarter of, the fuel assembly using an improved diffusion theory
approximation.
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In WIMS a typical two-step process is used for macrocells. After the infinite
multiplication factor and neutron flux is obtained for the 4 (3) basic regions of a unit
cell the macrocell can be treated with coefficients of the transport equations, i.e., the
macroscopic cross sections obtained from that flux. A group condensation is
possible before macrocell calculations. Several spatial models can be used
depending on the user choice. The choice is an important step in lattice calculations
and the reactor physicist is responsible for a correct representation of the analyzed
system.

Five geometry models and two numerical methods: DSN or colli sion
probabili ty called PERSEUS, are possible here. The simplest and the most
frequently used is the ‘cluster’ model shown in Fig.6, where a set of fuel pins
(plates) is situated in consecutive rings (layers) with a possibili ty of an absorber rod
(plate), or another type of heterogeneity, in the middle of the macrocell .

r

rabsorber

moderator

Figure 6. Model of a ‘cluster’ in cylindrical and plane geometry.

In the cluster model the few-group transport equations are solved by DSN or
colli sion probabili ty method with the application of so called smearing - unsmearing
procedure. First the homogenisation of materials inside each ring, specified as
annulus in input data, is done. The transport equation is solved over the macrocell
composed of a system of homogeneous rings (layers) what allows for a 1D
calculation. Then the unsmearing procedure is carried on, on the basis of macrocell
few-group fluxes, ϕG, and multigroup fluxes, Φg . It consists of the following steps:
1. Condensation of the multigroup flux obtained for each spectrum type L of the

unit cell to the few-group structure:

∑
∈

=
Gg

L,gL,G ΦΦ ,

2. Calculation of the average group flux for each annulus (plate) M from the few-
group flux distribution calculated at for a macrocell in mesh points m:
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3. Calculation of the few-group flux for materials with spectrum indices L and –L
contained in volumes VK of the annulus M:

M,G

K
L,GK

L,G
M,L,G )V(

ϕ
Φ

Φ
ϕ

∑
= ,

Dividing both sides of the last equation by the mean flux in the annulus, M,Gϕ , we

get the disadvantage factor of the materials K with spectrum indices L and –L in the
annulus M:
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It is easy to see that the RHS of the last equation is independent of the annulus M.
Thus, the disadvantage factors are the same for all materials to whom the same
spectrum index (negative or positive) has been prescribed.

A special option gives a possibili ty to calculate different multigroup flux and
hence different disadvantage factors for pin cells belonging to different annuli .
However, there is no possibilit y of introducing different fuel pins into the same
annulus. The smearing - unsmearing process makes impossible a treatment of a
strong heterogeneity as one of rods placed in an annulus of fuel pins. In the cluster
option an absorber may be put only in the middle of a macrocell . The absorbers
placed as one of rods of an annulus require the PIJ option where a two dimensional
integral transport equation is solved

Choosing the cluster option the user should remember that the neutron flux,
calculated for a unit cell in its 4 basic regions, enters the final solution through the
unsmearing process. For that reason the proper definition of cross sectional areas of
fuel, cladding and coolant materials per one rod is necessary. This requires a careful
choice of spectrum type indexes and width of the annuli containing fuel rods.

The geometry models available in WIMSD-4 and WIMSD-5 versions are:�
 pin cell representing an infinite lattice of identical cells,�
 a cluster given in Fig. 6 with annular regions smeared during transport equation

solution, and 'unsmeared' through application of disadvantage factors obtained
from multigroup fluxes calculated for a representative cell ,�

 PIJ - a cluster shown in Fig. 7, with explicit two-dimensional transport solution
in (r,θ) geometry, with a possibili ty of a square macrocell outer boundary,�

 PRIZE - the (r-z) calculations introducing a possibili ty of taking into account
an axial nonuniformity of the fuel rod in pin cell calculations, shown in Fig. 8,
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�
 multicell calculations with cells or clusters coupled through input coll ision

probabiliti es as shown in Fig. 9.

r

θ
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Figure 7. Examples of clusters treated by PIJ- PERSEUS.
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Figure 8. Example of a cell calculated in (r-z) geometry.



tr2w_02 submitted to World Scientific : 13/03/02 : 17.19 9/19

Cell A

Cell B

Cell C

P
AB

P
AC

P
BC

Figure 9. Example of a system calculated as 'multicell '.

It should be stressed that the WIMS code can be used as well for unit cell
calculations giving the homogenised single cell macroscopic cross sections to be
used in macrocell calculations carried out by another code. The choice of the
approach depends on the actual reactor and purpose of calculations, and as always,
should be done by the reactor physicist.

3 Energy dependence

The energy dependence in lattice calculations is treated through the multigroup
approach. In WIMS the infinite lattice calculations are carried out always in the
number of groups equal to that in which the library data are given. The macrocell
calculations can be done in the same or a reduced number of groups. However, in
the analysis of the physics for a particular type of the reactor lattice it is convenient
to distinguish several energy intervals characterised by special physical phenomena:
1. Fast energy region in which the fission neutrons emerge and the neutron energy

dependence (spectrum) follows approximately the fission spectrum.
2. The slowing-down region with the energy dependence of 1/E.
3. Resonance region in which the heavy nuclei exhibit a resonance character.
4. Thermal region where the majority of fission reactions takes place and both up-

and down scattering of neutrons are possible.

The most complicated physical models have to be applied in the resonance energy
region. To carry out the effective solution of the transport equation for a unit cell the
coeff icients of equations have to be known. Those are expressed through
macroscopic cross sections for respective media present in the unit cell . The
macroscopic cross sections are linear combinations of library microscopic cross
sections and number densities of respective isotopes unless the isotope is a
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resonance one. In that case a special approach is applied to take into account all the
effects substantial for the magnitude of the resonance.

The most important effect is due to the fuel lumping. The neutron born in the
fuel rod or plate has to get out of the fuel area to reach the moderator and to get a
possibili ty of colli sion with its nuclei. On its way to the fuel-moderator interface it
can enter into colli sion with a fuel nucleus and get absorbed. Thus the fuel lumping
decreases the probabilit y of neutrons of being slowed down. The probabili ty of
absorption in the fuel increases with the fuel dimensions and fuel number density.
The effect is called self-shielding. The Bell factor is introduced, to relate a
resonance integral of a lumped fuel to that for fuel and moderator forming a
homogeneous mixture.

If a neutron leaves a fuel rod/plate of his birth it can still enter another rod/plate
of the lattice without a colli sion. The Dancoff factor is introduced to take into
account the fact that the fuel element in the reactor lattice is not isolated. Namely,
the resonance integral for the lattice of fuel rods of radius R is the same as that of an
isolated fuel pin of radius γ R, where γ is the Dancoff factor. It can be also defined
as the reduction factor of the fuel escape probabili ty compared to that of an isolated
fuel pin when all fuel pins are black. The correction to the resonance escape
probabili ty, responsible for this effect, is called the Dancoff correction.

Then still there exists a flux depression caused by a resonance and the
interference of different resonance isotopes. The algorithms applied for all these
corrections vary for various authors.

The actual reactor system is heterogeneous and to define properly resonance
integrals for such a system the WIMS model uses the approach based on the
equivalence principle. It consists in replacement of a heterogeneous problem by an
equivalent homogeneous one. In WIMS, for the purpose of calculating resonance
integrals, the heterogeneous case is considered as equivalent to a linear combination
of homogeneous cases. To do that a set of parameters has to be determined based on
Bell and Dancoff factors. These can be either calculated in the code or supplied by
the user through the input cards.

In the WIMS model of a macrocell a ring of moderating material may surround
the ring(s) of fuel pins. The Dancoff f actor for a cluster model is calculated
separately for the outermost layer of fuel pins. If the calculated macrocell is used to
model a situation without a bulk moderator surrounding the cluster of pins, the code
user is responsible for a choice of an option calculating the Dancoff correction for
an infinite lattice of fuel pins.

The resonance integral of a heterogeneous system Ihet is calculated as a linear
combination of integrals for homogeneous system, Ihom, with modified arguments
through Bell and Dancoff factors combined with geometrical characteristics of the
fuel:

)l/)a((I)l/a(I)(),I(I bhobhohohet ασβσββ +++−= ��� 1
where
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σ
b - potential scattering cross section in the fuel region,

a - Bell factor,
l - mean chord length of the fuel region,
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where Dn is the Dancoff f actor given in WIMS input or calculated by the code.
Index n=1 corresponds to the Dancoff factor for fuel pins internal in the fuel cluster,
n=2 to that for fuel pins from the outermost cluster ring.
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where Gij is a probabili ty that a neutron escaping from region i wil l suffer a

colli sion in region j.
If slab geometry has been chosen β  is taken equal to unity and the Dancoff

factor is  expressed through the E3  Placzek function:

)x(EG ijij 321−= ,
where xij is the optical path of a neutron going through coolant and cladding layers

between the fuel plates, and the Placzek function is defined as:

E x
xu

u
du3 3

1
( )

exp( )= −
∫
∞

and taken with an argument corresponding to a sum of macroscopic total cross
sections multiplied by can and coolant widths. A more complicated algorithm is
used to calculate Gij for other geometries.

The general expression for the resonance integral of a cluster composed of N
rods (plates) with M rods (plates) in the outer ring (layer) is

)II(
N

M
II pin

het
cl
het

pin
het

cl
out −+= ,

where:0
 M   - number of fuel pins or plates in the outer ring,0
 N   - total number of fuel pins or plates in the cluster,0
 pin and cl- pin cell and cluster indices,0
 hom and  het refer to resonance integrals for homogeneous and heterogeneous

systems.
The Bell factor is calculated in the code (if required by the input option)

following the formula obtained from Beardwood fit:
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where a is the Bell factor, D - the Dancoff factor, N238 - the U-238 number density,
Σp - the macroscopic potential cross section, rf - the fuel radius.

It is recommended to choose the more advanced algorithm of Dancoff f actors
calculations in case of square and hexagonal geometry.

The thermal region is the one where the majority of fission reactions take
place. It is characterised by existence of upscattering of neutrons as a slow neutron
entering into a colli sion with a nucleus can not only loose but also gain the energy.
The thermal neutron flux is a quantity of prime importance in the thermal reactor.
In WIMS the first order correction of scattering cross sections is introduced for the
thermal energy diapason. The P1 matrices exist in the code library, however, for
several chosen nuclides only, for whom they are considered to be the most
important. The code user should remember that the P1 matrices should be used only
if such matrices exist in the code library for all principal nuclides in the material
(e.g H2O or pure graphite).

4 Fuel burn-up

The lattice calculations are made for a steady-state reactor and do not involve the
time variable explicitly. Also the coefficients of the transport equation, i.e., the
macroscopic cross sections are considered constant in time. But in practice, the slow
time evolution has to be included to account for the fuel burn-up. The change in
isotopic composition caused by the fuel depletion can be described by a general
equation:

{ } ( )[ ] { }

( )[ ] { } }NRRY{}Nkj,i{

}NRRkj,i{NRRN
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where Ni denotes the number density of isotope i, λi is a decay constant, { }k
xRR  is a

microscopic reaction rate of type x and isotope k, α k,i and β k,i are fractions of
isotope i arising from, respectively, capture and decay of isotope k, Yk,i is a fission

yield of isotope i from isotope k, ( )[ ]kj,i i
nδ  are functions indicating existence or

lack of possibil ity of a given reaction.
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The burn-up changes the number densities, and hence the macroscopic cross
sections of the nuclides undergoing the depletion or the build-up process. Thus, the
neutron transport equation loses its linearity. To cope with the problem in an
efficient way a repetition of the sequence shown schematically in Fig. 10 is applied:

Library

Transport calculations

Input

Burnup
constants

σg
x,i

φg

Intergration of
burnup eqs.

Power
level Number

densities

New
number
densities

Figure 10.  General scheme of depletion calculations.

1. Full solution of the transport equation with starting neutron densities or those
from 3.

2. Normalisation of the neutron flux to a given power level (ζ – normalisation
factor in Fig.10).

3. Solution of the equation for isotopic transformation, establishing new number
densities.

4. Calculation of new macroscopic crosses sections.
5. Go to 1.
Usuall y several burn-up steps can be carried out without accounting for the neutron
spectrum modification, as shown in Fig. 10. However, after a sufficiently long time
the change in macroscopic cross sections gets significant and the repetiti on of lattice
spectrum calculations is necessary. Thus, the flow chart from Fig. 10 has to be
repeated many times until the desired burn-up level is reached
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In practice, the procedure gets much more complicated to make it more
accurate, more efficient or take into account additional phenomena, as e.g., burnable
poisons.

5 Results of lattice calculations

The direct results of the solution of the neutron transport equation in lattice
calculations are k-inf and the neutron flux. in as many energy groups as they were
used in the calculation and in mesh intervals applied in the numerical solution. In
case of burnup calculations the results include the compositions of all burnable
materials..

These results can be then used in secondary calculations to deliver other needed
quantities. WIMSD-5B has several possibiliti es of secondary homogenisation in
energy and space. The homogenised diffusion coefficients can be defined such that:

∫

∫
=

i

i
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while for all other types of cross sections the formula is assumed:
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∫
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 Secondary quantities calculated from the multiplication factors are the reactivity
effects of various types: temperature reactivity coefficients, effects of lattice pitch
dimensions, burnable absorber number densiti es, etc.

The effective multiplication factor, if given in the results of lattice calculations,
may be only a rough approximation of this quantity. It is obtained through a
substitution of the streaming term in the diffusion equation by an expression DB2

with B2 calculated very often from the core dimensions. The theory underlying this
approach assumes a regular lattice inside the reactor core and a regular shape of the
core. Thus the k-eff result has to be used with caution.

The neutron flux is used in calculations of reaction rates. They can be
calculated directly from the regional neutron flux and cross sections.

Reaction rates have been already defined in ‘The Introduction to Neutron
Transport Phenomena’ . However, here the attention is drawn to an ambiguity in
their definition. The basic definition is usually that for a reaction of type x, where x
can be absorption, fission or production, the reaction rate in group g is:
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and is effectively calculated as a finite sum over materials and isotopes. The
reaction rates may be calculated for a chosen isotope (i.e., without the summation
over i) or for reactions caused by all isotopes present in the chosen material. They
are usuall y calculated for a chosen energy interval, e.g., for the thermal region.

The quantity based on macroscopic, instead of microscopic, cross sections is
called the number of reactions of a given type x, in group g for isotope i, but it is
also known as macroscopic reaction rate. Special caution is needed to avoid
confusion of those two quantities. Both of them can be calculated in the WIMS
code.

6 The recent version of WIMSD-5B

6.1 Subjects of modifications

Under the Co-ordinated Research Programme on WIMS Library Update Project
new libraries have been developed. The new developed library has an increased
number of isotopes and exists in two versions: with 69 and 172 library groups. The
standard WIMS code in all its versions, including the last one WIMSD-5B, has been
developed for a library with maximum number of 69 groups. Although the number
of library groups used in WIMS calculations is read from that library, there exists a
set of auxili ary variables in the code with dimensions adjusted to the requirements
limited by the 69-group library. Those arrays had to be identified and modified if
the extended 172-group library was to be used. The total number of library groups is
connected to the number of fast, resonance and thermal groups and those 'partial'
numbers of groups entered also the dimensions of particular arrays that required
modifications. A similar situation existed with the number of isotopes in the library,
i.e., the total number of isotopes, the number of fissionable isotopes and the number
of fission products are also read from the library. All of them, although formally
taking the library values, exist inside the particular subroutines with limitations
imposed on their magnitudes in an indirect way.

Thus, the main goal of the WIMSD-5B code modification has been to enable
the code to deal with the 172-group cross section library. Some minor changes had
to be introduced to make the code work in all i ts options with an increased number
of isotopes. Finall y, the arrays with fixed dimensions have been included into the
general scheme of dynamic memory organisation adapted in the WIMS code.
An additional possibili ty proposed by Guennadi Jerdev has been added. This
introduces a possibili ty of multiple product nuclei in the burnup chains. In the
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standard WIMS approach there is a limitation of a single capture and a single decay
product. To introduce a possibili ty of branching a modification has been needed
both in the code and in the library. The presently described WIMSD-5B version
includes the modification allowing for branching if a special library FOND22 or
ENDFB6EB is applied. In the extended libraries, several chosen isotopes received
additional 'virtual' isotopes corresponding to their additional burnup channels. The
convention has been adopted that an isotope with ID≥100000 is virtual. The virtual
isotope is a copy of isotope with ID-N×100000 (N=1...9), called 'base'. The
approach is explained in Fig.11, prepared by the author of the method, with one
base (Am) and two virtual isotopes with IDs 109241 and 209241.

241Am

242mAm

242Cm

242Pu

243Am

σγ*17.3%

109241

209241

σ1 ρj

σg∗82.7%

σ
m

Fig. 11. Base isotope Am-241, virtual 109241 and 209241.

If during the burnup chain execution the isotope with ID≥100000 is identified
the respective base isotope is searched and its number density is taken as the
number density of a respective virtual isotope. A convention has been assumed to
allow for using library cross sections of the base isotopes for the virtual isotope(s) in
case the latter's data is missing in the library: if the library capture cross sections of
the virtual isotope are not greater than zero the capture cross sections for the virtual
isotope are copied from its base isotope, otherwise they are taken from the library.
The virtual isotopes then enter the regular procedure for reaction rates calculation
and burnup equation integration giving the respective contributions to the daughter
isotopes not accounted for in the standard WIMS approach. The data for virtual
isotopes have been prepared by the author for ENDFB-VI and FOND22 based
libraries. This group of code modifications does not influence results obtained for
standard libraries.

It should be stressed that the libraries with extended numbers of isotopes and
groups cause a necessity of updating several standard test cases distributed by NEA
DATA BANK with the code.
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The extended code version has been tested on 16 standard WIMSD-5B test
cases. The set of CRP benchmarks has been also calculated by the modified code.
Several remarks needed for application of the new libraries are given below.

6.2 Technical remarks

The basic assumption underlying the work on the WIMSD-5B code extension has
been to leave untouched its original version distributed by NEA DATA BANK. For
that reason a code package has been prepared in the form of a so called UPDATE
deck, composed of three files. The source deck is distributed with file identification
src and comprises the program divided into decks, each of them preceded by the
card *ident namedeck and with all cards in the deck named and numbered in
columns 73 through 80. The division of the WIMSD-5B follows the original code
modules, and hence the namedecks have the respective names of those modules.
Besides the source deck the code package includes a file with modifications named
upn. Each modification in the upn file refers to the address in src given as
namedeck.xxxx, with xxxx denoting the card number in the namedeck. The third
member of the code package is the auxiliary program upd. This program has to be
compiled and run. It takes the upn deck and introduces the modifications into the
program deck src. The result of upd execution is a set of fortran programs divided
into modules corresponding to namedecks. Those create the modified WIMSD-5B
code and have to be compiled in a standard way. The modifications introduced by
the above-described procedure can be easily traced in the updated modules as they
have the identifications of respective corrections in columns 73 through 80.

The list of modifications can be found in the materials of CRP on WLUP.
Every change from 69 to 172-group library (or back) requires modification of

the input. The modification is necessary in the FEWGROUP card, THERMAL,
ALPHA and PARTITION, if the last two are included in the input. To facilit ate
those changes the correspondence between the 172-group and 69-group scheme,
based on the respective group boundaries, is given in Table 1.

Table 1
Correspondence between 172 and 69 energy groups

172-group 69-group 172-group 69-group 172-group 69-group
8 1 77 24 140 47

11 2 81 25 142 48
14 3 84 26 143 49
17 4 92 27 145 50
22 5 94 28 146 51
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25 6 97 29 147 52
28 7 101 30 148 53
31 8 108 31 150 54
33 9 113 32 152 55
35 10 116 33 155 56
37 11 117 34 157 57
41 12 119 35 159 58
43 13 120 36 160 59
45 14 121 37 161 60
47 15 123 38 162 61
49 16 124 39 163 62
51 17 126 40 164 63
54 18 127 41 165 64
57 19 129 42 166 65
61 20 131 43 167 66
64 21 133 44 168 67
67 22 135 45 170 68
71 23 137 46 172 69

The pseudo-tape option cannot be used with the 172-group library unless the size of
the memory needed for calculations, equal at present to 1000000, is substantiall y
increased. A suitable information message has been inserted into the program.

With the new libraries the standard test cases distributed by NEA Data Bank will
give different answers. The correct adaptation of WIMSD-5B cannot be verified any
longer by comparison with results distributed with the code. The k-infinity values
obtained with various libraries differ mostly by 0.1 - 0.2% but for some cases the
differences are several times higher. Besides, several entries have to be changed in
the standard test cases to run them. These changes are connected with the increased
number of isotopes or with the nuclide IDs in the new libraries. They are listed in
Table 2. The number of isotopes depends on the library applied. The value in Table
2 corresponds to the largest presently met requirement, i.e. ENDFB-VI with 69
groups and expanded burnup. The most severe problems are connected with options
modifying the library: REPLACE, MULTIPLY, INCREASE. The actual positions
of cross sections in the computer memory have to be given here. The values in Table
2 should be treated as an example since they are valid only for the ENDFB-VI based
library with 69 groups and without the expanded burnup approach.

Table 2
Changes to be introduced to the standard WIMSD-5B test cases.

Test case original text correction for CRP library
test04 nisotopes 60 nisotopes 92
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test06 store 200000
replace 1521 1521
multiply 1662 1662
increase 1523 1523
increase 1533 1533

store 600000
replace 1918 1918
multiply 2392 2392
increase 1920 1920
increase 1930 1930

test12 4157 (Gd-157) 2157
test13 9056 (SS) follow composition of SS


